
HAL Id: hal-01640097
https://hal.archives-ouvertes.fr/hal-01640097

Preprint submitted on 20 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Model Checking of LLVM Code
Louis-Marie Traonouez, Axel Legay, Dirk Nowotka, Danny Poulsen

To cite this version:
Louis-Marie Traonouez, Axel Legay, Dirk Nowotka, Danny Poulsen. Statistical Model Checking of
LLVM Code. 2017. �hal-01640097�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132790083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01640097
https://hal.archives-ouvertes.fr

Statistical Model Checking of LLVM Code.

Axel Legay1, Dirk Nowotka2, Danny Bøgsted Poulsen2, and
Louis-Marie Tranouez1

1 Inria, Rennes
2 Christian Albrechts Universität

Abstract. We present our work in providing Statistical Model Checking
for programs in LLVM bitcode. As part of this work we develop a semantics
for programs that separates the program itself from its environment.
The program interact with the environment through function calls. The
environment is furthermore allowed to perform actions that alter the state
of the C-program - useful for mimicking an interrupt system. On top of
this semantics we build a probabilistic semantics and present an algorithm
for simulating traces under that semantics.. This paper also includes the
development of the new tool component Lodin that provides a statistical
model checking infrastructure for LLVM programs. The tool currently
implement standard Monte Carlo algorithms and a simulator component
to manually inspect the behaviour of programs. The simulator also proves
useful in one of our other main contributions; namely producing the first
tool capable of doing importance splitting on LLVM code. Importance
splitting is implemented by integrating Lodin with the existing statistical
model checking tool Plasma-Lab.

1 Introduction

The development of tools and techniques for verifying software systems behave
correctly has been an active research area for more than two decades [6, 11, 13].
Common to the tools is that they take a model of the program along with
a correctness criterion and explore every computational path in search of one
violating it. This technique is commonly known as Model Checking [7, 8]. In case a
model checking tool has found a violation, it provides a diagnostic trace for refining
the model. Abstract models are useful to locate errors in the design of a program
but less beneficial when an existing program is subjected to formal verification
as that requires recreating the program in a formal model. A big problem in this
regard is that old software may be left undocumented thereby making it difficult
to create a representative model. In more recent years researchers developed
Model Checking tools for real-life C-code [2, 4, 23]. The most prominent tools
are possibly CPAChecker [4] and Divine [2]. CPAChecker analyses the
C-source symbolically while Divine compiles C-source to LLVM [18] bitcode
and analyses that explicitly. Zaks and Joshi [23] analysed LLVM bitcode by
interfacing with the explicit-state model checker SPIN [13]. A limiting factor for
Model Checking is the state-space explosion which drastically limits the size of

programs that can be handled by model checking. An alternative technique for
verifying programs is Runtime Verification [3, 10], where the existing program
is instrumented to expose its inner state at runtime to an observational unit.
Runtime verification does not suffer from the state space explosion but does come
with its own limitations: it can only draw conclusion on the traces it has seen,
the instrumentation of the program alters the timing of events — a timing issues
may depend on — and finally reinstantiating the program to a specific state is
difficult making controlled experiments close to impossible.

Statistical Model Checking (SMC) [22] is a relative new technique that is a
compromise between testing-based methods and model checking techniques. Like
model checking SMC depends on a model of the program but does not perform
an exhaustive exploration. Samples are instead generated from an underlying
probability distribution and the probability of satisfying the property is estimated.
Being simulation-based, SMC does not suffer from the state-space-explosion
problem and being model-based SMC has complete control of its state and can
thus reinstantiate to a given state. Statistical Model Checking thus proposes an
alternative verification technique for C-code but no SMC tool with C as focus
has been developed. In this work we develop the first Statistical Model Checking
tool for C. Our tool, Lodin, operates on LLVM-code and thereby avoids the
hassle of parsing and interpreting C and can focus on a simpler asssembly-like
language. An added benefit of using LLVM as input is that the same C-code can
be compiled with and without optimisations and our tool is applicable to both. A
necessity for performing SMC is a probabilistic semantics for the program under
verification and its environment. A first contribution of the current paper is the
development of a probabilistic semantics of a LLVM program: at its core the
semantics consist of the LLVM program given as a labelled transition system.
The labels are function calls to an environment that implements functions outside
the LLVM core language3. The environment is also responsible for assigning
probabilities to individual transitions. Out probabilistic semantics is accompanied
by the tool Lodin performing Statistical Model Checking under that semantics.
Lodin also includes a simulator allowing the user to interactively inspect various
thread interleavings.

A problem for simulation based techniques is that estimating rare properties
result in generating a huge number of samples. Importance splitting [20] is an
efficient technique for estimating rare properties. The general purpose SMC
tool Plasma-Lab [5, 14, 19] implements importance splitting but lacks an
LLVM simulator. In this paper we seamlessly integrate Lodin with Plasma-Lab
and thus obtains the first tool capable of performing rare event simulation of
LLVM programs. Besides providing means for estimating rare events, importance
splitting is also a useful tool for recreating a behaviour pattern of a program.
This is useful to asses the impact of changes to the program. We apply our tool to
programs from the SV-Comp [1] benchmarks to asses the compatibility of Lodin
with LLVM. We furthermore apply Lodin and the Plasma-Lab integration
to 6 additional programs and see how importance splitting is effective when

3 Could be various system calls

tmp = 0

tmp_1 = 0

tmp2 = 0
start

tmp = 0

tmp_1 = 1

tmp2 = 0

tmp = 0

tmp_1 = 1

tmp2 = 0

tmp = 0

tmp_1 = 1

tmp2 = 0

tmp = 0

tmp_1 = 1

tmp2 = 1

tmp = 0

tmp_1 = 1

tmp2 = 0

tmp = 0

tmp_1 = 1

tmp2 = 1

-
-
-

tmp = alloca i32 tmp1 = alloca i32

%tmp2 = load i32* 1 -> 0

store i32 0,0

%tmp2 = load i32* 1 -> 1

store i32 1,0

ret i32 0

ret i32 0

Fig. 1: A Transition System of a process. Single arrows are internal transitions that only
affect the process itself. Dashed arrows correspond to input transitions, while double
arrows correspond to output transitions.

classic Monte Carlo is not. In Section 2 we present our semantical framework
along with our probabilistic semantics, followed by Section 3 which present the
statistical model checking technique along with importance splitting for rare
events. In Section 4 we introduce the new tool Lodin and the more mature
tool Plasma-Lab and we discuss how these two tools are integrated. Finally, in
Section 5 we present examples where we apply our developed tools.

2 Semantical Model

We consider a program given as a labelled transition system where labels indicate
function calls to an environment. In this context, the environment controls the
state of the memory and calls to the environment are operations such as %reg = load

i32 %loc to load a 32 bit integer from memory location %loc into local register %reg

and store i32 %reg, i32* %loc to store the value of %reg into memory location %loc. A
load instruction is called an input as the local state depends on the outcome of the
instruction. Listing 1.1: An example LLVM function.

1 ; Function Attrs: nounwind uwtable
2 define i32 @main() #0 {
3 % tmp = alloca i32 , align 4
4 % tmp1 = alloca i32 , align 4
5 % tmp2 = load i32 , i32* %tmp1 , align 4
6 store i32 %tmp2 , i32* %tmp , align 4
7 ret i32 0
8 }

Likewise, we consider a
store instruction an output
as it changes the state of
the environment. Besides
input and output instruc-
tions a program has inter-
nal operations that only changes its own local state (registers, control locations
and so forth). As an example consider the LLVM program in Listing 1.1 and
its associated transition system in Figure 1. The program allocates memory
for two 32-bit integers on its local stack and store their memory addresses in
local registers %tmp and %tmp1. Afterwards the value at location %tmp1 is loaded
into register %tmp2. Notice here that the program branches depending on the
outcome of the load instruction. In practice there are branches for all 232 − 1
possible values of 32 bit numbers. For a set of names Σ, a function ψ : Σ → N
assigning arity to names and a finite domain D, we define the set of invocations
as Fψ(D,Σ) = {a(d1, . . . dn) | a ∈ Σ ∧ n = ψ(a) ∧ ∀i.di ∈ D}.

Definition 1. A process is a tuple (D,Σ,ψ, S, s0,→) where a) D is a finite
domain, b) Σ is a finite set of names split into output (Σo) and input (Σi)
such that Σ = Σo ∪ Σi and Σo ∩ Σi = ∅ , c) ψ : Σ → N assigns arity to
names, d) S is a set of states, e) s0 ∈ S is the initial state, f) →⊆ S ×((
Fψ (D,Σ)× (D ∪ {λ})

)
∪ {(τ, λ)}

)
× S, where λ /∈ D and τ /∈ Fψ(D,Σ), is a

set of transitions with the restrictions that 1) if (s, (a, λ), s′) ∈→ then a = τ or
a ∈ Fψ(D,Σo) and 2) if (s, (a, t), s′) ∈→ and a ∈ Fψ(D,Σi) then t ∈ D.

As a short hand notation we write s a→t−−−→ s′ whenever (s, (a, t), s′) ∈→. The
symbol τ indicates an internal transition and λ is a placeholder for “no value”.
The restrictions on the transition relation ensure λ is only used with τ - and
output-transitions and that input transitions are always assigned of value from D.
To make a process behave consistent with a real executing program we require
that 1) the transition relation is successor-deterministic i.e. if s a→t−−−→ s′ and
s
a→t−−−→ s′′ then s′ = s′′, 2) the transition relation is action-deterministic i.e. if

s
a→t−−−→ s′ and s a′→t′−−−−→ s′′ then a = a′ and 3) we expect that the transition relation

is fully non-deterministic with respect to D meaning that if s a→t−−−→ s′ and t ∈ D,
then for all j ∈ D there exists s′′ a such that s a→j−−−→ s′′. An environment under
which processes operate is a transition system awaiting synchronisations from
processes and update the state according to outputs of processes and respond
with values for the input synchronisations of a process. Formally, an environment
is a tuple E = (D,Σ,ψ, Se, s

e
0,→e) with components defined as for a process.

Like for processes, we insist that an environment is successor-deterministic but
additionally require that the environment is fully action-nondeterministic i.e.
for any state se and any a ∈ Fψ(D,Σ) there exists an i ∈ D ∪ {λ} such

that s
(a−>i)−−−−−→ s′ for some s′. Also for all states se ∈ Se we insist there exists

exactly one τ transition and that s τ→λ−−−→ s. Let P = (D,Σ,ψ, S, s0,→) be a
process and let E = (D,Σ,ψ, Se, s

e
0,→e) be an environment; then we call a

tuple s = (s, se) where s ∈ Sn for some n ∈ N and se ∈ Se for a network state.
For a state vector s = (s1, . . . , sn) we write s[i/s′] for the updated state vector
(s1, . . . , si−1, s

′, si+1, . . . , sn). A network state (s, se) can transit to (s′, s′e) by the
ith process doing an action a → t while synchronising with the environment -
we write this transition as (s, se)

a→t−−−→
i

(s′, s′e). Formally, the transition rule is

defined as follows (s, se)
a→t−−−→
i N

(s′, s′e) if s[i]
a→t−−−→ s′, s′ = s[i/s′] and se

a→t−−−→ s′e.

For synchronising programs, and guarding shared-memory from data races,
programs usually rely on locking mechanisms. Processes attempting to lock an
already locked lock is blocked until that lock is available for acquisition. In our
semantics we consider that the environment keeps track of what processes are
interrupted and which processes are active in its state space. In the following
assume that there exists a function Active : Se → 2N that extracts the indices
of processes currently active. We can then define a new transition relation as
(s, se)

a→t−−−→
i

(s, se) if i ∈ Active(se) and (s, se)
a→t−−−→
i N

(s, se).

Example 1. As an example of an environment, consider Figure 2. The environment
has memory cells M0 and M1 mapped to values from a domain D = {0, 1}. A
transition load i32* 0 -> 1 is allowed if memory cell M0 has the values 1. Obviously
there would be a load instruction for both memory cells. Executing a store i32 m,d

transition updates memory cell Mm to contain the value d. Here we also note
that there is one store transition for all combinations of m ∈ {0, 1} and d ∈ D.
In Figure 2 we left out the τ -transitions. Finally, we note the environment state
contains the id of active process - in this example there is only process active
with id 0.

M0 7→ 0

M1 7→ 0

Active = {0}
start

M0 7→ 1

M1 7→ 0

Active = {0}

store i32 0,1

load i32* 0->0

load i32* 0->1

Fig. 2: Excerpt of the
transition system for
an

Environmental Transitions Computer systems often rely
on an external program sending signals to a running pro-
gram e.g. a signal informing some button has been pressed.
For supporting this semantically we introduce an extra al-
phabet ΣI and an extra transition relation ⊆ S×ΣI×S
for processes. We require that is successor-deterministic
but fully non-deterministic with respect to ΣI . For an
environment, we introduce another transition relation
 e⊆ Se ×ΣI ×N× Se. The requirements to e is that it
must be successor-deterministic and if (se, (k, i), se′) then
i ∈ Active(se). This latter requirement ensures that an
environment only sends signals to active processes. For a
network state (s, se) we extend the transition relation with
the rule (s, se)

k→λ−−−→
i

(s′, se
′) if k ∈ ΣI , (se, k, i, se′) ∈ e,

(s[i], k, s′) ∈ for some s′ and s′ = s[i/s′].

2.1 Probabilistic Semantics

In the following we define a probabilistic semantics refining the non-deterministic
choices. If s = (s, se) is a network state and Fψ(D,Σ) is actions of the network,
then for all a ∈ Fψ(D,Σ) ∪ {τ} we let nd(s)(a) extract the finite set of possible
values the environment can respond with i.e. t ∈ nd(s)(a) iff se

a→t−−−→ s′e for some
s′e. With this notation we now assume a set of probability mass functions: {γas :
nd(s)(a)→ R | a ∈ Fψ(D,Σ)∪{τ}} assigning probabilities to the various results.
Likewise, we let intero(s) = {(k, i) ∈ ΣI × N|(se, k, i, s′e) ∈ e} and assume a
probability mass function γPs : N→ R, where N = (Active(se)×{_})∪intero(se)
assigning probabilities to the transitions of the network. Here _ is an unused
symbol.

Let π = s0, a0, s1, a1, . . . , an−1sn be a finite sequence of states and actions
with si = (si, s

i
e) and a ∈ Fψ(D,Σ)∪ΣI ∪{τ}, then the probability of observing

this sequence from s is given by the expression

Fs(π) = (s
?
= s0)·

∑
(k,j)∈K

γPs0((k, j))·

〈s0
a0−→
k
〉 ·
(∑

t∈nd(s0)(a0) γ
a0
s0
(t) · F[s]k,a0,t(π

1)
)

k ∈ Active(s0)

(k
?
= a0) · F[s]k,a0,λ(π

1) otherwise

where K = (Active(so)×{_})∪intero(s0), s
?
= s′ is 1 if s = s′ and 0 otherwise,

〈s0
a0−→
k
〉 is 1 if s0

a0→t−−−→
k

s′ for some s′ and t and 0 otherwise, s a→t−−−→
k

[s]k,a0,t and

π1 = s1, a1, . . . , an−1sn.
A brief explanation of Fs may be in order: firstly it is checked whether s

matches the first state of the sequence (s0). If that is the case, we sum over
all possible actions,(k, j), the network can perform. If k ∈ Active(s0) then we
have selected to do a process transition and take into account the probability
of the kth process doing action a0, take the probability of the various output
possibilities into account and finally multiply by the probability of seeing the
remaining suffix of the sequence. In case k /∈ Actives0 we are considering an
environmental transition and first check if k = a0, then we take the probability of
this transition into account and multiply by the probability of seeing the suffix.

3 Statistical Model Checking with Lodin

The verification technique we consider for verifying queries such as “What is the
probability of reaching a state where ...?” is the approximate verification technique
Statistical Model Checking (SMC) [21]. We split the discussion of SMC into two
subsections: the first section presents the technique on a high-level and the second
part presents the tool Lodin that provides SMC capabilities for LLVM programs.

Algorithm 1: Generating
a run.

Data: TimeBound: n
Data: Initial state: s
Result: A sequence ω

1 s0 = s;
2 ω := s0;
3 foreach i ∈ {0, . . . , n− 1} do
4 (s, se) = si;
5 Let (j, k) ∼ γPsi ;
6 if k == _ then
7 Let a be such that

s[i]
a→t−−−→ s′ for some t;

8 Let t ∼ γas ;

9 Let si
a→t−−−→
j

si+1;

10 end
11 else
12 Let si

j→λ−−−→
k

si+1;

13 end
14 Let ω = ω : si+1;
15 end

3.1 Classical Monte Carlo
Simulation

If F is a probability measure over the set
of runs Ω and 1φ : Ω → {0, 1} is an inidi-
cator function for the property of interest,
then the probability we are interested in
is defined by the Lesbeque integral

P(φ) =
∫
ω∈Ω

1φ(ω) dF,

which by classic probability theory can be
estimated with the unbiased Monte-Carlo
Estimator

P(φ) ≈ 1

N

N∑
i=0

1φ(ωi),

where each ωi is distributed according to F , denoted ωi ∼ F . From a practical
perspective we are not only interested in an estimate but also a “measure” of
how good that estimator is. If p is our estimator then we want to construct an
interval [p− δ, p+ δ] for which we are α percent sure that the real probability

is contained within. We call α the confidence and [p − δ, p + δ] a confidence-
interval. We construct the confidence-interval using the method of Clopper
and Pearson [9] for constructing confidence intervals for Binomial distributions.
To visualise how one can use Clopper-Pearson interval for dynamically adjusting
the number of runs needed, consider the graph in Figure 3. Here we for each
generated run plot an 95%-confidence interval. Notice how the interval gets
smaller as we produce more samples and as such we may continue generating
samples until the confidence width is below a user specified threshold. Figure 3.

Fig. 3: Confidence interval
over the number of runs.

Obtaining Runs From the LLVM Program Samples
are obtained from our probabilistic semantics with
Algorithm 1: for each state si in the generated run
we select a tuple (j, k) according to γPsi that represent
the transition. In case k is _ then a process has been
selected and we find the unique action a it will per-
form and select an output value from the environment
according to γa. Finally, we create the new state si+1

and append it to the run ω. If k is not _ then the
selected transition is actually an environment transition and we just perform
that transition to obtain the successor state and append the resulting state to
the run.

3.2 Lodin

Lodin is a new tool for verifying programs given as LLVM-bitcode4. The tool
implements explicit-state reachability checking algorithms and Monte-Carlo
probability estimation techniques. Architecturally, Lodin consists of a UI front-
end which a user interacts with. This front-end is responsible for loading a LLVM
bit-code file, reading in a query from the user and setting up a suitable System
and selecting an Algorithm for verifying the given query. As part of setting up the
System, Lodin requires the user to provide it with a platform implementation.
The platform provides an implementation inside Lodin of functions that are not
given semantics by LLVM, e.g pthread_create. A Platform module is also responsible
for creating Environmental transitions and assigning probabilities to different
transitions - mimicking a scheduler mechanism. The System exposes an interface
for algorithms to create an initial state, enumerating possible transitions from
a state and for executing a given transition. When executing a transition the
system makes a call to an interpreter for LLVM which may delegate function call
to the platform.

Preparing files for use with Lodin Lodin requires programs to be compiled into
LLVM bitcode. We can achieve this by compiling the program with clang clang

-emit-llvm -S -c file.c -o file.ll. This is sufficient for programs with no external
dependencies, but since properties are specified on the basis of the LLVM registers
4 Available for download at lodin.boegstedpoulsen.dk

lodin.boegstedpoulsen.dk

it may be necessary to run opt instnamer file.ll -S -o fileN.ll to generate the file
fileN.ll in which the registers have been given names that Lodin can refer to.
Lodin has extra requirements for programs with external dependencies: firstly
a platform implementing external functions inside Lodin must exist, secondly
the program must be compiled with header files distributed with the platform
library. If the header files are located in/path/to/includes then programs should be
compiled with the command
1 clang -nodefaultlibs -ffreestanding -fno -builtin -emit -llvm -S -c -I/path/

to/includes file.c -o file.ll

ensuring clang compiles the program without using any of its built-in libraries
and only rely on the header files included on the command line.

Using Lodin Lodin is a command line tool and is invoked by
1 ./Lodin [options] file.ll query.q

where [options] includes options for selecting the platform, setting the random
seed and so on. The query.q file contains a one line query. The possible SMC-based
queries are generated by the below EBNF:

〈Query〉 ::= ‘Pr’ ‘[’ ‘<=’ 〈integer〉 ‘]’ ‘(’ ‘<>’ 〈bool〉 ‘)’
| ‘Estimate’ ‘[’ ‘<=’ 〈integer〉 ‘,’ 〈integer〉 ‘]’ ‘{’ ‘max’ 〈arith〉 ‘}’
| ‘EnumStatesSMC’ ‘<=’ 〈integer〉 〈integer〉

〈arith〉 ::= ‘@’〈processid〉 ‘.’ 〈string〉 ‘.’ 〈register〉 ‘;’ 〈type〉 | 〈integer〉 ‘;’〈type〉
| 〈arith〉 〈op〉 〈arith〉

〈op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

〈type〉 :== ‘ui8’ | ‘ui16’ | ‘ui32’ | ‘ui64’

〈bool〉 :== ‘DataRace’
| ‘[’ 〈processid〉‘.’〈string〉 ‘]’
| 〈arith〉 〈comp〉 〈arith〉
| ‘(’〈bool〉 ‘&&’ 〈bool〉 ‘&&’ ... ‘&&’ 〈bool〉 ‘)’
| ‘(’ 〈bool〉 ‘||’ 〈bool〉 ... ‘||’ 〈bool〉 ‘)’
| ’Exists’ ’(’〈char〉 ’)’ ’(〈bool〉’)’
| ’Forall’ ’(’〈char〉 ’)’ ’(〈bool〉’)’
|

〈comp〉 ::= ‘<’ | ‘<=’ | ‘==’ | ‘>=’ | ‘>’ | ‘!=’

〈processid〉 ::= 〈integer〉
| 〈char〉

〈register〉 ::= %〈string〉

An expression @0.main.%tmp3;type finds the register with name %tmp3 in the function
main of the zeroth process and evaluates it as a number with type type. An expression
[0.func] looks at the zeroth process and checks whether it can call the function func.
The Boolean expression Exists (p)(<bool>) checks whether there exists a process for
which the Boolean expression is true. Any occurrence of p is replaced by an actual
process during the evaluation. On the query side Pr[<=500] (<> <bool>) generates
runs of length 500 and checks whether the Boolean expression is satisfied along
those runs. Based on those runs it then estimates the probability of satisfying
the Boolean expression along any random run. The exact number of runs is

automatically adjusted using the Clopper-Pearson interval. A query Estimate

[<=500,5000] {max <arith>} generates 5000 runs each of 500 steps and estimates the
expected maximal value of the expression during a run of the program. Finally,
EnumStatesSMC <=500 5000 generates 5000 runs each of 500 steps and counts the number
of different states encountered during those simulations.

Example 2. Consider the program in Listing 1.2 where two threads attempt to
calculate the 32nd Fibonacci number. With Lodin we can estimate the expected
number of i at the termination of the program. This is done using the query:
Estimate [<=5000,5000] {max @0.main.%tmp11} . This query informs Lodin to generate
5000 runs, consisting of 5000 states each while observing the %tmp11 register in
the main function of the 0th process and finally take the average of those 5000
observations. The result of this query is 438037. In addition to estimating the
value, the query also outputs the values of each runs to a file which can be used
to generate a histogram.

Listing 1.2: Calculating the Fibonacci
Numbers.
1 extern void VERIFIERError ()

__attribute__ ((
__noreturn__));

2
3 #include <pthread.h >
4
5 int i=1, j=1;
6
7 #define NUM 16
8 #define NULL 0
9

10
11 void *
12 t1(void* arg)
13 {
14 int k = 0;
15
16 for (k = 0; k < NUM; k++)
17 i+=j;
18
19 pthread_exit(NULL);
20 }
21
22 void *
23 t2(void* arg)
24 {

25 int k = 0;
26
27 for (k = 0; k < NUM; k++)
28 j+=i;
29
30 pthread_exit(NULL);
31 }
32
33 int
34 main(int argc , char **argv)
35 {
36 pthread_t id1 , id2;
37
38 pthread_create (&id1 , NULL , t1,

NULL);
39 pthread_create (&id2 , NULL , t2,

NULL);
40 pthread_join (id1 ,NULL);
41 pthread_join (id2 ,NULL);
42
43 if (i == 2178309 || j ==

2178309) {
44 ERROR: VERIFIERError ();
45 }
46
47 return 0;
48 }

Example 3. The Fibonacci program considered in Example 2 is only correct if it
at termination has found the 32nd Fibonacci number (2178309). Using Lodin
we can estimate the probability of having either i = 2178309 or j = 2178309
using Pr[<=5000] (<> [0.VERIFIERError]) which asks for the probability that a state
is reached where the 0th process can call VERIFIERError - a call that is possible if
either i = 2178309 or j = 2178309. Verifying the query with Lodin result in the
probability being in the range [0, 0.01] with confidence 0.95 and no satisfying
executions found. As we will see later, the probability is 4.0e−6.

As can be seen from Example 2 rare events are problematic for SMC algorithms
based around pure Monte Carlo simulation. For battling this problem we need to
consider rare event simulation technique such as importance splitting.

4 Importance Splitting with Plasma-Lab

4.1 Importance Splitting

The unbiased Monte Carlo estimator is mostly useful when the property of interest
is not “rare”. For rare properties the number of runs needed to reliably estimate
the probability increases rapidly — in fact it increases so rapidly that classical
Monte-Carlo estimation becomes infeasible. To battle this problem a technique
called importance splitting has been developed [20] and later extended to the
statistical model checking approach [15]. In the following we consider properties
that can be determined over a single run. For a property φ and run ω we write
ω |= φ if and only if ω satisfy φ. Consider we are interested in the property φ,
and can find other properties φ1, φ2, . . . , φk such that ω |= φ =⇒ ω |= φk and
for all i, ω |= φi =⇒ ω |= φi−1 for some m ≤ n. If this is the case, then we can
find the probability of φ as the product

P(φ) = P(φ1) · (Πn
i=2P(φi|φi−1)) · P(φ|φn).

Estimating each of these conditional probabilities and multiplying them thus
provides an estimate of the probability of φ. In practice a number of runs, N , is
started from the initial state of the program. The fraction of runs that satisfy the
first formula is then used as an estimate of the first conditional probability. The
simulations that satisfied the first property is kept running, while the remaining
ones are restarted from a satisfying one. In this way we continue until estimates
for all the conditional probabilities has been found.

Example 4. Consider again the Fibonacci program in Listing 1.2 in which two
threads attempt to calculate the 32nd Fibonacci number by the use of two global
variables. If the program is functioning correct, either i or j has the value 2178309
by the end of the program. As noted earlier this is a rare property (probability is
4.0e−6) and classical Monte Carlo technique produces a probability of zero. For
estimating the probability of φ = ♦(i = 2178309∨ j = 2178309) one could use the
intermediate formulas of the form φk = ♦(i+ j == Fk+2), where F1 = F2 = 1
and for all other k, Fk = Fk−2 + Fk−1. Each φk is thus expressing that the
program must have calculated the (k+2)th Fibonacci number correctly.

4.2 Plasma-Lab

Plasma-Lab [5] is a modular platform for statistical model-checking5. The
tool offers a series of SMC algorithms, including advanced techniques for rare
5 Available for download at https://project.inria.fr/plasma-lab/

https://project.inria.fr/plasma-lab/

Application-specific
logics

Application-specific
logics

Application-specific
modeling languages
Application-specific
modeling languages

SMC algorithmsSMC algorithms

Distribution
and management

Distribution
and management

Fig. 4: Plasma-Lab architecture.

event simulation, distributed SMC, non-determinism, and optimization. They
are used with several modeling formalisms and simulators. The main difference
between Plasma-Lab and other SMC tools is that Plasma-Lab proposes an
API abstraction of the concepts of stochastic model simulator, property checker
(monitoring) and SMC algorithm. In other words, the tool has been designed
to be capable of using external simulators, input languages, or SMC algorithms.
This also allows us to create direct plug-in interfaces with external specification
tools, without using extra compilers.

Plasma-Lab architecture is illustrated by the graph in Fig.4. The core of
Plasma-Lab is a light-weight controller that manages the experiments and
the distribution mechanism. It implements an API that allows to control the
experiments either through user interfaces or through external tools. It loads
three types of plugins: 1. algorithms, 2. checkers, and 3. simulators. These plugins
communicate with each other and with the controller through the API.

In Plasma-Lab the decomposition of rare properties in a sequence of in-
termediate properties is generalised using a notion of score function over the
model-property product automaton. Intuitively, a score function discriminates
good paths from bad, assigning higher scores to paths that more nearly satisfy
the overall property. The model-property product automaton is usually hidden
in the implementation of the checker plugin. Therefore Plasma Lab includes a
specific checker plugin for importance splitting that facilitates the construction
of score functions. The plugin allows to write small observers automata to check
properties over traces and compute the score function. These observers implement
a subset of the Bounded Linear Temporal Logic presented in [17].

Plasma-Lab implements two rare event algorithms based on the importance
splitting technique, a fixed level algorithm and an adaptive level algorithm [16].
The fixed level algorithm requires the user to define a monotonically increasing
sequence of score values whose last value corresponds to satisfying the property.
The adaptive algorithm finds optimal levels automatically and requires only the
maximum score to be specified. Both algorithms estimate the probability of
passing from one level to the next by the proportion of a constant number of

simulations that reach the upper level from the lower. New simulations to replace
those that failed to reach the upper level are started from states chosen uniformly
at random from the terminal states of successful simulations. The overall estimate
is the product of the estimates of going from one level to the next.

For this paper, we have developed a simulator plugin for Plasma-Lab that
interfaces with Lodin. This plugin is a pure wrapper around the simulator
interface of Lodin. It communicates with the Lodin simulator via standard
input and standard output. Lodin exposes the registers of all functions of the
program to Plasma-Lab, and exposes Boolean variables corresponding to the
[0.func] style propositions of Lodin. If the program has been compiled with debug
symbols and without optimisations, Lodin also exposes the original C-source
primitive type variables to Plasma-Lab. For supporting the importance splitting
algorithm of Plasma-Lab, Lodin provides a State-Tag that Plasma-Lab uses
to restart a simulation from that given state.

5 Examples

5.1 Support of C programs

Firstly we apply Lodin to a subset of the pthread examples of the Software
Verification Competition (SV-Comp) benchmarks6. The point of this is mainly
to assert if the engine adequately capture semantics of C-programs. The special
__VERIFIER_nondet_int and __VERIFIER_nondet_uint7 functions of the SV-Comp competi-
tions are treated functions returning random integers. The original property from
SV-Comp for all the programs was whether the function __VERIFIER_error could
be called any timed during execution. The query we verify with Lodin is thus
Pr[<=5000] (<> Exists (p)([p.__VERIFIER_error])). The results are shown in Appendix A.
In total, we applied Lodin to 44 programs from SV-Comp. Lodin exhibited
an error for 3 of these program, while in 8 cases no satisfying runs were found
while the property is true and in 3 cases Lodin found a satisfying runs while the
property is false. The latter is unfortunate, but after manually inspecting the
programs, it was discovered they relied on platform functions not implemented
by Lodin (e.g. sscanf and __VERIFIER_atomic_). For the remaining programs Lodin
found satisfying traces consistent with SV-Comp result.

5.2 Performance Test

In this section we apply our tools to 6 different C-programs. For all the programs
we verify a reachability property with both Lodin and report the running times
as well as the reported probability estimates. For properties that are rare we also
apply Plasma-Lab. The are shown in Table 1 and Table 2.

6 Obtained from https://github.com/sosy-lab/sv-benchmarks
7 Functions to return non-deterministic integers

https://github.com/sosy-lab/sv-benchmarks

Fibonacci We have parameterised the program Listing 1.2 such that instead
of being fixed to calculate the 32nd we can scale it to find the nth fibonacci
number. The property of interest is still whether ther zeroth process can call
VERIFIERError. In the results we refer to programs of this kind by fib_n where n is
what Fibonacci number is being calculated.

Gossip This program is inspired by gossiping protocols where processes exchange
messages to distribute knowledge in the network. In this particular example, the
processes communicate by writing to commWars which the processes copy to their own
secret variable. Once a process has all messages that process terminates. The main
thread waits for all processes to terminate and checks if all processes knows all
secrets and if not calls VERIFIERError. At the the end of execution the main threads
calls VERIFIERFinished. Unforunately, there is an error in the program and it may not
terminate - thus we are interested in the probability that VERIFIERFinished is called
by the main thread i.e. Pr[<=5000] (<> [0.VERIFIERFinished]). We have parameterised
the program in terms of number of processes and in the results refer to these
program by gossip_n where n is the number of processes.

Petersons Algorithm Petersons algorithm is a classic mutual exclusion protocol
that does not rely on any locking mechanisms. Two processes, petersons1 and
petersons2, are both attempting to reach their critical section - abstracted by a
call to a function crit. The two processes are communicating through a shared
array of flags and a special turn variable. The property we are interested in is
whether the two processes can execute the crit function simultaneously. We both
consider a correct implementation and a faulty implementation. The property we
check in this program is Pr[<=5000] (<> ([1.crit] && [2.crit])).

Robot Control This is a larger example in which a robot is placed onto a 9× 9
two-dimensional grid and has to locate the top-right tile. The robot will break
if it tries to leave the grid. The robot divides its control into two threads: one
thread is continuously monitoring whether the goal has been reached and queries
whether it can move up, down, left or right and sets global variables for the
outcome of these. The second thread selects a direction that is safe to move and
moves in that given direction. The direction is selected randomly according. In
case the robot accidentally leaves the grid the program calls VERIFIERCrash and
enters an infinite loop. If the search for the goal is successful the program calls
VERIFIERDone. The query we check for in this program is Pr[<=5000] (<> [0.VERIFIERDone])

PTrace This example is a simplified version of the PTrace privilege escalation
attack that could be performed on earlier versions of the Linux Kernel [12]. In
our simplified version two processes are started of which one (syscaller) performs
a system call, captured by the call to syscall. Another process (ptracer) attaches to
the syscaller process via ptrace and awaits a call to syscall. When the syscall occurs,
the ptracer process immidiately calls poketext - which we use as an abstract way
of saying that the process injects code to the syscaller process. Signal handlers
are used by the kernel to inform the ptracer that interesting events has happened.

signal(SIGCHLD,handler)

H = handler

ptrace(PRACE_ATTACH,c)

att = c
Runningc = false

*H(SIGCHILD)

ptrace (PTRACE_CONT,c),Running_c = false

ptrace(SYSCALL,c)

Runningc =true

Syscall()_att

Runningc = false

*H(SIGCHILD)

ptrace (PTRACE_DETACH,c)*H(SIGCHILD)

ptrace (PTRACE_DETACH,c)

ptrace (PTRACE_DETACH,c)

Fig. 5: Environment for PTrace Example. Solid lines correspond to calls from the running
program while dashed lines are environmental transitions.

This works by the ptracer registering a handler function at the kernel, and the
kernel switching the thread to execute that function when the signal is raised.
For this example we implemented a platform module for Lodin implementing
the sycall,syscallend,signal,ptrace functions. In Figure 5 we give the state graph
controlling the interaction with the ptracer process : first it awaits the ptracer

to register a signalling function for SIGCHLD signals, afterwards it awaits for
ptracer to attach to another process with id c. During the attaching the process
c is stopped and an environmental transition (SIGCHLD) is executed (which
forces the ptracer process to execute the function pointed to by *H). If ptracer call
ptrace(PTRACE_CONT,c) then the process c is restarted - c is also restarted if ptrace(

PTRACE_SYSCALL,c) is called but then the environment will subsequently stop c when
it performs a system call and inform the ptracer process about the system call.
The query we check with Lodin is Pr[<=5000] (<> [1.poketext]) which designates that
we reach the point where we could inject code. If the attack is unsuccessful then
the ptracer thread loops infinitely and would not reach the poketext function call.

Lock-Free-Stack This is an implementation of a lock-free stack of integers which
two threads are popping and pushing integers onto. Initially the main thread
pushes 10 onto the stack then the two threads are started of which one thread first
pops an element off the stack and then pushes 5. The other thread only pushes
20. Provided the stack is correctly implemented, the possible stack contents when
the program terminates are (20, 5),(5, 10) or (5, 20). Unfortunately there is a
problem with the implementation that allows a result (5, 100). We can verify
the probability of this happening by checking if @0.main.\%tmp17 is ever 1008. In
Lodin we verify the query \lstinline{Pr[<=5000] (<> [0.VERIFIERDone]). As can be seen
from the results in Table 1 Lodin estimates the probability to [0.00, 0.01] and
has found no satisfying runs. As it turns out this is just because the property is
rare, as we will see by by finding traces with Plasma-Lab. The problem with
the program is that two variables are updated in the wrong order while popping
an element from the stack which results in the two threads changing the same
variable - a shared variable that should never be accessed simultaneously by two

8 @0.main.%tmp17 is a register used in the main function to print out the stack-content at
program termination

Program Runs Satisfying CI Time (s)
fib/fib_4.ll 19 242 2789 [0.14 , 0.15] 3.80
fib/fib_8.ll 7453 370 [0.04 , 0.05] 2.26
fib/fib_16.ll 299 0 [0.00 , 0.01] 0.16
fib/fib_32.ll 299 0 [0.00 , 0.01] 0.28
ptrace/ptrace.ll 33 249 10 412 [0.31 , 0.32] 22.82
gossip/gossip_2.ll 34 470 11 575 [0.33 , 0.34] 219.68
gossip/gossip_3.ll 13 187 1229 [0.09 , 0.10] 94.41
gossip/gossip_4.ll 8450 481 [0.05 , 0.06] 66.30
petersons/petersonsBug.ll 10 870 816 [0.07 , 0.08] 1.64
petersons/petersons.ll 299 0 [0.00 , 0.01] 0.05
robot/robot.ll 2507 38 [0.01 , 0.02] 109.65
stack/stack.ll 299 0 [0.00 , 0.01] 7.16

Table 1: Lodin results. The Runs columns is total number of generated runs, Satisfying
is the number of satisfying runs while the CI column is a 95% confidence interval.

threads. The observer in Plasma-Lab works by first getting thread 2 to change
the first variable in the pop function and restricting thread 1 from executing its
change to the variable. Once accomplished, we swap the roles and let thread 1
continue until it has changed the value of the shared variable while holding back
thread 2. To inform Plasma-Lab where in their execution the threads were we
had to inject extra statements into the program.

6 Conclusion

Program Levels Probability Time (s)
fib/fib_16.ll 7 1.5e−3 18.20
fib/fib_32.ll 14 4.0e−6 51.66
stack/stack.ll 13 3.86e−15 530.58

Table 2: Plasma-Lab Importance Splitting Results.
The algorithm was run with a budget of 1000 runs
per level.

In this paper we have pre-
sented the first statistical
model checking framework for
LLVM-program. As part of
this we have presented a prob-
abilistic semantics for LLVM
programs and a simulator for
LLVM programs using that semantics. Another contribution of the paper is the
new tool Lodin providing statistical model checking features for LLVM programs
and an integration of this new tool component with Plasma-Lab — providing
importance splitting to LLVM code as well. In the paper we validated that Lodin
can verify the concurrency programs — modulo the implemented POSIX calls and
SV-Comp special functions. Furthermore, Lodin and the Plasma-Lab were run
on six additional programs. The integration between Plasma-Lab and Lodin
showed its worth as the estimation of rare properties were made possible. In the
future we intend to further develop the range of programs our toolsets can be
applied to by implementing a POSIX compliant interface for Lodin. Furthermore,
we intend to ease the burden of defining platform modules - possibly by creating
a domain-specific language for defining these. On the more theoretical side we
intend to use our tools for reasoning on the impact of data races with respect to
software correctness.

References

[1] Competition on software verification (sv-comp). https://sv-comp.sosy-
lab.org/2018/. Accessed: 2017-10-19.

[2] J. Barnat, L. Brim, and P. Rockai. Towards LTL model checking of unmodi-
fied thread-based C & C++ programs. In A. Goodloe and S. Person, editors,
NFM, volume 7226 of Lecture Notes in Computer Science, pages 252–266.
Springer, 2012. ISBN 978-3-642-28890-6. doi:10.1007/978-3-642-28891-3_25.

[3] A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and
TLTL. ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, Sept. 2011.
ISSN 1049-331X. doi:10.1145/2000799.2000800.

[4] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable soft-
ware verification. In G. Gopalakrishnan and S. Qadeer, editors, Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in
Computer Science, pages 184–190. Springer, 2011. ISBN 978-3-642-22109-
5. doi:10.1007/978-3-642-22110-1_16. URL https://doi.org/10.1007/
978-3-642-22110-1_16.

[5] B. Boyer, K. Corre, A. Legay, and S. Sedwards. Plasma-lab: A flexible,
distributable statistical model checking library. In K. R. Joshi, M. Siegle,
M. Stoelinga, and P. R. D’Argenio, editors, QEST, volume 8054 of Lecture
Notes in Computer Science, pages 160–164. Springer, 2013. doi:10.1007/978-
3-642-40196-1_12.

[6] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource Tool
for Symbolic Model Checking. In E. Brinksma and K. G. Larsen, editors,
CAV, volume 2404 of Lecture Notes in Computer Science, pages 359–364.
Springer, 2002. ISBN 3-540-43997-8. doi:10.1007/3-540-45657-0_29.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[8] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization

Skeletons Using Branching-Time Temporal Logic. In Logic of Programs,
pages 52–71, 1981.

[9] C. J. Clopper and E. S. Pearson. The use of confidence or fiducial limits
illustrated in the case of the binomial. Biometrika, 26(4):404–413, 1934.

[10] Y. Falcone, M. Jaber, T.-H. Nguyen, M. Bozga, and S. Bensalem. Runtime
verification of component-based systems. In SEFM, volume 7041 of LNCS,
pages 204–220, 2011.

[11] T. Gibson-Robinson, P. J. Armstrong, A. Boulgakov, and A. W. Roscoe.
FDR3 - A Modern Refinement Checker for CSP. In E. Ábrahám and
K. Havelund, editors, TACAS, volume 8413 of Lecture Notes in Com-
puter Science, pages 187–201. Springer, 2014. ISBN 978-3-642-54861-1.
doi:10.1007/978-3-642-54862-8_13.

[12] J. Goubault-Larrecq and J. Olivain. A smell of orchids. In M. Leucker, edi-
tor, Runtime Verification, 8th International Workshop, RV 2008, Budapest,
Hungary, March 30, 2008. Selected Papers, volume 5289 of Lecture Notes

http://dx.doi.org/10.1007/978-3-642-28891-3_25
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-40196-1_12
http://dx.doi.org/10.1007/978-3-642-40196-1_12
http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1007/978-3-642-54862-8_13

in Computer Science, pages 1–20. Springer, 2008. ISBN 978-3-540-89246-
5. doi:10.1007/978-3-540-89247-2_1. URL https://doi.org/10.1007/
978-3-540-89247-2_1.

[13] G. J. Holzmann. The Model Checker Spin. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997.

[14] C. Jegourel, A. Legay, and S. Sedwards. A Platform for High Performance
Statistical Model Checking – PLASMA. In C. Flanagan and B. König, editors,
TACAS, volume 7214 of Lecture Notes in Computer Science, pages 498–503.
Springer Berlin Heidelberg, 2012. ISBN 978-3-642-28755-8. doi:10.1007/978-
3-642-28756-5_37.

[15] C. Jegourel, A. Legay, and S. Sedwards. Importance splitting for statistical
model checking rare properties. In N. Sharygina and H. Veith, editors,
Computer Aided Verification, volume 8044 of LNCS, pages 576–591. Springer,
2013.

[16] C. Jegourel, A. Legay, and S. Sedwards. An effective heuristic for adaptive
importance splitting in statistical model checking. In Leveraging Applications
of Formal Methods, Verification and Validation. Specialized Techniques and
Applications, pages 143–159. Springer, 2014.

[17] C. Jegourel, A. Legay, S. Sedwards, and L.-M. Traonouez. Distributed veri-
fication of rare properties using importance splitting observers. ECEASST,
72, 2015.

[18] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), Palo Alto,
California, Mar 2004.

[19] A. Legay, S. Sedwards, and L. Traonouez. Plasma lab: A modular statistical
model checking platform. In T. Margaria and B. Steffen, editors, ISoLA,
volume 9952 of Lecture Notes in Computer Science, pages 77–93, 2016.
doi:10.1007/978-3-319-47166-2_6.

[20] G. Rubino and B. Tuffin. Rare Event Simulation using Monte Carlo Methods.
Wiley, 2009.

[21] H. L. S. Younes. Verification and Planning for Stochastic Processes with
Asynchronous Events. PhD thesis, Carnegie Mellon University, 2005.

[22] H. L. S. Younes, M. Z. Kwiatkowska, G. Norman, and D. Parker. Numerical
vs. statistical probabilistic model checking. STTT, 8(3):216–228, 2006.

[23] A. Zaks and R. Joshi. Verifying multi-threaded C programs with SPIN. In
K. Havelund, R. Majumdar, and J. Palsberg, editors, SPIN, volume 5156 of
Lecture Notes in Computer Science, pages 325–342. Springer, 2008. ISBN
978-3-540-85113-4. doi:10.1007/978-3-540-85114-1_22.

http://dx.doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
http://dx.doi.org/10.1007/978-3-642-28756-5_37
http://dx.doi.org/10.1007/978-3-642-28756-5_37
http://dx.doi.org/10.1007/978-3-319-47166-2_6
http://dx.doi.org/10.1007/978-3-540-85114-1_22

A Full Results for the SV_Comp models

In the below table we show all the models from SV_Comp that Lodin has
been applied to. �-rows indicate models for which Lodin found traces satisfying
the property (while SV_Comp says the property is not satisfied), À-rows are
programs where no traces were found by Lodin while the property is satisfied.
In the latter case this is possible because the property is unlikely (given our
semantics) while the prior is more severe. However, we have discovered that
the �-programs relied on platform functions not implemented in Lodin (One
example is the use of __VERIFIER_atomic_ functions that signal to the verifier this
function should be performed atomically). ä-rows are models where Lodin
exhibits an error during the verification.

Model Runs Sat CI Time(s) SV_Comp
� pthread/lazy01_-

false-unreach-
call.ll

31221 8763 [0.28, 0.29] 16.13 �

À pthread/reorder_-
5_false-unreach-
call.ll

299 0 [0.00, 0.01] 0.02 �

� pthread/singleton_-
with-uninit-
problems_true-
unreach-call.ll

299 0 [0.00, 0.01] 0.06 �

� pthread/queue_-
longest_false-
unreach-call.ll

17959 2395 [0.13, 0.14] 144.28 �

� pthread/sigma_-
false-unreach-
call.ll

35345 12 518 [0.35, 0.36] 47.21 �

� pthread/stack_-
longest_true-
unreach-call.ll

299 0 [0.00, 0.01] 3.36 �

À pthread/stack_-
longest_false-
unreach-call.ll

299 0 [0.00, 0.01] 3.53 �

� pthread/stateful01_-
true-unreach-
call.ll

299 0 [0.00, 0.01] 0.07 �

� pthread/queue_-
ok_true-unreach-
call.ll

299 0 [0.00, 0.01] 0.78 �

À pthread/stack_-
longer_false-
unreach-call.ll

299 0 [0.00, 0.01] 3.44 �

� pthread/fib_-
bench_true-
unreach-call.ll

299 0 [0.00, 0.01] 0.04 �

� pthread/indexer_-
true-unreach-
call.ll

299 0 [0.00, 0.01] 4.99 �

� pthread/stack_-
true-unreach-
call.ll

299 0 [0.00, 0.01] 0.32 �

À pthread/stack_-
false-unreach-
call.ll

299 0 [0.00, 0.01] 0.33 �

� pthread/queue_-
false-unreach-
call.ll

17721 2326 [0.13, 0.14] 67.41 �

À pthread/fib_-
bench_false-
unreach-call.ll

299 0 [0.00, 0.01] 0.04 �

� pthread/fib_-
bench_longest_-
true-unreach-
call.ll

299 0 [0.00, 0.01] 0.03 �

� pthread/queue_-
longer_false-
unreach-call.ll

18372 2518 [0.13, 0.14] 149.18 �

À pthread/fib_-
bench_longer_-
false-unreach-
call.ll

299 0 [0.00, 0.01] 0.04 �

� pthread/sync01_-
true-unreach-
call.ll

299 0 [0.00, 0.01] 1.50 �

� pthread/bigshot_-
s2_true-unreach-
call.ll

299 0 [0.00, 0.01] 0.05 �

� pthread/bigshot_-
s_true-unreach-
call.ll

299 0 [0.00, 0.01] 0.04 �

À pthread/fib_-
bench_longest_-
false-unreach-
call.ll

299 0 [0.00, 0.01] 0.03 �

� pthread/singleton_-
false-unreach-
call.ll

21372 3527 [0.16, 0.17] 4.12 �

� pthread/fib_-
bench_longer_-
true-unreach-
call.ll

299 0 [0.00, 0.01] 0.04 �

� pthread/stack_-
longer_true-
unreach-call.ll

299 0 [0.00, 0.01] 3.43 �

� pthread/bigshot_-
p_false-unreach-
call.ll

38612 19 340 [0.50, 0.51] 4.71 �

ä pthread/reorder_-
2_false-unreach-
call.ll

0 0 [0.00, 0.00] 0.01 �

� pthread/stateful01_-
false-unreach-
call.ll

299 299 [0.99, 1.00] 0.07 �

À pthread/elimination_-
backoff_stack_-
false-unreach-
call.ll

299 0 [0.00, 0.01] 0.06 �

� pthread/queue_-
ok_longer_true-
unreach-call.ll

299 0 [0.00, 0.01] 2.15 �

ä pthread/twostage_-
3_false-unreach-
call.ll

0 0 [0.00, 0.00] 0.01 �

� pthread/queue_-
ok_longest_true-
unreach-call.ll

299 0 [0.00, 0.01] 2.15 �

� pthread-
atomic/qrcu_-
false-unreach-
call.ll

10724 793 [0.07, 0.08] 91.06 �

� pthread-
atomic/time_-
var_mutex_true-
unreach-call.ll

299 0 [0.00, 0.01] 0.06 �

� pthread-
atomic/lamport_-
true-unreach-
call.ll

299 0 [0.00, 0.01] 0.09 �

ä pthread-
atomic/scull_-
true-unreach-
call.ll

0 0 [0.00, 0.00] 0.00 �

� pthread-
atomic/qrcu_-
true-unreach-
call.ll

10989 835 [0.07, 0.08] 96.29 �

� pthread-
atomic/read_-
write_lock_false-
unreach-call.ll

38263 17 308 [0.45, 0.46] 13.41 �

� pthread-
atomic/peterson_-
true-unreach-
call.ll

299 0 [0.00, 0.01] 0.06 �

� pthread-
atomic/gcd_true-
unreach-call_-
true-
termination.ll

26809 20 835 [0.77, 0.78] 255.20 �

� pthread-
atomic/dekker_-
true-unreach-
call.ll

299 0 [0.00, 0.01] 0.21 �

� pthread-
atomic/read_-
write_lock_true-
unreach-call.ll

38245 17 252 [0.45, 0.46] 13.52 �

� pthread-
atomic/szymanski_-
true-unreach-
call.ll

299 0 [0.00, 0.01] 2.81 �

B Program Texts

B.1 Petersons

Besides the correct implementation in Listing 1.3 we also consider a buggy-version
where we have changed *(opt->mflag)= 1; in line 15 to *(opt->mflag)= 0;

Listing 1.3: petersons.c
1 #include <pthread.h >
2 #include <stdio.h >
3
4 void crit ();
5
6 typedef struct {
7 int *mflag;
8 int *oflag;
9 int* turn;

10 }Options;
11

12 void* petersons1 (void* opti) {
13 Options* opt = (Options *)opti;
14
15 *(opt ->mflag) = 1;
16 *(opt ->turn) = 1;
17
18 while (*(opt ->oflag) &&

*(opt -> turn) == 1)
19 {
20 // busy wait
21 }
22 // critical section

23 crit ();
24 // end of critical section
25
26 *(opt ->mflag) = 0;
27
28 return 0;
29 }
30
31 void* petersons2 (void* opti) {
32 Options* opt = (Options *)opti;
33
34 *(opt ->mflag) = 1;
35 *(opt ->turn) = 0;
36
37 while (*(opt ->oflag) && *(opt

-> turn) == 0)
38 {
39 // busy wait
40 }
41 // critical section
42 crit ();
43 // end of critical section
44
45 *(opt ->mflag) = 0;
46
47 return 0;
48 }
49
50 int main () {

51 int flags [2];
52 int turn;
53
54 Options opt1;
55 opt1.mflag = &flags [0];
56 opt1.oflag = &flags [1];
57 opt1.turn = &turn;
58
59 Options opt2;
60 opt2.mflag = &flags [1];
61 opt2.oflag = &flags [0];
62 opt2.turn = &turn;
63
64 pthread_t t1;
65 pthread_t t2;
66
67 pthread_create (&t1 ,0,petersons1

,&opt1);
68 pthread_create (&t2 ,0,petersons2

,&opt2);
69
70 pthread_join (t1 ,0);
71 pthread_join (t2 ,0);
72
73
74 return 0;
75 }

B.2 Gossip

Listing 1.4: gossip.c
1 #include <pthread.h >
2 #include <stdlib.h >
3 #include <stdio.h >
4
5 #ifndef PROCS
6 #define PROCS 2
7 #define ALLKNOWN 3
8 #endif
9

10 int VERIFIERError (){}
11 void VERIFIERFinished () {}
12
13 typedef struct {
14 int* secret;
15 int* commVars;
16 int id;
17 }setup;
18
19 void* protocol (void* inp) {
20 setup* set = (setup*) inp;
21 while (*set ->secret != ALLKNOWN)

{
22 int selectedRecv = rand ()

% PROCS;
23 set ->commVars[selectedRecv

] = *set ->secret;
24 if (set ->commVars[set ->id]

!= 0) {
25 *set ->secret |= set ->

commVars[set ->id];
26 set ->commVars[set ->id] =

0;

27 }
28 }
29 return 0;
30 }
31
32 void main () {
33 int secretsKnown[PROCS];
34 int commVar[PROCS];
35 pthread_t threads[PROCS];
36 setup sets[PROCS];
37 for (int i = 0; i < PROCS;i++) {
38 secretsKnown[i] = 1 << i;
39 commVar[i] = 0;
40 sets[i].secret = &

secretsKnown[i];
41 sets[i].commVars = commVar

;
42 sets[i].id = i;
43 printf ("%i",secretsKnown[

i]);
44 }
45
46
47 for (int i= 0; i< PROCS;i++) {
48 pthread_create (& threads[i

],0,protocol ,&sets[i
]);

49 }
50
51 for (int i = 0;i < PROCS; i++) {
52 pthread_join (threads[i

],0);
53 }

54
55 for (int i = 0; i< PROCS; i++) {
56 if (secretsKnown[i] !=

ALLKNOWN)
57 VERIFIERError ();

58 }
59
60 VERIFIERFinished ();
61 }

B.3 PTrace

Listing 1.5: ptrace.c
1 #include <stdint.h >
2 #include <signal.h >
3
4 void poketext ();
5
6 int syscaller () {
7 syscall ();
8 syscallend ();
9 }

10
11 int32_t c = 0;
12
13 void handler (int i) {
14 c++;
15 }
16
17 int ptracer () {
18 signal (SIGCHLD ,handler);
19 ptrace (PTRACE_ATTACH ,0);
20 while (c < 1);
21 ptrace (PTRACE_SYSCALL ,0);
22 while (c < 2);
23 poketext ();
24 ptrace (PTRACE_CONT ,0);
25 ptrace (PTRACE_DETACH ,0);
26 }

B.4 Robot

Listing 1.6: robot.c
1 #include <stdlib.h >
2 #include <stdio.h >
3 #include <pthread.h >
4 #include <time.h >
5 #include "interface.h"
6
7 void done () {}
8
9 typedef struct {

10 int up,down ,left ,right ,goal ,sense;
11 }Comm;
12
13 void* observer (void* inp){
14 Comm* comm = (Comm*) inp;
15 while (comm ->sense) {
16 comm ->goal = goal ();
17 comm ->up = lookUp ();
18 comm ->down = lookDown ();
19 comm ->right = lookRight ();
20 comm ->left = lookLeft ();
21 }
22 return 0;
23 }
24

25 void* runner (void* inp) {
26 Comm* comm = (Comm*) inp;
27 time_t t;
28 srand ((unsigned) time(&t));
29
30 int i = 0;
31 while (!comm ->goal) {
32 i++;
33 int32_t dir = rand () %4;
34
35 switch (dir) {
36 case 0:
37 if (comm ->up)
38 moveUp ();
39 break;
40 case 1:
41 if (comm ->down)
42 moveDown ();
43 break;
44 case 2:
45 if (comm ->left)
46 moveLeft ();
47 break;
48 case 3:
49 if (comm ->right)
50 moveRight ();
51 break;
52 }
53 }
54 comm ->sense = 0;
55 return 0;
56 }
57
58 void gridReady () {}
59
60 int main () {
61 Comm comm;
62 initGrid ();
63 gridReady ();
64 comm.sense = 1;
65 comm.goal = 0;
66 pthread_t senser;
67 pthread_t runnerr;
68 pthread_create (&senser ,0,observer ,&comm);
69 pthread_create (&runnerr ,0,runner ,&comm);
70
71 pthread_join (senser ,0);
72 pthread_join (runnerr ,0);
73 VERIFIERDone ();
74 return 0;
75 }

Listing 1.7: platform.c
1 #include <pthread.h >
2 #include "interface.h"
3
4 #define WIDTH 9
5 #define HEIGHT 9
6
7 pthread_mutex_t mutex;
8
9 int32_t grid[WIDTH*HEIGHT];

10
11 int32_t xPos = 0;
12 int32_t yPos = HEIGHT -1;
13
14 int32_t VERIFIERDone () {while (1) {}}

15 int32_t VERIFIERCrash () {while (1) {} return 0;}
16
17 void lock () {
18 pthread_mutex_lock (&mutex);
19 }
20
21 void unlock () {
22 pthread_mutex_unlock (&mutex);
23 }
24
25 void initGrid () {
26 for (int32_t w = 0; w< WIDTH; w++) {
27 for (int32_t h = 0; h < HEIGHT;h++) {
28 grid[WIDTH*h+w] = 2;
29 }
30 }
31
32 grid[WIDTH *0+WIDTH -1] = 1;
33 pthread_mutex_init (&mutex ,0);
34 }
35
36 int32_t innerLookUp () {
37 if (yPos - 1 >= 0) {
38 return grid[WIDTH*(yPos -1)+xPos];
39 }
40 return 0;
41 }
42
43 int32_t innerLookDown () {
44 if (yPos + 1 < HEIGHT) {
45 return grid[WIDTH*(yPos +1)+xPos];
46 }
47 return 0;
48 }
49
50
51 int32_t innerLookRight () {
52 if (xPos + 1 < WIDTH) {
53 return grid[WIDTH*(yPos)+xPos +1];
54 }
55 return 0;
56 }
57
58 int32_t innerLookLeft () {
59 if (xPos - 1 >= 0) {
60 return grid[WIDTH*(yPos)+xPos -1];
61 }
62 return 0;
63 }
64
65 int32_t moveUp () {
66 lock ();
67 if (innerLookUp ()) {
68 yPos --;
69 }
70 else
71 VERIFIERCrash ();
72 unlock ();
73 }
74
75 int32_t moveDown ()
76 {
77 lock ();
78 if (innerLookDown ()) {
79 yPos ++;
80 }
81 else
82 VERIFIERCrash ();

83 unlock ();
84 }
85 int32_t moveLeft () {
86 lock ();
87 if (innerLookLeft ()) {
88 xPos --;
89 }
90 else
91 VERIFIERCrash ();
92 unlock ();
93 }
94 int32_t moveRight () {
95 lock ();
96 if (innerLookRight ()) {
97 xPos++;
98 }
99 else

100 VERIFIERCrash ();
101 unlock ();
102 }
103
104
105
106 int32_t lookUp () {
107 lock ();
108 int32_t val = innerLookUp ();
109 unlock ();
110 return val;
111 }
112
113
114
115 int32_t lookDown () {
116 lock ();
117 int32_t val = innerLookDown ();
118 unlock ();
119 return val;
120 }
121
122
123
124 int32_t lookLeft () {
125 lock ();
126 int32_t val = innerLookLeft ();
127 unlock ();
128 }
129
130
131 int32_t lookRight () {
132 lock ();
133 int32_t val = innerLookRight ();
134 unlock ();
135 return val;
136 }
137
138 int32_t goal () {
139 return grid[yPos*WIDTH+xPos] == 1;
140 }
141
142 int32_t getX () {return xPos;}
143 int32_t getY () {return yPos;}

Listing 1.8: interface.h
1 #include <stdint.h >
2
3 void initGrid ();
4

5 int32_t moveUp ();
6 int32_t moveDown ();
7 int32_t moveLeft ();
8 int32_t moveRight ();
9

10 int32_t lookUp ();
11 int32_t lookDown ();
12 int32_t lookLeft ();
13 int32_t lookRight ();
14 int32_t goal ();
15 int32_t getX ();
16 int32_t getY ();
17 int32_t VERIFIERDone ();
18 int32_t VERIFERCrash ();

B.5 Stack

Listing 1.9: stack.c
1 #include <stdio.h >
2 #include <pthread.h >
3
4 struct Element {
5 int i;
6 struct Element* next;
7 int index;
8 };
9

10 struct Element* head;
11
12 const int capacity = 20;
13
14 struct Element elemsBuf[capacity];
15 int free[capacity];
16
17 void init () {
18 head = 0;
19 for (int i = 0; i < capacity; i

++) {
20 elemsBuf[i].i = 100;
21 elemsBuf[i].next = 0;
22 elemsBuf[i].index = i;
23 free[i] = 1;
24 }
25
26 }
27
28 void gotFree () ;
29 void inLoop () ;
30 void inIf () ;
31 void gotFree1 () ;
32 void gotFree2 () ;
33 void gotFree3 () ;
34
35 struct Element* getFree () {
36 while (1) {
37 int selected = -1;
38 gotFree ();
39 for (int i = 0; i <

capacity; i++) {
40 inLoop ();
41 if (free[i]) {
42 gotFree1 ();
43 selected = i;
44 break;
45 }
46 }

47 gotFree2 ();
48 if (selected >= 0) {
49 inIf ();
50 if (

__sync_bool_compare_and_swap
(&free[selected

],1,0))
51 gotFree3 ();
52 return &elemsBuf[

selected];
53 }
54 }
55 }
56
57 void pushed () ;
58 void pushed1 () ;
59 void pushed2 ();
60
61 void push (int i) {
62 struct Element* elem = getFree

();
63 struct Element* hh;
64 pushed ();
65 elem ->i = i;
66 pushed2 ();
67 do {
68 hh = head;
69 pushed1 ();
70 elem ->next = hh;
71
72 }while (!

__sync_bool_compare_and_swap
(&head ,hh ,elem));

73 pushed3 ();
74 printf ("Pushed %i-%i\n",elem ->i

,elem ->index);
75 }
76
77 void popped () ;
78 void poppedHead () ;
79 void popped1 () ;
80 void popped2 () ;
81
82
83 int pop () {
84 struct Element* elem = 0;
85 do {
86 elem = head;
87 poppedHead ();
88 if (!elem)

89 return -1;
90 }while (!

__sync_bool_compare_and_swap
(&head ,elem ,elem ->next));

91 popped ();
92 int i = elem ->i;
93 free[elem ->index] = 1;
94 popped1 ();
95 popped2 ();
96 elem ->i = 100;
97
98 return i;
99 }

100
101
102
103 void* thread1 (void* n) {
104 push (20);
105 }
106
107 void* thread2 (void* n) {
108 pop ();
109 push (5);

110 }
111
112 int main () {
113 init ();
114 pthread_t t1,t2;
115 push (10);
116 pthread_create (&t1 ,0,thread1 ,0)

;
117 pthread_create (&t2 ,0,thread2 ,0)

;
118 pthread_join (t1 ,0);
119 pthread_join (t2 ,0);
120 struct Element* h = head;
121 while (h) {
122 printf ("%i(%i) ",h->i,h->

index);
123 h = h->next;
124 }
125
126 printf ("\n");
127 }

	Statistical Model Checking of LLVM Code.

