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Abstract—Exploiting the power of HPC platforms requires
knowledge of their increasingly complex hardware topologies.
Multiple components of the software stack, for instance MPI
implementations or OpenMP runtimes, now perform their own
topology discovery to find out the available cores and memory,
and to better place tasks based on their affinities.

We study in this article the impact of this topology discovery in
terms of memory footprint. Storing locality information wastes
an amount of physical memory that is becoming an issue on
many-core platforms on the road to exascale.

We demonstrate that this information may be factorized
between processes by using a shared-memory region. Our anal-
ysis of the physical and virtual memories in supercomputing
architectures shows that this shared region can be mapped at
the same virtual address in all processes, hence dramatically
simplifying the software implementation.

Our implementation in hwloc and Open MPI shows a memory
footprint that does not increase with the number of MPI ranks
per node anymore. Moreover the job launch time is decreased
by more than a factor of 2 on an Intel Knights Landing Xeon
Phi and on a 96-core NUMA platform.

I. INTRODUCTION

Future exascale platforms are expected to be made of tens
or hundreds of thousands of nodes. The internals of these
nodes are increasingly complex, with tens of cores and deep
memory hierarchies. Many modern HPC software projects,
from resource managers to runtimes, rely on knowledge of
the hardware topology for allocating resources and placing
tasks and data buffers based on affinity. They often use third-
party tools such as hwloc [1] which take care of gathering
hardware information, exposing it in an portable way, and
applying binding policies.

With nodes containing tens of resources (cores, hardware
threads, packages, etc.) and deep memory hierarchies (levels
of cache, NUMA nodes, heterogeneous and/or non-volatile
memories, etc.), the amount of locality information is growing
fast. Multiple components of HPC software stacks store similar
information without sharing it with others. And multiple
processes also duplicate it, causing the memory footprint
of locality information to become significant. However, the
amount of physical memory per core in HPC platform is not
huge. It is expected to remain around one gigabyte per core for
exascale platforms. Wasting megabytes of memory for locality
information in several components of the HPC stacks therefore
becomes an issue.

We propose to share locality information between MPI
processes on each node by exposing the hwloc topology in a

shared-memory region. The need for integration in the hwloc
API without breaking existing codes leads us to enforce the
mapping of this region at the same virtual address in all
processes. We perform an in-depth analysis of the physical
and virtual memories of current supercomputing architectures.
It shows that most of the virtual memory is available in
HPC processes, and that our proposed simple heuristic for
finding an appropriate virtual address has a high probability
of success. Experimentation on an 64-core Xeon Phi and on
a 96-core NUMA host confirms that the memory footprint is
significantly reduced, while the launch time is decreased by
more than a factor of 2.

The remaining of this paper is organized as follows: Sec-
tion II explains why locality is used in HPC software and
how. Section III describes the way locality information is
managed and how it may be exchanged between components.
Our proposal to store topology in a shared-memory region is
then detailed in Section IV. Finally Section V presents the
evaluation of the implementation inside Open MPI.

II. LOCALITY INFORMATION

We present in this section how locality information is used
by high-performance computing software.

A. Why Locality is Important

Locality became a key criteria for performance optimiza-
tion since the advent of NUMA architectures and multicore
processors more than ten years ago. The physical distance be-
tween hardware components, cores and memory banks, varies
significantly because HPC platforms are made of multiple
multicore processor packages with their own local memory.
Moreover a hierarchy of private and shared caches inside
processors increase the observed performance difference since
communicating through a shared cache is usually faster.

Modern HPC runtimes therefore gather topology informa-
tion to find-out how cores are organized in hardware: inside
processors, with respect to caches and memory banks, and with
respect to I/O devices such as GPUs or InfiniBand HCAs.
This information is used for placing tasks (usually threads
or processes) in an affinity-aware way: matching inter-task
affinities (tasks that synchronize/communicate a lot benefit
from shorter distance between them) [2], [3]; placing tasks
and their target data buffers together (on NUMA nodes close
to cores and/or I/O devices that access them) [4].



Topology knowledge is often delegated to third party li-
braries such as hwloc [1] which take care of exposing topology
information in a portable and abstracted manner.

B. How Locality Information is used

The first component that usually looks at hardware topology
on a parallel platform is the resource manager (e.g. Slurm).
It must be aware of the number of cores and the amount of
memory on each node for allocating resources to jobs.

User processes are actually started on compute nodes either
through resource manager tools (e.g. srun) or a specific
process launcher (e.g. mpiexec). For MPI jobs, a daemon
is first created on each node (e.g. slurmd or orted). It
takes care of launching a process for each MPI rank. Both
the daemon and MPI library in rank processes must have
knowledge of the hardware topology since they bind processes
to specific cores.

Inside processes, either MPI ranks or not, runtimes (such
as OpenMP) or task-based schedulers (such as StarPU [5])
require knowledge of the hardware for selecting which core
or accelerator to execute a task on, and which NUMA node
to allocate memory on.

Finally the computing codes executed by these tasks or
threads involve kernels that may be tuned based on cache or
micro-architecture characteristics. Similarly, communication
libraries may look at I/O locality for selecting which NIC to
use and which communication strategy to select.

Kernels

Threads

Runtime

MPI lib

... ... ...

Processes

Daemon

Compute Nodes
Frontend Node

Resource
Manager

Launcher

Gathering Topology

Launching MPI ranks

...

... ...

Fig. 1. Example of topology information exchange in a HPC software stack.
The topology of compute nodes is gathered by the resource manager (light
grey dashed arrows). After allocating nodes and cores using this information,
it passes it to the job launcher on the frontend node which invokes daemons on
compute nodes for spawning actual user processes (dark grey dotted arrows).
Several components inside each process may then use topology information
for binding the process, launching and binding some threads, tuning kernels,
etc.

Hence, as summarized in Figure 1, many components in the
HPC software stack require information about the hardware
topology. In current implementations, most components in
each process gather topology information on their own. We
proposed some ideas to exchange this information between
them to avoid multiple expensive discoveries [6]. However, it

requires deep changes before these standards and implementa-
tions can actually interoperate. Moreover, it does not address
to duplicated memory occupancy since each component still
has its own copy of the topology information. We are now
going to focus on this issue.

III. MANAGING LOCALITY INFORMATION AT SCALE

Future Exascale platforms are expected to contain hundreds
or thousands of cores per node. However, the memory may
not be able to sustain this growth rate. The amount of memory
per core is indeed not going to increase according to exascale
reports [7], [8].

The Top500 list1 reveals that the current most powerful
supercomputers have only about 1GB of physical memory per
CPU core. For instance Piz Daint (ranked #3 in November
2017) contains 340TB of memory for 361 760 cores.2 Sunway
TaihuLight (ranked #1) even offers only 32GB for each 260-
core SW26010 processor.3

This means that developers of parallel codes for exascale
platforms must be careful not only about scaling algorithms
to millions of cores, but also about making sure each task
can operate on a small dataset. Using large datasets would
cause either memory exhaustion requiring I/Os to the storage
subsystem, or exchanges between cores on the network. Such
accesses severely limit the overall performance of parallel
applications. It is therefore necessary to properly adapt the
application datasets to the available physical memory. Hence
reducing the memory footprint of other components is impor-
tant.

A. Memory Footprint

The limited amount of physical memory per core puts a
severe pressure on application datasets. Hence libraries used
by the processes should try to reduce their own memory
footprint so as to let as much memory available to the actual
application as possible. We are going to discuss the memory
footprint of locality information in the de facto standard
topology management library, hwloc. [1]

1) hwloc Object Footprint: Figure 2 shows that hwloc
models the platform as a hierarchical tree of objects based
on inclusion: a Machine contains some processor Packages,
which contain Cores, and hardware threads. Caches and
NUMA nodes also appear in that hierarchy. Each of these
hwloc objects weights about 1kB: it contains several generic
attributes (kind, index, etc.), several pointers (to parents,
children and neighbors), some type-specific attributes (cache
associativity, memory size, etc.), and several bitmaps listing
its local hardware threads and local NUMA nodes (the bitmap
size increases with the platform size).

There is some ongoing work towards reducing the per-object
memory footprint in the upcoming hwloc 2.0. However, we

1https://www.top500.org/lists/2017/11/
2We only consider host CPU memory. GPUs do not have the same notion

of core and they do not have large amount of memory.
3The processor contains 4 general purpose cores and 256 specialized cores.
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Fig. 2. Representation of the hwloc hierarchical tree with the lstopo tool.
This fictive host is made of 2 processor packages. Each half of package
contains one NUMA node, one shared L3 cache, and 2 cores. Each core
contains two hyper-threads (PUs) and private L1 and L2 caches.

can expect neither large nor scalable improvements since the
overall memory footprint is linear with the number of objects.4

More intrusive micro-optimizations (such as removing generic
attributes when they are irrelevant, for instance the index
of processor Packages) are possible but they would make
the hwloc programming interface much harder to use due to
many specific cases. Also changing the hwloc programming
interface would cause hundreds of existing user codes to
require updates.

2) Number of objects: The number of objects used by
hwloc to describe a node basically corresponds to the number
of hardware resources. On a 64-core Intel Knights Landing
Xeon Phi (later called KNL), there are 256 objects for hard-
ware threads (4 per core), 64 for cores, 64 for L1 data caches,
32 for L2 caches (shared by dual-core tiles) and 1 for processor
package. Depending on the KNL configuration (MCDRAM in
cache, flat or hybrid mode, and mesh in quadrant, alltoall or
SubNUMA-cluster mode), there may also exist up to 8 NUMA
node objects and/or 4 additional caches. This means at least
400 objects (and even up to 500 if instruction caches or I/O
locality are also needed by applications).

With some additional topology-wide information, we ob-
serve between 600kB and 700kB of memory to store each
hwloc topology on KNL.

Several users already reported that this is an issue on their
platform because they use one process per core (up to 72
on KNL), or even one process per hardware thread (up to
288 on KNL). Although using that many MPI processes per
node may seem sub-optimal, it is actually required for legacy
applications that could not be ported yet to a more modern
programming model such as MPI + OpenMP. This issue
will get more severe on larger many-core nodes in upcoming
exascale platforms.

B. Filtering Topology Information

We now explain how horizontal or vertical filtering might
help reduce the number of objects.

4It is expected that hwloc 2.0 per-object footprint will be about 30% lower
than in hwloc 1.11.

1) Horizontal Filtering of Available Resources: The re-
source manager may allocate only part of a node to a job.
Resources outside of the allocation should not be needed by
the application. This Horizontal Filtering would almost divide
the number of object by 4 if only a quarter of the node is
allocated, as depicted on Figure 3.
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Fig. 3. Horizontal filtering of a topology. If only 2 cores of a 8-core machine
were allocated to a job, most objects can be removed from the topology.
However, if the process uses network interfaces to communicate, it may want
to decide which NIC to use based on their locality. Hence removing Package
and Memory must be done without hiding the fact that one NIC is closer to
the available cores than the other NIC.

However, this filtering is not trivial because some non-
allocated resources might still be useful when taking locality-
aware decision. For instance, selecting which NIC to use for
MPI communication involves looking at distances between
NUMA memory banks and NICs, even if some of these banks
are not available to the current process.

Anyway we focus on exascale platforms where large jobs
will get allocated on lots of entire nodes. Allocating only part
of nodes is usually reserved to very small jobs. Hence we
do not expect much improvement of the memory footprint at
scale thanks to horizontal filtering.

2) Vertical Filtering of Useful Resources: It is also possible
to perform Vertical Filtering by asking hwloc to ignore some
kinds of objects. If the application does not do any kind of
tuning based on cache size, cache objects could be removed
as depicted on Figure 4.
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Fig. 4. Vertical filtering of a topology. If cache information is not needed by
the application, L1 and LLC objects can be removed from the tree. However,
L2 cannot be removed because they bring information about the hierarchy of
cores: cores are organized by pairs, instead of being 4 random cores in each
package.

However, aside of the cache-specific characteristics, some
cache objects also bring information about the hierarchy of
cores within processor packages. On KNL, cores are organized
as dual-core tiles with a shared L2. Hence communication
between cores inside a tile is likely faster than communication

3



between tiles. This locality information requires to keep L2
objects in the hierarchy for better affinity knowledge (there
are 32 dual-core tiles instead of there are of 64 cores).
Contrariwise, KNL L1 caches are private per core. Hence
ignoring them does not remove any information about the
hierarchy of cores (this removes about 15% of objects).

A way to perform this filtering, with or without ignoring
the hierarchy information brought by some objects, is already
offered by hwloc. In the end, one has to enable such filtering
depending on his needs for information about the hierarchy of
cores, memory, caches, etc. A single component may easily
filter-out what it does not need. However, sharing topology
information between multiple components makes filtering
difficult: the component that is responsible for discovering
and sharing topology information, should know what other
components need (e.g. a parallel BLAS may need cache
information). In practice, they keep everything enabled in case
anybody ever needs it.

To summarize, there are ways to reduce the topology foot-
print by filtering unneeded objects out. However, this reduction
hinders the ability to share topology information between
components inside the same process, or between processes
on the same node, because they may have different needs. We
expect much larger improvements thanks to rather sharing the
topology between them without filtering.

C. Opportunities for Sharing

As explained in Section II-B, many components in the HPC
software stack may need topology information: the resource
manager for allocating cores and memory, the launcher and
MPI library for binding processes, the runtime for spawning
and binding threads, and kernels for tuning implementations
for the micro-architecture.

There are several ways to implement this:
Native Discovery: Each component may perform its own
discovery of the hardware. One advantage is that they precisely
filter what they need. However, the major drawback is the
overhead of discovery which does not scale to large nodes [6].
Hence it is better to have a single topology discovery and
exchange the result between components.
Exchanging through XML: hwloc offers easy ways to ex-
change topology information through XML files or buffers. It
avoids the overhead of native discovery, but it still requires to
instantiate the topology tree in memory, which causes a large
memory footprint as explained in Section III-A. Therefore it
is better to only instantiate the tree once.
Centralizing Topology Queries: If the topology information
is centralized, all components could issues queries to a dedi-
cated server. Inside a single process, this can still be performed
using the existing hwloc API. However, exposing the long list
of features from the hwloc API to other processes requires the
design of a forwarding layer. Users would have to switch from
the hwloc API to this new forwarding API, which would also
be slower than existing function calls.
Topology in Shared-Memory: Instead of centralizing queries,
the topology can be centralized in physical memory and shared

in virtual memory. Once the topology is mapped in the virtual
memory of all processes, they can use the existing hwloc API
without having to instantiate multiple topologies in physical
memory.

The main drawback of using shared-memory topology infor-
mation is that none of the users can modify this information.
Modifying would for instance include attaching custom infor-
mation to hwloc objects. Fortunately, this may still be replaced
with a lookup table for finding that information based on the
object type and number (e.g. Core #5).

IV. SHARING LOCALITY INFORMATION AT RUNTIME

We now explain how to expose the hwloc topology informa-
tion in a shared-memory region between a master process (e.g.
the resource manager or MPI launcher daemon on the compute
node) and many slaves (e.g. compute processes running MPI
ranks).

A. Storing Topologies in Shared Memory

We implemented in hwloc a new API for storing a topology
in a shared-memory region and memory-mapping it other
processes, as depicted in Figure 5.

On the master side, hwloc_shmem_topology_write()
uses a callback to replace malloc() with allocations in the
target shared memory region (a memory-mapped shared file).
Instead of modifying all allocations in the hwloc library, this
callback may only be enabled when duplicating a topology.
Hence the master process first creates a normal topology
and then duplicates it as a shmem clone in a shared-memory
region.

This shmem clone on Figure 5 is self-contained, except
for function pointers. Indeed each topology contains pointers
to operating-system-specific binding functions in the hwloc
library. Given that the location of libraries in virtual memory
varies from one process to another5, each process still uses its
own private function pointers.

On the slave side, hwloc_shmem_topology_adopt()
gets the shmem clone and lets the local hwloc library use it.
The main hwloc_topology structure (about 700 bytes) is
duplicated locally so as to update function pointers to the local
hwloc library as explained above. However, all objects (the
remaining 600-700kB footprint on KNL) remain in the shared
memory, they do not have to be duplicated locally.

One way to avoid duplication of this 700-byte structure
would be to map the shmem clone with MAP_PRIVATE so that
local changes are not propagated to other processes (Copy-on-
Write). However, slaves are not supposed to modify anything
but that structure. Hence we would have to keep the main
hwloc_topology structure in a private writable mapping
while everything else would be in a public read-only mapping.
Moreover, each slave would allocate one physical page (4 kB
on x86) to store its locally modified private copy. This is higher
than our current 700-byte duplicate which only requires a new

5On Linux, the interpreter ld.so and the kernel are in charge of selecting
library locations in virtual memory. They apply some randomization for
security reasons.
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Fig. 5. Duplicating and adopting a hwloc topology across a shared memory
region. Arrows ending with an empty triangle are function pointers while other
arrows are normal pointers. The slave process cannot use the shmem clone
topology because it points to functions in the hwloc library (libhwloc.so)
in the other process. Hence the need for a new adopted topology that points
to shmem clone objects and to functions in the local copy of the hwloc library.

physical page in 700/4k=17% of the cases. Anyway, this waste
is negligible against the problem tackled by our work, but the
underlying implementation can still be modified later if ever
needed.

B. Partial Sharing

Sharing topology information between processes on the
same node obviously exposes the exact same information.
However, there is one point that may differ from one process
to another: the list of available resources. Indeed the batch
scheduler may allocate different cores or memories to different
jobs. Technologies such as Linux cgroups are used to enforce
this partitioning.

hwloc already supports filtering-out unavailable resources
as explained in Section III-B1. However, a single server
cannot expose the topology to different slaves in different
cgroups using the same shared memory region. Hence this
partial sharing requires slaves to manually ignore resources
that are not available to their jobs when consulting the shared
topology. Another solution consists in having one master per
job, exposing the filtered topology only to processes in that
job, instead of one master per node.

We do not expect the memory footprint to be critical on
small jobs that do not use entire nodes. Hence both solutions
look acceptable when really needed.

C. Sharing hwloc Pointers

One major hurdle in this implementation comes with point-
ers inside the shared-memory region (black arrows on Fig-
ure 5). The hwloc API was designed with a tree made of many
public pointers between objects (parent, children, siblings,

cousins, etc.) and between objects and attributes (strings,
dynamically-extendable bitmaps, etc.). These pointers must be
valid in all slaves that consult the topology.

One way to solve this would be to remember the offset
that was added to the address when mapping in each process,
and add that offset of each pointer before dereferencing it.
Unfortunately this would require to change the existing hwloc
API and break many existing applications.6 Hence the master
and the slaves must map the shared region at the same virtual
address in their own address spaces so that pointers remain
valid in every context.

As explained in Section IV-A, this does not apply to
function pointers which are still mapped at different addresses
in all slaves. We could have mapped yet another instance of
the hwloc library at the same address in each process but it is
not worth the 700-byte duplication avoidance.

The major argument in favor of our proposal to enforce
mapping at the same address is the vast amount of virtual
memory available on current architectures. While physical
memory is not expected to increase beyond gigabytes per core
in exascale platforms (see Section III), most HPC architectures
already support about 47 bits of virtual address7, which means
128TB of virtual memory per process.8 This limit will even
be bumped to 64PB on future x86 processors thanks to the
la57 processor extension.

TABLE I
PERCENTAGE OF FREE VIRTUAL MEMORY INSIDE PROCESS ADDRESS

SPACE DEPENDING ON THE NODE CONFIGURATION AND ON HOW MANY
PROCESSES ARE SPAWNED PER NODE.

Physical Memory Virtual Memory % of Free
Configuration per Process per Process Virtual Mem.
Trinity node (64-core KNL, 96GB)
1 process/core 1.41GB 128TB 99.9988%
1 process/node 96GB 128TB 99.925%
KNL worst case (72-core KNL, 384GB)
1 process/core 6GB 128TB 99.9953%
1 process/node 384GB 128TB 99.7%
Summit node (2× 22-core POWER9, 512GB)
1 process/core 11.6GB 64TB 99.981%
1 process/node 512GB 64TB 99.2%

Table I reports some examples for the KNL nodes of the
Trinity supercomputer (ranked #7 in Top500), fictive nodes
corresponding to the worst KNL case (fewer cores but more
physical memory), and nodes of the upcoming Summit pre-
exascale platform (fat nodes with lots of memory to serve
6 GPUs). 1 process/core is our ideal case where physical
memory is split between processes, hence reducing the amount
available to each process. 1 process/node is our worst case
where all physical memory is used by a single process. In
practice, the number of processes is often between these

6The hwloc API was designed in 2010 without such issues in mind. Making
pointers public simplified the API but caused this shared-memory issue years
later.

747 for Intel and AMD; 48 for ARMv8; only 46 on POWER because of
the current Linux kernels.

8x86 architectures actually supports 256TB (48 bits virtual addresses) but
the Linux kernel reserves half for kernel space.
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cases, and some memory is shared between processes (at least
programs and binaries).

In all cases considered here, virtual memory is more
than 100× larger than physical memory. If one process was
launched on each hardware thread (4× more), this percentage
would be even higher. In the end, it shows that the vast
majority of the virtual address space is free (far more than
99%), which should give a high probability of finding a virtual
region that is available.

D. Mapping at the same Virtual Address

Mapping the shared-memory region at the same virtual
address in the master and in the slave processes requires to
find a virtual area that is free in all their address spaces.
Unfortunately the layout of the processes when they will map
that region is necessarily not known when the master process
creates the region. Even worse, MPI dynamic spawning of
process9 prevents us from knowing the exact list of processes
that will ever map the region during the lifetime of the job.
Hence we use a heuristic for finding a good virtual memory
area that should be available in most processes. If one process
fails, it will fallback to the existing XML-base import (this
case never happened in our experiments).
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Fig. 6. Virtual address space layout of different processes on Linux on
64bits x86 architectures. Address space randomization makes actual locations
vary slightly between processes but the general layout is the same.

Fortunately, the way virtual memory areas are organized
on Linux is somehow predictable as depicted by Figure 6.
On x86, the code is placed at the bottom of the address space,
followed by the heap which grows up. The stack starts from the
top and grows down. In the middle, there is a giant free space

9with MPI_Comm_spawn().

where custom memory mappings are added: shared libraries,
file mappings and anonymous mappings. The Linux kernel
places these mappings close to each other, either from top to
bottom or from bottom to top depending on the architecture.

The exact layout may vary from one process to another
because of address space randomization [9] but the general
organization is the same. Hence all processes running on the
same node have a large contiguous free area located at almost
the exact same location. We verified this organization on multi-
ple Linux kernels and distributions on different platforms. For
instance on a KNL platform (64bits x86) running RHEL710

with randomization enabled11, the location only varies by 1GB
for the stack and 1TB for the libraries. However, the entire
address space is 128TB wide and the free hole is in the order
of 120TB and randomization is negligible.

Processes could use this free space by allocating large
buffers or mapping large files. Fortunately, as explained in
Section IV-C, the virtual memory per process is much larger
than the physical memory per core in HPC platforms (about
1GB). Hence HPC applications will not be able to actually
load terabytes of data in their virtual memory, leaving the
120TB free hole almost untouched.

Therefore we use a very simple heuristic that looks at the
current process address space12, finds the larger hole (usually
larger than 100TB), and uses its middle for mapping the
shared-memory region.13 Since our mapping is small (about
700kB on KNL) and since most processes have a similar
100TB free hole, this mapping should fall in the free hole
of all slave processes, as shown on Figure 6.

E. Implementation in Open MPI

After implementing the new hwloc API for sharing and
adopting topologies between processes, we implemented the
above heuristic in Open MPI.

Open MPI processes are launched on compute nodes us-
ing the orted daemon. This daemon is the master in our
model: it is in charge of finding the appropriate shared-
memory virtual address for the current platform using our
heuristic. It creates a shared-memory file mapped at that
address and duplicates the hwloc topology in it using
hwloc_shmem_topology_write().

Compute processes, i.e. MPI ranks, are slaves in our
model. They retrieve the name of the file and the target
virtual address from the daemon as part of the existing
PMIx protocol [10]. Finally, they just map that file using
hwloc_shmem_topology_adopt().

If this mapping fails (for instance because the selected
virtual address is not free in the current process), an error
is returned. The Open MPI implementation then falls back to
the old strategy which consists in requesting a XML dump of

10Linux kernel 3.10.0-327.36.3.el7.x86_64.
11/proc/sys/kernel/randomize_va_space set to 2 to randomize

library and stack location.
12by reading /proc/self/maps.
13We align the middle address to a multiple of the second page-table level

for optimizing TLB use.
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the topology to the daemon through PMIx. If this fails as well,
it performs an expensive native topology discovery.

We also added several options for changing the heuristic in
case there multiple large holes in virtual memory, so that we
can force a placement before the heap or at a specific address.
However, we have not met yet any case where this could be
useful.

V. EVALUATION

A. Experimental Setup

We tested our implementation on 3 platforms:
• KNL64 is a Dell PowerEdge C6320p featuring a Intel

Knights Landing Xeon Phi 7230 (64 cores, 1.3GHz). It is
configured in SNC-4 and Flat modes. Its hwloc topology
contains 430 objects (without counting I/O objects and
L1i caches).

• NUMA96 is a Dell R940 with 4 Intel Xeon E7-8890v4
(24 cores each, 2.2GHz). Hyper-threading is disabled,
Cluster-on-Die is enabled. Its hwloc topology is made
of 405 objects.

• Normal24 is a Dell R640 with 2 Intel Xeon E5-2680v3
(12 cores each, 2.5GHz). Hyper-threading is disabled,
Cluster-on-Die is enabled. Its hwloc topology contains
97 objects.

We use an Open MPI nightly snapshot from the master
branch which contains our implementation.14

We measure the memory footprint and launch time with the
ORTE hello test15. It calls MPI_Init() and then forces
Open MPI internals to load the topology for checking the
binding the process.

B. Memory Footprint

We measure the memory footprint difference between im-
plementations using the mallinfo() function which returns
the total allocated space with malloc() in the current
process.16

TABLE II
COMPARISON OF THE MEMORY FOOTPRINT IN OPEN MPI PROCESSES

WHEN RETRIEVING THE HWLOC TOPOLOGY FROM THE NATIVE
OPERATING SYSTEM, THROUGH A XML BUFFER, THROUGH A

SHARED-MEMORY MAPPING, OR WHEN NOT RETRIEVING THE TOPOLOGY.

Native XML Shared-Memory No Topology
Discovery

KNL64 2.21MiB 2.35MiB 1.614MiB 1.613MiB
NUMA96 1.82MiB 1.94MiB 1.230MiB 1.229MiB
Normal24 1.74MiB 1.78MiB 1.535MiB 1.534MiB

Table II reveals that using our shared-memory topology
implies almost no memory footprint on slaves (Open MPI
ranks) compared to when no topology information is retrieved
at all. The 1kB difference comes from the local duplication

14Git commit 6d7a780 from October 15th 2017 on Open MPI master
branch contains an embedded copy of hwloc master branch at Git commit
65cb1de with the new shared-memory API.

15Available under orte/test/mpi/hello in the Open MPI source.
16in the uordblks of the returned mallinfo structure.

of a structure required for function pointers as explained in
Section IV-A. However, there is still 700kB memory footprint
for creating the shared region on the master side (not shown
here), i.e. only once per node.

In comparison, instantiating a local topology from native
discovery requires more than 600kB on KNL64 and NUMA96
nodes, and 200kB on the Normal24 node.

When importing the topology from the local daemon
through XML, the memory footprint is even higher because the
XML buffer is kept in memory as long as the actual topology
is used. This has been fixed in hwloc but not yet integrated in
Open MPI.

TABLE III
MEMORY SAVING PER NODE IN THE SHARED-MEMORY CASE, DEPENDING

ON THE NUMBER OF PROCESSES. N SLAVE-SIDE TOPOLOGIES ARE
REPLACED WITH A SINGLE MASTER-SIDE, HENCE SAVING N -1 TOPOLOGY

FOOTPRINTS IN PHYSICAL MEMORY.

Memory Saving per Node
KNL64 1 process 0

2 processes 500kB
64 processes (1 per core) 31MiB

256 processes (1 per hardware thread) 127MiB
NUMA96 1 process 0

2 processes 590kiB
96 processes (1 per core) 56MiB

Normal24 1 process 0
2 processes 200kiB

24 processes (1 per core) 4.6MiB

Table III shows that tens of megabytes are saved per node
thanks to our strategy when launching one process per core.

C. MPI Launch Time
We now look at the impact of our change on the launch time

of MPI jobs. Table IV shows times for our platforms with one
MPI process (one slave) per core, or one per hardware thread
on KNL64.

TABLE IV
COMPARISON OF THE LAUNCH-TIME OF A OPEN MPI JOB DEPENDING ON

THE MACHINE AND ON THE NUMBER OF PROCESSES.

Native XML Shared-Memory
Discovery vs. XML

KNL64 – 64 processes 9.69s 4.16s 1.68s × 2.48
(1 per core)
KNL64 – 256 processes 47.20s 18.45s 7.02s × 2.63
(1 per hardware thread)
NUMA96 – 96 processes 7.29s 1.17s 0.56s × 2.10
(1 per core)
Normal24 – 24 processes 0.84s 0.53s 0.47s × 1.13
(1 per core)

We observe more than 2× launch-time improvement from
our shared-memory implementation over the standard XML
one (which was already 2× faster than native topology dis-
covery from the operating system [6]). On the slave-side, each
process does not have to parse the XML topology dump any-
more, it just has to memory-map the shared-memory region.
However, the actual improvement comes from the master-side
which does not have to send the XML to many processes
anymore. It only has to create a single shared memory region.
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Fig. 7. Comparison of the launch-time of a Open MPI job depending on the
number of process on the KNL64 platform. Processes are spawned on cores
in a round-robin-by-core manner18.

Figure 7 details the speedup on KNL64 when increasing
from one to 64 processes. It shows that the speedup between
shared-memory and XML increases with the number of pro-
cesses. Indeed the main bottleneck is on the master-side when
distributing the XML.

The launch-time cannot be constant with the number of pro-
cesses even in shared-memory because processes are created as
a hierarchy of children from the master. Also propagating the
shared-memory topology across many cores of the platforms
comes with the cost of transmitting information between the
large cache hierarchy. The cost of the actual launch and of
topology gathering cannot be easily separated here because
the latter is performed early and deep inside the initialization
procedure of the Open MPI processes, at least for binding
reasons.

The launch-time improvement is the same in multi-node
MPI jobs because the ORTE launcher uses one daemon per
node for launching local MPI processes. Hence every node will
get the same local launch-time improvement simultaneously.

VI. RELATED WORKS

A. Topology of Multiple Nodes

Large numbers of compute nodes will be used in exascale
platforms. These nodes are managed by centralized batch
schedulers which need information about resources in these
nodes. Maintaining one topology per compute node is not
possible. However, most of these nodes are often identical or
similar, making synthesizing and/or factorizing of information
possible [6], [11]. This approach focused on the memory
footprint when looking at the topologies of multiple compute
nodes from a master node, while this paper targets topology
management between processes inside a single compute node.

18--map-by core binding argument on the mpiexec command-line.

B. Third-Party vs. Custom Topology Management

Although topology-awareness has been an important topic
for more than a decade, hwloc is the only software that
was widely used in this area. Other solutions consisted in
having custom topology management embedded in runtimes.
It enables adapting to the exact application needs, which may
reduce the overhead for discovery time and memory footprint.
For instance, sharing the locality of cores and NUMA nodes
between processes can be implemented as sharing two arrays
of integers. However, such approaches are hardly portable to
new hardware technologies (new levels of caches, heteroge-
neous memories, etc.) and to new operating systems.

Delegating the topology discovery to third-party tools such
as hwloc comes with advantages in terms of portability and
flexibility, but with an overhead as discussed in this paper. A
general purpose topology management library does not always
know which information its users may actually need. The API
must be generic enough for offering easy ways to consult
different kinds of information (hierarchy of objects, list of
similar resources, object attributes, etc.) and this API cannot
be changed without breaking existing applications.

C. Memory Footprint vs. Processes

The reason memory footprint became an issue for hwloc
is that many legacy applications (for instance from DOD and
DOE labs) are still programmed in pure-MPI. They must run
with one process per core (or even per hardware thread).
Porting these applications to modern hybrid programming
models would largely avoid the issue by dramatically reducing
the number of processes. However, some of these legacy ap-
plications cannot be modified anymore, even if “the potential
gains in scalability and absolute performance may be worth
the significant coding effort” [12]. Besides, some programming
models were designed to avoid the memory footprint of
multiple processes. The concept of process virtualization in
Charm++ and Adaptive MPI lets the programmer divide the
work in many small chunks while the runtime takes care of
scheduling them on the physical processors. [13]

D. Memory Footprint of MPI implementations

The memory footprint of libraries has been an important
topic for MPI implementations. When InfiniBand networks
became widespread, lots of memory was used for network
buffers, preventing applications from using it for their datasets.
Using unreliable datagrams instead of reliable connections was
a first idea towards reducing the per-connection footprint [14].
Then hardware features such as Shared Receive Queues (SRQ)
and eXtended Reliable Connection (XRC) enabled factorizing
between connections [15], [16]. Now that these former heavy
consumers have been fixed, other libraries in the HPC stack
are being looked at, hence our work on hwloc.

Another approach for reducing the footprint of MPI jobs
consist in adding some sharing between independent pro-
cesses. MPC is an MPI implementation that uses threads
instead of processes for running MPI ranks [17]. At the
operating systems level, partial sharing of page-tables has been
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proposed as a way to factorize the memory consumption when
some libraries are shared [18].

Beside sharing of data structures inside nodes when appro-
priate, some compression techniques have also been proposed
to reduce the memory footprint of MPICH for managing
thousands of network addresses [19].

E. Mapping at the same Virtual Address

Mapping a shared-memory region at the same virtual ad-
dress in different processes has been used several times in the
past. PM2 [20] and Adaptive MPI [21] used isomalloc for plac-
ing thread stacks at the same location when threads migrated
between processes. The runtime in charge of managing these
processes and threads took care of pre-allocating the virtual
region during startup. Virtual memory was not larger than
physical memory at that time (about 32bits for both), making
an approach like ours impossible. However, the runtime had
full knowledge of which processes will map the region and
when, making sure the target virtual address will always be
free.

MPC [22] performed a reduce operation for intersecting
the virtual memory holes of all processes to find a region
available in all of them. This strategy is not applicable to our
case because our daemon may create the shared region before
some processes are created, at least in case of dynamically-
spawned MPI processes. Our heuristic works in the general
case where we do not know which processes will ever try to
map the shared region. However, it requires a large portion of
virtual memory to be free in order to get a good probability
of success. This heuristic may be Linux specific. Fortunately
100% of the Top500 supercomputers currently run Linux and
we do not expect things to change for many-core platforms in
the near future.

VII. CONCLUSION

As nodes become more complex, with tens of cores and
deep memory hierarchy, there is a need for making topol-
ogy information available to all components of the software
stack. The memory footprint of all these libraries is, however,
severely constrained by the small amount of physical memory
available per core on HPC platforms as well as the need to
make most of it available to the actual application.

We discussed in this article the memory footprint of locality
information implied by the hwloc library, the de facto standard
tool for exposing topology. It already raises issues on many-
core platforms running many MPI processes that used to
instantiate their own copy of the topology information. It will
be even more problematic on upcoming larger many-cores for
exascale super-computers.

We presented a way to factorize this information in a
shared memory region. Given that this information is already
available to all processes in less efficient ways, our proposal
raises no security issue. Based on our in-depth analysis of
virtual and physical memories in HPC platforms, we proposed
a heuristic that enables the mapping of this shared memory at
the same address in all processes. Hence they can still use

the existing hwloc API for consulting topology information,
while dramatically reducing the memory footprint to a single
topology per node.

We demonstrated that the footprint in the Open MPI imple-
mentation is indeed reduced. This enables significant memory
savings on many-core platforms, which was the primary mo-
tivation for this work. Our work is therefore already used in
production in DOE labs for pure MPI applications running on
Intel Xeon Phi nodes.

Moreover the launch time is also improved by more than
a factor of 2 on two many-core platforms, a 64-core Intel
Knights Landing Xeon Phi and a 96-core NUMA host. How-
ever, this additional improvement, currently in the order of
seconds, is currently negligible on long-running jobs.

This work is available in the recently released hwloc 2.019

and in the upcoming Open MPI 3.120. It is also under investi-
gation for integration in Slurm (whose compute node daemon
can be the master when Slurm is used as a process launcher)
as well as Intel MPI and MPICH (which already use hwloc
for launching their jobs).

Future works include working on interoperability between
HPC software layers: now that processes may share locality
information at the MPI level, it should also be shared with
parallel libraries or runtimes running inside these MPI pro-
cesses. A working-group is already looking at using PMIx
for OpenMP, MPI and resource manager coordination21. We
envision sharing the hwloc topology within that scheme. We
are also looking at managing resource allocation in that global
context. Multiple software layers may want to use some
cores concurrently for different reasons (parallel computation
with processes and/or threads, offloading work, partitioning
memory or caches, etc.). This requires to share topology
information between them, and to design a generic way to
request resources and to consult what other layers are doing.

We are also looking at the impact of non-volatile memory on
our model. Terabyte-class NVDIMMs will be available in the
future, making the physical memory per node possibly much
larger. Depending on whether this new memory is used as
storage or mapped as virtual memory, and how it is mapped,
we may have to revisit our heuristic for finding the shared
region location.
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