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Abstract

In the literature, neuronal networks are often represented as graphs where
each node symbolizes a neuron and each arc stands for a synaptic connection.
Some specific neuronal graphs have biologically relevant structures and behaviors
and we call them archetypes. Six of them have already been characterized and
validated using formal methods. In this work, we tackle the next logical step and
proceed to the study of the properties of their couplings. For this purpose, we
rely on Leaky Integrate and Fire neuron modeling and we use the synchronous
programming language Lustre to implement the neuronal archetypes and to for-
malize their expected properties. Then, we exploit an associated model checker
called kind2 to automatically validate these behaviors. We show that, when the
archetypes are coupled, either these behaviors are slightly modulated or they
give way to a brand new behavior. We can also observe that different archetype
couplings can give rise to strictly identical behaviors. Our results show that
time coding modeling is more suited than rate coding modeling for this kind of
studies.

Keywords—Neuronal Networks, Leaky Integrate and Fire Modeling, Model
Coupling, Synchronous Languages, Model Checking.

1 Introduction
In our central nervous system, neurons seem to form some small specific graphs
presenting biologically relevant structures and behaviors [2]. These graphs, to
which we refer as archetypes, can be coupled to constitute the elementary bricks
of bigger neuronal networks. In this work, we formally study the dynamical
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behavior of some representative archetypes and their couplings. Archetypes can
be seen as the syllables on a given alphabet. The composition of two (or more)
syllables can give rise to either existent or non-existent words. In this similitude,
archetype coupling can give way to observed biological behaviors or unknown
ones. Again, two different syllable compositions may generate two words having
the same meaning. At the same way, several archetype couplings can display
the same behavior.

As far as neuronal networks are concerned, in the literature their modeling is
classified into three generations [14, 16]. First generation models, represented by
McCulloch-Pitts one [15], handle discrete inputs and outputs and their compu-
tational units consist in a set of logic gates with a threshold activation function.
Second generation models, whose most emblematic one is the multi-layer per-
ceptron [1], exploit real valued activation functions. These networks, whose
real-valued outputs represent neuron firing rates, are widely used in the domain
of artificial intelligence. Third generation networks, also called Spiking Neural
Networks [16], are characterized by the relevance of time aspects. Precise spike
firing times are indeed taken into account. Furthermore, they consider not only
current input spikes but also past ones (temporal summation). In [11], Spik-
ing Neural Networks are classified with respect to their biophysical plausibility,
that is, to the number of behaviors (i.e., typical responses to an input pattern)
they can reproduce. Among these models, the Hodgkin-Huxley model [10] is
the one able to reproduce most behaviors. However, its simulation process is
really expensive even for a few neurons and for a small amount of time. In
this work we choose to use the Leaky Integrate and Fire (LI&F) model [13],
a computationally efficient approximation of single-compartment model, which
proves to be amenable for formal verification.

Neuronal networks can be considered as reactive systems, that is, systems
that constantly interact with the environment and which may have an infinite
duration. In fact, neuronal networks can be seen as a sequence of reactions to
some stimuli. The synchronous paradigm is particularly suited to model this
class of systems [8]. It is based on the notion of logical time: time is seen
as a discrete sequence of instants and at each instant it is possible to observe
some inputs, to make some computations, and to produce some outputs. Several
languages implement this paradigm; we choose to use the synchronous Language
Lustre [6], which well fits to neuronal network encoding. Lustre allows not
only to easily model neuronal networks, but also to express some properties
concerning their dynamical evolution. This is possible thanks to the principle
of observers. An observer of a property is a program, taking as inputs the
inputs/outputs of the model under verification, and deciding at each instant
whether the property is violated or not. The tools automatically checking the
property satisfaction/violation are called model checkers. In this work we use
the model checker kind2 [5], which is compatible with Lustre, to prove some
relevant properties concerning neuronal archetypes and their coupling.

The paper, which is the follow-up of [2], is organized as follows. In Section
2 we present a discrete version of the LI&F model. Section 3 is devoted to the
description of the neuronal archetypes we take into consideration. In Section
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4 we briefly introduce the Language Lustre and model checking techniques. In
Section 5 we show archetypes behaviors (encoded in Lustre) and in Section 6
we deal with their coupling. Some related conclusions and future directions
are presented in Section 7. All the presented archetype couplings and relative
properties have been implemented and the code can be found at:
https://redmine.i3s.unice.fr/projects/archetypes/repository.

2 Discrete Leaky Integrate and Fire Model
In this section, we introduce a discrete (Boolean) version of LI&F modeling. We
first present all the biological knowledge associated to the modeled phenomena
and then we detail the adopted model.

When a neuron receives a signal at one of its synaptic connections, it pro-
duces an excitatory or an inhibitory post-synaptic potential (PSP) caused by the
opening of selective ion channels according to the post-synaptic receptor nature.
An activation leads to an inflow of cations in the cell; an inhibition leads to an
inflow of anions in the cell. This local ions flow influences the electrochemical
potential difference on both sides of the plasma membrane and locally depo-
larizes (excitation) or hyper-polarizes (inhibition) the neuron membrane. Such
polarization is transmitted, step by step, to the rest of the membrane and thus
influences the potential difference on both sides of the membrane at the whole
cell level. The potential difference is called membrane potential. In general, a
PSP alone is not enough for the membrane potential of the receiving neuron to
overcome its depolarization threshold, and thus to emit an action potential at
its axon to transmit the signal to other neurons.

However, two phenomena allow the cell to overcome its depolarization thresh-
old : the spatial summation and the temporal summation [17]. Spatial summa-
tion allows to sum all the different PSPs produced at a given time at different
areas of the membrane. Temporal summation allows to sum all the different
PSPs produced between two close enough instants. This summation can be
done thanks to a property of the membrane that behaves like a capacitor and
can locally store some electrical loads (capacitive property).

The neuron membrane, due to the presence of leakage channels, is not a
perfect conductor and can be compared to a resistor inside an electrical circuit.
Thus, the range of the PSPs decreases with time and space (resistivity of the
membrane).

A LI&F neuron network is represented with a weighted directed graph where
each node stands for a neuron soma and each edge stands for a synaptic connec-
tion between two neurons. The associated weight for each edge is an indicator of
the weight of the connection on the receiving neuron: a positive (resp. negative)
weight is an activation (resp. inhibition).

The depolarization threshold of each neuron is modeled via the firing thresh-
old τ , which is a numerical value that the neuron membrane potential p shall
overcome at a given time t to emit an action potential, or spike, at the time
t+ 1.
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The membrane resistivity is symbolized with a numerical coefficient called
leak factor r, which allows to decrease the range of a PSP over time.

Spatial summation is implicitly taken into account. In our model, a neuron
u is connected to another neuron v via a single synaptic connection of weight
wuv. This connection represents the entirety of the shared connections between
u and v. Spatial summation is also more explicitly taken into account with
the fact that, for each instant, the neuron sums each signal received from each
input neuron. To take the temporal summation into account, we ensure that
past PSPs are summed to current PSPs. Since the older is a PSP, the more it
is decreased by r and the less it impacts the membrane potential calculus, we
restrict the past PSPs to a given time interval to decrease computational load
for each neuron. We introduce a sliding integration window of length σ for each
neuron. This allows us to obtain finite state sets, and thus to easily apply model
checking techniques.

More formally, the following definition can be given:

Definition 1 (Boolean Spiking Integrate and Fire Neural Network). A spiking
Boolean integrate and fire neural network is a tuple (V, E, w), where:

• V are Boolean spiking integrate and fire neurons,

• E ⊆ V × V are synapses,

• w : E → Q ∩ [−1, 1] is the synapse weight function associating to each
synapse (u, v) a weight wuv.

A spiking Boolean integrate and fire neuron is a tuple (τ, r, p, y), where:

• τ ∈ N is the firing threshold,

• r ∈ Q ∩ [0, 1] is the leak factor,

• p : N→ Q+
0 is the [membrane] potential function defined as

p(t) =

{ ∑m
i=1 wi · xi(t), if p(t− 1) > τ∑m

i=1 wi · xi(t) + r · p(t− 1), otherwise

where p(0) = 0, m is the number of inputs of the neuron, wi is the weight
of the synapse connecting the ith input neuron to the current neuron, and
xi(t) ∈ {0, 1} is the signal received at the time t by the neuron through its
ith input synapse (observe that, after the potential overcomes its threshold,
it is reset to 0),

• y : N→ {0, 1} is the neuron output function, defined as

y(t) =

{
1 if p(t− 1) > τ

0 otherwise.

The development of the recursive equation for the membrane potential func-
tion and the introduction of a sliding time window of length σ lead to the
following equation for p (when p(t− 1) < τ): p(t) =

∑σ
e=0 r

e
∑m
i=1 wi ·xi(t− e),

where e represents the time elapsed until the current one.
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3 The Basic Archetypes
The six basic archetypes we study are the following ones (see Fig. 1). These
archetypes can be coupled to constitute the elementary bricks of bigger neuronal
circuits.

• Simple series. It is a sequence of neurons where each element of the
chain receives as input the output of the preceding one.

• Series with multiple outputs. It is a series where, at each time unit,
we are interested in knowing the outputs of all the neurons (i.e., all the
neurons are considered as output ones).

• Parallel composition. It is a set of neurons receiving as input the output
of a given neuron.

• Negative loop. It is a loop consisting of two neurons: the first neuron
activates the second one while the latter inhibits the former one.

• Inhibition of a behavior. It consists of two neurons, the first one
inhibiting the second one.

• Contralateral inhibition. It consists of two or more neurons, each one
inhibiting the other ones.

4 The synchronous language Lustre and Model
Checking

Lustre [6] is a synchronous programming language adopted for the conception
and verification of reactive systems. It is characterized by the synchronicity hy-
pothesis, which depends on the notion of logical time. Time is seen as a sequence
of discrete instants, in which systems react to the inputs and immediately gen-
erate outputs. A Lustre program is a system of equations defining variables,
which are functions from time to their domain of values. Time can be projected
onto the set of naturals, making variables infinite sequences of values. Lustre is
a functional language operating on flows, which are pairs of possibly infinite se-
quences of values of a given type and clocks, representing sequences of instants.
A program has a cyclic behavior and, at its nth execution cycle, all the involved
flows take their nth values.

The unit in the Lustre language is called a node and Lustre nodes compute
output variable sequences of values from input variable ones with equations,
expressions and assertions. Variables are typed: there are a few elementary basic
types (Boolean, integer, real) and complex external types (such as vectors) can
be declared. Usual operators over basic types are available: +, -, ...; and,
or, not; if then else. These are called data operators and only operate on
operands sharing the same clock. They operate point wise on sequences of values
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Figure 1: The basic neuronal archetypes.

of their operands. Moreover, Lustre has operators to deal with the logical time
represented by clocks. The two main temporal operators are pre and →:

• pre (for previous) acts as a memory: if (e1, e2, ....., en, . . . ) is the flow
E, pre(E) is the flow (nil, e1, e2, ..., en, . . . ), nil being an undefined value
denoting uninitialized memory.

• → (meaning “followed by”) complements the pre operator and allows to
avoid uninitialized memory:
let E = (e1, e2, . . . , en, . . . ) and F = (f1, f2, . . . , fn, . . . ) be two flows, then
E→F is the expression (e1, f2, . . . , fn, . . . ).

Equations help us to define output variables in nodes. Besides, to force variable
values, assertions may complement equations. Assertions consist in Boolean
expressions that should be always true and they allow to make assumptions on
the environment. For instance, the assertion:
assert (true → not(x and pre(x))) says that x is not true twice consecu-
tively in its value sequence.
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Lustre is a unifying framework allowing not only to model reactive systems
but also to express some temporal properties. Properties are encoded as Lus-
tre nodes called observers [7], which check at each instant the outputs of the
program under verification and give as a result true if the wished behavior is
satisfied, false otherwise. The automatic verification is made thanks to the
tool kind2 [5], selected for his compatibility with Lustre and for his effectiveness
with respect to other model checkers such as Lesar [8] and Nbac [12]. In case
the desired property is not verified for all possible input variable values, kind2
gives a counterexample, that is, an execution trace showing the violation of the
property.

5 Encoding Neuronal Archetypes and Temporal
Properties in Lustre

Single neurons can be easily encoded in Lustre. The key idea is to take advantage
of an input matrix recording the signals received within the integration window.
More precisely, at each time unit the first column of this matrix contains the
current inputs (multiplied by the synaptic weights of the corresponding input
edges) and, for each i greater than 0, the values of the column i are defined
as follows: (i) they equal 0 at the first time unit (initialization) and (ii) for all
following time units, they are reset to 0 in case of spike emission at the preceding
time unit and they take the previous time unit value of the column i−1 (for the
corresponding row) otherwise. This mechanism, implemented thanks to the use
of the pre operator, allows to obtain a sliding time window. At each time unit,
the input matrix is multiplied by a vector of remaining coefficients and, if the
firing threshold is overtaken, a spike is emitted at the next time unit. Thanks to
the modularity of Lustre, archetypes can be easily encoded starting from basic
neurons.

In the following, we introduce properties of single neurons and archetypes
(we denote true as 1 and false as 0).

5.1 Single neuron
As far a single neuron is concerned, we prove that, whatever its parameters are,
it can only display one of the two exclusive following behaviors: either the sum
of the current input signals (multiplied by their weights) is enough to overtake
the threshold (and thus, for each instant when the neuron receives enough in-
put signals, it emits a spike at the next instant), or more than one time unit is
needed to overtake the threshold. More formally, given a neuron with one input
flow, property 1 has been proved thanks to kind2:

Property 1. [Single neuron.] Given a neuron receiving an input flow on the
alphabet {0, 1}, it can only express one of the two exclusive following behaviors:

Delayer effect. It emits a 0 followed by a flow identical to the input one.
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Filter effect. It emits at least two 0 at the beginning and can never emit two
consecutive 1.1

In the first case, the neuron just transmits a sequence identical to the received
one, with a delay of one time unit. In the second case, the neuron lets only pass
one signal out of x, it thus behaves as a 1/x filter. Observe that the filter effect
reaches a limit case when the neuron is never able to overtake its threshold (wall
effect). The Lustre observer of property 1 consists in an exclusive conjunction
between a delayer and a filter:

node de laye r (X: bool ; w: i n t ) returns (OK: bool ) ;
var SX, Out , S1 , v e r i f , p r e v e r i f : boo l ;
let

Out = neuron (X,w) ;
S1 = true → Out ;
SX = f a l s e → pre (X) ;
v e r i f = true → i f SX then S1 else f a l s e ;
p r e v e r i f = true → pre ( v e r i f )
OK = i f p r e v e r i f and v e r i f then t rue else f a l s e ;

te l

node f i l t e r (X : bool ; w : i n t ) returns (OK : bool )
var Out : bool ;
let

Out = neuron (X, w) ;
OK = true → i f Out then not pre (Out) else not Out ;

te l

node prop1 (X : bool ; w : i n t ) returns (OK : bool ) ;
var S1 , S2 , Ve r i f : bool ;
let

S1 = de laye r (X, w) ;
S2 = f i l t e r (X, w) ;
Ve r i f = S1 xor S2 ;
OK = conf i rm_property_2_ t i c k s (X) or Ver i f ;

te l

5.2 Simple Series (see Fig. 1(a))
The behavior of a single series of length n depends on the neurons composing
it: either it contains n delayers (and in such a case it behaves as delayer of n
time units), or it contains at least one filter (it thus displays a n-delayer effect
composed of a filter effect). More formally, the following property can be stated:

1From a biological point of view, in the first case (delayer) we can speak of instantaneous
integrator and in the second case (filter) of long time integrator.
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Property 2. [n-delayer or n-delayer/filter.] Given a series of length n
receiving an input flow on the alphabet {0, 1}, it can only express one of the two
exclusive following behaviors:

n-delayer effect. It emits a sequence of 0 of length n followed by a flow iden-
tical to the input one.

n-delayer/filter effect. It emits a sequence of 0 of length at least n + 1 and
can never emit two consecutive 1.

As a consequence, a simple series is not able to constitute a permanent signal,
e.g., if it receives an oscillatory signal as input, it cannot emit a sequence of 1
as output. We can also observe that filter neurons do not commute in a simple
series. As an example, if in a series of two neurons a 1/2 filter (that is, a neuron
emitting a 1 every two time units when receiving a permanent signal) precedes a
1/3 filter, the result is a 1/6 filter. If the two neurons are inverted, the result is
a wall effect. In order to prevent wall effects, the most selective neurons should
thus come first.

5.3 Series with Multiple Outputs (see Fig. 1(b))
As expected, in a series with multiple outputs each emission is constrained by
the ones of the preceding neurons. Furthermore, the following property holds:

Property 3. [Exclusive temporal activation in a series with multiples
outputs.] When a series of n delayers with multiples outputs receives the output
of a 1/n filter, only one neuron at a time overtakes its threshold (and thus emits
a spike).

As a consequence, in the conditions of Property 3 two neurons can never
emit at the same time.

5.4 Parallel Composition (see Fig. 1(c))
Concerning the parallel composition, we saw that the number of spikes emitted
in parallel at each instant is in between a given interval, whose upper bound is
not necessarily the number of neurons in parallel (because, even if each neuron
is able to emit, the parallel neurons can be unsynchronized).

Moreover, we have the following interesting property:

Property 4. [Parallel composition of n filters.] Given a parallel composi-
tion with a delayer connected to n filters of different selectivity connected to the
same delayer, it is possible to emit as output a sequence of 1 of length k, with
k ≥ n.

To obtain a sequence of 1 of length k, the idea is to consider the parallel
composition of n filters of different selectivity 1/Xi, where i ∈ {1, ., n} and
X1,...,Xn is the set of prime numbers in between 2 and k. Furthermore, exploit-
ing a parallel composition, it is possible to constitute a permanent signal from
a not permanent one.
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5.5 Negative Loop (see Fig. 1(d))
If, neglecting the inhibiting edge, the two neurons of a negative loop behave as
delayers, an oscillatory trend can be observed as output of the two neurons (in
case a permanent signal is injected in the archetype). More formally:

Property 5. [Oscillation in a negative loop.] Given a negative loop com-
posed of two delayers, when a sequence of 1 is given as input, the activator
neuron oscillates with a pattern of the form 1100 (and the inhibitor expresses
the same behavior delayed of one time unit).

5.6 Inhibition of a Behavior (see Fig. 1(e))
For a large class of neuron parameters (that is, firing threshold, leak factor, and
length of the integration window), the following property is verified:

Property 6. [Fixed point inhibition.] Given an inhibition archetype, if a
sequence of 1 is given as input, at a certain time the inhibited neuron can only
emit 0 values.

5.7 Contralateral Inhibition (see Fig. 1(f))
There is a class of neuron parameters for which the following behavior is dis-
played as output of contralateral inhibitions:

Property 7. [Winner takes all in a contralateral inhibition.] Given a
contralateral inhibition archetype with two or more neurons, if a sequence of 1
is given as input, starting from a given time one neuron is activated and the
other ones are inhibited.

Some further properties concerning the different archetypes can be found in
[3].

6 Archetype Coupling
The two sensible ways to couple two archetypes are the following ones: (i)
connect the output(s) of the first archetype to the input(s) of the following one,
(ii) nest the first archetype within the second one. In this section we present
some emblematic couplings among the ones we studied. In the following figures,
these acronyms are employed: A for activator, I for inhibitor, D for delayer, F
for filter, G for pattern generator, S for series, and C for collector.

6.1 Simple series within a negative loop
Let us consider a series of n delayers nested between the activator and the
inhibitor of a negative loop, as shown in Figure 2.

We remind that, when the negative loop is considered alone and a sequence
of 1 is injected in the archetype, an oscillation of the form 1100 is displayed (see
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Figure 2: Series of n delayers nested between the activator and the inhibitor of
a negative loop.

Figure 3: Series of n delayers connected to the activator of a negative loop.

Property 5). The addition of the series results in an extension of the oscillation
period, which passes from 2 to n. More precisely:

Property 8. [Oscillation period extension.] Given a simple series of de-
layers of length n within a negative loop, if a sequence of 1 is given as input,
the output of the activator is of the form : 0(1n+20n+2)ω. 2

6.2 Simple series followed by a negative loop
Let us now consider the case in which a series of n delayers precedes the negative
loop, as shown in Figure 3.

In this case, the oscillatory behavior is not modified, just delayed. More
formally:

Property 9. [Oscillation delay.] Given a simple series of delayers of length
n connected to the activator of a negative loop, if a sequence of 1 is given as
input, the output of the activator is of the form : 0n(1100)ω.

It seems now relevant to identify all the input patterns of the negative loop
allowing to have an output oscillatory trend. Since the series is only able to
transmit (or eventually filter) signals, in the next subsection we introduce a
small system which is able to generate all the patterns of fixed length on the
alphabet {0, 1}.

2

xy denotes the repetition of x for y time units.
xω denotes the infinite repetition of x.
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Figure 4: Generator of periodic patterns based on a series with multiple outputs.

Figure 5: Generator of periodic patterns based on a parallel composition.

6.3 Generator of periodic patterns followed by negative
loop

Let us consider the system illustrated in Figure 4. As input of the system, a
sequence of 1 is received by a 1/n filter connected to a series of n delayers with
multiple outputs, which is finally connected to a collector delayer neuron. The
user can choose to activate or deactivate each one of the edges connecting the
neurons of the series to the collector. We proved that, playing on the possibility
of activating/deactivating the aforementioned different edges, such a system can
generate all the pattern of length n on the alphabet {0, 1}.

Another pattern generator is graphically depicted in Figure 5. In this system,
a 1/n filter is connected to n simple series of delayers, of increasing length from
1 to n. The edges connecting the filter to the series can be modulated, that
is, activated or deactivated (the intuition is that the activation of the series of
length x allows the emission of a 1 in the x-position of the pattern).

It is possible to see that the first generator has a number of nodes and edges
which is linear with respect to the length of the pattern to generate while in the
second system the number of nodes and edges is quadratic. For this reason, we
rest on the first generator for our studies.

For different values of n, we connected the pattern generator to the entry
of the negative loop (see Figure 6) and we detected all the patterns able to
produce oscillations (we consider not only strict oscillations, where the number
of 1 equals the number of 0, but also oscillations where the difference between
the consecutive number of 1 and the consecutive number of 0 is at most 2).

As an example, for n = 5, the pattern 11001 generates oscillations of the form
11000 as output of the negative loop (we remind that a simple series receiving

12



Figure 6: Pattern generator connected to the activator of a negative loop.

Figure 7: Series of n delayers within a contralateral inhibition of two neurons.

a sequence of 1 as input is not able to emit a pattern of the form 11001).

6.4 Series within a contralateral inhibition
In this subsection we present the insertion of a series of n delayers within a two
neurons contralateral inhibition to delay the inhibition of the losing neuron. At
this aim, we consider a first neuron N1 acting as a delayer (if it does not receive
any inhibition) connected to a simple series Sn of n delayers, which inhibits a
second neuron N2. The second neuron (which also acts as a delayer if it is not
submitted to any inhibition) inhibits N1 and the first inhibition is stronger than
the second one (see Figure 7).

The idea is to study how the winner takes all behavior (see Property 7) is
modified when the inhibition of the loser neuron is delayed. We prove that,
for several inhibitor edge weights, the insertion of the series makes the system
stabilize later. Furthermore, the stabilization is preceded by n+ 1 damped os-
cillations of period n+ 2 (see Figure 8).

The first oscillation of N1 is composed of one 1 and a number of 0 equal to
n + 1. For each subsequent oscillation, the number of 1 (resp. of 0) increases
(resp. decreases) of one unit. After its last oscillation, N1 only emits a sequence
of 1. The behavior of N2 is symmetric (its first oscillation is composed of one 0
and a number of 1 equal to n+ 1) .
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Figure 8: Output of N1 and N2 for a simple series of n = 6 delayers nested in
a two neurons contralateral inhibition (see Figure 7).

The following property has been encoded in Lustre and validated for several
inhibitor edge weights:

Property 10. [Winner takes all delay.] Let us consider a delayer neuron
N1 connected to a series of n delayers Sn inhibiting a delayer neuron N2, which
in turn inhibits N1. The edge inhibiting N2 has a higher absolute value then
the one inhibiting N1. Let us suppose a sequence of 1 is given as input of the
archetype composition. When N1 emits a sequence of 1 as long as the first
sequence of 1 emitted by N2, then, after the emission of a 0 by N1, N1 (resp.
N2) only emits a sequence of 1 (resp. 0).

The two diagrams of Figure 9 allow to compare the behavior of a two neurons
contralateral inhibition with the one of the same archetype with the insertion
of one single delayer. In both plots, the y-axis (resp. x-axis) represents the
weight of the edge inhibiting the first (resp. second) neuron. Blue (resp. red)
points represent pairs of weight values for which the stabilization is (resp. is not)
reached within the first four time units. The passage from the first (a) to the
second diagram (b) shows that the red zone (which refers to the non satisfaction
of the winner takes all property) increases. Furthermore, the extension of the
red zone is asymmetric, which reflects the asymmetry of the composition. It is
interesting to see that, in a counter-intuitive way, for the explored weight edge
values, the neuron winning more often within the first four time units is the one
preceding the series (even if the inhibitor signal it emits is delayed of one time
unit).

6.5 Pattern generator followed by an inhibition
Let us finally introduce the pattern generator followed by the inhibition archetype
(see Figure 10).
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(a)

(b)

Figure 9: Verification of the winner takes all behavior for the different values of
the inhibiting weights of the two neurons in a simple contralateral inhibition (a)
and in a contralateral inhibition with two neurons and the insertion of a delayer
(b).

Figure 10: Pattern generator followed by inhibition
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Figure 11: Classes of maximal inhibitory weights allowing the inhibition behav-
ior. The orange color corresponds to palindrome patterns (Pal), the blue color
corresponds to patterns whose twin is in the same class (PaC), and the yellow
color stands for patterns whose twin falls in another class (PaS).

At the beginning we kept the neuron parameters and edge weights found for
the inhibition archetype alone and looked for the input patterns able to provide
the wished behavior (that is, starting from a given instant the inhibited neuron
stops emitting spikes, see Property 6). With the known parameters, the only
pattern allowing to obtain the given behavior is the permanent sequence of 1.
We then tried to see whether, strengthening the weight of the inhibiting edge,
other patterns give the inhibition behavior. The answer is positive. We tested
our property for all patterns of length n < 8 and in the histogram of Figure 11
patterns are classified with respect to the maximal inhibitor edge weight allowing
to get the wished behavior. The following interesting observation emerges: if
a pattern is not palindrome (that is, its reading from the left to the right and
from the right to the left does not give the same pattern), it necessarily has
a twin pattern (obtained by reading the pattern from the right to the left).
There are several cases in which a pattern and his twin one do not fall in the
same weight class. As an example, for n = 7, the pattern 0110100 and his twin
0010110 are in two different (neighbor) classes. This suggests that in a pattern
the proportion of zeros and ones is not the only relevant feature: the way zeros
are surrounded by ones is important. Models based on precise time coding seem
thus more pertinent than models based on rate coding for the properties we are
interested in.

7 Conclusion and Future Work
In this paper we proposed a formal approach to study some key properties
concerning the dynamical evolution of neurons, some canonical archetypes, and
their coupling. The synchronous language Lustre turned out to be an unified
framework allowing not only to encode neuronal networks but also their expected
properties. The properties were automatically verified thanks to the model
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checker kind2. Such a tool, which relies on Satisfiability Modulo Theories (SMT)
based k-induction, turned out to be more efficient than other model checkers
based on convex polyhedra representation of integers and reals [2].

Our results show that archetype coupling can either modulate the behaviors
displayed by the single archetypes (e.g. extend an oscillation period) or clearly
give rise to new behaviors. Furthermore, several different couplings turn out
to display the same behavior (whatever their input sequences are). As a next
step, we intend to make a systematic study of all the possible archetypes and
couplings, even including several archetypes, and classify their respective prop-
erties. The number of constrained graphs of a few elements and, concomitantly,
the number of elementary behaviors is reduced, both from a logical and biologi-
cal standpoint. Moreover, beyond a certain number of neurons and connections,
other functional processes like cell assemblies [9] are supposed to emerge, in bi-
ological networks and in logical ones if they are set with biologically inspired
parameters. So the composition process should stop after a limited number of
iterations, that is, we should soon fall back on already studied behaviors, but
expressed through different structures.

Before checking the validity of a property, we actually fix an interval of values
for each parameter and we ask to the model checker whether the property holds
for the chosen parameter set. We are aware of a research group working on the
integration of Linear Decision Diagrams (LDDs) within model checkers. The
exploitation of LDDs, which consist in decision trees whose leaves are labelled
with contraints on the parameters, would allow to automatically infer parameter
sets for which properties are verified.

We also intend to translate the Lustre code for neuron archetypes into the
VHSIC Hardware Description Language (VHDL) one to make it run on a field-
programmable gate array (FPGA) [4], that is, an integrated circuit configurable
by the customer. This would allow to have a real physical implementation of
our models validated through model checking techniques.

To conclude, our long term aim consist in proving that whatever neuronal
circuit can be expressed as a composition of archetypes, as far as all words can
be expressed from a given alphabet.
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