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Abstract

Higher-order languages, whose paradigmatic example is the λ-calculus, are languages with
powerful operators that are capable of manipulating and exchanging programs themselves.
This thesis studies behavioral equivalences for programs with higher-order and probabilis-
tic features. Behavioral equivalence is formalized as a contextual, or testing, equivalence,
and two main lines of research are pursued in the thesis.

The first part of the thesis focuses on contextual equivalence as a way of investigating
the expressiveness of different languages. The discriminating powers offered by higher-
order concurrent languages (Higher-Order π-calculi) are compared with those offered by
higher-order sequential languages (à la λ-calculus) and by first-order concurrent languages
(à la CCS). The comparison is carried out by examining the contextual equivalences in-
duced by the languages on two classes of first-order processes, namely nondeterministic and
probabilistic processes. As a result, the spectrum of the discriminating powers of several
varieties of higher-order and first-order languages is obtained, both in a nondeterministic
and in a probabilistic setting.

The second part of the thesis is devoted to proof techniques for contextual equivalence
in probabilistic λ-calculi. Bisimulation-based proof techniques are studied, with particular
focus on deriving bisimulations that are fully abstract for contextual equivalence (i.e.,
coincide with it). As a first result, full abstraction of applicative bisimilarity and similarity
are proved for a call-by-value probabilistic λ-calculus with a parallel disjunction operator.
Applicative bisimulations are however known not to scale to richer languages. Hence,
more robust notions of bisimulations for probabilistic calculi are considered, in the form
of environmental bisimulations. Environmental bisimulations are defined for pure call-
by-name and call-by-value probabilistic λ-calculi, and for a (call-by-value) probabilistic
λ-calculus extended with references (i.e., a store). In each case, full abstraction results are
derived.
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Chapter 1

Introduction

Program equivalence is a delicate notion. Nevertheless, there is a unifying and general
way of defining what it means for two systems to be equivalent with respect to their
behavior. This is given by the so-called contextual, or testing, equivalences: contexts
of some language play the role of tests, and two programs or systems are contextually
equivalent if the execution of the same test returns the same observation. More formally,
given two systems S1 and S2 (the tested systems), a language L that we can use to interact
with the systems (the testing language), and an observation Obs (the result of the tests),
we say that S1 and S2 are contextually equivalent in L if whenever we put them in the
same context C of L we have Obs(C[S1]) = Obs(C[S2]). This definition of contextual
equivalence thereby formalizes the idea of behavioral equivalence as interchangeability, or
indistiguishability, in a black-box testing scenario.

The study of contextually-defined equivalences has been pursued along different paths:

• analyzing the discriminating power of a language, as compared to other languages.
In this case, we are studying the expressiveness of a language by looking at the kind
of tests a context of the language can perform;

• studying methods allowing us to prove that two programs in a language are con-
textually equivalent (with respect to the same language). This approach is thereby
devoted to finding proof techniques for contextual equivalence.

The first perspective has been adopted in particular in concurrency theory, in which
several varieties of testing scenarios have been proposed. Given a class C of tested systems,
we look at how one or more languages interact with systems in C. Then language L1 is
strictly more discriminating than language L2 if whenever S1 and S2 are equivalent with
respect to tests (or contexts) in L1 then they are also equivalent with respect to tests in
L2, and there are systems that can be discriminated by L1 but are equal in L2.
In the second line of research, we typically consider contextual equivalences where both the
tested programs and the contexts are from the same language L. Contextual equivalence
defines what it means for two programs in the language to be equivalent, and we look for
efficient methods to prove program equivalence.
In both cases, however, the characterization of contextually-defined equivalences in terms
of equivalences whose definition is not directly of the form “for all contexts of the lan-
guage...” or “for all tests...” plays a crucial role. When studying the expressiveness of a
language, we aim at characterizing the contextual equivalence it induces on some class C

13



14 Chapter 1 Introduction

of systems as an equivalence that is directly defined on the systems and does not mention
the testing language. This gives us a way of comparing the testing equivalences induced
by different languages with each other. On the other side, if we are interested in proving
contextual equivalence for a language, we can see that the universal quantification over
all contexts of a language makes it hard to exhibit proofs of equivalence. This holds in
particular for higher-order languages, whose operators are capable of manipulating and
exchanging programs themselves. In this setting, bisimulation-based equivalences have
been shown to provide efficient proof methods for contextual equivalences.

This thesis analyzes program equivalence for higher-order languages along these two
main lines of research: expressiveness and proof techniques. In particular, we focus on
how higher-order languages interact with probabilistic systems and features.

The theory of functional higher-order languages, starting from λ-calculi, has been thor-
oughly studied in the literature, and higher-order languages for concurrent and distributed
systems have been investigated as well. The interest in probabilistic programming and
computation has been growing for the last few years, motivated, for instance, by the need
of modeling complex systems evolving with some degree of uncertainty, and by the need
of implementing randomized algorithms for both efficiency and security reasons. Proba-
bilistic languages, equivalences, and models have been thereby proposed to this end, and
they now form an established and productive research topic.
In the presence of probabilities, the definition of program equivalence must take into ac-
count the quantitative information that emerges from the systems under consideration. In
contextual equivalence, this information is embedded in the notion of observation, which
measures the successfulness of a test. On deterministic systems, we can observe whether
the execution of a test succeeds or not; if the system is nondeterministic, we can observe
whether there exists a succeeding run, or whether all runs succeed. By contrast, on proba-
bilistic systems we do not only observe the possibility of succeeding but also the probability
of success.

The following sections are devoted to a general introduction to the main languages and
notions studied in this thesis, and that we will formally introduce in the next chapters.
We conclude with an outline of the thesis.

1.1 Higher-order calculi, concurrency, and probabilities

Formally, higher-order calculi are calculi with variables that can be replaced by terms
of the language itself. We start from the λ-calculus, the core of functional higher-order
languages. Then we move to process calculi and their extension with higher-order features
or probabilistic features.

1.1.1 λ-calculi

The λ-calculus [Bar84] is the paradigmatic example of higher-order calculus, in that it is a
pure calculus of higher-order functions. Every term of the language represents a function,
and the only operation allowed is β-reduction. Given a function λx.f1 in variable x applied
to an argument f2 (a function itself), β-reduction allows us to substitute f2 to the free
variable x in f1.
There are different reduction strategies that we can adopt when evaluating a term of the
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λ-calculus. In the call-by-name reduction strategy, when a function is applied to an ar-
gument then the argument is substituted to the variable of the function as it is. On the
contrary, in the call-by value reduction strategy, the argument of a function is first reduced
to a value (i.e., a function that cannot be further reduced) and then substituted.

The λ-calculus is at the core of functional programming languages, and many exten-
sions with computational effects have been considered. To take into account features of
imperative programming languages, λ-calculi can be extended with references and a store,
as in ML-like languages [MTHM97]. Other computational effects for λ-calculi concern
nondeterminism and probabilities. One of the easiest way to obtain such extensions con-
sists in adding to the pure λ-calculus a binary choice operator ⊕. In the nondeterministic
case, the choice between term M and term N is the term M ⊕ N that nondeterminis-
tically reduces either to M or to N [Ong93; San94; dP95]. In the probabilistic case, ⊕
denotes a choice with uniform probability, i.e., M ⊕N reduces with one half probability
to term M and with one half probability to term N [DZ12]. Hence, the result of the
evaluation of a term is a probability distribution on functions. An analogous solution in
the probabilistic case consists in endowing the choice operator with a probability value p,
where M ⊕p N denotes the program that with probability p is M and with probability
1 − p is N [Jon90]. Indeed, several varieties of functional higher-order languages with
probabilistic operators have been introduced, from abstract ones [SD78; RP02; PPT08]
to more concrete ones [Pfe01; Goo13], also considering continuous distributions [BDGS16;
SYWHK16].

1.1.2 Process calculi and models

In concurrent systems, we have multiple programs running in parallel. So, we can use
processes rather than functions as modeling tools, since the latter ones are more suitable
for representing sequential computations.

The process calculus CCS (Calculus of Communicating Systems) was first introduced
by Milner in [Mil80], and its theory was further developed in [Mil89]. It is a language
with operators for parallel composition and nondeterministic choice, whose semantics is
formalized by means of labeled graphs (Labeled Transition Systems). These structures are
nondeterministic and have labels allowing us to represent interactions between processes:
we can think of labels as communication channels, on which processes can synchronize.
Higher-order concurrency combines functional programming and concurrent programming:
the ability of exchanging values, common in concurrency, is enhanced by allowing values
to include terms of the language itself, the distinguishing feature of functional languages.
Calculi of this kind include CHOCS [Tho93] and the Higher-Order π-calculus [San92],
which is the extension of CCS with higher-order features. CCS is a first-order concur-
rent language, since communication in CCS is just synchronization on atomic (first-order)
input-output channels. By contrast, communication in HOπ has a more complex struc-
ture. When a process communicates on an output channel, it sends in output a process.
A process with the same input channel can then synchronize with the output channel and
receive the process that was sent. This communication is higher-order, since it is a process
(i.e., a term of the calculus) that is exchanged in the communication.

An important extension to concurrent higher-order languages concerns distribution.
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This is usually achieved by means of constructs for expressing and operating on loca-
tions. As a consequence, the observable behavior of a system of processes depends not
only on the behavior of the constituent processes, but also on the locations in which these
processes are run. This can have a deep impact on the behavioral theory and algebraic
laws for the language. One of the simplest constructs that show these phenomena is
passivation. Passivation offers the capability of capturing the content of a certain loca-
tion, and then restarting the execution in different contexts. The semantics of passivation
has been the subject of a number of papers, usually in extensions of the Higher-Order π-
calculus [LSS09a; LSS09b; LSS11; PS12a; KH13]. Passivation is also featured in the Homer
calculus [GH05] and the M-calculus [SS03]; a similar construct appears in the Seal calcu-
lus [CVN05] and in Acute [Sew+07]. Passivation has been advocated to support run-time
system updates, fault recovery and fault tolerance (by providing the basis for mechanisms
for checkpointing computations and replicating them), and to support adaptive behaviors.

As far as probabilistic extensions of process calculi are concerned, CCS with a prob-
abilistic binary choice operator and its semantics have been investigated, e.g., in [YL92],
and with a different semantics in [DD07] and [Hen12]. Since the behavior of processes
running in parallel is nondeterministic, the processes represented in probabilistic exten-
sions of CCS have both nondeterministic and probabilistic choices.
A strict subset of this class of processes is that of reactive probabilistic processes (also
known as Markov decision processes or labeled Markov chains) which have, besides prob-
abilistic choices, only a limited form of nondeterminism, i.e., external nondeterminism.
External nondeterminism is a choice between different transitions with different labels
and represents choices that can be made by an external user interacting with the process.
By contrast, internal nondeterminism is a choice between transitions labeled by the same
action and represents choices that are internally made by the system. The classical parallel
operator of CCS is not closed with respect to this class of processes, hence process algebras
with a parametrized parallel operator have been proposed. See [SV04] for an overview of
probabilistic process algebras and classes of probabilistic processes.
Probabilistic extensions of higher-order process calculi have not been proposed yet.

1.2 Equivalence of programs

Section 1.2.1 is devoted to bisimulations for nondeterministic and probabilistic processes.
Bisimulations for higher-order languages are presented in Section 1.2.3, after discussing
testing and contextual equivalences (Section 1.2.2).

1.2.1 Behavioral equivalences on processes

It is not easy to understand what it means for two processes to have the same behavior.
If we are only interested in the behavior of the systems, requiring the structures of the
processes to be isomorphic is too strong a condition. At the same time, many equiva-
lence relations defined in the literature might be too under-discriminating when applied
to nondeterministic processes ([Gla01] compares several varieties of equivalence relations
on processes). Trace-based equivalences, for instance, identify two processes by comparing
the sequences of actions they can (or cannot) perform. Hence, they are not sensitive to
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the branching-time of processes.

Bisimulation relations independently appeared in modal logic, in computer science and
in set theory between the 1970s and the 1980s [San12b], respectively in the works by van
Benthem [Ben83] on the expressiveness of propositional modal languages and classical
first-order languages, in the works of Milner [Mil80; Mil89] and Park [Par81] on the se-
mantics of interactive systems, and in the works by Aczel on non well-founded sets [Acz88].
Bisimulations induce an equivalence relation on processes, i.e., bisimilarity, which is taken
to be a suitable notion of behavioral equivalence on Labeled Transition Systems. Ac-
cording to bisimilarity, processes P and Q are equivalent if whenever P can perform an
action then Q can mimic the same action and the reached states are still equivalent, and
vice-versa. Furthermore, bisimilarity has a simple proof method: in order to prove that
two processes are equivalent, we exhibit a relation containing the pair of processes and we
verify that the relation is a bisimulation. This holds because bisimilarity is a coinductive
relation, whose definition rests on the dual of the induction principle and allows for a form
of circularity. See [San12a] for a fixed-point approach to coinduction and [JR12] for a
(co)algebraic approach.

Probabilistic bisimulation was first proposed in [LS91], for reactive probabilistic sys-
tems. This bisimulation takes into account the quantitative information that is now avail-
able in the underlying structures it is applied to, by considering not only the possibility
but also the probability of performing a state-transition. The definition was extended
to processes with both probabilities and nondeterminism in [SL95; Seg95]. In recent
years, several varieties of definitions and characterizations of probabilistic bisimulation
and coarser probabilistic equivalences have been studied [DD11; Hen12; BDL14a; Den14].

1.2.2 Contextual and testing equivalence

Contextual equivalence was first defined by Morris in [Mor68] for the pure λ-calculus.
Terms M and N are contextually equivalent if for any context C (i.e., for any term of
the language with a hole), term C[M ] (denoting the substitution of M to the hole of C)
converges (i.e., reduces to a value) if and only if C[N ] does.
For the nondeterministic λ-calculus, we observe the existence of a reduction sequence that
converges, or, in other words, the possibility of convergence; for the probabilistic λ-calculus
[DLSA14; CD14] the observability predicate is the probability of convergence of a term.

On first-order process algebras, different formulations of contextual equivalence have
been examined. May testing equivalence [DH84; BDP99] is a contextual equivalence on
process algebras where the observability predicate holds if there exists an internal com-
putation that reaches a successful state, i.e., a state that can perform an action denoting
success (corresponding to convergence in pure λ-calculi). Analogously, the observability
predicate of must testing equivalence holds if all the internal computations succeed. On
CCS-like languages, however, testing equivalences correspond to trace-based equivalences
[DH84; Phi87]. In order to have a contextual equivalence for CCS that coincides with
bisimilarity, we have to consider barbed congruence [MS92], that is, a bisimulation-based
contextual equivalence where the observability predicate is the set of actions allowed from
a state (its barbs) and the bisimulation game is only played on internal reductions. Barbed
congruence for HOπ is studied in [San92].
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In the probabilistic case, may and must testing preorders for process algebras have been
studied in [DGHMZ07a; DGHM09] for the process algebra pCSP, and have been proved
to coincide with the probabilistic simulation preorder and the probabilistic failure simu-
lation preorder, respectively. In [DD07] and [Hen12], probabilistic barbed congruence is
defined and it is shown that, analogously to the nondeterministic case, it coincides with
probabilistic bisimilarity on nondeterministic and probabilisitic processes.

Testing equivalences are defined in a general form by Abramsky in [Abr87]. A testing
equivalence is determined by a set of tested systems, a set of tests, a mechanism assigning
an output to the application of a test, and an observability predicate on the class of
outputs. The same paper focuses on defining a language of tests (that resemble logical
formulas, since they have explicit conjunction, disjunction and quantifiers) that allows
us to recover bisimilarity on nondeterministic processes as a testing equivalence. On
reactive probabilistic processes, characterizations of bisimulation as a testing equivalence
via “logical” tests have been proposed in [LS91] and [BMOW05], showing how a smaller
class of tests is sufficient in order to recover probabilistic bisimilarity in this case.

1.2.3 Bisimulations for higher-order languages

Due to the universal quantification on the contexts of the language, it is generally hard to
prove that two terms are contextually equivalent. Contextual equivalence proofs are par-
ticularly hard to carry out if the language under consideration has higher-order features.
Bisimulations offer an efficient, operational proof method; it is therefore desirable to find
bisimulation relations which are sound with respect to contextual equivalence, i.e., bisimu-
lations inducing an equivalence relation - bisimilarity - that implies contextual equivalence.
Ideally, bisimilarity should be fully abstract with respect to contextual equivalence, i.e.,
coincide with it.

Applicative bisimilarity [Abr90] is such an equivalence relation, reflecting the standard
definition of extensional equivalence for functions. Two λ-terms M and N are applicative
bisimilar if whenever M reduces to function λx.M ′, N reduces to a function λx.N ′ such
that for any term P given as input to the functions we still have equivalent terms M{P/x}
and N{P/x}. Applicative bisimilarity coincides with contextual equivalence both in the
call-by-name and in the call-by-value λ-calculus, while it is only sound with respect to (and
does not coincide with) contextual equivalence in the call-by-name and the call-by-value
nondeterministic λ-calculi [Ong93; Las98; Pit12]. The same result holds for probabilistic
applicative bisimilarity in the call-by-name probabilistic λ-calculus [DLSA14], while in the
call-by-value case completeness is recovered, and thus probabilistic applicative bisimilarity
is fully abstract [CD14].

Applicative bisimilarity has a simple definition, but it also has two main drawbacks.
First, the proof of congruence (the property that in turn allows us to prove soundness)
is carried out by exploiting a sophisticated and hard to scale technique called “Howe’s
method” [How89; How96; Pit12]. Then, as argued in [KLS11], in calculi with features
such as local store, exceptions, generative names, or existential types, and more generally
in calculi with forms of information hiding, applicative bisimulation is not sound and we
need to resort to bisimulations equipped with a notion of environment. Environmental
bisimulations [SKS11], refining earlier proposals in [BS98; AG98; JR99; SP07a; KW06b],
address the two problems illustrated above. Intuitively, the environments collect the ob-
server’s knowledge about values computed during the bisimulation game. The elements
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of the environment can then be used to construct terms to be supplied as inputs during
the bisimulation game. The notion has been applied to a variety of languages, including
pure λ-calculi [SP07b; SKS11], extensions of λ-calculi [SP07a; KW06b; KW06a; BL13;
ABLP16], and languages for concurrency or distribution [SS09; PS11; PS12a].

1.3 Outline of the thesis

This thesis is divided into two parts, reflecting the two lines of research for contextual
equivalences discussed in the introduction.

• Part I, “Discriminating power via testing equivalences”, compares the expressive-
ness of different calculi and models, from higher-order ones to first-order ones, by
considering them as testing languages that are applied to discriminating both non-
deterministic systems and probabilistic systems.

• Part II, “Full abstraction for probabilistic λ-calculi”, studies coinductive proof tech-
niques for λ-calculi with a probabilistic choice operator. In particular, the problem
of defining relations that are fully abstract with respect to contextual equivalences
or preorders in extended lambda calculi is addressed.

Part I is based on works published in [BSV14a] and [BSV14b]. Both works are co-
authored with Marco Bernardo and Davide Sangiorgi. The material in Part II has been
published in [CDLSV15], co-authored with Raphaëlle Crubillé, Ugo Dal Lago, and Da-
vide Sangiorgi, and [SV16], co-authored with Davide Sangiorgi. These papers are briefly
summarized in Sections 1.3.1 and 1.3.2.

Each of the two parts of the thesis is composed as follows. First, we review the relevant
background. Then we present our contributions (each chapter corresponds to a revised
and extended version of the published works). Finally, we conclude and discuss additional
related work and future work.

1.3.1 Discriminating power via testing equivalences

In [BSV14a], the discriminating powers of a number of higher-order languages are analyzed
and compared. Both higher-order sequential languages (i.e., λ-calculi) and higher-order
concurrent languages (i.e., Higher-Order π-calculi) are considered, and they are compared
to first-order process calculi (CCS-like) as well. The comparison is carried out by using the
languages to execute tests, formalized as contexts of the language, on first-order processes.
The tests are first applied to nondeterministic processes and then to reactive probabilistic
processes. The purpose of the paper is twofold:

• to compare the discriminating powers of the languages with respect to the same class
of processes (the class of nondeterministic processes first, then the class of reactive
probabilistic processes), and to characterize the contextual equivalences induced by
the languages as known behavioral equivalences;

• to compare the discriminating power of a language on nondeterministic processes
to that of the same language on probabilistic processes, highlighting some cases in
which the interplay between higher-order or concurrent features and probabilities
increases the discriminating power of a language.
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In [BSV14b], testing equivalences on reactive probabilistic processes are analyzed, by
considering three classes of first-order tests: nondeterministic processes, reactive prob-
abilistic processes and processes featuring both (full) nondeterminism and probabilistic
choices. These classes of tests are proved to have different discriminating powers, and
their position in the spectrum of equivalences for reactive probabilistic processes is stud-
ied.

1.3.2 Full abstraction for probabilistic λ-calculi

In [CDLSV15], a call-by-value probabilistic λ-calculus endowed with Plotkin’s disjunction
operator (or “parallel or”) is considered. The paper proves that not only applicative
bisimilarity is fully abstract with respect to contextual equivalence (i.e., it coincides with
it, being both sound and complete), but also the applicative simulation preorder is fully
abstract with respect to the contextual preorder in this calculus. The latter result was
known not to hold without the disjunction operator [CD14].

In [SV16], environmental bisimulations for probabilistic λ-calculi are defined, so as
to have a proof technique applicable to probabilistic calculi with effects such as a local
store. In order to achieve full abstraction of environmental bisimilarity, some non-trivial
modifications to the definition of environmental bisimulations for non-probabilistic calculi
are required:

• in probabilistic calculi a term might evaluate (even with probability one) in a non-
finite number of steps. Thus, the bisimulation game is played with big-step, infinitary
reductions;

• in order to have full abstraction, we are forced to define the bisimulation game
directly on probability distributions on values;

• we must distinguish between different forms of environment, depending on the lan-
guage we are considering.

The paper shows that bisimulations built by taking into account these three new features
are fully abstract for contextual equivalence for call-by-name, call-by-value, and imperative
(with a higher-order, local store) probabilistic λ-calculi.
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Chapter 2

Background

We introduce three models for first-order processes: nondeterministic processes, formalized
as LTSs, probabilistic and nondeterministic processes (NPLTSs), and reactive probabilistic
processes (RPLTSs). We recall a number of behavioral equivalences for these first-order
processes, the relations between them, and some important alternative characterizations
of the equivalences. We conclude by recalling the language and semantics of pure λ-calculi.

2.1 Nondeterministic and probabilistic models

The behavior of a (fully) nondeterministic process can be represented through a labeled
transition system.

Definition 2.1. A labeled transition system (LTS) is a triple (S,A,−→) where S is a
countable set of states (usually called processes), A is a countable set of transition-labeling
actions, and −→ ⊆ S ×A× S is a transition relation. The LTS is image-finite if {s′ ∈ S |
s

a−→ s′} is finite for all s ∈ S and a ∈ A.

We can generalize LTSs to more expressive models, that admit both nondeterministic
and probabilistic choices.

Definition 2.2. A nondeterministic and probabilistic labeled transition system, NPLTS
for short, is a triple (S,A,−→) where S is a countable set of states, A is a countable set
of transition-labeling actions, and −→ ⊆ S×A×D(S) is a transition relation, with D(S)
being the set of discrete probability distributions over S.

We denote probability distributions by ∆,Θ.... We can represent an LTS as an NPLTS
where all distributions are Dirac distributions dirac(s), i.e., distributions assigning prob-
ability one to a single state. Formally: dirac(s)(s) = 1 and dirac(s)(s′) = 0 for all
s′ ∈ S \ {s}.

In any state of an NPLTS, like in LTSs, nondeterministic choices can be both internal
(i.e., multiple transitions each with the same label) and external (i.e., multiple transitions
each with different labels). A reactive probabilistic process features external nondeter-
ministic choices, probabilistic choices, but no internal nondeterminism. In other words,
we can see a RPLTS as a model where the choice of the action to be performed is made
by the external environment, and then the target state is selected internally but purely
probabilistically. Its behavior can be described as a variant of an NPLTS.

23
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Definition 2.3. A reactive probabilistic labeled transition system (RPLTS) is an NPLTS
(S,A,−→) such that s

a−→∆1 and s
a−→∆2 imply ∆1 = ∆2 for all s ∈ S and a ∈ A.

2.2 Behavioral equivalences for nondeterministic processes

We introduce several varieties of behavioral equivalences for nondeterministic processes,
from the coarser ones (trace-based equivalences) to the finer ones (simulation-based and
bisimulation equivalences).

In Chapter 3, we will characterize the contextual equivalences induced on LTSs in
terms of simulation equivalence [Mil89], ready simulation equivalence [BIM95; LS91], trace
equivalence [BHR84], failure equivalence [BHR84], and failure-trace equivalence [Phi87;
Gla01].

2.2.1 Decorated traces and sets

Definition 2.4. Let L = (S,A,−→) be an LTS and s, s′ ∈ S. The sequence c
def
=

s0, s1 . . . sn−1, sn is a computation of L of length n from s = s0 to s′ = sn labeled by
σ = a1, a2...., an if for all i = 1, . . . , n there exists a transition si−1

ai−→ si. We denote by
Cfin(s) the set of finite-length computations from s.

Let L = (S,A,−→) be an LTS and s, s1, s2 ∈ S. We define the following sets of
computations:

• C(s, σ) is the set of computations from s labeled with trace σ ∈ A∗ (the finite
sequences of actions in A).

• CC(s, σ) is the set of completed computations from s labeled with σ ∈A∗, i.e., the
computations from s labeled with σ and such that the last state of the computation
cannot perform any other transition.

• FC(s, ϕ), where ϕ = (σ, F ) ∈ A∗ × 2A is a failure pair, is the set of computations
from s labeled with σ such that the last state of each computation cannot perform
any action in F .

• RC(s, %), where % = (σ,R) ∈ A∗ × 2A is a ready pair, is the set of computations
from s labeled with σ such that the set of actions that can be performed by the last
state of each computation is precisely R.

• FT C(s, φ), where φ = (a1, F1) . . . (an, Fn) ∈ (A × 2A)∗ is a failure trace, is the set
of computations from s labeled with a1 . . . an such that the state reached by each
computation after the i-th step, for 1 ≤ i ≤ n, cannot perform any action in Fi.

• RT C(s, ρ), where ρ = (a1, R1) . . . (an, Rn) ∈ (A × 2A)∗ is a ready trace, is the set
of computations from s labeled with a1 . . . an such that the set of actions that can
be performed by the state reached by each computation after the i-th step, for
1 ≤ i ≤ n, is precisely Ri.
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2.2.2 Equivalences and preorders

We can now define several varieties of trace-based equivalences on LTSs, one for every
different kind of decorated trace.

Definition 2.5. Let (S,A,−→) be an LTS. Processes s1, s2 ∈ S are:

• trace equivalent (s1 ∼Tr s2) iff C(s1, σ) 6= ∅ ⇐⇒ C(s2, σ) 6= ∅ for all σ ∈ A∗;

• completed trace equivalent (s1 ∼CTr s2) iff s1∼Tr s2 and CC(s1, σ) 6= ∅ ⇐⇒ CC(s2, σ) 6=
∅ for all σ ∈ A∗;

• failure equivalent (s1 ∼F s2) iff FC(s1, ϕ) 6= ∅ ⇐⇒ FC(s2, ϕ) 6= ∅ for all ϕ ∈ A∗×2A.

• ready equivalent (s1 ∼R s2) iff RC(s1, %) 6= ∅ ⇐⇒ RC(s2, %) 6= ∅ for all % ∈ A∗× 2A.

• failure trace equivalent (s1 ∼FTr s2) iff FT C(s1, φ) 6= ∅ ⇐⇒ FT C(s2, φ) 6= ∅ for all
φ ∈ (A× 2A)∗.

• ready trace equivalent (s1 ∼RTr s2) iff RT C(s1, ρ) 6= ∅ ⇐⇒ RT C(s2, ρ) 6= ∅ for all
ρ ∈ (A× 2A)∗.

Traced-based equivalences are inductive equivalences. By contrast, simulation-based
equivalences have coinductive definitions.

Definition 2.6. Let (S,A,−→) be an LTS and R be a binary relation over S. Relation
R is a simulation if, whenever (s1, s2) ∈ R, then for all a ∈ A it holds that for each
s1

a−→ s′1 there exists s2
a−→ s′2 such that (s′1, s

′
2) ∈ R. Relation R is a ready simulation if,

additionally, s1 6
a−→ implies s2 6

a−→. Relation R is a bisimulation if both R and its inverse
are simulations, i.e., whenever (s1, s2) ∈ R, then for all a ∈ A it holds that:

• for each s1
a−→ s′1 there exists s2

a−→ s′2 such that (s′1, s
′
2) ∈ R

• for each s2
a−→ s′2 there exists s1

a−→ s′1 such that (s′1, s
′
2) ∈ R

Processes s1, s2 ∈ S are simulation equivalent (s1 ∼S s2) – resp., ready simulation
equivalent (s1 ∼RS s2) – if there exist two simulations – resp., ready simulations – R and
R′ such that (s1, s2) ∈ R and (s2, s1) ∈ R′. Processes s1, s2 ∈ S are bisimilar (s1 ∼B s2),
or bisimulation equivalent, if there exists a bisimulation R such that (s1, s2) ∈ R.

Except for bisimilarity, it is possible to define any of the equivalences ∼ considered
above by first taking the corresponding preorder ., and then defining the equivalence as
the intersection of the preorder and its inverse, i.e., ∼=. ∩(.)−1.
For trace-based equivalences, the preorders are obtained by using =⇒ instead of ⇐⇒ in
the definition. For instance, the trace preorder is defined as: s1 .Tr s2 iff CC(s1, σ) 6=
∅ =⇒ CC(s2, σ) 6= ∅ for all σ ∈ A∗. For the failure trace preorder and the ready trace
preorder, moreover, we have to require as well that the initial states have the same ready
set. This is implicit when considering equivalences, since trace equivalent states s, s′ have
the same ready set, but it has to be made explicit for the failure trace preorder and the
ready trace preorder, since in the definition of failure trace or ready trace we do not allow
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a failure set or ready set at the beginning of the trace.1

For simulation-based preorders, we simply require the existence of a simulation, or a ready
simulation. Hence, processes s1, s2 ∈ S are in the simulation preorder (s1 .S s2) – resp.,
in the ready simulation preorder (s1 .RS s2) – if there exists a simulation – resp., a ready
simulation – R such that (s1, s2) ∈ R.

2.2.3 Spectrum for LTSs

The relations between all the equivalences defined in the previous section are summarized
in Figure 2.1, where arrows represent strict inclusions [Gla01].2

B

RS

RTr

FTr R

F

S CTr

Tr

Figure 2.1: Spectrum for LTSs

2.2.4 Logical characterizations

In the following chapters, we are going to exploit the logical characterizations of the coin-
ductive equivalences that we have defined, in particular for ready simulation equivalence
and simulation equivalence. The logical characterization of bisimilarity is given by the
Hennessy Milner Logic (HML). The formulas of HML are defined by the following gram-
mar:

F ::= >
∣∣∣ ¬F ∣∣∣ F1 ∧ F2

∣∣∣ 〈 a 〉F
for a ranging over the labels in a given set A. Given an LTS (S,A,−→), we define the
satisfiability of formula F in state s (notation: s |= F ) as follows:

1We could have equivalently defined failure trace equivalence using the definition of failure trace that
allows a failure set at the beginning of the trace as well, and analogously for ready trace equivalence.

2Standard counterexamples for the strictness of these inclusions will be presented in examples in Chapter
3.
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s |= > always
s |= ¬F iff s 6|= F
s |= F1 ∧ F2 iff s |= F1 and s |= F2

s |= 〈 a 〉F iff there is a s′ such that s
a−→ s′ and s′ |= F .

Proposition 2.7 ([HM85]). Let (S,A,−→) be an image finite LTS. For every s1, s2 ∈ S,
s1 ∼B s2 if and only if for every formula F of HML, s1 |= F if and only if s2 |= F .

Analogous characterization results, using weaker modal logics, hold for ready simu-
lation equivalence and simulation equivalence. The formulas of Ready Simulation Logic
(RSL) on A are defined as follows:

F ::= >
∣∣∣ ¬a ∣∣∣ F1 ∧ F2

∣∣∣ 〈 a 〉F
In contrast with Hennessy Milner Logic, this logic does not have a full negation operation
¬F , since negation is limited to single (terminal) actions, via the operator ¬a. The
satisfiability of ¬a is defined as:

s |= ¬a iff s
aX−→

The formulas of Simulation Logic (SL) are obtained by removing action negation ¬a
from the definition of RSL.

Proposition 2.8 ([Gla01]). Let (S,A,−→) be an image-finite LTS. For every s1, s2 ∈ S,

1. s1 ∼RS s2 if and only if for every formula F of RSL, s1 |= F if and only if s2 |= F

2. s1 ∼S s2 if and only if for every formula F of SL, s1 |= F if and only if s2 |= F

2.3 Behavioral equivalences for probabilistic processes

2.3.1 RPLTS

We start by defining equivalences and preorders on RPLTSs.
Given a transition s

a−→∆, a process s′ ∈ S is not reachable from s via that a-transition
if ∆(s′) = 0, otherwise it is reachable with probability p = ∆(s′). The reachable states
form the support of ∆, i.e., supp(∆) = {s′ ∈ S | ∆(s′) > 0}.

In the RPLTS setting, each state-to-state step of a computation is derived from a
state-to-distribution transition s

a−→∆.

Definition 2.9. Let L = (S,A,−→) be an RPLTS and s, s′ ∈ S. The sequence c
def
=

s0, s1 . . . sn−1, sn is a computation of L of length n from s = s0 to s′ = sn labeled by
σ = a1, a2...., an if for all i = 1, . . . , n there exists a transition si−1

ai−→∆i such that
si ∈ supp(∆i), with ∆i(si) being the execution probability of the step from si−1 to si
via action ai conditioned on the selection of transition si−1

ai−→∆i of L at state si−1. We
denote by Cfin(s) the set of finite-length computations from s.

Given a computation c ∈ Cfin(s), its conditional execution probability prob(c) can be
defined as the product of the conditional execution probabilities of the individual steps
of c. This notion is lifted to a set C ⊆ Cfin(s) of identically labeled computations by letting
prob(C) =

∑
c∈C prob(c).
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Let L = (S,A,−→) be an RPLTS and s, s1, s2 ∈ S. The definition of the sets of
decorated traces from s is defined as for LTS, but using the definition of computation
given above for RPLTSs. We then introduce probabilistic trace-based equivalences on
L as follows by analogy with [JS90; HT92]. Instead of only observing the possibility of
performing a (decorated) trace, we observe the probability of performing the trace.

• s1 ∼PTr s2 iff prob(C(s1, σ)) = prob(C(s2, σ)) for all σ ∈ A∗.

• s1 ∼PCTr s2 iff s1∼PTr s2 and prob(CC(s1, σ))=prob(CC(s2, σ)) for all σ∈A∗.

• s1 ∼PF s2 iff prob(FC(s1, ϕ)) = prob(FC(s2, ϕ)) for all ϕ ∈ A∗ × 2A.

• s1 ∼PR s2 iff prob(RC(s1, %)) = prob(RC(s2, %)) for all % ∈ A∗ × 2A.

• s1 ∼PFTr s2 iff prob(FT C(s1, φ)) = prob(FT C(s2, φ)) for all φ ∈ (A× 2A)∗.

• s1 ∼PRTr s2 iff prob(RT C(s1, ρ)) = prob(RT C(s2, ρ)) for all ρ ∈ (A× 2A)∗.

The corresponding preorders can be defined by using ≤ instead of = in the definitions
above, and, for failure trace and ready trace equivalence, by requiring that the initial
states have the same ready set.

To define probabilistic bisimilarity and similarity, we first define the lifting function
lift() : S × S → D(S)×D(S), which lifts a relation on S to a relation on distributions
over S.

Definition 2.10. Given a relation R over a set S and ∆,Θ ∈ D(S), we say that
∆ lift(R) Θ if there is a countable index set I and probability values {pi}i∈I such that
the following holds:

•
∑

i∈I pi = 1

• ∆ =
∑

i pi · dirac(si)

• Θ =
∑

i pi · dirac(ti)

• for every i ∈ I, si R ti

Definition 2.11. Let L = (S,A,−→) be an RPLTS. A binary relation R on S is a prob-
abilistic simulation iff, whenever (s1, s2) ∈ R, then for all a ∈ A it holds that s1

a−→∆1

implies s2
a−→∆2 with (∆1,∆2) ∈ lift(R) . Relation R is a probabilistic bisimulation

if both R and its inverse are probabilistic simulations. Processes s1, s2 ∈ S are proba-
bilistic simulation equivalent (s1 ∼PS s2) if there exist two simulations R and R′ such
that (s1, s2) ∈ R and (s2, s1) ∈ R′. Processes s1, s2 ∈ S are bisimilar (s1 ∼PB s2), or
bisimulation equivalent, if there exists a bisimulation R such that (s1, s2) ∈ R.

Many equivalent definitions of probabilistic bisimilarity have appeared in the literature.
We have introduced probabilistic similarity ∼PS and probabilistic bisimilarity ∼PB using
the notion of probabilistic lifting of a relation, as in [Den14]. This is analogous to defining
simulations and bisimulations using a weight function [JL91; Seg95; Bai98]. As shown in
[Seg95], the resulting bisimilarity is equivalent to the one given by the definition by Larsen
and Skou in [LS91], which requires a probabilistic bisimulation to be an equivalence relation
and uses equivalence classes to compare the reached probability distributions:
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Figure 2.2: Strictness of inclusions in the spectrum for RPLTSs

An equivalence relation R is a probabilistic bisimulation iff
(s1, s2) ∈ R implies that for all a ∈ A it holds that s1

a−→∆1

implies s2
a−→∆2 with ∆1(S′) = ∆2(S′) for all S′ ∈ S/R.

(PB1)

Since the relation is an equivalence, and thereby symmetric, it is not necessary to
include the clause from s2 (i.e., s2

a−→∆2 implies s1
a−→∆1 with ∆1(S′) = ∆2(S′) for

all S′ ∈ S/R). Requiring a bisimulation to be an equivalence relation is however not
convenient when we want to prove that two states are bisimilar, since it requires to build
a reflexive, symmetric and transitive relation.

The definitions of probabilistic bisimulation presented so far lead to the same notion
of probabilistic bisimilarity. In other words, although the definitions of bisimulation do
not coincide (i.e., a relation might be a bisimulation according to one definition, but not
according to another one), their unions (i.e., the bisimilarities given by the different notions
of bisimulation) all capture the same equivalence relation ∼PB.

When referring to probabilistic systems, we sometimes write bisimulation instead of
probabilistic bisimulation, and analogously for the other probabilistic equivalences and
preorders. For decorated traces, we also sometimes omit the notation for the specific set
of computations when it is clear from the context (e.g., if we are explicitly considering
failure traces φ we write prob(s, φ) instead of prob(FT C(s, φ))).

2.3.2 Spectrum for RPLTSs

It was shown in [Bai98; BK00] that ∼PB and ∼PS coincide, hence the variants in between
(ready similarity, failure similarity, completed similarity) collapse too. Moreover, the
proofs of the results in [JS90; HT92] for fully probabilistic processes can be smoothly
adapted to the RPLTS case, and also extended to deal with ∼PRTr and ∼PFTr. As a
consequence, we have the following spectrum under the assumption that every state has
finitely many outgoing transitions, i.e., it is finitely-branching.

Proposition 2.12. On finitely-branching RPLTS processes, it holds that:
∼PB =∼PS (∼PRTr =∼PFTr (∼PR =∼PF (∼PCTr =∼PTr

The strictness of all the inclusions above is witnessed by the counterexamples in
Fig. 2.2. The graphical conventions for process descriptions are as follows. Vertices
represent states and action-labeled edges represent action-labeled transitions. Given a
transition s

a−→∆, the corresponding a-labeled edge goes from the vertex for state s to a
set of vertices linked by a dashed line, each of which represents a state s′ ∈ supp(∆) and
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is labeled with ∆(s′). The label ∆(s′) is omitted when it is equal to 1, i.e., when ∆ is the
Dirac distribution dirac(s′).

2.3.3 Testing characterizations

On RPLTSs, probabilistic bisimilarity can be captured by considering a simple class of
tests. Let T be the language of tests t defined as follows:

t ::= ω | a.t | (t1, t2)

where a ranges over the labels in the action set A of the RPLTS. The test ω represents
success, a.t sequentially checks whether it’s possible to do a and then proceeds with test
t, and (t1, t2) is the conjunctive test. Formally, given a reactive probabilistic process s,
the probability of success Pr(t, s) when the test t is executed on s is defined by structural
induction on t:

Pr(ω, s) = 1

Pr(a.t, s) =

{
0 if s 6a−→∑

s′∈supp(∆) ∆(s′) · Pr(t, s′) if s
a−→ ∆

Pr((t1, t2), s) = Pr(t1, s) · Pr(t2, s).

It holds that two processes are bisimilar if and only if, for every test of T, they have the
same probability of passing the test.

Theorem 2.13. ([BMOW05]) On reactive probabilistic processes, s ∼PB s′ iff Pr(t, s) =
Pr(t, s′) for every test t in T.

The theorem above provides a further simplification of the class of tests defined by
Larsen and Skou in [LS91], and proved to characterize probabilistic bisimulation. Indeed,
the tests in [LS91] also contain a probabilistic negation operator ¬a restricted to actions,
defined as

Pr(¬a, s) =

{
0 if s

a−→
1 if s 6 a−→

2.3.4 NPLTS and resolutions

The definitions of simulation and bisimulation on NPLTSs are the same as on RPLTSs
(Definition 2.11). The definition of trace-based equivalences could not be applied directly
to NPLTSs, since they rely on the fact that the model has no internal nondeterminism.
To extend the definition to NPLTSs, we introduce resolutions, which represent RPLTSs
that can be obtained by applying a scheduler (resolving the internal nondeterminism) to
the NPLTS under consideration.

Definition 2.14. Let L = (S,A,−→) be an NPLTS and s ∈ S. An NPLTS Z =
(Z,A,−→Z) is a resolution of s if there exists a state correspondence function corrZ :
Z → S such that s = corrZ(zs), for some zs ∈ Z, and for all z ∈ Z it holds that:

• If z
a−→Z ∆, then corrZ(z)

a−→∆′ with corrZ being injective over supp(∆) and
∆(z′) = ∆′(corrZ(z′)) for all z′ ∈ Z.
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• If z
a1−→Z ∆1 and z

a2−→Z ∆2, then a1 = a2 and ∆1 = ∆2.

We let zZs denote the correspondent of s in a resolution Z of s (i.e., s = corrZ(zZs )),
and we sometimes simply write zs if the resolution we are referring to is clear from the
context.
Z is maximal if, for all z ∈ Z, whenever z has no outgoing transitions, then corrZ(z)

has no outgoing transitions either. We respectively denote by Res(s) and Resmax(s) the
sets of resolutions and maximal resolutions of s.

As Z ∈ Res(s) is fully probabilistic (i.e., it has no nondeterminism), the probability
prob(c) of executing c ∈ Cfin(zs) is the product of the (no longer conditional) execution
probabilities of the individual steps of c. This notion is lifted to C ⊆ Cfin(zs) by letting
prob(C) =

∑
c∈C prob(c) whenever none of the computations in C is a proper prefix of one

of the others.
Using resolutions, we can define trace-based equivalences on NPLTSs

Definition 2.15. Let ∼ be any of the trace-based equivalences defined for RPLTSs. Let
L = (S,A,−→) be an NPLTS and s, s′ two states of the NPLTS. Then s ∼ s′ if

• for every resolution Z of s there exists a resolution Z ′ of s′ such that zZs ∼ zZ
′

s′

(where ∼ is defined as for RPLTSs);

• for every resolution Z ′ of s′ there exists a resolution Z of s such that zZs ∼ zZ
′

s′

(where ∼ is defined as for RPLTSs).

In both items above, the second occurrence of ∼ is defined as for RPLTS, since res-
olutions are indeed RPLTS. However, since also external nondeterminism is resolved by
resolutions, decorated traces would not be visible. Hence, we assume that failure or ready
sets are checked on the states of the original NPLTS. For instance, given a state s in a
NPLTS and a resolution Z of s, the probability of zs having the failure trace (a1a2...an, F )
is the sum of the probabilities of all the computations zs, z1, z2, ...., zn from zs in the res-
olution such that the computation is labeled by trace a1a2...an and the correspondent
corrZ(zn) of the last state of the computation in the original NPLTS cannot perform any
of the actions in F .

The spectrum of equivalences for NPLTS and variations over the definition of resolu-
tions (e.g., by considering probabilistic, instead of nondeterministic, schedulers) can be
found in [BDL14a; BDL13]. Finally, the probabilistic equivalences considered in this thesis
are exact probabilistic equivalences, i.e., we require the observed probabilities to be the
same in the compared processes; different approaches allow the probabilities to differ up
to some bound p [DLT08].

2.4 Calculi

The terms of pure λ-calculi are generated by the following grammar:

M,N ::= x
∣∣∣ λx.M ∣∣∣ MN

where x is a variable from a countable set of variables, λx.M is an abstraction and term
MN is the application of term M to N . A term M is closed if every variable x occurring



32 Chapter 2 Background

in M is bound by λx. We identify α-convertible terms. We write M{N/x} for the capture-
avoiding substitution of N for x in M . The values are the terms of the form λx.M . We use
meta-variables M,N . . . for terms, and V,W, . . . for values. When we write terms of the
λ-calculus, we use the standard notational convention for parenthesis: abstraction binds
to the right and application binds to the left.

A context C is an expression obtained from a term by replacing some subterms with
holes of the form [·]i. We write C[M1, . . . ,Mn] for the term obtained by replacing each
occurrence of [·]i in C with Mi. Note that a context may contain no holes, and therefore
any term is a context. The context may bind variables in M1, . . . ,Mn; for example, if
C = λx.[·]1 and M = x, then C[M ] is λx.x, not λy.x. The indexing of the holes in
contexts is usually omitted.

In call-by-name, term M reduces in one step to term N if there is a derivation of
M −→ N using the rules Beta-CBN and EvCon in Figure 2.3, using the CBN evaluation
contexts. Evaluation contexts, in contrast with standard contexts, may have only one
occurrence of a single hole [·]. In call-by-value, one-step reduction is defined analogously,
but using rule Beta-CBV and rule EvCon with the CBV evaluation contexts.

The rules are defined using a single-step (or small-step) reduction relation. We write
=⇒ for the multi-step reduction relation, defined as the reflexive and transitive closure of
−→.

We use a tilde to denote a tuple; for instance, M̃ is a tuple of terms M1, ...,Mn for
some n, and (M̃)i is its i-th element. Hence, we write C[M̃ ], with M̃ = M1, ...,Mn,
for C[M1, ...,Mn]. Sometimes we write tuples as {Mi}i when we want to emphasize the
indexing set. All notations are extended to tuples componentwise.

We use λ.M to denote a thunked term, i.e., a term λx.M for x a variable not occurring
in M .

Beta-CBN
(λx.M)N −→M{N/x}

Beta-CBV
(λx.M)V −→M{V/x}

EvCon
M −→ N C is an evaluation context

C[M ] −→ C[N ]

CBN evaluation contexts C = [·]
∣∣∣ CM

CBV evaluation contexts C = [·]
∣∣∣ CM ∣∣∣ V C

Figure 2.3: Operational semantics for pure λ-calculi



Chapter 3

The discriminating power of
higher-order languages

In this chapter we study the discriminating power offered by higher-order concurrent lan-
guages, and contrast this power with those offered by higher-order sequential languages
(which are deprived of all concurrency) and by first-order concurrent languages (which
are deprived of all higher-order features). The comparison is carried out by considering
embeddings of first-order processes into the languages, and then examining the equiva-
lences induced by the resulting contextual equivalences on the first-order processes. In
other words, the discriminating power of a language refers to the existence of appropri-
ate contexts of the language that are capable of separating the behaviors of first-order
processes.

The higher-order sequential languages are λ-calculi with a store location, akin to im-
perative λ-calculi. The λ-calculi offer constructs for reading the content of the location,
overriding it, and for performing basic observations on the process stored in the location.
The higher-order concurrent languages are HOπ, which allows higher-order communi-
cation, and HOπpass, an extension of HOπ with passivation (similar to the languages
in [PS12a; KH13; LSS11]). Both languages also admit first-order communications, to
be able to interact with the embedded first-order processes. The first-order concurrent
language that we consider is CCS−, a CCS-like calculus.

The λ-calculi also allow us to observe the inability for a process to perform a certain
action. In concurrency, this possibility is referred to as action refusal. For a thorough
comparison, we therefore also consider both restrictions of the λ-calculi without the re-
fusal observation (though at the price of allowing computations that may get stuck) and
extensions of HOπ, HOπpass, and CCS− with the refusal capability.

Concerning the tested first-order processes, embedded into the above languages, we
consider both ordinary LTSs and RPLTSs. We show that, on LTSs, the difference between
the discriminating power of HOπ and HOπpass is captured, in the λ-calculi, through the
difference between the call-by-name and call-by-value evaluation strategies, both with and
without refusals. The correspondence between the HOπpass calculi and the call-by-value
λ-calculi appears robust, and is maintained in all scenarios examined. The same does
not hold between the HOπ calculi and the call-by-name λ-calculi, whose correspondence
breaks on RPLTSs. The case of RPLTSs is more involved also when we consider the
first-order language CCS−. For instance, the discriminating power of CCS− is strictly in

33
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between that of the call-by-name λ-calculus and HOπ. In contrast, the three languages
are equally discriminating on LTSs.

We also discuss variations of the above settings. In languages with locations, commu-
nication may or may not be affected by spatial proximity. This is the difference between
global vs. local communications. This difference is important for the semantics of the
languages but, as we shall see, does not impinge on their discriminating power.

The contextual equivalences that we consider are may-like (a test, i.e., a context, is
successful on a process if there is at least one successful computation). We also discuss
the contextual preorders, and ‘must’ forms of success (all computations are successful).
We isolate a few scenarios in which, surprisingly, the may and must forms of contextual
equivalence coincide.

Section 3.2 considers the embeddings of LTSs and RPLTSs into λ-calculi. Section 3.3.1
shows the syntax and operational semantics of the concurrent languages (CCS- and HOπ-
like), whose discriminating power is studied in Sections 3.4 and 3.5. Section 3.6 discusses
variations of the scenarios examined, such as language extensions and must-equivalences.

Notation: In examples, we sometimes use a CCS-like notation, with prefixing and
choice, to describe the processes of an LTS or RPLTS.

3.1 Contextual equivalences

Given a set of processes as states of an LTS or RPLTS L and an algebraic language AL

(i.e., generated by a grammar), we can embed the states in the grammar by first taking a
bijection f from the set of states s, s′... to a set of constants P, P ′... added to the language,
and then defining the behavior of the constants as corresponding to the behavior of the
states, i.e., s

a−→ s′ if and only if f(s) = P
a−→ P ′ = f(s′). Then we say that the equivalence

induced by AL equates the L processes s1 and s2 if C[f(s1)] and C[f(s2)] behave the same
for all contexts C of AL.

Here ‘behave the same’ is formalized as in (‘may’) contextual equivalence: for any
P1, P2, C[P1] is as successful as C[P2] with respect to a special success observation, indi-
cated with ω. The context C is an AL-expression with a single occurrence of the hole [·]
in it.

We use P,Q... to range over the (constants for) processes in the language, corresponding
to L processes s, t.... For simplicity, L is used both to denote the LTS or RPLTS of tested
first-order processes and to denote the corresponding constants embedded in the language.

Moreover, in these tested processes each transition represents a visible action, i.e.,
there is a corresponding coaction with which the action can synchronize and produce a
reduction; the actions available for L do not include the success signal ω. We write AL(L)
for the extension of AL with the (constants corresponding to) L processes

In a language AL(L), reductions are represented as τ -transitions
τ−→ (or simply −→, in

λ-calculi). Each language AL used will have constructs for testing the action capabilities
of L processes; thus, the set of action names for L is supposed to appear in the grammar
for AL. We emphasize that probabilities may appear in the tested L processes, but they
may not appear in the AL languages that test the processes.

The operational semantics of AL(L) will be based on different LTS-like models depend-
ing on the nature of L. A finite-length computation c from a term M ∈ AL(L) is successful
if each step of c is labeled with τ , the last state of c can perform ω, and no preceding state
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of c can perform ω. We denote by SC(M) the set of successful computations from M .
In the nondeterministic case, when L is an LTS, the semantic model underlying AL(L) is
again an LTS.

Definition 3.1. Let L be an LTS, P1 and P2 two processes of L, and AL an algebraic
language. In AL(L):

• P1 is contextually may-less than P2, written P1 ≤LAL P2, if SC(C[P1]) 6= ∅ =⇒
SC(C[P2]) 6= ∅ for all contexts C of AL.

• P1 is contextually may-equivalent to P2, written P1 'LAL P2, if P1 ≤LAL P2 and P2 ≤LAL
P1.

In the case that L is an RPLTS, the definition of contextual equivalence is more involved
because the semantic model underlying AL(L) is a nondeterministic and probabilistic LTS
(NPLTS). Hence, we resort to resolutions (Definition 2.14).

The contextual equivalence defined below is inspired by [YL92; JY95; Seg96; DGHM08].
Intuitively, P1 is worse than P2 if, for all contexts C, the maximum probability of reach-
ing success in an arbitrary maximal resolution of C[P1] is not greater than the maximum
probability of reaching success in an arbitrary maximal resolution of C[P2]. To correctly
quantify success, we restrict ourselves to Resτ,max(C[P ]), the set of maximal resolutions
obtained from C[P ] by forbidding the execution of actions not resulting in interactions
(i.e., τ actions).

Definition 3.2. Let L be an RPLTS, P1 and P2 be two processes of L, and AL be an
algebraic language. We say that in AL(L):

• P1 is contextually may-less than P2, written P1 ≤LAL P2, if for all contexts C of AL it
holds that: ⊔

Z1∈Resτ,max(C[P1])

prob(SC(zC[P1])) ≤
⊔

Z2∈Resτ,max(C[P2])

prob(SC(zC[P2]))

• P1 is contextually may-equivalent to P2, written P1 'LAL P2, if P1 ≤LAL P2 and P2 ≤LAL
P1.

We sometimes abbreviate ‘contextual may equivalence’ as ‘contextual equivalence’ or
even ‘may equivalence’.

3.2 λ-calculi

3.2.1 Syntax

Figure 3.1 shows the syntax of the λ-calculus with a location Λloc into which we embed
the processes of a (first-order) LTS or RPLTS L. The grammar of the language resulting
from the embedding, Λloc(L), has therefore the additional production

M := . . . | P
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Terms: M ::= x (variables) |M1 seqM2 (sequentialization)

| λx.M (functions) | !loc (read)

| M1M2 (applications) | loc := M (write)

| c (constants) | if M1 then M2 else M3 (if-then-else)

| r? (action test)

Figure 3.1: Syntax of Λloc

where P is a constant for an L process, as described in Section 3.1; moreover, in the action
test, r is supposed to range over the actions in L.

The evaluation of a λ-term M is defined with respect to a location containing a process.
The language includes a construct loc := M that evaluates M and writes the resulting
value in the location, and a construct !loc for reading the content of the location. The
language also features sequentialization M seq N , where M is a command (of unit type).
The action-test construct r? allows us to check whether the process contained in the
location can perform action r.
The remaining constructs are common constructs of typed λ-calculi. We assume that the
set of constants includes the boolean values true and false and the unit value ?. The
writing construct loc := M rewrites the content of the location with the result of the
evaluation of M . The calculus is simply-typed with recursive types (typing rules are as
expected [Pie02]), and the type system ensures that the location has process type (the
type of the embedded first-order processes). Hence, reading the content of the location
always returns a process, and the term tested by r? is a process.

The calculus is indeed an imperative λ-calculus with a one-place store, and the seman-
tics and operators for interacting with the store of Λloc are those standard of such calculi.
Extensions and variations of Λloc , and in particular the possibility of allowing more than
one location in the calculus, are discussed in Section 3.6.1.

Reduction is defined on terms that are closed (i.e., without free variables) and equipped
with a location containing a process P , i.e., configurations of the form 〈P ; M〉.

3.2.2 Nondeterministic processes

We consider both call-by-name and call-by-value reduction strategies. We call Λloc
N (L) the

call-by-name language, Λloc
V (L) its call-by-value version, as usual omitting the parameter

L when referring to the pure languages (without L processes). When L is an LTS, a
reduction step has the form 〈P ; M〉 −→ 〈P ′ ; M ′〉, saying that the evaluation of M with
P in the location produces a new term M ′ with process P ′ in the location. The rules for
reduction are in Figure 3.2

In the call-by-name language Λloc
N (L), only the functional part of an application is

evaluated, hence rule Beta-V and the production V C for evaluation contexts are omitted.
In call-by-value, both the function and the argument of an application are evaluated, hence
rule Beta-N is omitted in Λloc

V (L). In all these languages, although the operators of the
λ-calculi themselves are sequential, nondeterministic computations are possible because
the process in the location may present internal nondeterminism. As usual, =⇒ is the



3.2 λ-calculi 37

Beta-N
〈P ; (λx.M1)M2〉 −→ 〈P ; M1{M2/x}〉

Beta-V
〈P ; (λx.M)V 〉 −→ 〈P ; M{V/x}〉

If1
〈P ; if true then M1 else M2〉 −→ 〈P ; M1〉

If2
〈P ; if false then M1 else M2〉 −→ 〈P ; M2〉

Write
〈P ′ ; loc := P 〉 −→ 〈P ; ?〉

Read
〈P ; !loc〉 −→ 〈P ; P 〉

Act
P

r−→ P ′ (in L)

〈P ; r?〉 −→ 〈P ′ ; true〉
RefAct

P 6r−→ (in L)

〈P ; r?〉 −→ 〈P ; false〉
Seq

〈P ; ? seqM〉 −→ 〈P ; M〉

EvCon
C is an evaluation context 〈P ; M〉 −→ 〈P ′ ; M ′〉

〈P ; C[M ]〉 −→ 〈P ′ ; C[M ′]〉

Evaluation contexts:

- call-by-name C := [·] | if C then M1 else M2 | C seqM | loc := C | CM

- call-by-value C := [·] | if C then M1 else M2 | C seqM | loc := C | CM | V C

Values: V ::= c | λx.M | P

Figure 3.2: Reduction rules of Λloc(L) for L an LTS

reflexive and transitive closure of −→.

In the call-by-name calculus Λloc
N (L), during a computation an L process may be moved

around, may be copied, and may be placed into the location. However, once placed into
the location for evaluation, the process cannot be stopped and later re-evaluated. Indeed,
in call-by-name, when the Read rule is used, a value is produced and therefore the whole
computation terminates.

In call-by-value, by contrast, the Read rule may be used by the argument of a function,
and then the process so obtained may be passed to the function; as a consequence, the
process may later be evaluated. This gives us more sophisticated process tests than call-
by-name. Example 3.3 shows how the terms in Λloc

N and Λloc
V can test the existence of

decorated traces in the behavior of a process placed in the location, and how some tests
are available only in call-by-value.

Example 3.3. Below, a test is encoded in Λloc
V as a thunked boolean expression λ.M and

(λ.M)? is its ‘unthunking’. (Thunking is useful in composition of tests. We assume here
that thunked variables are all of unit type.) A test λ.M is successful on a process P if
there is a run starting from 〈P ; λ.M〉 in which true is produced, i.e., 〈P ; (λ.M)?〉 =⇒
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〈P ′ ; true〉 for some P ′.

Ta
def
= λ.a?

T¬a
def
= λ. if a? then false else true

Seq
def
= λx.λy.λ. if x ? then y ? else false

And
def
= λx.λy.λ.((λz. if x ? then (loc := z) seq (y?) else false)!loc)

Test Ta checks whether the process P in the location can perform action a (i.e., P
a−→).

Dually, T¬a checks whether P is unable to perform a. Function Seq composes the two
argument tests sequentially. Thus, we can define the following test

M1
def
= Seq Ta ( Seq T¬c Tb )

that checks the existence of an a-derivative of the process in the location that cannot

perform c but can perform b (i.e., P
a−→ P ′ with P ′ 6c−→ and P ′

b−→, for some P ′). Function
And makes the conjunction of the two argument tests. In general, for any pair M,N
of tests, AndMN checks whether P passes both the test M and the test N . Thus the
following term

M2
def
= Seq Ta ( And Tb Tc )

checks the existence of an a-derivative that can perform both b and c. Finally, term

M3
def
= Seq Ta ( And ( Seq Tb Tc )( Seq Tb T¬c ))

checks the existence of an a-derivative with both a b-derivative that can perform c and a
b-derivative that cannot perform c.

In the call-by-name calculus Λloc
N , while Seq and Ta , T¬a ,M1 have the same outcomes

as in the call-by-value calculus Λloc
V , function And (and so alsoM2,M3) cannot be encoded.

As a consequence, only the call-by-value calculi can separate

P
def
= a.b+ a.c and P ′

def
= a.(b+ c) + P

When applied to P ′, test M2 consumes an action a and then, in case the first a-branch of
P ′ is taken, the whole expression reduces to

〈b+ c ; (λz. if Tb ? then (loc := z) seq ( Tc ?) else false)!loc〉

Now, term !loc is not a value, hence in call-by-value it is evaluated and produces process
b+c. Since processes are values, b+c is substituted for the variable z. Thus b+c is placed
in the location with which the test Tc is performed on the same process b + c, once the
test Tb reports success. By contrast, in call-by-name !loc is substituted for z before being
evaluated, hence b+ c is lost before performing test Tc .

In λ-calculi, well-typed terms are supposed to produce computations that never get
stuck. To maintain this property, we have to ensure that the action-test construct a?
returns a value even when the process in the location is unable to perform the requested
action a. That is, we are allowed to observe the inability for the process to perform a certain
action, in concurrency referred to as action refusal and usually omitted. We therefore
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consider also variants of the above λ-calculi without the refusal capability. Formally, rule
RefAct is omitted. Of course, the price to pay is that computations from a well-typed
term may get stuck. The call-by-name calculus without RefAct is called Λloc

N−ref(L),

whereas call-by-value without RefAct is Λloc
V−ref(L).

Example 3.4. (We reuse P ′, M1,M3 from Example 3.3.) The processes P ′ and P ′′
def
=

a.(b + c) are distinguished in Λloc
N and Λloc

V (via the test M1), but they are equivalent in
Λloc

N−ref and Λloc
V−ref . In contrast, only in Λloc

V the processes

Q
def
= a.b.c+ a.b and Q′

def
= a.(b.c+ b)

can be separated via test M3.

Theorem 3.6 summarizes the results on the discriminating power of the four λ-calculi
when the embedded processes are fully nondeterministic.

Definition 3.1 of contextual equivalence is adapted to the λ-calculi supposing that the
reduction relation −→ is labeled with τ and adding the rule:

Omega
〈P ; true〉 ω−→

Contexts are terms with a single occurrence of a hole in one of the four languages
defined above. The contexts contain no L processes, whilst the hole has process type.

In λ-calculi with store, the definition of contextual equivalence usually quantifies over
all possible stores containing the locations occurring in the terms. In our case, this cor-
responds to quantifying over all possible assignments of the location to a process in L
(for simplicity, we omit the case in which the location does not occur in the terms, and
thereby the store would be empty). Hence, in this setting we have that processes P and
Q in L are contextually equivalent in AL if for any unary context C of AL and for any
process P ′ ∈ L, 〈P ′ ; C[P ]〉 has a successful computation if and only if 〈P ′ ; C[Q]〉 has a
successful computation. In what follows, we use PI to denote the process used to initialize
the location in the definition of contextual equivalence.

Remark 3.5. The same results could be obtained by adding a constant c of process type
to the syntax of Λloc , and then defining “M has a successful computation” as “〈c ; M〉 has a
successful computation” (or, equivalently, by defining contexts as pairs of the form 〈c ; C〉,
where C is defined as above). This would yield a definition of contextual equivalence that
immediately fits Definition 3.2, since it does not require the further quantification on all
possible instantiations of the location. We choose the definition with the universal quan-
tification over processes for continuity with the definitions in the literature of contextual
equivalence on λ-calculi with store.

Theorem 3.6. If L is an image-finite LTS, then:

1. 'L
Λloc
V

= ∼RS (ready simulation equivalence);

2. 'L
Λloc
N

= ∼FTr (failure trace equivalence);

3. 'L
Λloc
V−ref

= ∼S (simulation equivalence);
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4. 'L
Λloc
N−ref

= ∼Tr (trace equivalence).

Sketch. The proofs are different for inductive and coinductive equivalences. For the induc-
tive equivalences, we discuss failure-trace equivalence and Λloc

N (item (2)). In one direction,
one shows that for every failure trace φ there is a context Cφ of Λloc

N such that P has the
failure trace φ iff 〈PI ; Cφ[P ]〉 produces true, for any process PI initializing the location.

For the opposite direction, suppose P and Q have the same failure traces, and sup-
pose 〈PI ; C[P ]〉 =⇒ ω−→. We show that there is also a computation 〈PI ; C[Q]〉 =⇒ ω−→,
proceeding as follows. Consider the computation 〈PI ; C[P ]〉 =⇒ ω−→. First, we show that
the reading capability in a boolean term in call-by-name is always followed by re-writing
the location, and therefore has no impact on the computation. Then, to analyze what
happens to the context and the processes inside them during the computation, we adopt
an annotated operational semantics (equivalent to the original one) thanks to which we
keep track of all the times a process is written in the location and of the observations
made on the processes in the location (the transitions performed, the actions refused).
Such observations are failure traces. Since process Q has the same failure traces as P , the
configuration 〈PI ; C[Q]〉 can mimic the successful computation 〈PI ; C[P ]〉 =⇒ ω−→. Note
that during this computation the hole may get duplicated, and therefore the context may
become polyadic.

As an example for the coinductive equivalences, we consider ready simulation equiva-
lence and Λloc

V (L). In one direction, suppose P is not ready simulated by Q. By proposition
2.8, there is a formula F of Ready Simulation Logic that discriminates the two processes.
We show that there is an encoding of these formulas to Λloc

V -contexts, i.e., P satisfies F if
and only if P in the context encoding F succeeds. Hence, there is a context discriminating
the processes.

For the opposite direction, one shows that the relation

R def
= {(〈P ; C[P̃ ]〉, 〈Q ; C[Q̃]〉) | P, P̃ are pairwise ready simulated by Q, Q̃}

where C is a polyadic context of Λloc
V , is a strong ready simulation on reductions (in

the sense that if 〈P ; C[P̃ ]〉 R 〈Q ; C[Q̃]〉 and 〈P ; C[P̃ ]〉 −→ 〈P ′ ; M〉 then 〈P ′ ; M〉 =
〈P ′ ; C[P̃ ′]〉 and 〈Q ; C[Q̃]〉 −→ 〈Q′ ; C[Q̃′]〉 with 〈P ′ ; C[P̃ ′]〉R〈Q′ ; C[Q̃′]〉). As a con-
sequence, any successful computation from 〈PI ; C[P ]〉 may be mimicked by 〈PI ; C[Q]〉.
More detailed proofs are presented in Section 3.7. 2

3.2.3 Reactive probabilistic processes

The reduction relation for Λloc(L) when L is an RPLTS is the expected probabilistic
modification of the system for the nondeterministic case and is defined in Figure 3.3.

For any probability distribution ∆1 on processes and for any distribution ∆2 on terms
of the language, we define the probability distribution 〈∆1 ; ∆2〉 on configurations 〈P ; M〉
as follows:

〈∆1 ; ∆2〉(〈P ; M〉) = ∆1(P ) ·∆2(M)

This is used to propagate the probability distribution reached from a process in the location
to a λ-term, in rules Act and EvCon in Figure 3.3. Moreover, in rule EvCon, for a
distribution ∆ on terms and an evaluation context C we define the distribution on terms
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Beta-N
〈P ; (λx.M1)M2〉 −→ dirac(〈P ; M1{M2/x}〉)

Beta-V
〈P ; (λx.M)V 〉 −→ dirac(〈P ; M{V/x}〉)

If1
〈P ; if true then M1 else M2〉 −→ dirac(〈P ; M1〉)

If2
〈P ; if false then M1 else M2〉 −→ dirac(〈P ; M2〉)

Write
〈P ′ ; loc := P 〉 −→ dirac(〈P ; ?〉)

Read
〈P ; !loc〉 −→ dirac(〈P ; P 〉)

Act
P

r−→ ∆ (in L)

〈P ; r?〉 −→ 〈∆ ; dirac(true)〉
RefAct

P 6r−→ (in L)

〈P ; r?〉 −→ dirac(〈P ; false〉)
Seq

〈P ; ? seqM〉 −→ dirac(〈P ; M〉)

EvCon
C is an evaluation context 〈P ; M〉 −→ 〈∆1 ; ∆2〉

〈P ; C[M ]〉 −→ 〈∆1 ; C[∆2]〉

Figure 3.3: Reduction rules of Λloc(L) for L an RPLTS

C[∆] as follows:

C[∆](M) =

{
∆(M ′) if M = C[M ′]

0 otherwise

The definitions of values and of evaluation contexts for call-by-name and call-by-value are
the same as in the nondeterministic case (Figure 3.2).

Since the tested processes do not feature internal nondeterminism, all terms of Λloc
N ,

Λloc
N−ref , Λloc

V and Λloc
V−ref are reactive probabilistic processes, i.e., for any P, P̃ and for any

context C the operational semantics of 〈P ; C[P̃ ]〉 describes an RPLTS where states are
configurations consisting of a term with a process in the location, and the transition are
given by the reductions from such configurations to distributions over such configurations.
Hence, for any context C of these languages and for any reactive probabilistic process P ,
〈PI ; C[P ]〉 has only one τ -labeled, maximal resolution on reductions.
Then we omit any reference to the resolutions and we write prob(SC(〈PI ; C[P ]〉)) to
denote prob(SC(z〈PI ;C[P ]〉)), where z〈PI ;C[P ]〉 is the state associated with 〈PI ; C[P ]〉 in
the (unique) resolution.

Example 3.7. Consider the processes and λ-terms defined below, where Seq , And , Ta ,
T¬a are as in Example 3.3. In all four λ-calculi, the test M1 separates between P and
P ′′, since the resulting success probabilities are 0.5 and 0.25, respectively. The term M2

distinguishes P and P ′ both in Λloc
N and in Λloc

V , since prob(SC(〈P ; M2?〉)) = 0.5 and
prob(SC(〈P ′ ; M2?〉)) = 0. The same processes are distinguished by M3 in Λloc

V−ref , which
shows that the refusal operator is not necessary if the tested processes can be copied.
Finally, only in Λloc

V−ref and Λloc
V the test M4 distinguishes Q and Q′, since it is only in
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call-by-value calculi that we can encode test And .

P
def
= a.((b+ c.d) +0.5 (f + c.e))

P ′
def
= a.((b+ c.e) +0.5 (f + c.d))

P ′′
def
= a.(((b+ c.d) +0.5 c.d) +0.5 (f + c.e))

Q
def
= a.(b.c+0.5 b)

Q′
def
= a.b.(c+0.5 0)

M1
def
= Seq Ta ( Tb )

M2
def
= Seq Ta ( Seq T¬f ( Seq Tc Td ))

M3
def
= Seq Ta ( And Tb ( Seq Tc Td ))

M4
def
= Seq Ta ( And ( Seq Tb Tc )( Seq Tb Tc ))

A peculiarity of probabilistic processes (with respect to nondeterministic processes) is
that even when testing finite RPLTS there can be infinitely many successful computations
from a term. This is because we are testing probabilistic systems using powerful languages
such as λ-calculi, which can encode fixed-points. Hence, it does not generally hold that
there exists a maximal length of the successful computations, as the following example
shows.

Example 3.8. Let P
def
= a.(b+0.5 0) and M be

λy.(λx. Seq Ta (λ. if b? then true else (loc := x) seq (yy?)))!loc

In Λloc
V , the term 〈P ; MM?〉 with probability 0.5 reports success and with probability 0.5

becomes again 〈P ; MM?〉. Thus, there are infinitely many successful computations from
〈P ; MM?〉, and the overall success probability is 1. (Note that the typing of M requires
recursive types.)

Theorem 3.9. If L is an RPLTS, then:

1. 'L
Λloc
V

= 'L
Λloc
V−ref

= ∼PB (probabilistic bisimilarity);

2. 'L
Λloc
N

= ∼PFTr (probabilistic failure trace equivalence);

3. 'L
Λloc
N−ref

= ∼PTr (probabilistic trace equivalence).

Sketch. For the inductive equivalences, the proof schemata are as in the nondeterministic
case, but we now have to reason directly at the level of probability distributions over
configurations of the form 〈P ; M〉. To this end, we redefine reductions and trace equiv-
alences as relations over probability (sub)distributions, i.e., distributions that can have
weight possibly smaller than one.

For item (1), in one direction we exploit the testing characterization of probabilistic
bisimilarity presented in Section 2.3.3, using the language of tests t ::= ω | r.t | (t1, t2).
We show that these tests are encodable in Λloc

V−ref (some hints are provided by Example
3.3 and Example 3.7), i.e., for every test t in T there is a term Mt such that for every P ,
Pr(t, P ) = prob(SC(〈P ; Mt〉)). Hence, if P 6∼PB Q then there is a context of Λloc

V−ref that

distinguishes P and Q. The same holds for the language Λloc
V , since it includes Λloc

V−ref .
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For the other direction, the proof is in two steps, analogously to the case of nondeter-
ministic processes: we first prove that if P,Q are probabilistic bisimilar L processes and
C is a λ-calculus context, then also 〈PI ; C[P ]〉 and 〈PI ; C[Q]〉 are probabilistic bisimilar
when the bisimulation game is only played on reductions and success (ω) transitions. We
then prove that, if 〈PI ; C[P ]〉 and 〈PI ; C[Q]〉 are probabilistic bisimilar in this sense, then
prob(SC(〈PI ; C[P ]〉)) = prob(SC(〈PI ; C[Q]〉)), using the fact that probabilistic bisimilar-
ity implies trace equivalence. More detailed proofs can be found in Section 3.7. 2

3.3 Concurrency: syntax and operational rules

3.3.1 Syntax

We present here the concurrent languages used to test the first-order processes taken
from an LTS or RPLTS L. This section gives the syntax and operational rules. The
following two sections study the equivalences induced by the languages. To simplify the
presentation, we assume that also first-order communications exchange values, namely the
unit value ?. Names include channels a, b, . . . and locations l,m, . . .. The operators are
those common to CCS and Higher-Order π-calculi. The special prefix ω indicates success
of a computation. We add the basic constructs of calculi with passivation, namely the
kell [[M ]]l and the passivation prefix passl(x).M . The refusal prefix r̃l.M , where l is a
location containing L processes, succeeds if the process in l is unable to perform the action
r. (The addition of other operators is discussed in Section 3.6.3.) Kells may be nested,
and the kell structure is transparent with respect to communications. In the remainder,
unless otherwise stated, all mentioned processes are supposed to be closed (without free
variables). A channel or prefix is first-order or higher-order depending on whether the
exchanged value is ? or is a process. We sometimes abbreviate first-order prefixes a(x).M
and a〈?〉.M as a.M and a.M respectively, and omit the trailing 0 in α.0.

The language with all operators, HOπpass,ref , is given in Figure 3.4. The subset without
the refusal prefix is HOπpass; the subset without passivation is HOπref ; the subset without
passivation and refusal is HOπ. These are the higher-order concurrent languages. In a
first-order concurrent language, in contrast, all channels and prefixes are first-order (i.e.,
unit is the only communicable value) and the passivation prefix is disallowed. The resulting
language is CCS−ref ; when also refusal is disallowed, the language is CCS−. (The ‘-’ sign
emphasizes the lack of the choice operator; see however Section 3.6.3.)

As usual, for any language, say AL, we write AL(L) for the extension of AL with the first-
order processes from the LTS or RPLTS L, i.e., with the additional grammar production

M := . . . | P

where P is an L process. In the languages without passivation, the presence of kells is
irrelevant; e.g., a process N | [[M ]]l behaves like N |M .

To avoid run-time errors in interactions, we assume a basic type system, that distin-
guishes three types of values: the unit value ?, the set PrL of tested L processes, and
arbitrary processes Prall, with the subtyping PrL ≤ Prall. As a consequence, there are
three types of names and variables. We distinguish the tested L processes from arbitrary
processes because we allow refusal to act only on the former processes (this simplifies the
operational rules, though it is not essential).
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u ::= a | l (names)

r ::= a | a (input/output channels)

α ::= a(x) | a〈M〉 | ω | passl(x) | r̃l (prefixes)

M ::=M |M | α.M | x | 0 | [[M ]]l | ? (processes and values)

Figure 3.4: Syntax for HOπpass,ref

ParL
M1

µ−→M ′1

M1 |M2
µ−→M ′1 |M2

ParR
M2

µ−→M ′2

M1 |M2
µ−→M1 |M ′2

Com
M1

µ−→M1 M2
µ−→M ′2

M1 |M2
τ−→M ′1 |M ′2

foPr
P

r−→ P ′ (in L)

P
r〈?〉−−−→ P ′

Inp
a(x).M

a〈N〉−−−→M{N/x}
Out

a〈N〉.M a〈N〉−−−→M

RefLoc
P 6r−→ (in L)

[[P ]]l
r̃l−→ [[P ]]l

RefPre
r̃l.N

r̃l−→ N

Succ
ω.M

ω−→M
Kell

M
µ−→M ′

[[M ]]l
µ−→ [[M ′]]l

PassLoc
[[N ]]l

passlN−−−−−→ 0
PassPre

passl(x).M
passlN−−−−−→M{N/x}

Figure 3.5: Operational semantics for HOπpass,ref(L)

3.3.2 Nondeterministic processes

The operational rules for the full language HOπpass,ref(L), when L is an LTS, are presented
in Figure 3.5. The grammar for action labels is:

µ := τ | a〈M〉 | a〈M〉 | ω | passlM | passlN | r̃l | r̃l
where a〈M〉, passlM , and r̃l are the dual of, and synchronize with, a〈M〉, passlN , and r̃l.
The dual of µ is µ. In the languages without refusal (HOπpass(L), HOπ(L), CCS−(L)),
rules RefLoc and RefPre are missing; in the languages without passivation (HOπref(L),
HOπ(L), CCS−(L), CCS−ref(L)), rules PassLoc and PassPre are missing. Further, in
the CCS languages the only value exchanged is ?.

3.3.3 Reactive probabilistic processes

If L is an RPLTS, the rules for parallel composition (Figure 3.6) propagate the probability
distributions reached from the processes in L. For any ∆1,∆2, we define the distribution
∆1 | ∆2 on terms of the language as follows:

∆1 | ∆2(M)
def
=

{
∆1(M1) ·∆2(M2) if M = M1 |M2

0 otherwise
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ParL
M1

µ−→ ∆1

M1 |M2
µ−→ ∆1 | dirac(M2)

ParR
M2

µ−→ ∆2

M1 |M2
µ−→ dirac(M1) | ∆2

Com
M1

µ−→ ∆1 M2
µ−→ ∆2

M1 |M2
τ−→ ∆1 | ∆2

Figure 3.6: Rules for parallel composition in the probabilistic setting

Differently from the contexts of λ-calculi, now the contexts are nondeterministic.
Therefore, in general C[P ] is a nondeterministic and probabilistic term (i.e., an NPLTS).

3.4 CCS languages: separation results

In the results on the concurrent languages, we include, in parenthesis, reference to the
results for the λ-calculi to ease the comparison.

3.4.1 Nondeterministic processes

When L is an LTS, 'L
CCS−

coincides with ordinary may-testing equivalence [DH84] and
hence with ∼Tr, because the canonical tests of [DH84] can be encoded without resorting

to the choice operator. For a similar reason, 'L
CCS−ref

coincides with the refusal testing

equivalence of [Phi87] and hence with ∼FTr.

3.4.2 Reactive probabilistic processes

When L is an RPLTS, the contextual equivalences induced by CCS− and CCS−ref are
comprised between ∼PB and ∼PFTr.

Theorem 3.10. If L is an RPLTS, then:
∼PB ('L

CCS−ref
('L

CCS−
(∼PFTr ( ='L

Λloc
N

)

Sketch. To prove the first inclusion, we exploit the congruence of ∼PB, and we observe that
if C[P1] and C[P2] are bisimilar with respect to actions τ and ω then for every resolution
of C[P1] there is a resolution of C[P2] that has the same probability of success, and vice-
versa. The details of the proof can be derived from the proof of the more general result
that ∼PB ⊆'LHOπ , that we will present in the next section (Theorem 3.13, item (1)).

The second inclusion is immediate. To prove the third inclusion, we first show that
contextual equivalence (even when only deterministic, non-probabilistic contexts are con-
sidered) implies probabilistic failure equivalence. Then we show how, for any process, the
probability of an arbitrary failure trace φ can be recovered in terms of the probabilities of
failures, from which the result follows. The details of the proof can be found in the proof
of Theorem 4.3, presented in the following chapter.
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The inclusion of 'L
CCS−

, and hence of 'L
CCS−ref

, in ∼PFTr is strict: the ∼PFTr-equivalent
processes

P
def
= a.((b.d+ c.e) +0.5 (b.f + c.g))

P ′
def
= a.(b.(d+0.5 f) + c.(e+0.5 g))

are distinguished by the CCS− context

C
def
= [·] | a.(b.d.ω | c.g.ω)

The maximum probability of succeeding for C[P ] is 1, whereas that of C[P ′] is 0.5. The

inclusion of 'L
CCS−ref

in 'L
CCS−

is strict as well: the processes Q,Q′ in Example 3.7 are not

distinguished in CCS−, but they are distinguished by the CCS−ref context

C ′
def
= [[[·]]]l | a.(b.c.ω | b.c̃l.ω)

The maximum probabilities of success are respectively 1 and 0.5.

Finally, probabilistic bisimilarity is strictly included in 'L
CCS−ref

, since the non proba-

bilistic bisimilar processes

R
def
= d.(e.Q+0.5 e.Q

′)

R′
def
= d.e.(Q+0.5 Q

′)

cannot be distinguished by any CCS−ref -context. The different timing of the initial choices
in R and R′ is visible under bisimilarity but is not under the may semantics. (Intuitively,
in the may semantics Q and Q′ can only be distinguished by tests that exhibit success
probabilities 1 and 0.5, respectively; we would need however a richer range of success
probabilities to be able to separate R and R′.)3 2

3.5 HOπ languages: separation results

3.5.1 Nondeterministic processes

The proof schemata for Theorem 3.11 are as those for the analogous results in λ-calculi;
in one direction we essentially encode the (higher-order) separating tests of the λ-calculi
into the Higher-Order π-calculi.

Theorem 3.11. If L is an image-finite LTS, then:

1. 'LHOπpass,ref
= ∼RS ( = 'L

Λloc
V

);

2. 'LHOπref
= ∼FTr ( = 'L

Λloc
N

);

3. 'LHOπpass
= ∼S ( = 'L

Λloc
V−ref

);

4. 'LHOπ = ∼Tr ( = 'L
Λloc
N−ref

).

3 We will further discuss analogous examples in the next chapter.



3.5 HOπ languages: separation results 47

Example 3.12. In this example, we test a process P by placing it in a kell and then
running a test M in parallel, as in [[P ]]l |M . The tests a.ω and ãl.ω check whether P

a−→
and P 6a−→, respectively. The test M ′1, below, in HOπref performs the same test as the term
M1 in Λloc

N discussed in Example 3.3, while M ′2 in HOπpass corresponds to M2 in Λloc
V−ref

(the second occurrence passl(y) of the passivation operator destroys the first copy of the
tested process, so as to ensure that the test c.ω is executed on the second copy).

M ′1
def
= a.c̃l.b.ω

M ′2
def
= a.passl(x).([[x]]l | b.passl(y).([[x]]l | c.ω))

3.5.2 Reactive probabilistic processes

The proof of Theorem 3.13(1) is analogous to the proofs for the λ-calculi Λloc
V and Λloc

V−ref .
Again, in one direction we essentially encode the separating tests of the λ-calculi. For the
opposite direction, we show that bisimilarity on RPLTSs P1 and P2 implies bisimilarity
on C[P1] and C[P2] with respect to actions τ and ω. Unlike in λ-calculi, we now have
that, as in CCS−, processes C[P1] and C[P2] are NPLTSs, and thereby have internal
nondeterminism. Hence, we may have several resolutions (possibly an infinite number of
resolutions). We show that for every resolution of C[P1] there is a resolution of C[P2] that
has the same probability of success, and vice-versa.

Theorem 3.13. If L is an RPLTS, then:

1. 'LHOπpass,ref
= 'LHOπpass

= ∼PB (= 'L
Λloc
V

= 'L
Λloc
V−ref

);

2. 'LHOπref
⊆ 'LHOπ ( 'L

CCS−
;

3. 'LHOπref
( 'L

CCS−ref
.

The inclusions in (2) and (3) follow from the inclusions of the calculi. The following

processes witness the strictness of the inclusion of 'LHOπ in 'L
CCS−

:

P
def
= d.Q+ e.(f +0.5 0)

P ′
def
= d.Q′ + e.(f +0.5 0)

for Q,Q′ as in Example 3.7. Processes P, P ′, different under ∼PB, are identified by 'L
CCS−

.
They are also separated in HOπ, via the context

C
def
= h〈[·]〉 | h(x).(x | d.a.(b.c.ω | b.(x | e) | f.ω))

Intuitively, this context uses higher-order communication to make copies of the tested
process at the beginning, and then exploits the right-hand branch e.(f +0.5 0) of the
process itself in order to test the left-hand branch.

Analogously, let R,R′ be as in Section 3.4.2 and define the processes

S
def
= R+ f.(g +0.5 0) + h.(i+0.6 0)

S′
def
= R′ + f.(g +0.5 0) + h.(i+0.6 0).
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It follows from R 'L
CCS−ref

R′ that S 'L
CCS−ref

S′, while the HOπ-context C ′ distinguishes S

and S′

C ′
def
= j〈[·]〉 | j(x).(x | d.(e.a.T | e.(x | h.i.ω)))

T
def
= b.c.ω | b.(x | f.g.ω).

Since HOπ ⊆ HOπref , the example shows the strictness of the inclusion of 'LHOπref
in

'L
CCS−ref

.

A summary of the results presented so far can be found in Chapter 5, figures 5.1 and
5.2.

3.6 Extensions and variations

3.6.1 Extending λ-calculi

Both in the call-by-name and in the call-by-value λ-calculi, a term is evaluated before
being written in the store. Formally, this corresponds to the fact that the location can
only be assigned to a process value (by rule Write only values can be written in the store),
and l := C is an evaluation context. This is a standard property of the semantics of
functional languages with imperative feature, and it can be understood by noticing that
if this were not the case then we could write in the store terms capable of performing
operations over locations (e.g., reading, writing or testing a process, in our case). This, in
turn, would require us to define another store with respect to which such terms should be
evaluated.

The possibility of evaluating a term before assigning it to a location makes call-by-name
computations closer to call-by-value ones. This can be seen by considering call-by-name
calculi with a store that can contain more than one location, and with the operator for
testing actions indexed by the location containing the process to be tested. The presence
of multiple locations allows us to define the following term:

M
def
= if a?l1 then (l2 := !l1) seq (l3 := !l1) seq N else false

with N
def
= if b?l2 then if c?l3 then true else false else false. If l1 contains

process P , term M allows us to check whether P can perform a and then reach a process
performing both b and c. Since the evaluation of M is independent of the evaluation
strategy, a call-by-name calculus with multiple locations could encode conjunctive tests
and be as discriminating as the call-by-value calculus.

To prevent this, we have considered a call-by-name calculus with only one location. An
alternative solution consists in defining a calculus with multiple locations which, however,
does not allow the evaluation of a term before a location assignment.

By contrast, a store with multiple locations would not increase the discriminating
power of call-by-value calculi.

3.6.2 Global vs. local communications

In our higher-order concurrent calculi, communications are network transparent, in the
sense that they take place irrespective of the locations in which the interacting processes
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are placed. In the literature, this approach to communication is sometimes called global, as
opposed to the local approach, where communication is subject to physical proximity. Un-
der local communications, kells form communication barriers, because they confine where
interactions can occur, with a finer control over communication interferences. This extra
precision in communications, which can be obtained by formalizing local communications
as in the Kell calculus [SS05], would not affect the discriminating power of the languages
as far as contextual equivalences are concerned.

3.6.3 Other operators

The concurrent calculi we have considered do not include certain common operators, such
as restriction, recursion, relabeling, and choice, so as to make the operational rules simpler
or because often omitted in higher-order languages. The addition of these operators would
not change the results presented (we assume that the hole of a context is not allowed to
occur in recursive definitions). Some care is necessary with restriction in the presence
of passivation, along the lines of [PS12a; KH13], because the lazy scope extrusion on
restriction could allow contextual equivalence to make distinctions on processes solely on
the basis of their free names [LSS11].
In HOπ we only allow communication of processes; the addition of process abstractions, or
the name-passing communications of the π-calculus, as in the full HOπ, would not affect
the results.

3.6.4 May vs. must equivalences

We have considered so far only contextual equivalences with success defined in the ‘may’
style. In the LTS case, the ‘must’ variants focus on the success of all maximal τ -
computations (i.e., whose steps are all labeled with τ). With respect to Definition 3.1

the preorder ≤LAL,must is introduced by requiring that, if all maximal τ -computations from
C[P1] are successful, then so are those from C[P2]. In the RPLTS case, the definition of

≤LAL,must is obtained from Definition 3.2 by simply using u in place of t, i.e., by considering
the minimum probability of reaching success in the various maximal τ -resolutions.

The must-equivalences coincide with the may-equivalences when the tested processes
are RPLTSs and the testing language is a λ-calculus, because internal nondeterminism
does not occur (C[P ] is an RPLTS with a unique maximal resolution of nondeterminism).

In contrast, nondeterminism may spring up when the testing language is concurrent,
or when the tested processes are LTSs rather than RPLTSs. We discuss below a few
scenarios in which the relationship (and sometimes the coincidence) between must- and
may-equivalences can be derived despite the presence of nondeterminism.

Let us start with LTSs. Due to the absence of divergence, in CCS−ref the must-
equivalence coincides with the refusal testing equivalence of [Phi87] and hence with ∼FTr;
thus, it coincides with the may-equivalence. In contrast, it follows from [Nic87] that in
CCS− the must-equivalence coincides with ∼F and hence is strictly finer than the may-
equivalence, which is ∼Tr.

By contrast, we can show that, if the testing language is Λloc
V or HOπpass,ref , then the

reverse inclusion holds.

Theorem 3.14. If L is an LTS, then ≤LAL=.RS ⊆≥LAL,must for AL ∈ {Λloc
V ,HOπpass,ref}.
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Proof. In the proof of Theorem 3.11, we have seen that if P .RS Q then C[P ] .RS C[Q],
with respect to actions τ and ω, for C a context of HOπpass,ref . In order to show that

P ≥LHOπpass,ref ,must
Q, we prove that if all τ -labeled maximal computations from C[Q]

succeed then all τ -labeled maximal computations from C[P ] succeed. We show the result
by contraposition. If C[P ] has a τ -labeled maximal computations that does not succeed,
one of the following holds:

• C[P ] has a finite τ -labeled computation such that all states in the computation
cannot perform ω, and the last state is stuck;

• C[P ] has an infinite τ -labeled computation such that all states in the computation
cannot perform ω.

It is easy to see by induction on n that if C[P ]RC[Q] for some ready simulation R with
respect to actions τ and ω and C[P ] = M0

τ−→ M1
τ−→ ...

τ−→ Mn, with Mi
ωX−→ for

0 ≤ i ≤ n, then C[Q] = N0
τ−→ N1

τ−→ ...
τ−→ Nn with Ni

ωX−→ and MiRN ′i for 0 ≤ i ≤ n.
Hence, in both cases described above, process C[Q] has a corresponding path that does
not succeed, which implies the result.
The result for Λloc

V follows analogously, using the proof of Theorem 3.6 which implies that
if P .RS Q then 〈PI ; C[P ]〉 .RS 〈PI ; C[Q]〉 with respect to actions τ and ω, for C a
context of Λloc

V . 2

As a corollary, we have that may-equivalence implies must-equivalence on LTSs for
these languages.

Corollary 3.15. If L is an LTS, then 'LAL =∼RS⊆'LAL,must for AL ∈ {Λloc
V ,HOπpass,ref}.

The refusal operator (respectively, the RefAct rule in λ-calculus) is essential for the

inclusion to hold: the processes P
def
= a.b + a and P ′

def
= a.b are ∼S-equivalent and hence

may-equivalent both in Λloc
V−ref and in HOπpass, but only P ′ always succeeds when the

trace a b is tested.
We now move to RPLTSs. By Theorem 3.6, the tests needed in order to distinguish

∼PB-inequivalent RPLTSs are encodable in Λloc
V−ref . The passivation operator allows us

to encode these tests in HOπpass without losing the sequentiality of the tests. Since
RPLTSs do not have internal nondeterminism and the tests are sequential, the resulting
NPLTS has a unique maximal resolution. Hence, ∼PB-inequivalent RPLTSs are neither
may-equivalent nor must-equivalent. Moreover, the same argument used to show that
∼PB implies may-equivalence can be adapted to the must-case. We have seen in the
proof of Theorem 3.13 that, on RPLTS, P ∼PB Q implies C[P ] ∼PB C[Q] with respect
to actions τ and ω, for C a context of HOπpass or HOπpass,ref . We have also seen how
this implies that for every resolution of C[P ] there is a resolution of C[Q] such that
prob(SC(zC[P ])) = prob(SC(zC[Q])), and vice versa for every resolution of C[Q] there is a
resolution of C[P ] such that prob(SC(zC[P ])) = prob(SC(zC[Q])). Hence, we can conclude
that

l

ZC[P ]∈Resτ,max(C[P ])

prob(SC(zC[P ])) =
l

ZC[Q]∈Resτ,max(C[Q])

prob(SC(zC[Q]))

and thereby ∼PB ⊆'LAL,must.
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Theorem 3.16. If L is an RPLTS, then 'LAL,must = 'LAL = ∼PB, for AL ∈ {HOπpass,
HOπpass,ref}.

3.7 Proofs

Proof of Theorem 3.6 - left-to-right inclusions

We prove the left-to-right inclusions of Theorem 3.6, by showing how to encode tests
that discriminate non-equivalent (with respect to simulation-like or trace-like equivalences)
processes.

For item (1) ('L
Λloc
V
⊆ ∼RS), we prove that there is an encoding function Enc(·) from

the Ready Simulation Logic formulas (Section 2.2.4) to Λloc
V -terms such that P |= F if and

only if 〈P ; Enc(F )〉 has a successful computation (i.e., 〈P ; Enc(F )〉 =⇒ ω−→). Hence, if
P and Q are not ready simulation equivalent then (by Proposition 2.8) there is a formula
F such that P |= F and Q 6|= F , which is equivalent to saying that 〈P ; Enc(F )〉 =⇒ ω−→
and 〈Q ; Enc(F )〉 6=⇒ ω−→. Then, by defining context CF = loc := [·] seq Enc(F ) and

noting that 〈PI ; CF [P ′]〉 =⇒ ω−→ iff 〈P ′ ; Enc(F )〉 =⇒ ω−→ for any P ′, we derive that

〈PI ; CF [P ]〉 =⇒ ω−→ and 〈PI ; CF [Q]〉 =⇒ ω−→. Therefore, P 6∼RS Q implies P 6 'L
Λloc
V
Q.

We define the encoding as follows:

Enc(>) = true

Enc(¬r) = if r? then false else true

Enc(〈 r 〉F ) = if r? then Enc(F ) else false

Enc(F1 ∧ F2) = (λz. if Enc(F1) then (loc := z) seq Enc(F2) else false)!loc

We prove by structural induction on F that P |= F if and only if 〈P ; Enc(F )〉 =⇒ ω−→.
The cases F = > and F = ¬r immediately follow from the operational semantics of Λloc

V . If

F = 〈 r 〉F ′ then the statement follows from the inductive hypothesis: if P
r−→ P ′ for some

P ′ such that P ′ |= F ′ then 〈P ; Enc(F )〉 =⇒ 〈P ′ ; Enc(F ′)〉 =⇒ ω−→. Otherwise, either
P 6r−→, in which case 〈P ; Enc(F )〉 =⇒ 〈P ; false〉, or P 6|= F for all P ′ that P reaches
by doing r. In this case, by the inductive hypothesis we have that for every 〈P ′ ; M〉 such
that 〈P ; Enc(F )〉 −→ 〈P ′ ; M〉, 〈P ′ ; M〉 never performs ω.
Finally, suppose that F = F1 ∧ F2. If P satisfies the formula, then we have the following
sequence of reductions:

〈P ; Enc(F1 ∧ F2)〉 =⇒
〈P ; if Enc(F1) then (loc := P ) seq Enc(F2) else false〉 =⇒ (inductive hypothesis)

〈P ′ ; if true then (loc := P ) seq Enc(F2) else false〉 −→
〈P ′ ; (loc := P ) seq Enc(F2)〉 =⇒
〈P ; Enc(F2)〉 =⇒ (inductive hypothesis)
〈P ′′ ; true〉

If F is false at P and P 6|= F1 then

〈P ; Enc(F1 ∧ F2)〉 =⇒ 〈P ; if Enc(F1) then (loc := P ) seq Enc(F2) else false〉
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and by the inductive hypothesis Enc(F1) never becomes true. The case when P |= F1

and P 6|= F2 is analogous.
The same encoding allows us to prove that for every formula F of Simulation Logic,

P |= F if and only if 〈P ; Enc(F )〉 =⇒ ω−→. Since the encoding of Simulation Logic does
not exploit the capability of observing action refusal, we can use Λloc

V−ref as target language.

Thus, P 6∼S Q implies P 6 'L
Λloc
V−ref

Q.

For failure trace equivalence, we prove that for any failure trace φ = (ri, Fi)i≤n ∈
(A× 2A)∗, process P has the failure trace φ if and if 〈P ; tφ〉 =⇒ ω−→, where tφ is defined
by induction on n:

t∅ = true

t(ri,Fi)1≤i≤n+1
= if rn+1? then if tFn+1 then t(ri,Fi)1≤i≤n else false else false

and for any failure set F , term tF is true if F is empty, while for r ∈ F and F ′ = F \ {r}
we have tF = if r? then false else tF ′ (we assume some ordering on the labels in
the failure set F , so that the term tF is uniquely determined by labels in the set).

Analogously, for traces we can build discriminating tests by considering the term
t(ri,∅)i≤n , for any trace r1, ..., rn. In this case, rule RefAct is not necessary, hence test

t(ri,∅)i≤n can be built in Λloc
V−ref as well.

Proof of Theorem 3.6 - right-to-left inclusions
We start from the coinductive equivalences, and in particular from item (1) ('RS⊆

'L
Λloc
V

). We first prove that that the following relation is a ready simulation on reductions:

R def
= {(〈P ; C[P̃ ]〉, 〈Q ; C[Q̃]〉) | P, P̃ .RS Q, Q̃ }

where C is a polyadic context of Λloc
V .

Consider term 〈P ; C[P̃ ]〉 and let P, P̃ .RS Q, Q̃. We prove by structural induction on
C that if 〈P ; C[P̃ ]〉R〈Q ; C[Q̃]〉 and 〈P ; C[P̃ ]〉 −→ 〈P ′ ; M〉 then 〈Q ; C[Q̃]〉 −→ 〈Q′ ; N〉
with 〈P ′ ; M〉R〈Q′ ; N〉.

• If C = [·] or C is a constant or C = λx.C ′ then both terms cannot perform any
reduction.

• If C = C1C2 then C[P̃ ] = C1[P̃ ]C2[P̃ ] and C[Q̃] = C1[Q̃]C2[Q̃] with P̃ .RS Q̃. We
have two cases. If 〈P ; C1[P̃ ]〉 −→ 〈P ′ ; M〉 we have by the inductive hypothesis that
M = 〈P ′ ; C ′1[P̃ ′]〉 and 〈Q ; C1[Q̃]〉 −→ 〈Q′ ; C ′1[Q̃′]〉 with P ′, P̃ ′ .RS Q

′, Q̃′. Hence,

〈P ; C1[P̃ ]C2[P̃ ]〉 −→ 〈P ′ ; C ′1[P̃ ′]C2[P̃ ]〉
〈Q ; C1[Q̃]C2[Q̃]〉 −→ 〈Q′ ; C ′1[Q̃′]C2[Q̃]〉

and the reached configurations are related.

If C1[P̃ ] is a value then if 〈P ; C2[P̃ ]〉 −→ 〈P ′ ; C ′2[P̃ ′]〉 we have the same reasoning.

If both C1[P̃ ] and C2[P̃ ] are values then C1[P̃ ] = λx.C3[P̃ ] and

〈P ; C1[P̃ ]C2[P̃ ]〉 −→ 〈P ; C3[P̃ ]{C2[P̃ ]/x}〉
〈Q ; C1[Q̃]C2[Q̃]〉 −→ 〈Q ; C3[Q̃]{C2[Q̃]/x}〉
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Since x cannot occur in processes, 〈P ; C3[P̃ ]{C2[P̃ ]/x}〉 = 〈P ; C3{C2/x}[P̃ ]〉 is related

to 〈Q ; C3[Q̃]{C2[Q̃]/x}〉 = 〈Q ; C3{C2/x}[Q̃]〉.

• If C = if C1 then C2 else C3 and 〈P ; C[P̃ ]〉 −→ 〈P ′ ; M〉 then we have three
cases. If C1 is true then 〈P ; C[P̃ ]〉 −→ 〈P ; C2[P̃ ]〉 and 〈Q ; C[Q̃]〉 −→ 〈Q ; C2[Q̃]〉
with 〈P ; C2[P̃ ]〉R 〈Q ; C2[Q̃]〉.

The case when C1 = false is symmetric.

Otherwise, 〈P ; C1[P̃ ]〉 −→ 〈P ; C ′1[P̃ ′]〉 and rule EvCon is used to derive the tran-
sition. In this case, the conclusion follows from the inductive hypothesis.

• If C = C1 seq C2 and C1 = ? then by rule Seq both 〈P ; C[P̃ ]〉 and 〈Q ; C[Q̃]〉 reach

configurations that are in relation R . If 〈P ; C1[P̃ ]〉 −→ 〈P ′ ; M〉 then the result
follows from the inductive hypothesis.

• If C = !loc we have 〈P ; !loc〉 −→ 〈P ; P 〉 and 〈Q ; !loc〉 −→ 〈Q ; Q〉 and the result
follows.

• If C = loc := C1 then:

– if C1[P̃ ] is process P1 then 〈P ; loc := P1〉 −→ 〈P1 ; ?〉 and C1[Q̃] = Q1. There-
fore, 〈Q ; loc := Q1〉 −→ 〈Q1 ; ?〉, with P1 .RS Q1 ;

– if 〈P ; C1[P̃ ]〉 −→ 〈P ′ ; M〉 then by the inductive hypothesis we have that M =
C ′1[P̃ ′] and 〈Q ; C1[Q̃]〉 −→ 〈Q′ ; C ′1[Q̃′]〉 and the configurations reached are in
R, hence the result follows.

• If C = r? then we have two cases:

– if P
r−→ P ′ then 〈P ; r?〉 −→ 〈P ′ ; true〉 and, since P is ready simulated by Q,

Q
r−→ Q′ with P ′ .RS Q

′ and 〈Q ; r?〉 −→ 〈Q′ ; true〉, and the configurations
are related.

– If P 6 r−→ then Q 6 r−→ and the configurations reached are 〈P ; false〉R〈Q ; false〉.

Hence, since trivially PI .RS PI , if there is a path 〈PI ; C[P ]〉 =⇒ 〈P ′ ; true〉 then
there is a path 〈PI ; C[Q]〉 =⇒ 〈Q′ ; true〉 for some P ′, Q′. Therefore, P 'RS Q implies

P'L
Λloc
V
Q.

The proof for P ∼S Q implies P'L
Λloc
V−ref

Q is analogous, the only difference being that

we use simulations instead of ready simulations.

We now prove the right-to-left inclusions for the inductive equivalences, starting from
trace equivalence (∼Tr⊆ 'LΛloc

N−ref

). The proof is based on the fact that in call-by-name the

presence of a successful computation is not affected by the reading capability, as we now
show. We first note that the following holds:

Lemma 3.17. 〈P ; M〉 −→ 〈P ′ ; N〉 has a derivation where the Read axiom is used iff
either M = !loc or M = E[loc := !loc] for E an evaluation context.



54 Chapter 3 The discriminating power of higher-order languages

Proof. The right-to-left implication is trivial, while the other direction follows by induction
on the derivation of 〈P ; M〉 −→ 〈P ′ ; N〉. We have two cases: either the derivation is
the Read axiom, in which case M = !loc, or the derivation has been derived using the
rule for evaluation contexts, i.e., there is an evaluation context E such that M = E[M1],
N = E[M2] and 〈P ; M〉 −→ 〈P ′ ; N〉 is derived by 〈P ; M1〉 −→ 〈P ′ ; M2〉. Then by the
inductive hypothesis on 〈P ; M1〉 −→ 〈P ′ ; M2〉 we have two cases. Either M1 = E′[loc :=
!loc], and the result follows, or M1 = !loc. In this case, we prove by induction on the
definition of E that either E = [·] or E = E′[loc := [·]], from which the result follows.
If E = [·] then the property holds by definition. For the inductive cases, if E = loc := E′

then by the inductive hypothesis either E′ = E′′[loc := [·]] or E′ = [·], and in both cases
we have that E is of the form E′′′[loc := [·]] for some E′′′. Otherwise (if E = E′ seqM or
E = E′M or E = if E′ then M else N) then, by typing, E′ cannot be of the form
[·], so by the inductive hypothesis E′ = E′′[loc := [·]] and the property holds. 2

Since in a derivation of the form 〈P ; M〉 =⇒ 〈P ′ ; true〉 the terms to which M reduces
to cannot be equal to !loc, it follows from Lemma 3.17 that 〈P ; M〉 =⇒ 〈P ′ ; true〉
iff 〈P ; M〉 =⇒− 〈P ′ ; true〉, where =⇒− is defined as =⇒ except for the fact that we
substitute all pairs of transitions of the form

〈P ; E′[loc := !loc]〉 −→ 〈P ; E′[loc := P ]〉 −→ 〈P ; E′[?]〉

with
〈P ; E′[loc := !loc]〉 −→ 〈P ; E′[?]〉

Since these steps are deterministic and have no effect on the value in the location, in
what follows we can assume without loss of generality to have an operational semantics
where the Read rule is substituted by

Read’
〈P ; loc := !loc〉 −→ 〈P ; ?〉

In the remainder of the proof, we omit the symbol − and we directly use −→ and =⇒ to
denote −→− and =⇒−.

Based on this semantics, we now define the relation
µ7−→ as follows, for µ = W, r, τ :

• 〈P ; M〉 W7−→ 〈P ′ ; M ′〉 if the derivation of the transition 〈P ; M〉 −→ 〈P ′ ; M ′〉 uses
the Write rule;

• 〈P ; M〉 r7−→ 〈P ′ ; M ′〉 if the derivation of the transition 〈P ; M〉 −→ 〈P ′ ; M ′〉 uses
the Act rule on label r;

• 〈P ; M〉 τ7−→ 〈P ′ ; M ′〉 otherwise.

This relation is well defined since the rules Write and Act cannot be used both in a
derivation, and they occur at most once in a derivation. For µ′ = W, r and σ a sequence of

labels in µ′, we define the weak labeled transition 〈P ; M〉 µ′Z=⇒ 〈P ′ ; M ′〉 (where any finite
number of τ -transitions can occur before and after action µ is performed) and its reflexive
and transitive closure 〈P ; M〉 σZ=⇒ 〈P ′ ; M ′〉 as usual, for σ ∈ ({W} ∪ A)∗

We prove the following lemmas. If not specified otherwise, contexts are assumed to
be polyadic and process names do not occur in the contexts, i.e., they are pure contexts
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of the λ-calculus language. We say that C is a P -evaluation context if it is an evaluation
context where the only process name that can occur is P . For σ ∈ A∗, we write

σ−→ for the
reflexive and transitive closure of

r−→ on processes, i.e., P
σ−→ P ′ if there is a computation

labeled by σ from P to P ′.

Lemma 3.18. If 〈P ′ ; C[P ]〉 Z=⇒ 〈P ′′ ; N〉 then:

• P ′ = P ′′ and N = C ′[P ] for some C ′

• ∀Q,∀Q′ 〈Q′ ; C[Q]〉 Z=⇒ 〈Q′ ; C ′[Q]〉

The lemma follows by induction on the length of Z=⇒. Suppose that 〈P ′ ; C[P ]〉 7−→
〈P ′′ ; N ′〉 Z=⇒ 〈P ′′′ ; N〉. The result follows from the inductive hypothesis if we can prove
that P ′ = P ′′ and N ′ = C ′[P ] for some C ′ and ∀Q,∀Q′, 〈Q′ ; C[Q]〉 τ7−→ 〈Q′ ; C ′[Q]〉.
This in turn follows by induction on the derivation of 〈P ′ ; C[P ]〉 7−→ 〈P ′′ ; N ′〉, since the
derivation cannot consist of axioms Act or Write, and all the other rules (as well as
axiom Read’) satisfy the hypothesis.

Lemma 3.19. If 〈P1 ; C[P2]〉 σZ=⇒ 〈P ′1 ; N〉 with σ ∈ A∗ then:

• rule Write is not used

• N = C ′[P2] with P1
σ−→ P ′1

• ∀Q1, Q2, if Q1
σ−→ Q′1 then 〈Q1 ; C[Q2]〉 σZ=⇒ 〈Q′1 ; C ′[Q2]〉

The first item follows from the definition of the relation
σZ=⇒. The others are proved by

induction on the length of the sequence σ. Let σ = rσ′ By Lemma 3.18, 〈P1 ; C[P2]〉 Z=⇒
〈P1 ; C ′[P2]〉 r7−→ 〈P ′1 ; N ′〉 σ′Z=⇒ 〈P ′′1 ; N〉, and ∀Q1, Q2, 〈Q1 ; C[Q2]〉 Z=⇒ 〈Q1 ; C ′[Q2]〉. If

〈P1 ; C ′[P2]〉 r7−→ 〈P ′1 ; N ′〉, the derivation uses rule Act and by induction on the derivation
we have that C ′[P2] is of the form C ′′[r?] for C ′′ a P -evaluation context, and 〈P ′1 ; N ′〉 =

〈P ′1 ; C ′′[true]〉 with P1
r−→ P ′1, and ∀Q1, Q2, and for any Q2-evaluation context C, if Q1

r−→
Q′1 then 〈Q1 ; C[r?]〉 r7−→ 〈Q′1 ; C[true]〉. Then we can apply the inductive hypothesis to

〈P ′1 ; N ′〉 σ′Z=⇒ 〈P ′′1 ; N〉 and the result follows.

Lemma 3.20. If 〈P ′ ; C[P ]〉 W7−→ 〈P ′′ ; N〉 then:

• C[P ] = C ′[loc := P ] and C ′ is a P -evaluation context

• P ′′ = P and N = C ′[?]

• ∀Q,∀Q′ 〈Q′ ; C[Q]〉 W7−→ 〈Q ; C ′′[?]〉 and C ′′ = C ′{Q/P}

As above, the proof is by induction on the derivation of the reduction.
Finally, we note that if 〈PI ; C[P ]〉 =⇒ 〈P ′ ; true〉 then rule RefAct is never used in

the derivation of the sequence of transitions, since whenever RefAct is used we either
have false or a term that is stuck (and is not a value).

Suppose that P ∼Tr Q and 〈PI ; C[P ]〉 =⇒ 〈P ′ ; true〉. It follows from the definition of
7−→ that we have two cases. If a W -labeled transition is never performed then by Lemma
3.19 we have 〈PI ; C[Q]〉 =⇒ 〈P ′ ; true〉. If it is, then by Lemma 3.19 and Lemma 3.20
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we derive 〈PI ; C[P ]〉 σ0Z=⇒ 〈P ′I ; C ′[loc := P ]〉 W7−→ 〈P ; C ′[?]〉 σZ=⇒ 〈P ′ ; true〉 with C ′ a
P -evaluation context and σ of the form Wσ1Wσ2W...Wσn for σi ∈ A∗, and for all i ≥ 1,
P

σi−−→. Hence, by the same lemmas and by the assumption that P ∼Tr Q we derive that

〈PI ; C[Q]〉 σ0Z=⇒ 〈P ′I ; C ′′[loc := Q]〉 W7−→ 〈Q ; C ′′[?]〉 σZ=⇒ 〈Q′ ; true〉, for C ′′ = C ′{Q/P},
which in turn implies 〈PI ; C[Q]〉 =⇒ 〈Q′ ; true〉.

The proof of item (2) is analogous. We first assume that the reduction relation −→
is based on the modified rule Read’, and then we define the reduction 7−→ as above, but
adding the following clause: 〈P ; M〉 ¬r7−→ 〈P ′ ; M ′〉 if the derivation of the transition uses
the RefAct rule on label r. The set of negated action labels ¬r is denoted by ¬A.

Now, rule RefAct can be used in a sequence of reductions that reaches success. Hence,
we have to modify Lemma 3.19 as follows: instead of traces σi, we use syntactic versions
of failure traces, i.e., σi ∈ (A ∪ ¬A)∗, where P

¬r−−→ P ′ if P ′ = P and P 6r−→. Then the
result follows as in the previous case, by considering processes P and Q that are failure
trace equivalent, rather than trace equivalent.

Proof of Theorem 3.9 - right-to-left inclusions
We first prove the result for item (1), i.e., ∼PB⊆ 'LΛloc

V
.

In what follows, we use D,D′ and their indexed versions to denote distributions on
configurations of the form 〈P ; M〉. For a distribution ∆ =

∑
i pi·dirac(Pi) over processes,

we also sometimes use 〈∆ ; M〉 to denote 〈∆ ; dirac(M)〉, i.e., the distribution
∑

i pi ·
dirac(〈Pi ; M〉).

Analogously to the nondeterministic case, we first show that strong probabilistic bisim-
ilarity is preserved by Λloc

V -contexts, i.e., we prove that if P ∼PB Q then C[P ] ∼PB C[Q],

with ∼PB defined on the transitions
τ−→ (corresponding to −→) and

ω−→ (performed by the
term true).

We show that the following is a probabilistic bisimulation:

R def
= {(〈P ; C[P̃ ]〉, 〈Q ; C[Q̃]〉) | P, P̃ ∼PB Q, Q̃}

where contexts C are polyadic.
To do so, we prove by induction on C that if 〈P ; C[P̃ ]〉R〈Q ; C[Q̃]〉 and 〈P ; C[P̃ ]〉 −→ D
then 〈Q ; C[Q̃]〉 −→ D′ with D lift(R)D′, which in turn means that there are an index
set I and probability values {pi}i∈I such that:

• ∆ =
∑

i pi · dirac(〈Pi ; Ci[P̃i]〉) ;

• Θ =
∑

i pi · dirac(〈Qi ; Ci[Q̃i]〉) ;

• Pi ∼PB Qi and P̃i ∼PB Q̃i

Most cases are proved analogously to the nondeterministic case, by either exploit-
ing the fact that the transition reaches a Dirac distribution or by directly applying the
inductive hypothesis. The interesting case is when the locations contain probabilistic
bisimilar processes P and Q, and the terms perform an action test r?, i.e., C[P̃ ] =
C[Q̃] = r?. There are two cases. If both P and Q do not perform r, then they re-
duce to distributions dirac(〈P ; false〉) and dirac(〈Q ; false〉), which are in lift(R)
since 〈P ; false〉R〈Q ; false〉. Otherwise, if P

r−→ ∆ and Q
r−→ Θ then ∆ lift(∼PB) Θ.

Hence, there are an index set I and probability values {pi}i∈I such that:
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• ∆ =
∑

i pi · dirac(Pi) ;

• Θ =
∑

i pi · dirac(Qi) ;

• Pi ∼PB Qi .

Since 〈P ; r?〉 −→ 〈∆ ; true〉 and 〈Q ; r?〉 −→ 〈Θ ; true〉, by applying the decomposition
of ∆ and Θ given above we derive that 〈∆ ; true〉 lift(R) 〈Θ ; true〉.

Finally, probabilistic bisimilarity implies probabilistic trace equivalence, so we have
〈P ; C[P̃ ]〉 ∼PTr 〈Q ; C[Q̃]〉, with traces defined on the labels τ and ω.

Since for any P, P̃ , C the semantics of 〈P ; C[P̃ ]〉 is an RPLTS, and no state cannot
perform both an ω and a τ action, we derive that the probability of success of C[P ]
coincides with ∑

n≥0

prob(C[P ], τnω)

i.e., the sum of the probabilities of performing a τ trace of arbitrary length leading to
success. Hence, it follows from 〈P ; C[P̃ ]〉 ∼PTr 〈Q ; C[Q̃]〉 that they have the same prob-
ability of success.

The proof for Λloc
V−ref is the same, except for the case in which C[P̃ ] = C[Q̃] = r? and

both terms get stuck, since both the bisimilar processes P and Q in the locations cannot
perform action r.

To prove the results for the inductive equivalences (items (2) and (3)), we redefine
trace (and failure trace) equivalence as a relation on subdistributions over configurations
of processes and terms, i.e., distributions of the form

∑
i pi · dirac(〈Pi ; Mi〉) such that∑

i pi is less than or equal to 1 (the difference being that the weights do not have to sum
to 1).

Given a labeled transition relation
µ−→: S → D(S), we can lift it to subdistributions as

follows:

∆
µ−→ ∆′ if ∆′ =

∑
P∈supp(∆)µ

∆(P ) · der(P )(µ)

where supp(∆)µ = {P | P ∈ supp(∆) ∧ P µ−→} and der(P )(µ) = ∆ if P
µ−→ ∆. For the

sake of simplicity, we use the same symbol
µ−→ for the lifted relation.

We extend the definition of the probability of σ-compatible computations to distribu-
tions as follows:

prob(∆, σ) =

{
1 if | σ |= 0∑

P∈supp(∆)µ ∆(P ) · prob(der(P )(µ), σ′) if σ = µσ′

It is easy to see that prob(dirac(P ), σ) = prob(P, σ).
Let weight(

∑
i pi · dirac(Pi)) =

∑
i pi be the weight of a subprobability distribution.

We can define probabilistic trace equivalence on subdistributions as follows:

∆ ∼PTr Θ if and only if ∀σ ∈ A∗, weight(der(∆)(σ)) = weight(der(Θ)(σ))

Since prob(∆, σ) = weight(der(∆)(σ)) for every trace σ, this relation coincides with prob-
abilistic trace equivalence on states if we consider the Dirac distributions over the same
states, i.e., P ∼PTr Q if and only if dirac(P ) ∼PTr dirac(Q).
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By considering transitions between subdistributions, we obtain the following useful
property of probabilistic trace equivalence:

Lemma 3.21. If ∆ ∼PTr Θ then:

• weight(∆) = weight(Θ)

• if ∆
µ−→ ∆′ then Θ

µ−→ Θ′ and ∆′ ∼PTr Θ′

As in the proof for nondeterministic processes, we first consider a transition relation
based on rule Read’, since the probability of success of C[P ] is invariant with respect to
this modification.

Then, analogously, we define a labeled transition
µ7−→, for µ = W, r, τ , from configu-

rations 〈P ; M〉 to distributions of the form D =
∑

i pi · dirac(〈Pi ; Mi〉). We sometimes
omit the Dirac function and write

∑
i pi · 〈Pi ; Mi〉 to denote

∑
i pi ·dirac(〈Pi ; Mi〉). This

transition relation is lifted to a transition relation between subdistributions D
µ7−→ D′ as

described above. Then, we define the weak version of this transition and we have the
following lemmas.

Lemma 3.22.
∑

i pi · 〈Pi ; C[P ]〉 τ7−→ D implies:

• D =
∑

i pi · 〈Pi ; C ′[P ]〉

• ∀Q, p′j , Qj,
∑

j p
′
j · 〈Qj ; C[Q]〉 τ7−→

∑
j p
′
j · 〈Qj ; C ′[Q]〉

Lemma 3.23.
∑

i pi · 〈Pi ; C[P ]〉 W7−→ D implies:

• C = C ′[loc := [·]] for C ′ a P -evaluation context and D =
∑

i pi · 〈P ; C ′[?]〉

• ∀Q, p′j , Qj,
∑

j p
′
j · 〈Qj ; C[Q]〉 W7−→

∑
j p
′
j · 〈Q ; C ′′[?]〉, for C ′′ = C ′{Q/P}

Lemmas 3.22 and 3.23 follow as in the nondeterministic case, by induction on the
derivation of the transition.

Lemma 3.24. 〈∆ ; C[P ]〉 r7−→ D implies:

• D = 〈der(∆)(r) ; C ′[P ]〉

• ∀Q,Θ, if ∆ ∼PTr Θ then Θ
r−→ Θ′ for ∆′ ∼PTr Θ′ and 〈Θ ; C[Q]〉 r7−→ 〈Θ′ ; C ′[Q]〉

By Lemma 3.21, we derive Lemma 3.24 as in Lemma 3.19 for the nondeterministic
case, since 〈∆ ; C[P ]〉 r7−→ D implies C[P ] = C ′[r?] for C ′ a P -evaluation context. Hence,
Lemma 3.25 follows by the definition of weak transition and by Lemmas 3.22 and 3.24.

Lemma 3.25. For σ ∈ A∗, 〈∆ ; C[P ]〉 σZ=⇒ D implies:

• D = 〈der(∆)(σ) ; C[P ]〉

• ∀Q,Θ, if ∆ ∼PTr Θ then Θ
σ−→ Θ′ for ∆′ ∼PTr Θ′ and 〈Θ ; C[Q]〉 σZ=⇒ 〈Θ′ ; C ′[Q]〉
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Using the reduction relations between subdistributions, by the Lemmas above we can
see that: =⇒ and Z=⇒ are deterministic, and 〈∆ ; C[P ]〉 −→ D iff 〈∆ ; C[P ]〉 µ7−→ D with
µ = W, r, τ and D of the form 〈∆′ ; C ′[P ]〉,

Moreover, whenever
∑

i pi · 〈Pi ; C[P ]〉 µ7−→ D with µ = W, τ the whole distribution
progresses (i.e., no configuration 〈Pi ; C[P ]〉 gets stuck or becomes true or false, and all
〈Pi ; C[P ]〉 perform a reduction), and whenever

∑
i pi ·〈Pi ; C[P ]〉 r7−→ D the configurations

〈Pi ; C[P ]〉 that do not progress are stuck (and will never return true or progress).

Hence, there is a unique distribution D of the form
∑

i pi · 〈Pi ; true〉 such that
〈dirac(PI) ; C[P ]〉 =⇒ D. The probability of success of C[P ] (given by the sum of the
probabilities of all the computations reaching a state of the form 〈P ′ ; true〉 for some P ′)
can be equivalently defined as the weight of D.

If dirac(〈PI ; C[P ]〉) =⇒ 〈∆ ; true〉 then, by Lemma 3.25, either dirac(〈PI ; C[P ]〉)
σZ=⇒ 〈∆ ; true〉 and dirac(〈PI ; C[Q]〉) σZ=⇒ 〈∆ ; true〉, or there exists a sequence σ of

the form σ0Wσ1Wσ2W...Wσn for σi ∈ {A}∗ such that (by Lemma 3.23) 〈PI ; C[P ]〉 σ0Z=⇒
〈∆ ; C ′[l := P ]〉 σZ=⇒ 〈∆′ ; true〉, with C ′ a P -evaluation context, and 〈PI ; C[Q]〉 σ0Z=⇒
〈∆ ; C ′′[l := Q]〉, with C ′′ = C ′{Q/P}.

If 〈∆ ; C[P ]〉 σZ=⇒ D with σ of the form σ1Wσ2W...Wσn, for σi ∈ {A}∗, then by Lemmas
3.23 and 3.25 we have that D = 〈∆′ ; C ′[P ]〉 and there exists a sequence ∆1, ....,∆n

such that ∆
σ1−−→ ∆1, ∆′ = ∆n and, for 1 ≤ i ≤ n, if ∆i =

∑
j pj · Pj then ∆i+1 is

the subdistribution such that
∑

j pj · P
σi−−→ ∆i+1. By the same lemmas, if ∆ ∼PTr Θ

and P ∼PTr Q then 〈Θ ; C[Q]〉 σZ=⇒ 〈Θ′ ; C ′[Q]〉 and there is a sequence Θ1, ....,Θn with

Θ
σ1−−→ Θ1, Θ′ = Θn and, for 1 ≤ i ≤ n, if Θi =

∑
j pj ·Qj then

∑
j pj ·Q

σi−−→ Θi+1. Hence,
∆′ and Θ′ have the same weight, and the result follows.

For probabilistic failure trace equivalence, we extend the labels of the reduction relation
7−→ with actions in ¬A. The proof is made more complicated by the fact that if we consider
the definition of 7−→ on subdistributions, we have that the relation is now (externally)
nondeterministic, since from a subdistribution 〈∆ ; C[r?]〉, for C an evaluation context,
there are two reductions, one with label r and the other with label ¬r. However, these
reductions capture the whole state space of the support of 〈∆ ; C[r?]〉, since either a state
P performs r, in which case 〈P ; C[r?]〉 r7−→ 〈der(P )(r) ; C[r?]〉, or it does not, in which
case 〈P ; C[r?]〉 ¬r7−→ 〈dirac(P ) ; C[r?]〉.

For ∆ =
∑

i pi · Pi, define ∆
¬r−−→ ∆′ if ∆′ =

∑
{i|Pi∈supp(∆)∧Pi 6

r−→} pi · Pi. Then

∆ ∼PFTr Θ is defined as ∆ ∼PTr Θ, but using traces σ ∈ (A ∪ ¬A)∗.

Lemma 3.26. 〈∆ ; C[P ]〉 ¬r7−→ D implies:

• D = 〈der(P )(¬r) ; C ′[P ]〉

• ∀Q,Θ, if ∆ ∼PFTr Θ then Θ
¬r−−→ Θ′ for ∆′ ∼PFTr Θ′ and 〈Θ ; C[Q]〉 ¬r7−→ 〈Θ′ ; C ′[Q]〉

The lemma follows since C[P ] must be of the form C ′[r?] for C ′ a P -evaluation context,
and if ∆ ∼PFTr Θ then their derivatives after performing r or ¬r are still in∼PFTr. Lemmas
3.22 and 3.23 remain the same, Lemma 3.24 holds with ∼PFTr instead of ∼PTr, and Lemma
3.25 holds with ∼PFTr instead of ∼PTr and σ ∈ (A ∪ ¬A)∗.

The probability of success of 〈PI ; C[P ]〉 is now given by the sum of the weights of the
distributions ∆ such that dirac(〈PI ; C[P ]〉) σZ=⇒ 〈∆ ; true〉, for all σ ∈ (A∪¬A∪{W})∗
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We show this by proving that for all n, 〈∆ ; C[P ]〉 =⇒n
ω−→ D iff

D =
∑

{σ∈(A∪¬A∪{W})∗|〈∆ ;C[P ]〉 σZ=⇒n
ω−→Dσ}

Dσ

This is well-defined since every σ denotes a unique path. The labels in A∪¬A are the
only ones that can create a branching in the labeled transition system with subdistributions
on configurations as states and with transitions 7−→, where either D can perform only

transition
τ7−→, or only transition

W7−→, or both
r7−→ and

¬r7−→, but with every state in the
support performing either

r7−→ or
¬r7−→, and not both. Hence, the set of all D′ such that

there is a path of length n with D
µ17−→ D1

µ27−→ D2....
µn7−→ ω−→ D′, for µ ∈ (A∪¬A∪{W, τ}),

coincides with the set of D′ such that there is a σ ∈ (A∪¬A∪{W})∗ such that D
σZ=⇒n

ω−→
D′.

Proof of Theorem 3.9 - left-to-right inclusions

In order to prove 'L
Λloc
V−ref

⊆∼PB and 'L
Λloc
V
⊆∼PB, we exploit the testing characteri-

zation of probabilistic bisimilarity described in Section 2.3.3, using the language of tests
T. As we have seen, on RPLTS it holds that P ∼PB Q iff Pr(t, P ) = Pr(t, Q) for ev-
ery test t in T [BMOW05]. We show that these tests are encodable in Λloc

V−ref i.e., that

there is an encoding Enc() : T → Λloc
V−ref such for every test t in T and for every P ,

Pr(t, P ) = prob(SC(〈P ; Enc(t)〉)). Hence, if P 6∼PB Q then there is context of Λloc
V−ref

(namely, context C
def
= (loc := [·]) seq Enc(t), for some t) that distinguishes P and Q. The

same holds for the language Λloc
V , since it includes Λloc

V−ref , and since the the possibility of
exploring the else branches does not allow to add any successful computation (since the
else branches always lead to false).

We define the encoding analogously to the encoding of the Simulation Logic Formulas
in the nondeterministic case:

Enc(ω) = true

Enc(r.t) = if r? then Enc(t) else false

Enc((t1, t2)) = (λz. if Enc(t1) then (loc := z) seq Enc(t2) else false)!loc

We prove by induction on the definition of t that Pr(t, P ) = prob(SC(〈P ; Enc(t)〉)).
The case t = ω is trivial.

• Case t = r.t′. The interesting case is when P
a−→ ∆. Then the result follows from

the fact that the set SC(〈P ; Enc(t)〉) coincides with the set of computations of the
form

〈P ; Enc(t)〉,
〈P ′ ; if true then Enc(t′) else false〉,
〈P ′ ; Enc(t′)〉,
c′
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for P ′ ∈ supp(∆) and c′ ∈ SC(〈P ′ ; Enc(t′)〉). We have

prob(SC(〈P ; Enc(t)〉)) =
∑

c∈SC(〈P ; Enc(t)〉) prob(c)

=
∑

P ′∈supp(∆) ∆(P ′) ·
∑

c∈SC(〈P ′ ; Enc(t′)〉) prob(c)

=
∑

P ′∈supp(∆) ∆(P ′) · Pr(t′, P ′)

= Pr(t, P )

• Case t = (t1, t2). The set of computations SC(〈P ; Enc(t)〉) coincides with the set
of computations of the form

〈P ; (λz. if Enc(t1) then (loc := z) seq Enc(t2) else false)!loc〉,
〈P ; (λz. if Enc(t1) then (loc := z) seq Enc(t2) else false)P 〉,
C[c1],
〈P ′ ; loc := P seq Enc(t2)〉,
〈P ; ? seq Enc(t2)〉,
c2

for ci ∈ SC(〈P ; Enc(ti)〉), and C[c1] denoting the computation c1, but with every
term put in the context C = if [·] then (loc := P ) seq Enc(t2) else false, and
P ′ the last value of the location in c1. Hence, the result follows from the inductive
hypothesis on t1 and t2:

prob(SC(〈P ; Enc(t)〉)) =
∑

c∈SC(〈P ; Enc(t)〉) prob(c)

=
∑

c1∈SC(〈P ; Enc(t1)〉) prob(c1) ·
∑

c2∈SC(〈P ; Enc(t2)〉) prob(c2)

= Pr(t1, P ) · Pr(t2, P )
= Pr(t, P )

For the inductive equivalences, we first consider consider probabilistic failure trace
equivalence, i.e., we prove 'L

Λloc
N
⊆∼PFTr. For σ ∈ (A ∪ ¬A)∗, we define the term tσ as

follows by induction on σ:

• if σ is empty then tσ = true

• if σ = rσ′ then tσ = if r? then tσ′ else false

• if σ = ¬rσ′ then tσ = if r? then false else tσ′

We exploit the definitions of reductions and labeled transition relations
µ7−→ used in the

opposite direction of the proof, and the definition of failure trace equivalence as a relation
on subdistributions.

We prove by induction on σ that ∆
σ−→ ∆′ iff 〈∆ ; tσ〉

σZ=⇒ 〈∆′ ; true〉.
At each step from 〈∆ ; tσ〉 either we have a reduction

τZ=⇒ where the whole distribution
progresses or we have a branch with

r7−→ and
¬r7−→, where one of the two branches deter-

ministically progresses to false. Hence, there is only one 7−→-path from 〈∆ ; tσ〉 reaching
a distribution with states with values true, and this distribution is exactly the one such
that 〈∆ ; tσ〉

σZ=⇒ 〈∆′ ; true〉. As a consequence, the probability of success of 〈∆ ; tσ〉 is
the weight of ∆′, which in turn coincides with the probability of ∆ of performing trace σ.
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We derive that

prob(P, σ) = prob(dirac(P ), σ)
= weight(der(σ)(dirac(P )))

= weight(∆′ | 〈dirac(P ) ; tσ〉
σZ=⇒ 〈∆′ ; true〉)

= prob(SC(〈P ; tσ〉))
= prob(SC(〈PI ; loc := P seq tσ〉))

Hence, processes with different probabilities of performing a failure trace σ (which is a
special case of a sequence σ ∈ (A∪¬A)∗) have different probabilities of success when put
in context loc := [·] seq tσ.

For trace equivalence the proof is analogous, but we only consider tests tσ with σ ∈ A∗.
At each step from 〈∆ ; tσ〉 either we have a reduction Z=⇒ where the whole distribution
progresses or we have a reduction

rZ=⇒ where the part of distribution that does not progress
gets stuck (and therefore never reaches a true state).

Proof of Theorem 3.11 - left-to-right inclusions
For the coinductive equivalences, as in the proof for λ-calculi, we show that the tests for

Ready Simulation logic and Simulation logic can be encoded in HOπpass,ref and HOπpass
respectively.

We define the encoding as follows:

Enc(>) = ω

Enc(¬r) = r̃l.ω

Enc(〈 r 〉F ) = r.Enc(F )

Enc(F1 ∧ F2) = passl(x).([[x]]l | Enc(F1){passl(y).([[x]]l | Enc(F2))/ω}

For C = [[[·]]]l | Enc(F ), we have that C[P ] =⇒ ω−→ iff P |= F .
For failure trace equivalence, we prove that for any failure trace φ = (ri, Fi)i≤n, process

P has the failure trace φ if and if P | tφ =⇒ ω−→, where tφ is defined by induction on n:

t∅ = ω t(ri,Fi)i≤n+1
= rn+1.tFn+1 .t(ri,Fi)i≤n

and tF is ω if F is empty, while for r ∈ F and F ′ = F \ {r} we have tF = r̃l.tF ′ .
All these tests are sequential, hence the proofs follow analogously to the λ-calculi.

Proof of Theorem 3.11 - right-to-left inclusions
The proof structure is analogous to the λ-calculus case.
We start from ready simulation equivalence and HOπpassref . In what follows, we write

µ ∈ AF if µ = τ | r | ω | r̃l | r̃l (as usual, r denotes action r〈?〉) and µ ∈ AH if

µ = a〈M〉 | a〈M〉 | passlM | passlM . We first show that ready simulation equivalence
is preserved by (pure) HOπpass,ref -contexts, by proving that the relation

R def
= {(C[P̃ ], C[Q̃]) | P̃ is ready simulated by Q̃}

where C is a polyadic context of HOπpass,ref , is a strong ready simulation on transitions
labeled by first-order actions AF . As a consequence, since ready simulation equivalence
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implies trace equivalence, any successful computation (i.e., any trace of the form τnω)
from C[P ] may be mimicked by C[Q], and vice-versa.

The proof uses the following syntactical characterization of the shape of processes
performing an higher-order action, i.e., an action in AH .

Lemma 3.27. If C[P̃ ]
µ−→ M ′, for µ ∈ AH , then C = Cl1 [...Cln [Cln+1 ]...] for some n,

where:

• Cli = C1
li
| [[[·]]]li | C2

li
for i ≤ n, or a variant where one or both C1

li
and C2

li
(and the

parallel composition) do not occur and such that [·] is a hole labeled so as to be filled
with context Cli+1

,

• Cln+1 = C1
ln+1

| µ′.C ′ | C2
ln+1

µ′.C ′, where µ′ = µ if µ′ = a〈C ′[P̃ ′]〉 or µ′ =

passli+1
C ′[P̃ ′], and µ′ = passl(x) if µ = passlN for some N , and µ′ = a(x) if

µ = a〈N〉 for some N .

The lemma follows by induction on the derivation of C[P̃ ]
µ−→M ′.

Then, we prove the result by structural induction on the contexts C of HOπpass,ref .

Let C[P̃ ]RC[Q̃]. We show that:

1. for all µ ∈ AF , if C[P̃ ]
µ−→M then C[Q̃]

µ−→M ′ and M RM ′, for some M ′,

2. for all µ ∈ AF , if C[Q̃]
µ−→ then C[P̃ ]

µ−→.

• if C = [·], the result follows by C[P ] = P .RS Q = C[Q].

• if C = ω.C ′, C = a(x).C ′, C = r̃l.C
′, C = a〈N〉.C ′, C = passl(x).C ′ and the action

performed is first-order, then the reached processes are C ′[P̃ ] and C ′[Q̃], and for all

µ ∈ AF , C[P̃ ]
µ−→ iff C[Q̃]

µ−→.

• if C = [[C ′]]l, there are two cases:

– C ′[P̃ ]
µ−→M ′ with µ ∈ AF , and the transition is derived by rule Kell.

Then the result follows by the inductive hypothesis.

– C[P̃ ]
µ−→M with µ = r̃l is derived by rule RefLoc.

Then C ′[P̃ ] = P
µX−→ and C ′[Q̃] = Q

µX−→. Hence, M = [[P ]]l, M
′ = [[Q]]l and

the result follows.

The second condition follows analogously, by considering the two cases above when
deriving C[Q̃]

µ−→ and using the fact that P .RS Q and Q
µ−→ imply P

µ−→

• if C = C1 | C2, then C[P̃ ] = C1[P̃ ] | C2[P̃ ] and C[Q̃] = C1[Q̃] | C2[Q̃] with
P̃i .RS Q̃i. There are three main cases:

– C[P̃ ]
µ−→M is derived by rule ParL (the case of ParR is symmetric). Then the

result follows by the inductive hypothesis.

– C[P̃ ]
τ−→ M is derived by rule Comm, by the synchronization of actions µ, µ

in AF . The result follows again by the inductive hypothesis.
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– C[P̃ ]
τ−→M is derived by rule Comm, by the synchronization of actions µ, µ in

AH . Then we cannot use the inductive hypothesis, and the result follows from
Lemma 3.27.

Suppose now that C[Q̃]
µ−→. Then we have the same three cases, and the result

follows analogously.

The proof for HOπpass is analogous, but we consider contexts filled with processes such

that P̃ .S Q̃, and we only prove that the obtained relation is a simulation on actions in
AF .

Then the result follows since actions τ and ω are included in AF , and ready similarity
implies similarity, which implies trace inclusion. Hence, if P .RS Q, or P .S Q, and C[P ]
performs trace τnω for some n (i.e., it has a successful computation) then C[Q] performs
trace τnω.

For the inductive equivalences, as in the case of λ-calculi, we consider an alternative
labeled semantics which is meant to keep track of when derivatives of the initial processes
are tested for actions.

Define the following:

• a process P in L is active in a term M of HOπ(L) if M = M1 | M2 | ... | M2 and
P = Mi for some i.

• we say that C is a P -context of HOπ if it is a context where the only process name in
L that occurs is P , and P is inactive (i.e., the context is not a parallel composition
where P occurs top level). We denote such a context with CP , and we use CQ for
the same context with P substituted to Q.

Let CP be a P -context and let S̃ be a sequence of processes in L. Let (S̃)i denote
the i-th element of the sequence. We assume that every hole of a context is numbered
and occurs at most once. We write S̃

ri−→ S̃′ if (S̃)i
r−→ P ′ and S̃′ is equal to S̃ but with

P ′ at the i-th place. We extend this notation to the case where more than one action is
performed in parallel, i.e., S̃

r−→ S̃′ for r a set of indexed labels ri, r
′
j , ..., each with different

indexes (and where the labels are indexed in S̃, i.e., they have as maximal index the length
| S̃ | of the sequence).

If CP [S̃]
τ−→ M ′ then it follows from the operational semantics of HOπ that M ′ =

C ′P [S̃′, Pn], where S̃
r−→ S̃′ for some (possibly empty) set r of labels indexed in S̃, and Pn

is a sequence composed by n-copies of P .
This holds since a synchronization might bring to the top level some copies of P that

occur in CP (that is, the sequence Pn), and since it can be be given by three possible
kinds of interactions between processes at the top level:

• two prefixes of HOπ synchronize, and then r = ∅

• there is a synchronization where process Si of S̃ performing r synchronizes with a
prefix r̄ in the context, in which case r = {ri}

• there are processes Si
r−→ and Sj

r̄−→ in S̃ that synchronize with each other, in which
case r = {ri, r̄j}.



3.7 Proofs 65

Moreover, for any Q and T̃ such that T̃
r−→ T̃ ′ we have CQ[T̃ ]

τ−→ C ′Q[T̃ ′, Qn].

Since the three cases described above cover all cases in which CP [S̃] performs a τ action,
we can derive by induction on the length n of the τ -labeled sequence CP [S̃] =⇒ M ′ that
CP [S̃] =⇒M ′ iff there are Ci P [S̃i] for 0 ≤ i ≤ n such that:

• S̃i
ri+1−−−→ S̃′i+1

• S̃i+1 = S̃′i+1, P̃

• C0P [S̃0] = CP [S̃]

• M ′ = CnP [S̃n]

We write CP [S̃]
r7−→ C ′P [S̃′, Pn] if CP [S̃]

τ−→ C ′P [S̃′, Pn] with S̃
r−→ S̃′, and we write

CP [S̃]
r̃Z=⇒ M ′ for its reflexive and transitive closure. Then, CP [S̃] =⇒ M ′ iff CP [S̃]

r̃Z=⇒
M ′, with S̃

r̃−→.
Note that the actions in r̃ might be indexed with indexes that are greater than | S̃ |.

Then S̃
r̃−→ is defined by restricting the set indexes to those of S̃. More formally, given a

sequence r̃ of sets of actions with indexes in n, each of which contains at most one action

for each index, let #i(r̃) be the sequence of actions with index i. Then S̃
r̃−→ iff ∀i ≤| S̃ |,

(S̃)i
#i(r̃)−−−−→.

Lemma 3.28. If CP [S̃]
r̃Z=⇒ ω−→ then for any Q such that P ∼Tr Q and for any T̃ of the

same length as S̃ such that (T̃ )i
#ir̃−−−→ for every index i ≤| S̃ | we have that CQ[T̃ ]

rZ=⇒
C ′Q[T̃ ′].

We prove the lemma by induction on the length of r̃. For the inductive case, suppose

CP [S̃]
r7−→ M ′

r̃′Z=⇒ ω−→. Then (by induction on the derivation of the transition) M ′ =

C ′P [S̃′] with S̃
r′−→ S̃′′ and S̃′ = S̃′′, P̃ , and CQ[T̃ ]

r7−→ C ′Q[T̃ ′′, Q̃], with T̃
r−→ T̃ ′′ and

(T̃ ′′)i
#ir̃−−−→ for i ≤| S̃ |=| S̃′1 |. Then, since P and Q are trace equivalent, S̃′′, P̃

r̃′−→
implies T̃ ′′, Q̃

r̃′−→. Therefore, we can apply the inductive hypothesis to C ′Q[T̃ ′′, Q̃] and

derive that CQ[T̃ ]
r7−→ C ′Q[T̃ ′′, Q̃]

r̃′Z=⇒ ω−→.
For failure traces, the proof is the same but the sets r now include not only indexed

actions ri but also indexed refusal actions ¬ri, which correspond to the case when the
top-level process Pi cannot perform action i and synchronizes with a refusal operator on
r.

Proof of Theorem 3.13
To prove item (1), we first show that the tests characterizing probabilistic bisimilarity

of Section 2.3.3 can be encoded in HOπ, as in the proof for call-by-value λ-calculi.
We define the encoding as follows:

Enc(ω) = ω

Enc(r.t) = r.Enc(t)

Enc((t1, t2)) = passl(x).([[x]]l | Enc(t1){passl(y).([[x]]l | Enc(t2))/ω}
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For any test t, since the encoding of t is sequential we have that the process [[P ]]l |
Enc(t) has no internal nondeterminism (with respect to τ -actions). Hence, there is only
one possible resolution of SC([[P ]]l | Enc(t)), for any P , and the probability of success is
unique (i.e., may and must success coincide).

We prove by induction on the definition of t that Pr(t, P ) = prob(SC([[P ]]l | Enc(t)).
The case t = ω is trivial.

• Case t = r.t′. The interesting case is when P
r−→ ∆. Then the result follows from

the fact that the set SC([[P ]]l | Enc(t)) coincides with the set of computations of
the form

[[P ]]l | Enc(t), [[P ′]]l | Enc(t′), c′

for P ′ ∈ supp(∆) and c′ ∈ SC([[P ]]l | Enc(t)). We have

prob(SC([[P ]]l | Enc(t))) =
∑

c∈SC([[P ]]l |Enc(t)) prob(c)

=
∑

P ′∈supp(∆) ∆(P ′) ·
∑

c∈SC([[P ′]]l |Enc(t′)) prob(c)

=
∑

P ′∈supp(∆) ∆(P ′) · Pr(t′, P ′)

= Pr(t, P )

• Case t = (t1, t2). The result follows form the fact that the set of computations
SC([[P ]]l | Enc(t)) coincides with the set of computations of the form

[[P ]]l | Enc(t),

[[P ]]l | Enc(t1){passl(y).([[P ]]l | Enc(t2))/ω},
c1,

[[P ′]]l | passl(y).([[P ]]l | Enc(t2)),

c2,

ω

for ci ∈ SC([[P ]]l | Enc(ti)) but without the last term, and P ′ the last value of the
location in c1 (it is easy to prove by induction on t that c is a successful computation
from [[P ]]l | Enc(t) iff it is a τ -labeled computation from [[P ]]l | Enc(t) whose last
term is of the form [[P ′]]l | ω).

Hence, we have 'LHOπpass
⊆ ∼PB. Since HOπpass is a sublanguage of HOπpass,ref , we

also have 'LHOπpass,ref
⊆ 'LHOπpass

.

It remains to prove that ∼PB ⊆ 'LHOπpass,ref
.

As in the nondeterministic case, and like for λ-calculi, we first show that probabilistic
bisimilarity is preserved by contexts of HOπpass,ref , with respect to labels τ and ω.

Formally, we show that the following is a probabilistic bisimulation on the first-order
labels (defined as in the proof of the corresponding item in Theorem 3.11):

R def
= {(C[P̃ ], C[Q̃]) | P̃ ∼PB Q̃}

where contexts are polyadic. We prove by induction on C that if C[P̃ ] R C[Q̃] and

C[P̃ ]
µ−→ ∆ for µ ∈ AF then C[Q̃]

µ−→ Θ with ∆ lift(R) Θ.
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The proof proceeds as in the corresponding case in the proof for the nondeterministic
case (Theorem 3.11). Whenever a higher-order action is performed, we have that the
analogous of Lemma 3.27 holds, and performing the higher-order action leads to a dirac
distribution.

We only consider the case when C = C1 | C2 and C[P̃ ]
τ−→ ∆ = ∆1 | ∆2, derived

by rule Comm with a synchronization of C1[P̃ ]
µ−→ ∆1 and C2[P̃ ]

µ−→ ∆2, for µ ∈ AF .

Then C[Q̃] = C1[Q̃] | C2[Q̃] with P̃ ∼PB Q̃, and by the inductive hypothesis C1[Q̃]
µ−→ Θ1

and C2[P2]
µ−→ Θ2, with ∆i lift(R) Θi and C[Q]

τ−→ Θ = Θ1 | Θ2. It remains to
prove that ∆ lift(R) Θ. By ∆i lift(R) Θi, there are index sets J,K such that ∆1 =∑

j∈J pj · dirac(Mj) and Θ1 =
∑

j∈J pj · dirac(M ′j), and ∆2 =
∑

k∈K qk · dirac(Nk) and
Θ2 =

∑
k∈K qk · dirac(N ′k), and for all j, k, Mj R M ′j and Nk R N ′k. As a consequence,

we have that ∆ =
∑

(j,k) pj · qk · dirac(Mj | Nk) and Θ =
∑

(j,k) pj · qk · dirac(M ′j | N ′k),
and it follows from Mj RM ′j and Nk R N ′k that Mj | Nk RM ′j | N ′k.

We now prove that if C[P ] and C[Q] are probabilistic bisimilar with respect to actions
τ and ω, then they have the same probability of success. There are two main differences
with respect to the proof for the λ-calculus case in the probabilistic setting:

• C[P ] (and C[Q]) have internal nondeterminism with respect to τ -actions, hence we
have different possible resolutions to consider.

• a state reached by C[P ] might perform both ω and τ ; Hence, given a specific
resolution Z of C[P ] it does not hold that the probability of success of zC[P ] is∑

n≥0 prob(zC[P ], τ
nω). Indeed, prob(zC[P ], τ

nω) also includes the weights of paths
where not only the final state, but also some states before, are successful, and such
weights should not be added to the probability of success, since they do not corre-
spond to weights of successful paths. Hence, we are going to consider probabilistic
failure traces instead of probabilistic traces.

Since P ∼PFTr Q on RPLTS implies that P,Q have the same initial labels, we have
that P,Q are equivalent also with respect to “extended” probabilistic failure traces of the
form ((Fi, ri)i≤nF ), where an initial failure set is allowed.

Let SCnP denote the set of successful computations from P of length n. Then for any
RPLTS P its probability of success at length n is prob(SCn((P )) =

∑
c∈SCnP prob(c).

Hence, we have that prob(SC(P )) =
∑

n prob(SCn((P )) = prob(P, ({ω}τ)n∅ω∅).
We know from [BDL14a; BDL13] that on NPLTSs, as for LTSs, bisimilarity implies

failure trace equivalence.
Hence, it follows from C[P ] ∼PB C[Q] with respect to labels τ, ω that C[P ] ∼PFTr C[Q]

with respect to the same labels. Since C[P ] and C[Q], this is equivalent to saying that for
every resolutions ZC[P ] of C[P ] there is a resolution ZC[Q] on C[Q] such that zC[P ] ∼PFTr

zC[Q] (where, since zP and zQ are RPLTSs, the last instance of ∼PFTr is defined as on
RPLTSs). Hence, for every n ≥ 0, given the (extended) failure trace ({ω}τ)n∅ω∅ we have
prob(zC[P ], ({ω}τ)n∅ω∅) = prob(zC[Q], ({ω}τ)n∅ω∅), and we derive that

prob(SC(zC[P ])) =
∑

n prob(SCn((zC[P ]))

=
∑

n prob(zC[P ], ({ω}τ)n∅ω∅)
=
∑

n prob(zC[Q], ({ω}τ)n∅ω∅)
=
∑

n prob(SCn((zC[Q]))

= prob(SC(zC[Q]))
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Symmetrically, for every resolution ZC[Q] of C[Q] there is a resolution ZC[P ] of C[P ] such
that prob(SC(zC[Q])) = prob(SC(zC[P ])).

As a consequence,⊔
ZC[P ]∈Resτ,max(C[P ])

prob(SC(zC[P ])) =
⊔

ZC[Q]∈Resτ,max(C[Q])

prob(SC(zC[Q]))



Chapter 4

Probabilistic testing

In the previous chapter we have considered testing equivalences induced by contexts of
languages that may have higher-order and/or concurrent features, but that do not have
probabilistic features. In this chapter, we study testing equivalences for RPLTSs where
the tests may have also probabilistic choices. Instead of considering testing equivalences
where tests are given by contexts from some language, we define the equivalences using
tests that are semantically defined. In particular, we consider three different classes of
observers respectively formalized as RPLTS, LTS, and NPLTS. These can be seen as the
semantics of terms of first-order process calculi, possibly allowing probabilistic choices. In
order to apply such a test to an RPLTS, we look at the interactions between the RPLTS
and the observer running in parallel.

In Section 4.1 we introduce the testing scenario used in this chapter. We give upper
and lower bounds to the discriminating power of the three classes of observers on RPLTSs
in Section 4.2.1, and then we investigate the relationships among the resulting testing
equivalences (Section 4.2.2). We conclude by discussing two open problems and conjectures
(Section 4.3). Detailed proofs of the results presented in this chapter can be found in
Section 4.4.

4.1 Testing equivalences for RPLTS processes

Given an RPLTS, we assume that the elements of its action set A are all visible. The
action set of each considered test will be Ā ∪ {ω}, where Ā = {ā | a ∈ A} is the set of
coactions for A and ω /∈ A is a distinguished action denoting success. Every coaction
must synchronize with the corresponding action; when this happens, the invisible action
τ /∈ A is produced. Therefore, the resulting interaction system is an NPLTS with action
set {τ, ω}, whose transition relation −→ is derived from the transition relation −→1 of the
RPLTS process under test and the transition relation −→2 of the observer, through the
following two rules:

s
a−→1 ∆1 o

ā−→2 ∆2

(s, o)
τ−→ (∆1,∆2)

o
ω−→2 ∆2

(s, o)
ω−→ (dirac(s),∆2)

where (∆,Θ)(s′, o′) = ∆(s′) ·Θ(o′). This operation corresponds to putting in parallel the
tested process and the observer seen as terms of some language, and only considering the

69
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τ -labeled transitions resulting from the synchronization of inputs from the tested term
with outputs from the observer.

We then apply the definitions of computations, successful computations, and resolu-
tions we have seen in Section 2.3 to the NPLTS resulting from the observer interacting
with the RPLTS. This allows us to define testing equivalences analogously to the previ-
ous chapters. In contrast with previous chapters, we consider directly test-equivalence,
which is the intersection of may- and must-equivalence. May equivalence is defined by
considering the supremum of the probabilities of success of al resolutions. By contrast,
must-equivalence checks whether the infimum is the same. The relationship between may-
and must-equivalences in this setting is further discussed in Section 4.3.1.

Given a resolution Z of (s, o), we denote by SC(zs,o) the set of successful computations
from the state zs,o of Z corresponding to (s, o). We respectively denote by t and u the
supremum and the infimum of the set of probability values prob(SC(zs,o)) computed in the
various resolutions of the interaction system. To avoid infima to be trivially zero, in the
next definition, which is inspired by [YL92; JY95; KN98], we restrict ourselves to maximal
resolutions.

Definition 4.1. Let L = (S,A,−→L) be an RPLTS. We say that s1, s2 ∈ S are proba-
bilistic tu-testing equivalent, written s1 ∼PTe-tu s2, iff for every test T = (O, Ā,−→T )
with initial state o ∈ O it holds that:⊔

Z1∈Resmax(s1,o)

prob(SC(zZ1
s1,o)) =

⊔
Z2∈Resmax(s2,o)

prob(SC(zZ2
s2,o))

d

Z1∈Resmax(s1,o)

prob(SC(zZ1
s1,o)) =

d

Z2∈Resmax(s2,o)

prob(SC(zZ2
s2,o))

The equivalence is respectively denoted by ∼PTe-tu,rp, ∼PTe-tu,nd, or ∼PTe-tu,np depending
on whether the considered tests are all reactive probabilistic, (fully) nondeterministic, or
nondeterministic and probabilistic.

We assume tests to be finite, i.e., finite state, finitely branching, and loop free.
On the one hand, this entails that interaction systems will have finitely many maximal res-
olutions, thus ensuring the validity of our results also for a slightly finer variant of ∼PTe-tu
that we could define following [Seg96; DGHM08]. On the other hand, this restriction will
be exploited in the proofs of some results.

4.2 Properties of the RPLTS testing equivalences

4.2.1 Placing the testing equivalences in the RPLTS spectrum

Our first result is that the three relations ∼PTe-tu,rp, ∼PTe-tu,nd, and ∼PTe-tu,np are com-
prised between ∼PFTr and ∼PB. This confirms the power of the interplay between proba-
bilities and nondeterminism for discriminating purposes, which was already noticed in the
testing theory for NPLTS processes [JHSY94; DGHMZ07b; BDL14b].

The proof that each of the three equivalences is strictly finer than ∼PFTr benefits from
an analogous result with respect to ∼PF. Both proofs focus on tests that are deterministic
LTS models (DLTS for short) as they admit neither internal nondeterminism nor prob-
abilities. Since these tests constitute a submodel common to RPLTS, LTS, and NPLTS
tests, the inclusion proofs relying on them scale to the three more expressive families of
tests.
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Figure 4.1: Counterexample for testing equivalences and probabilistic failure trace equiv-
alence on RPLTSs

Lemma 4.2. On RPLTS processes, for all ∗ ∈ {rp,nd,np} it holds that:
∼PTe-tu,∗ (∼PF

Theorem 4.3. On RPLTS processes, for all ∗ ∈ {rp,nd,np} it holds that:
∼PTe-tu,∗ (∼PFTr

The inclusions in ∼PFTr are strict as shown by the two RPLTS processes, the DLTS
test, and the two NPLTS interaction systems in Figure 4.1, because we have t = 1 and
u = 0 in the first system and t = u = 0.5 in the second one.

The proof that ∼PB is included in each of the three testing equivalences exploits the
fact that ∼PB is a congruence with respect to parallel composition. Inclusion stems from
showing that, under ∼PB, for each maximal resolution of any of the two interaction sys-
tems, there exists a maximal resolution of the other interaction system, such that the two
resolutions have the same success probability.

Theorem 4.4. On RPLTS processes, for all ∗ ∈ {rp,nd,np} it holds that:
∼PB ⊆∼PTe-tu,∗

4.2.2 Relationships among the RPLTS testing equivalences

Our second result is concerned with the relationships among the discriminating powers of
∼PTe-tu,rp, ∼PTe-tu,nd, and ∼PTe-tu,np, which will help us investigating the strictness of
the inclusions of Theorem 4.4.

First of all, we observe that ∼PTe-tu,np is included both in ∼PTe-tu,rp and in ∼PTe-tu,nd,
because RPLTS tests and LTS tests are special cases of NPLTS tests. Both inclusions are
strict, as shown in the upper part of Figure 4.2, where the NPLTS test yields t = 0.75
and u = 0.25 in the first interaction system and t = u = 0.5 in the second one. We
remark the need of both internal nondeterminism and probabilities in the distinguishing
test. A linear test succeeding after performing ā, b̄, and c̄ would not be able to tell apart
s3 and s4. Likewise, those two states would not be distinguishable by a test obtained from
the previous one by replacing the c̄-transition with a probabilistic choice between that
transition and a terminal/success state, or introducing a nondeterministic choice through
a further b̄-transition to a terminal/success state after the ā-transition.

Secondly, it turns out that, in general, ∼PTe-tu,rp and ∼PTe-tu,nd are incomparable
with each other. For instance, in the middle part of Figure 4.2 we have that s5 ∼PTe-tu,rp
s6, while s5 6∼PTe-tu,nd s6 because the LTS test yields t = 1 and u = 0 in the first



72 Chapter 4 Probabilistic testing

~PB

~PTe− ,np

~PTe− ,rp

~PTe− ,nd

_
b

_
c

_
b

_
a

s3 s4 s3 o3,4,( ) 4s o3,4,( )o3,4

~PB

~PTe− ,nd

~PTe− ,rp

~PTe− ,np
_
a

_
c

_
d

_
b

_
b

s5 s6 o5,6 5s ,( o5,6) 6s ,( o5,6)

~PTe− ,np

~PTe− ,nd

_
c

_
b

_
a

~PB

~PTe− ,rp

s8 o7,8s7

_
d

s7 o7,8,( ) s8 o7,8,( )

0.5

a

b

c

0.5

a

c

b

0.5

b

0.5

0.5 0.5

ω

τ

ω

0.5

τ

τ τ

0.5 0.5

0.5

τ τ

0.5 0.5 0.50.5 0.5 0.5

ω

τ

τ τ

τ
ω ω ω ω

d

0.5

a

b

c

0.5

a

c

b

0.5

b

d

0.5

ω ω

0.5 0.5 0.5 0.5

ωω

τ

τ τ

τ τ

τ

0.5 0.5

ω ω

τ

τ

τ τ τ

τ

a

0.5 0.5

ω

τ

ω

0.5

τ

τ τ

0.5 0.5

0.5

τ τ

0.5 0.5 0.50.5 0.5 0.5

ω

τ

τ τ

τ
ω ω ω ω

a

0.5 0.5

b d

c

b d db

0.5

c

0.5

Figure 4.2: Counterexamples for probabilistic bisimilarity and testing equivalences on
RPLTSs

interaction system and t = u = 0.5 in the second one. Notice the necessity of internal
nondeterminism in the distinguishing test. In contrast, in the lower part of Figure 4.2
we have that s7 ∼PTe-tu,nd s8, while s7 6∼PTe-tu,rp s8 because the RPLTS test yields
t = 0.75 and u = 0.25 in the first interaction system and t = u = 0.5 in the second one.
Unlike the upper part of Figure 4.2, here internal nondeterminism is not necessary in the
distinguishing test.

Thirdly, if ∼PTe-tu,rp admitted only restricted RPLTS tests, then it would include
∼PTe-tu,nd, with the inclusion being strict as shown in the middle part of Figure 4.2. A
restricted RPLTS (RRPLTS for short) test is a test such that its probabilistic choices,
i.e., its non-Dirac transitions, are not preceded by nondeterministic choices. The proof of
this fact is based on the deprobabilization of an RRPLTS test. This is an algorithm that
performs a top-down traversal of the test until a set of DLTS subtests is generated, which
preserves the extremal success probabilities induced by the original test.

When encountering a non-Dirac transition in the top-down traversal of the RRPLTS
test, as shown in Figure 4.3 the algorithm replaces the test with as many RRPLTS subtests
– which are DLTS subtests in the final steps – as there are ways of resolving the probabilis-
tic choice. For simplicity, only the non-Dirac transition, labeled with ā, originating the
probabilistic choice is depicted in the figure, but in general it could be the last transition
in a computation – traversing states where no nondeterministic choices occur – going from
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Figure 4.3: Deprobabilization of an RRPLTS test (applies recursively to T1, T2, . . . , Tn)

the initial state o of the test to the probabilistic choice. Given a state s of the process
under test, the two formulas in Figure 4.3 witness that the two convex combinations of
the extremal success probabilities induced by the n subtests respectively coincide with the
two extremal success probabilities induced by the original test.

Should a nondeterministic choice precede the considered probabilistic choice, it would
not be appropriate to generate subtests by resolving both choices. The reason is that it
would then be natural to focus on the maximum and the minimum of the extremal success
probabilities induced by the various subtests arising from the resolution of the nondeter-
ministic choice. This certainly works when the nondeterministic choice is originated from
the initial state of the test, or from the state reached by a Dirac transition of the test that
synchronizes with a Dirac transition of the process under test. However, the synchroniza-
tion of a Dirac transition of the test with a non-Dirac transition of the process results
in a non-Dirac transition in the interaction system, for which a convex combination (as
opposed to maximum and minimum) of the extremal success probabilities of the various
subtests needs to be computed.

Fourthly, if ∼PTe-tu,nd admitted only DLTS tests, then it would include ∼PTe-tu,rp,
with the inclusion being strict as shown in the lower part of Figure 4.2. The reason is that
a DLTS test is a special case of RPLTS test in which there are no probabilistic choices.
In conclusion, we have:

Theorem 4.5. On RPLTS processes, it holds that:

1. ∼PTe-tu,np (∼PTe-tu,nd and ∼PTe-tu,np (∼PTe-tu,rp.

2. ∼PTe-tu,nd and ∼PTe-tu,rp are incomparable with each other.

3. ∼PTe-tu,nd (∼PTe-tu,rp if only RRPLTS tests were admitted by ∼PTe-tu,rp.

4. ∼PTe-tu,rp (∼PTe-tu,nd if only DLTS tests were admitted by ∼PTe-tu,nd.

It follows from Theorem 4.4 and from Theorem 4.5(1) that the testing equivalence
induced by RPLTS or LTS tests is strictly included in probabilistic bisimilarity.

Corollary 4.6. On RPLTS processes, for all ∗ ∈ {rp,nd} it holds that:
∼PB (∼PTe-tu,∗
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4.3 Open problems and conjectures

4.3.1 May vs. must testing

In the case of testing LTS or NPLTS processes, it is known that must testing equivalence
is strictly finer than may testing equivalence in the absence of divergence, otherwise the
two equivalences are incomparable [Nic87; DGHMZ07b]. When testing RPLTS processes,
the relationships between ∼PTe-t (may testing) and ∼PTe-u (must testing) are not clear,
even if we restrict ourselves to NPLTS tests and we admit τ -actions within them.

In that case, we could derive that ∼PTe-u,np⊆∼PTe-t,np by exploiting the construction
used in [DGHMZ07b] for proving an analogous result on NPLTS processes. The purpose
of that construction is to build from a given NPLTS test a dual one, which generates all
complementary success probabilities in the interaction system. The idea is to transform
every state of the test having an outgoing ω-transition into a terminal state, and to add
to any other state a τ -transition followed by an ω-transition.

The absence of internal nondeterminism within RPLTS processes would however pre-
vent us from concluding that the above inclusion is strict. Indeed, the typical counterex-
ample made out of a test succeeding after performing ā followed by b̄, which distinguishes
a process that can perform either a followed by b, or a followed by c, from a process that
can perform a and then has a choice between b and c, is not applicable because the first
process is not an RPLTS.

Such considerations lead us to conjecture that, for each of the three variants of ∼PTe-tu,
its may part ∼PTe-t coincides with its must part ∼PTe-u, and hence both coincide with
∼PTe-tu by virtue of the definition of the latter. This is certainly true when restricting
attention to fully probabilistic tests – as they yield, when interacting with an RPLTS
process, a single maximal resolution, in which t and u necessarily coincide – or tests
having exactly one nondeterministic choice that occurs in the initial state – as can be
easily proved by induction on the number of maximal resolutions of each such test.

4.3.2 Characterizing RPLTS testing equivalences

Our findings in Section 4.2 leave open the question whether ∼PB is strictly finer than
∼PTe-tu,np or coincides with it. In the latter case, we would have that, in the RPLTS
setting, testing equivalence reaches the same discriminating power as bisimilarity not
only in the presence of an explicit copying capability within tests [LS91], but also in the
absence of it, provided that tests are equipped with both internal nondeterminism and
probabilities. We point out that this would be a peculiarity of RPLTS processes, because
it is known that NPLTS tests are less powerful than bisimilarity in the case of NPLTS
processes [BDL14a].

The numerous examples of RPLTS processes that we have examined lead us to con-
jecture that on RPLTS processes ∼PTe-tu,np =∼PB. As a consequence of Theorem 4.4, it
suffices to prove that ∼PTe-tu,np is included in ∼PB. This is equivalent to showing that,
given two states s1 and s2 of an RPLTS, if s1 6∼PB s2, then s1 6∼PTe-tu,np s2.

The idea is to use a logic characterizing probabilistic bisimilarity on RPLTS to build a
distinguishing NPLTS test. Probabilistic Modal Logic (PML), a modal logic characterizing
∼PB on RPLTS, was first proposed in [LS91] and then led to a minimal form in [DEP02].
PML comprises the always true constant >, logical conjunction · ∧ ·, and the diamond
operator 〈a〉p· where a is an action and p is a probability lower bound. Formula 〈a〉pF
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is satisfied by an RPLTS state if an a-labeled transition is possible from that state, after
which a set of states satisfying F is reached with probability at least p. The proof of the
conjecture appears far from being trivial. The connection between PML and the testing
approach of [LS91] is intuitively clear, as multiplying the success probabilities resulting
from the application of independent choice-free tests to as many copies of the current
state under test is analogous to taking the logical conjunction of a number of formulas
each starting with a suitably decorated diamond. In contrast, the tests used in this chapter
follow the classical theory of [DH84], hence do not admit any copying capability and, most
importantly, may contain choices, which fit well together with logical disjunction rather
than conjunction. The characterization of probabilistic bisimulation via a modal logic
based on disjunction has been recently studied in [BM16], and could be used as basis for
proving the conjecture.

We conclude by mentioning that an alternative proof strategy for this conjecture, when
only considering may testing equivalence, may exploit Proposition 2.12 (∼PB =∼PS) and
the characterization of may testing via simulation provided by [DGHM08]. However, we
recall that in [DGHM08] τ -actions are admitted, the considered probabilistic simulation
is not the standard one, and the focus is on preorders rather than equivalences.

4.4 Proofs

Proof of Lemma 4.2
We first prove that the same result holds for probabilistic trace equivalence.

Lemma 4.7. On RPLTS processes, for all ∗ ∈ {rp,nd,np} it holds that:

∼PTe-tu,∗ (∼PTr

Proof. Since ∼PTe-tu,∗ is included in ∼PTe-t,∗, it is sufficient to prove that the latter is
included in ∼PTr. Moreover, let us restrict ourselves to consider only DLTS tests, in which
neither internal nondeterminism nor probabilities are allowed, and denote by ∼PTe-t,d the
may part of the resulting probabilistic testing equivalence. Since a DLTS is a submodel
common to RPLTS, LTS, and NPLTS, ∼PTe-t,∗ is included in ∼PTe-t,d. Thus, if we prove
the inclusion in ∼PTr for the DLTS case, then the inclusion in ∼PTr will hold also for the
other three cases.
Given an RPLTS L = (S,A,−→) and s1, s2 ∈ S, we consider the contrapositive statement.
If s1 6∼PTr s2, i.e., if there exists a trace σ ∈ A∗ such that prob(C(s1, σ)) 6= prob(C(s2, σ)),
then the DLTS test Tσ with initial state oσ having a single maximal computation that is
labeled with σ̄ ω yields:⊔

Z1∈Resmax(s1,oσ)

prob(SC(zs1,oσ)) = prob(C(s1, σ)) 6=

6= prob(C(s2, σ)) =
⊔

Z2∈Resmax(s2,oσ)

prob(SC(zs2,oσ))

which means that s1 6∼PTe-t,d s2. 2

As in the previous proof, to show that all testing equivalences are included in ∼PF it
is sufficient to prove the inclusion of ∼PTe-t,d in ∼PF.
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Given an RPLTS L = (S,A,−→) and s1, s2 ∈ S, suppose that s1 ∼PTe-t,d s2. For an
arbitrary failure pair ϕ = (σ, F ), where F 6= ∅ to avoid overlapping with ∼PTr, we consider
a DLTS test Tϕ with initial state oϕ that can only perform a computation labeled with σ̄,
after which a state is reached having an outgoing ā-transition followed by an ω-transition
for each a ∈ F .
For all s ∈ S it holds that:⊔

Z∈Resmax(s,oϕ)

prob(SC(zs,oϕ)) = prob(C(s, σ))− prob(FC(s, ϕ))

hence we have s1 ∼PTe-t,d s2 and s1 ∼PTr s2 (by Lemma 4.7), and it follows that:

prob(FC(s1, ϕ)) = prob(C(s1, σ))−
⊔

Z1∈Resmax(s1,oϕ)

prob(SC(zs1,oϕ)) =

= prob(C(s2, σ))−
⊔

Z2∈Resmax(s2,oϕ)

prob(SC(zs2,oϕ)) = prob(FC(s2, ϕ))

which means that s1 ∼PF s2.

Proof of Theorem 4.3
As in the previous proof, it is sufficient to demonstrate the inclusion of ∼PTe-t,d in

∼PFTr.
Given an RPLTS L = (S,A,−→) and s1, s2 ∈ S, suppose that s1 ∼PTe-t,d s2. For an
arbitrary failure trace φ = (a1, F1) (a2, F2) . . . (an, Fn), where n ≥ 1, ai /∈ Fi−1 for all
i = 2, . . . , n, and Fi 6= ∅ for some i = 1, . . . , n to avoid trivial cases as well as overlapping
with ∼PTr, we consider a DLTS test Tφ with initial state oφ that can only perform a
computation labeled with ā1ā2 . . . ān such that, for all i = 1, . . . , n, the state reached after
performing āi has also an outgoing ā-transition followed by an ω-transition for each a ∈ Fi.

For all s ∈ S it holds that:⊔
Z∈Resmax(s,oφ)

prob(SC(zs,oφ)) = prob(C(s, a1))

−
n∑
i=2

prob(FT C(s, (a1, F1) . . . (ai−1, Fi−1 ∪ {ai})))

− prob(FT C(s, φ))

The reason is that, for all i = 1, . . . , n− 1, given a computation of s labeled with a1 . . . ai,
for each state in the support of the target distribution reached after performing ai there
are the following three alternative cases:

• the state can perform at least one action in Fi, thereby leading to success in the
interaction with Tφ;

• the state can perform neither actions in Fi nor action ai+1, thereby leading to failure
in the interaction with Tφ;

• the state can perform no actions in Fi but can perform action ai+1;

where the last two cases boil down to the same one leading to failure when i = n (the
state can perform no actions in Fn). Therefore:⊔

Z∈Resmax(s,oφ)

prob(SC(zs,oφ)) =

n∑
i=1

prob(C′(s, (a1, F1) . . . (ai−1, Fi−1) (ai,∃Fi)))
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where C′(s, (a1, F1) . . . (ai−1, Fi−1) (ai,∃Fi)) is the set of computations of s compatible with
the failure trace (a1, F1) . . . (ai−1, Fi−1) that can subsequently perform action ai and reach
a state in which at least one action in Fi is enabled. For all i = 1, . . . , n it holds that:

prob(C′(s, (a1, F1) . . . (ai−1, Fi−1) (ai,∃Fi)))
= prob(C′′(s, (a1, F1) . . . (ai−1, Fi−1) ai))
− prob(FT C(s, (a1, F1) . . . (ai−1, Fi−1) (ai, Fi)))

where C′′(s, (a1, F1) . . . (ai−1, Fi−1) ai) is the set of computations of s compatible with
the failure trace (a1, F1) . . . (ai−1, Fi−1) that can subsequently perform action ai, hence
C′′(s, a1) = C(s, a1) while for all i = 2, . . . , n it holds that:

prob(C′′(s, (a1, F1) . . . (ai−1, Fi−1) ai)) = prob(FT C(s, (a1, F1) . . . (ai−1, Fi−1)))
− prob(FT C(s, (a1, F1) . . . (ai−1, Fi−1 ∪ {ai})))

Summing up:⊔
Z∈Resmax(s,oφ)

prob(SC(zs,oφ)) = [prob(C(s, a1))− prob(FT C(s, (a1, F1)))]

+
n∑
i=2

[prob(FT C(s, (a1, F1) . . . (ai−1, Fi−1)))

− prob(FT C(s, (a1, F1) . . . (ai−1, Fi−1 ∪ {ai})))
− prob(FT C(s, (a1, F1) . . . (ai−1, Fi−1) (ai, Fi)))]

= prob(C(s, a1))

−
n∑
i=2

prob(FT C(s, (a1, F1) . . . (ai−1, Fi−1 ∪ {ai})))

− prob(FT C(s, φ))

Recall now that s1 ∼PTe-t,d s2, hence s1 ∼PTr s2. We show that prob(FT C(s1, φ))
= prob(FT C(s2, φ)) by proceeding by induction on | φ |= n ≥ 1:

• Let n = 1. Then:

prob(FT C(s1, φ)) = prob(C(s1, σ))−
⊔

Z1∈Resmax(s1,oφ)

prob(SC(zs1,oφ)) =

= prob(C(s2, σ))−
⊔

Z2∈Resmax(s2,oφ)

prob(SC(zs2,oφ)) = prob(FT C(s2, φ))

• Let n > 1 and suppose that the result holds for each failure trace of length j such
that 1 ≤ j ≤ n− 1. Then:

prob(FT C(s1, φ)) = prob(C(s1, a1))

−
n∑
i=2

prob(FT C(s1, (a1, F1) . . . (ai−1, Fi−1 ∪ {ai})))

−
⊔

Z∈Resmax(s1,oφ)

prob(SC(zs1,oφ))

= prob(C(s2, a1))

−
n∑
i=2

prob(FT C(s2, (a1, F1) . . . (ai−1, Fi−1 ∪ {ai})))

−
⊔

Z∈Resmax(s2,oφ)

prob(SC(zs2,oφ))

= prob(FT C(s2, φ))
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We can thus conclude that s1 ∼PFTr s2.

Proof of Theorem 4.4
We prove that ∼PB implies ∼PTe-tu,np.

We know that ∼PB on NPLTS is preserved by the parallel operator [SL95], which implies
that if (s1, s2) ∈∼PB then ((s1, o), (s2, o)) ∈∼PB, for o an arbitrary NPLTS test. Then the
proof proceeds analogously to the proof of Theorem 3.13 (item (1)). Bisimilarity implies
failure trace equivalence on NPLTS [BDL13], which means that for each resolution Z1 of
(s1, o) there is a resolution Z2 of (s2, o) such that for every failure trace computation φ:

prob(FT C(zs1,o, φ)) = prob(FT C(zs2,o, φ))

and vice versa.
Let SCn(zsi,o) denote the set of successful computations from zsi,o of length n, for

i ∈ {1, 2}. Then the probability of success at length n of zsi,o is prob(SCn(zsi,o)) =∑
c∈SCn(zsi ,o)

prob(c), and it is in turn equal to prob(FT C(zsi,o, ({ω}τ)n∅ω∅)).
Hence, we derive

prob(SC(zsi,o)) =
∑
n

prob(SCn(zsi,o)) =
∑
n

prob(FT C(zsi,o, ({ω}τ)n∅ω∅)) .

(Note that we are here allowing a failure set also at the beginning of the failure trace. As
we have seen, failure trace equivalence allows us to do so.)
Since for each resolution Z1 of (s1, o) there is a resolution Z2 of (s2, o) such that for every
n,

prob(FT C(zs1,o, ({ω}τ)n∅ω∅)) = prob(FT C(zs2,o, ({ω}τ)n∅ω∅))

(and vice versa) the result follows.

Proof of Theorem 4.5
Let L = (S,A,−→) be an RPLTS:

1. The two inclusions immediately follow from the fact that LTS tests and RPLTS tests
are special cases of NPLTS tests.

2. Incomparability stems from the middle part and the lower part of Figure 4.2.

3. First of all, we establish the correctness of the deprobabilization algorithm for
RRPLTS tests, i.e., the fact that the set of DLTS subtests generated by the algo-
rithm preserves the extremal success probabilities induced by the original RRPLTS
test. More precisely, given s ∈ S and an RRPLTS test T = (O,A,−→T ) with initial
state o ∈ O, it holds that:⊔

Z∈Resmax(s,o)

prob(SC(zs,o)) =
k∑
j=1

qj ·
⊔

Z′j∈Resmax(s,o′j)

prob(SC(zs,o′j ))

d

Z∈Resmax(s,o)

prob(SC(zs,o)) =
k∑
j=1

qj ·
d

Z′j∈Resmax(s,o′j)

prob(SC(zs,o′j ))

as we prove below by proceeding by induction on the number k ∈ N≥1 of DLTS
subtests ST ′1, . . . ,ST ′k with initial states o′1, . . . , o

′
k and associated probabilities

q1, . . . , qk generated for T by the deprobabilization algorithm:
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• If k = 1, then T has no non-Dirac transitions at all, and hence the only DLTS
test ST ′1 with initial state o′1 = o and associated probability 1 generated by the
deprobabilization algorithm coincides with T . In this case, the result trivially
holds.

• Let k ≥ 2 and assume that the result holds for all RRPLTS tests for which
the deprobabilization algorithm generates at most k − 1 DLTS subtests. From
k ≥ 2, it follows that T has at least one non-Dirac transition. Consider the first
of these transitions encountered in the top-down traversal of T , whose target
distribution is supposed to assign to the states in its support the probability
values pi, 1 ≤ i ≤ n, with n ∈ N≥2. Let ST i, 1 ≤ i ≤ n, be the corresponding
RRPLTS subtests generated by the deprobabilization algorithm, with initial
states oi for i = 1, . . . , n (see Figure 4.3).
Due to the absence in T of nondeterministic choices preceding the considered
non-Dirac transition, we have that:

⊔
Z∈Resmax(s,o)

prob(SC(zs,o)) =
n∑
i=1

pi ·
⊔

Zi∈Resmax(s,oi)

prob(SC(zs,oi))

d

Z∈Resmax(s,o)

prob(SC(zs,o)) =
n∑
i=1

pi ·
d

Zi∈Resmax(s,oi)

prob(SC(zs,oi))

Since the application of the deprobabilization algorithm to each such subtest
ST i generates ki ≤ k − 1 DLTS subtests (which are DLTS subtests of T too)
ST ′i,h, 1 ≤ h ≤ ki, with initial states o′i,1, . . . , o

′
i,ki

and associated probabilities
qi,1, . . . , qi,ki , by the induction hypothesis we derive that:

⊔
Z∈Resmax(s,o)

prob(SC(zs,o)) =
n∑
i=1

pi ·
ki∑
h=1

qi,h ·
⊔

Z′i,h∈Resmax(s,o′i,h)

prob(SC(zs,o′i,h))

d

Z∈Resmax(s,o)

prob(SC(zs,o)) =
n∑
i=1

pi ·
ki∑
h=1

qi,h ·
d

Z′i,h∈Resmax(s,o′i,h)

prob(SC(zs,o′i,h))

which can be rewritten as follows due to the distributivity of multiplication
with respect to addition:

⊔
Z∈Resmax(s,o)

prob(SC(zs,o)) =
n∑
i=1

ki∑
h=1

(pi · qi,h) ·
⊔

Z′i,h∈Resmax(s,o′i,h)

prob(SC(zs,o′i,h))

d

Z∈Resmax(s,o)

prob(SC(zs,o)) =
n∑
i=1

ki∑
h=1

(pi · qi,h) ·
d

Z′i,h∈Resmax(s,o′i,h)

prob(SC(zs,o′i,h))

Given s1, s2 ∈ S, suppose now that s1 ∼PTe-tu,nd s2 and consider an arbitrary
RRPLTS test T = (O,A,−→T ) with initial state o ∈ O for which the deprobabiliza-
tion algorithm generates k ∈ N≥1 DLTS subtests ST ′1, . . . ,ST ′k with initial states
o′1, . . . , o

′
k and associated probabilities q1, . . . , qk. From s1 ∼PTe-tu,nd s2, it follows
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in particular that s1 and s2 cannot be told apart by any DLTS test, hence:

⊔
Z1∈Resmax(s1,o)

prob(SC(zs1,o)) =
k∑
j=1

qj ·
⊔

Z′1,j∈Resmax(s1,o′j)

prob(SC(zs1,o′j ))

=
k∑
j=1

qj ·
⊔

Z′2,j∈Resmax(s2,o′j)

prob(SC(zs2,o′j ))

=
⊔

Z2∈Resmax(s2,o)

prob(SC(zs2,o))

d

Z1∈Resmax(s1,o)

prob(SC(zs1,o)) =
k∑
j=1

qj ·
d

Z′1,j∈Resmax(s1,o′j)

prob(SC(zs1,o′j ))

=
k∑
j=1

qj ·
d

Z′2,j∈Resmax(s2,o′j)

prob(SC(zs2,o′j ))

=
d

Z2∈Resmax(s2,o)

prob(SC(zs2,o))

4. The inclusion immediately follows from the fact that DLTS tests are special cases of
RPLTS tests.
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Conclusions

5.1 Additional related works

There are analogies between our results on the contextual equivalences induced by higher-
order languages on ordinary LTSs and results in the literature on the equivalences on LTSs
that characterize the coarsest congruences contained in trace equivalence for operators
whose operational rules comply with certain rule formats. Some of these formats allow
negative premises in the rules, with which refusals may be encoded, or allow rules in which
an argument of an operator may end up, in the derivative of the rule, within a predefined
context; when the context is polyadic, this yields a form of copying. In higher-order
languages, in contrast, copying is achieved through the variable binding mechanisms of
the languages. Passivation or, in the λ-calculi, call-by-value, are necessary to obtain the
discriminating power of powerful formats such as GSOS [BIM95] and tyft/tyxt [GV92]
(which give ready simulation equivalence and simulation equivalence, respectively).

Rule formats for probabilistic processes include [Bar02; LT09; DL12], where the empha-
sis is on ensuring congruence properties for bisimilarity. Testing of reactive probabilistic
processes is studied in [KN98], obtaining an equivalence strictly coarser than bisimilarity,
though the comparison with the equivalences induced by our contextual equivalences is
unclear.

5.2 Conclusions and future work

In Chapter 3 we have studied the discriminating power offered by higher-order concur-
rent languages such as HOπ, without and with passivation, and contrasted it with those
offered by higher-order sequential languages à la λ-calculus and by first-order concurrent
languages à la CCS. We have measured this discriminating power on the basis of the dis-
tinctions that the languages, possibly extended with refusal, allow us to make on first-order
processes that are either fully nondeterministic (LTSs) or reactive probabilistic (RPLTSs).

The discriminating power of HOπ with passivation coincides with that of the call-by-
value λ-calculus, both on LTSs and on RPLTSs. Intuitively, HOπ with passivation and the
call-by-value λ-calculus are both capable of implementing the ‘and’ of two tests. That is,
the equivalence induced by these languages are characterized by modal logics that include
the ‘and’ connective between formulas and are therefore ‘branching-sensitive’.
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Λloc
N−ref = HOπ = CCS−

Λloc
N = HOπref = CCS−refΛloc

V−ref = HOπpass

Λloc
V = HOπref,pass

trace equivalence

failure trace equivalencesimulation equivalence

ready simulation equivalence

Figure 5.1: The spectrum of equivalences for nondeterministic processes

The addition of refusal increases the discriminating power of all the considered lan-
guages when testing LTSs. This is not always the case on RPLTSs. One reason is that,
similarly to fully probabilistic processes [JS90; JL91], the spectrum of equivalences for
RPLTSs is narrower than for LTSs.

On LTSs, the extra discriminating power offered in concurrency by passivation over
higher-order communication corresponds, in λ-calculi, to the call-by-value possibility of
reducing the argument of a function and then capturing the result.

On RPLTSs, we do not know exactly what are the equivalences induced by CCS−and
CCS−ref , though we know they are strictly in between probabilistic failure-trace equivalence
and probabilistic bisimilarity. We are not aware of RPLTS equivalences in the literature
with the same property. The lack of any copying facility makes the CCS− equivalence
also strictly coarser than those of HOπ and of all other concurrent languages considered.
Another question that remains open is whether the equivalences induced by HOπ (with or
without refusal) coincide, and whether they are strictly coarser than probabilistic bisimi-
larity.

Figures 5.1 and 5.2 summarize the relationship among the various equivalences on a
first-order LTS or RPLTS, respectively, that have been considered in Chapter 3. In the
figures, the name of a language, say AL, stands for the contextual equivalence 'LAL. A
single arrow denotes a strict inclusion, unless the arrow is coupled with a question mark,
in which case we do not know whether the inclusion is strict or not.

The contextual equivalences we have focused on in Chapter 3 are ‘may’ forms of con-
textual equivalence. We have discussed a few instances of ‘must’ contextual equivalence,
and we leave it as future work to systematically address the must-equivalences.

When testing LTSs and RPLTSs with contexts from CCS-like or higher-order languages
in Chapter 3, we have admitted probabilities in the tested first-order processes, but not in
the testing languages. It would be interesting to see if and how the addition of probabilities
to the testing languages affects the results. A first attempt at answering this question
is given by the testing scenarios presented in Chapter 4, where RPLTS processes are
tested using probabilistic tests as well. We have considered testing equivalences induced
on RPLTSs by three classes of tests: LTS-like tests, RPLTS-like tests and NPLTS-like
tests. The testing equivalence induced by RPLTS and LTS tests are incomparable with
each other and they both are strictly more discriminating than probabilistic failure trace
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Figure 5.2: The spectrum of equivalences for reactive probabilistic processes

equivalence on RPLTS processes. NPLTS tests induce a testing equivalence that is strictly
more discriminating than the ones induced by RPLTS or LTS tests. In particular, in a
language-based testing akin to that of Chapter 3, the case ∼PTe-tu,np when the tests are
NPLTS would correspond to testing RPLTS by putting them in contexts of the form
C = [·] | M , where M is a term from a probabilistic, finitary and synchronization-
free CCS language. Hence, the discriminating power of the language is deeply increased
by the presence of probabilities already when a restricted, first-order class of contexts is
considered. Indeed, we have shown that probabilistic bisimilarity is included in ∼PTe-tu,np

and we have conjectured that these equivalences actually coincide. This would mean that
probabilistic bisimilarity can be captured by first-order tests (and languages) featuring
both probability and nondeterminism.

The tested LTSs/RPLTSs processes in this work do not feature internal (i.e., τ -labeled)
moves, which means that the induced equivalences are ‘strong’. A natural developments of
this work thus consists in admitting internal actions in the tested processes and therefore
move to ‘weak’ behavioral relations.

Finally, we have examined the equivalences induced on purely nondeterministic pro-
cesses (LTSs), and on reactive probabilistic processes (RPLTSs), but we have not con-
sidered combinations of them; this would amount to studying whether the contextual
equivalences induced on NPLTSs coincide with known probabilistic testing equivalences,
e.g., [Seg96; DGHM08; DGHM09] (characterized also as variants of simulation), or other
behavioral relations are needed. The study of the spectrum of equivalences for NPLTSs is
a non-trivial extension of the one for RPLTSs, since many of the characterization results
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for probabilistic equivalences presented in the previous chapters rely on the fact that the
considered processes only feature external nondeterminism. For instance, the proof that
the contextual equivalences induced by languages Λloc

V−ref ,Λ
loc
V ,HOπpass and HOπref,pass all

collapse and coincide with probabilistic bisimilarity on RPLTSs (Theorems 3.9 and 3.13)
could not be adapted to the case when the tested processes are NPLTSs. The proof that
these contextual equivalences imply probabilistic bisimilarity exploits the peculiar result
that probabilistic bisimilarity and probabilistic similarity coincide on RPLTSs, and that
on RPLTS they are captured by tests that only admit conjunction and testing of actions
(see Section 2.3.3).



Part II

Full abstraction for probabilistic
λ-calculi
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Chapter 6

Background

We recall the definitions of applicative and environmental bisimulations for pure (non-
probabilistic) λ-calculi, and we discuss counterexamples motivating the use of environmen-
tal bisimulations for richer languages such as imperative λ-calculi.4 Then in Section 6.2
we introduce the semantics of pure probabilistic call-by-name and call-by-value λ-calculi.

6.1 Bisimulations for λ-calculi

In pure non-probabilistic λ-calculi (Section 2.4), the definition of contextual equivalence
is based on observing convergence, or termination. We say that a term M converges
(notation: M ⇓) if M =⇒ V for some value V . Otherwise, we say that M diverges
(notation: M ⇑).

Definition 6.1 ([Mor68]). Terms M,N of the call-by-name λ-calculus (respectively: call-
by-value) are contextually equivalent if for every context C of the calculus, C[M ] ⇓ iff
C[N ] ⇓.

Example 6.2. Terms Ω = (λx.xx) (λx.xx) and I = λx.x are respectively a diverging
term and the identity function. Trivially, they are not contextually equivalent since using
the empty context C = [·] we have C[Ω] ⇑ and C[ I ] ⇓. This holds both in call-by-name
and in call-by-value.

Examples of contextually equivalent terms, both in call-by-name and in call-by-value,
are the identity function I and its variant λx. Ix. We will prove that they are contextually
equivalent in call-by-value using applicative bisimulations in the following section.
Notation: We use M,N,L, P,Q for terms of λ-calculi, and V,W for values.

6.1.1 Applicative bisimulation

We define both applicative and environmental bisimulation using big-step clauses. This
aims at simplifying the comparison between the non-probabilistic definitions and the defi-
nitions for probabilistic calculi, which we will present in the following chapters and which,
as we will see, have to be big-step.

4 The results presented in this section and references to these results in the literature have been discussed
in Section 1.2.3.
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In applicative bisimulation, we test that equivalent terms both converge (clauses (1)
and (2)) and, if so, that the reached values are equivalent whenever they are given the
same argument (clause (3)).

Definition 6.3 (Applicative bisimulation, call-by-name [Abr90]). A relationR over closed
terms of the call-by-name λ-calculus is an applicative bisimulation if M R N implies that:

1. if M =⇒ V then N =⇒W and V RW ;

2. if N =⇒W then M =⇒ V and V RW (i.e., the symmetric condition, from N);

3. if M = λx.M ′ and N = λx.N ′ then for every term P , M ′{P/x} R N ′{P/x}.

Terms M and N are applicative bisimilar if there is an applicative bisimulation R such
that M R N .

Definition 6.4 (Applicative bisimulation, call-by-value). The definition for the call-by-
value λ-calculus is the same except for the third clause, which becomes:

3′. if M = λx.M ′ and N = λx.N ′ then for every value V , M ′{V/x} R N ′{V/x}.

If we used general terms instead of values to test abstractions in call-by-value, then
the terms λ. I (recall that a thunk λ.M is a term λx.M where x does not occur free in M)
and λx.(λ. I )x would not be bisimilar in call-by-value, since when x is substituted with
argument Ω the first term converges and the second one diverges. However, the two terms
are contextually equivalent in call-by-value.

The greatest applicative bisimulation (applicative bisimilarity) is an equivalence re-
lation, and coincides with the union of all bisimulations. In pure, deterministic calculi,
applicative bisimilarity coincides with applicative simulation equivalence. Simulations are
defined, as usual, by removing the second (symmetric) clause in the definition of bisimu-
lation.

The definition of applicative bisimulation can be recovered as the standard (first-order)
bisimulation applied to an LTS, as defined in Section 2.2.2 (Definition 2.6). To this end,
we define an LTS whose states are λ-terms and with transitions representing both the
evaluation of λ-terms and the test of a value carried out by providing it with an argument.

We define here the LTS for the call-by-name λ-calculus.5 Let Λ and V be the sets of
closed terms and values of the calculus, respectively.

Definition 6.5. The LTS (S,A,−→) is given by:

• A set of states S = {Λ}]{V̂}, where terms and values are taken modulo α-equivalence
and V̂ = {V̂ | V ∈ V} is a set containing copies of the values in Λ decorated with .̂ We
call these values distinguished values.
• A set of labels A = Λ ∪ {eval}, where, again, terms are taken modulo α-equivalence.
• A transition relation −→ such that:
• for every M ∈ Λ and for every V̂ ∈ V̂, M

eval−−−→ V̂ iff M =⇒ V ;

• for every ˆλx.M ∈ V̂ and for every P ∈ Λ, ˆλx.M
P−→M{P/x}.

5This LTS is built analogously to the ones in [DLSA14; CD14] for the probabilistic case, that we will
present in the next chapter.
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If V ∈ V, then both V and V̂ are states of the LTS. Distinguished values allow us to
distinguish between a value V seen as term that is going to be reduced and a value V̂ seen
as the result of the reduction of a term.

The LTS for call-by-value is defined analogously, but with set of actions A = V∪{eval},
since only values are given as arguments to functions in the bisimulation game. Hence,
the last item of the definition of the transition relation becomes:

for every ˆλx.M ∈ V̂ and for every V ∈ V, ˆλx.M
V−→M{V/x}

Applicative bisimulations enjoy a simple and easy to apply definition, and have been
proved to be fully abstract with respect to contextual equivalence both in pure call-by-
name and in pure call-by-value λ-calculi (see [Pit12] and Section 1.2.3). Full abstraction
means that applicative bisimilarity is sound (applicative bisimilarity implies contextual
equivalence) and complete (contextual equivalence implies applicative bisimilarity), and
thus coincides with contextual equivalence.

Example 6.6. By the full abstraction results, if we want to prove that in the call-by-value
λ-calculus terms I and λx. Ix are contextually equivalent, we can exhibit the following
relation:

R = {( I , λx. Ix)} ∪ {(V, IV ) | V is a value} ∪ {(M,M) | M is a a term}

The relation is an applicative bisimulation since terms I and λx. Ix are already values
and thereby trivially satisfy clauses (1) and (2). Then, whatever value V they are given
as input we obtain a pair of the form (V, IV ), which is in R by the second set and so
clause (3) holds. In a pair of the form (V, IV ) the two terms evaluate to the same value
V , and we stay in the relation since identity is included in the relation. Finally, equal
terms evaluate to equal values, and if we substitute the same terms to the same values we
obtain equal terms. Hence, also the second and third sets in the definition of R satisfy
the applicative bisimulation clauses.

6.1.2 Applicative vs. environmental bisimulation

We recall here the definition of environmental bisimulation [SKS11]6 and we discuss how
it solves some drawbacks of applicative bisimilarity.

An environmental relation is a set of elements each of which is of the form (E ,M,N) or
E , where M,N are closed terms and E is a relation on closed values. In a triple (E ,M,N)
the relation component E is the environment, and M,N are the tested terms. We write
MREN for (E ,M,N) ∈ R. The contextual closure R? of a binary relation R is the set

{(C[M1, ...,Mn], C[N1, ..., Nn]) | MiRNi}

Definition 6.7 (Environmental bisimulation, call-by-name). An environmental relation
R is an environmental bisimulation if

1. MREN implies:

(a) if M =⇒ V then N =⇒W and E ∪ {(V,W )} ∈ R;

6The definition of environmental bisimulation in [SKS11] uses small-step clauses. For uniformity with
the rest of the thesis, we define here the big-step version.
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(b) the symmetric condition, from N ;

2. if E ∈ R then for all (λx.P, λx.Q) ∈ E and for all (M,N) ∈ E? it holds that
P{M/x}REQ{N/x}.

Environmental bisimilarity is the union of all environmental bisimulations.

Hence, in environmental bisimulation terms are related with respect to a set of values
E that grows during the bisimulation game. As in applicative bisimulation, related terms
should both converge (clause (1)). In contrast with applicative bisimulation, the reached
values are collected in environment E , and the values in E are then tested by using argu-
ments in the contextual closure of the same environment E (clause (2)). As a consequence,
we are allowing a larger class of tests for functions with respect to applicative bisimulation
(since the identity relation on terms is included in E?).

Analogously to applicative bisimilarity, the definition for call-by-value is obtained by
only allowing values as arguments for related abstractions. Formally, we write R?̂ for the
contextual closure of R restricted to values, and clause 2 becomes:

2′. if E ∈ R then for all (λx.P, λx.Q) ∈ E and for all (V,W ) ∈ E ?̂ it holds that
P{V/x} RE Q{W/x}.

Remark 6.8. In definition 6.7, we have defined the environment E as a set of pairs of
values, following [SKS11]. This environment can be alternatively formalized using tuples

of values. Instead of sets E we use pairs of tuples of values (Ṽ , W̃ ) where Ṽ and W̃ have
the same length, and then we define an environmental relation as a relation on pairs of the
form either (Ṽ ;M, W̃ ;N), i.e., configurations of tuples of values each with a running term,

or (Ṽ , W̃ ) (note that the relation is directly defined on tuples, so Ṽ R W̃ does not denote
the pointwise relation on corresponding values in the tuples). Then an environmental
relation R on such pairs is an environmental bisimulation (for call-by-name) if

1. Ṽ ;M R W̃ ;N implies:

(a) if M =⇒ V then N =⇒W and Ṽ , V R W̃ ,W ;

(b) the symmetric condition, from N ;

2. if Ṽ R W̃ then for all (λx.P, λx.Q) such that (Ṽ )i = λx.P and (W̃ )i = λx.Q for

some i (i.e., the i-th projections of the tuples) and for every (M,N) ∈ (Ṽ , W̃ )? (i.e.,

M = C[Ṽ ] and N = C[W̃ ] for some C) we have Ṽ ;P{M/x} R W̃ ;Q{N/x}.

The usefulness of this alternative definition will become clear in Chapter 8.

As argued in the introduction (Section 1.2.3), the definition of applicative bisimulation
has some drawbacks, that can be solved by resorting to bisimulations with a more complex
definition such as environmental bisimulations. First, it is generally hard to prove that
applicative bisimilarity is a congruence. To prove congruence in a direct manner, we
can try to show that the contextual closure of an applicative bisimulation R is itself an
applicative bisimulation. Such a proof fails since we have to show that the application
of values in R to pairs of terms in the contextual closure of the relation is again in the
contextual closure of the relation. The problem is that when λx.M Rλx.N :
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• we want to derive that M{P/x} R N{Q/x}, for all (P,Q) in the contextual closure
of R ;

• by the definition of applicative bisimulation, we can only derive that M{P/x} R
N{P/x}, for every P .

Hence, the congruence proof of applicative bisimulation is carried out using Howe’s method
[How89], which is based on building a syntax-based relation which enjoys substitutivity
properties by definition. Then we have to prove that this relation coincides with applicative
bisimilarity, by showing complicated properties of the defined relation. By contrast, the
congruence proof for environmental bisimulation can be carried out directly, since by
definition functions are tested with inputs built from the contextual closure of terms in
the environment.

Secondly, applicative bisimilarity is not sound in many extensions of pure λ-calculi
[KLS11]. In particular, suppose we add imperative features, namely higher-order refer-
ences (with private locations), to the call-by-value calculus, along the lines of the languages
in [KW06b; SKS11].

Reduction is now defined on configurations 〈s ; M〉, where s is a store (a function
mapping locations to values) and M is a term. We assume a countable set of locations l.
The syntax of the calculus is extended with constructs for reading and writing in the store,
for creating fresh locations, and for performing operations on constants (e.g., arithmetical
operations or identity checks on integers), that include booleans, integers and the unit
value ?. We only consider a minimal version of the language, that is however sufficient
for our purposes in this section. We will consider an extended, probabilistic version of the
calculus in Chapter 8.

The syntax of terms and values is:

M ::= x variables

| c constants

| λx.M functions

| M1M2 applications

| (ν x :=M1)M2 new location

| !l dereferencing

| l := M2 assignments

| op(M1, ...,Mn) primitive operations

| if M1 then M2 else M3 if-then-else

V ::= c | λx.M
The small-step reduction and the evaluation contexts are defined in Figure 6.1. We

write s[l → V ] to denote the the update of s (possibly an extension of s if l is not in
the domain of s). The language is typed, to ensure that in any store update s[l → V ],
value V has the type appropriate for l. In all semantic rules, any configuration 〈s ; M〉 is
well-formed, in that M is closed and all the locations in M and s are in the domain of s.

In λ-calculi with imperative features, and in particular in calculi with a local store
(where fresh locations might be created at run time, and not made available to the con-
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Beta
〈s ; (λx.M)V 〉 −→ 〈s ; M{V/x}〉

New
l not in the domain of s

〈s ; (ν x :=V )M〉 −→ 〈s[l→ V ] ; M{l/x}〉

Assign
〈s ; l := V 〉 −→ 〈s[l→ V ] ; ?〉

Deref
s(l) = V

〈s ; !l〉 −→ 〈s ; V 〉

IfTrue
〈s ; if true then M1 else M2〉 −→ 〈s ; M1〉

IfFalse
〈s ; if false then M1 else M2〉 −→ 〈s ; M2〉

PrimOp
Prim(op, c̃) = c′

〈s ; op(c̃)〉 −→ 〈s ; c′〉

Eval
〈s ; M〉 −→ 〈s′ ; M ′〉 C is an evaluation context

〈s ; C[M ]〉 −→ 〈s′ ; C[M ′]〉

Evaluation contexts C := [·] | CM | V C | if C then M1 else M2

| op(c̃, C, M̃) | l := C

Figure 6.1: Single-step reduction relation for imperative λ-calculus

texts), applicative bisimilarity is not sound. For instance, consider the following terms:

M
def
= (ν x :=0)(λ. if !x = 0 then (x := 1 seq true) else Ω)

N
def
= λ.true

where M1 seqM2 denotes term (λ.M2)M1, i.e., the execution of M1 and M2 in sequence.
The terms are not contextually equivalent, since they are discriminated by context C =
(λx.(x?) seq (x?))[·], starting from the empty store s = ∅. When put in context C, a term
is evaluated in argument position, then the produced value is copied two times and the
two copies are executed in sequence. Term M creates a fresh location l that is set to 0,

and evaluates to V
def
= λ. if !l = 0 then (l := 1 seq true) else Ω. The first time the

context applies V to ?, it converges to true and sets the location to 1. Then, the second
time V ? is evaluated, it diverges. By contrast, N? always converges. As a consequence,
we have 〈∅ ; C[M ]〉 ⇑ and 〈∅ ; C[N ]〉 ⇓.

Suppose we extend the definition of applicative bisimulation to the imperative calculus
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defined in this section, by simply considering terms evaluated with respect to a store. Using
this definition, terms 〈∅ ; M〉 and 〈∅ ; N〉 would be applicative bisimilar by relation:

R = {(〈∅ ; M〉, 〈∅ ; N〉), (〈l = 0 ; λ. if !l = 0 then (l := 1 seq true) else Ω〉, 〈∅ ; N〉),
(〈l = 1 ; true〉, 〈∅ ; true〉)}

and so applicative bisimilarity would be unsound with respect to contextual equivalence.
The reason for this is that bisimulations are forgetful, since they do not allow us to
accumulate terms and possibly test them twice in a row.

The example above is inspired by [KLS11]. The same paper presents several interesting
and more involved examples justifying the different features of the definition of environ-
mental bisimulation and its increased complexity with respect to applicative ones.
Environmental bisimulations allow us to accumulate and reuse values in the environment,
and would thereby be able to discriminate terms M and N . Indeed, environmental bisim-
ulations are fully abstract with respect to contextual equivalence in imperative λ-calculi
[SKS11].

6.2 Probabilistic λ-calculi

We extend the syntax of the pure λ-calculus with a binary choice operator ⊕, that we will
interpret as a probabilistic, fair choice.
The terms of the probabilistic λ-calculus Λ⊕ are generated by the following grammar:

M,N ::= x
∣∣∣ λx.M ∣∣∣ MN

∣∣∣ M ⊕N
The values are the terms of the form λx.M (the abstractions). We call V⊕ the set of
values. As usual, contexts are terms with holes [·].

6.2.1 Semantics

Because of the probabilistic nature of choice in Λ⊕, a program does not evaluate to a
value, but rather evaluates to a probability subdistribution on values. Therefore, we need
the following notions to define an evaluation relation.7

A value (sub)distribution is a function ∆ : V⊕ → [0, 1], such that
∑

V ∈V⊕ ∆(V ) ≤ 1. As
we will see, we use subdistributions instead of distributions (i.e., we allow the total weight
of a distribution to be strictly less than 1) in order to model divergence. We generally omit
the prefix and use “distributions” to denote subdistributions, unless otherwise specified.
Given a value distribution ∆, we let supp(∆) denote the set of those values V such that
∆(V ) > 0. Given a set X of values, ∆(X) is the sum of the probabilities assigned to every
element of X, i.e., ∆(X) =

∑
V ∈X ∆(V ). Moreover, we define weight(∆) =

∑
V ∆(V ),

which corresponds to the total weight of the distribution ∆. A value distribution ∆ is
finite whenever supp(∆) has finite cardinality. If V is a value, we write dirac(V ) for the
value distribution ∆ such that ∆(W ) = 1 if W = V and ∆(V ) = 0 otherwise. We use
∆ ≤ Θ for the pointwise preorder on value distributions and we let ∆,Θ,Φ,Ξ range over
value distributions.

7We recall here and adapt to the present setting some notions concerning probability distributions
introduced in Chapter 2.
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As is [DZ12], we first define an approximation semantics, which attributes finite proba-
bility distributions to terms, and only later define the actual semantics, which is the least
upper bound of all distributions obtained through the approximation semantics. The
reason why the semantics is infinitary is that, intuitively, while in pure λ-calculi a term
converges (i.e., it terminates its computation) in a finite number of small-step reductions,
in probabilistic calculi there may be several terminating computation paths, in which the
total number of reductions need not be finitary (see Example 6.11).

We define the approximation semantics in a big-step style, by means of a binary relation
⇓ between closed terms and value distributions, which is defined by the set of rules from
Figure 6.2. Hence, M ⇓ ∆ means that ∆ is an approximation of the semantics of M . As
in non-probabilistic calculi, the application rule is different depending on the evaluation
strategy. In call-by-name we use rule App-cbn, and in call-by-value we use rule App-cbv.
A small-step semantics (of approximations) for probabilistic call-by-name and call-by-value
calculi can be defined as in [DZ12]. In Chapter 8 we will exploit an alternative, small-step
semantics for probabilistic λ-calculi.

Empty
M ⇓ ∅

Value
V ⇓ dirac(V )

M ⇓ ∆ N ⇓ Θ
Sum

M ⊕N ⇓ 1
2 ·∆ + 1

2 ·Θ

M ⇓ ∆ {P{N/x} ⇓ ΘP }λx.P∈supp(∆)
App-cbn

MN ⇓
∑

λx.P∈supp(∆) ∆(λx.P ) ·ΘP

M ⇓ ∆ N ⇓ Φ {P{V/x} ⇓ ΘP,V }λx.P∈supp(∆), V ∈supp(Φ)

App-cbv
MN ⇓

∑
V ∈supp(Φ) Φ(V ) · (

∑
λx.P∈supp(∆) ∆(λx.P ) ·ΘP,V )

Figure 6.2: Operational semantics for pure probabilistic λ-calculi

Definition 6.9. For any closed term M , we define the (infinitary) big-steps semantics
JMK of M as JMK = sup{∆ |M ⇓ ∆}.

Since distributions form an ω-complete partial order, and for every M the set of those
distributions ∆ such that M ⇓ ∆ is a countable directed set, the semantics is well-defined
[DZ12].

Example 6.10. The semantics JΩK of the always diverging term Ω = (λx.xx) (λx.xx) is
the distribution ∅ assigning probability 0 to every value. The semantics of I = λx.x is the
distribution 1 · dirac( I ). In between, one can find terms such as I ⊕Ω, and I ⊕ ( I ⊕ Ω),
whose semantics are the probability distributions assigning 1

2 and 3
4 to I , repectively.

The following example shows why we adopt an infinitary semantics in probabilistic
λ-calculi.

Example 6.11. Consider the terms

P
def
= RR and Q

def
= λ.Ω , for R

def
= λx.(xx)⊕Q
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Both P and Q have probability 1 of becoming term Q i.e., they have the same semantics
1 · dirac(Q). Intuitively, after some computation steps, P may become Q or may become
P again, with equal probability. However, the semantics of P is given as the supremum
of an infinite set of distributions ∆ such that P ⇓ ∆, and none of these approximants
coincides with JP K = 1 · dirac(Q), since ∆ can only be a distribution assigning to Q a
probability value strictly smaller than one.

In the following chapters, the pure (probabilistic) λ-calculi will be untyped, whereas
we will find types convenient to treat the extension with store presented in Chapter 8.

6.2.2 Contextual preorder and equivalence

In contextual equivalence for probabilistic calculi, the observation M ⇓ becomes proba-
bilistic. Instead of checking the possibility of convergence, we check the probability of
convergence, i.e., weight(M). Then, a term M is contextually equivalent to N if for any
context C, the probability of convergence of C[M ] is the same as to the probability of
convergence of the program obtained by replacing M by N in C. In the contextual pre-
order, we require the probability of convergence of C[M ] to be less than or equal to that
of C[N ].

Definition 6.12. TermsM,N are in the contextual preorder (M ≤ctx N) if for every con-
text C of Λ⊕ such that C[M ] and C[N ] are closed terms, it holds that weight(JC[M ]K) ≤
weight(JC[N ]K). M,N are contextually equivalent (M =ctx N) if M ≤ctx N , and
N ≤ctx M .

Equivalently, M =ctx N if for every context C such that C[M ] and C[N ] are closed
terms, weight(JC[M ]K) = weight(JC[N ]K).

It is easy to verify that the contextual preorder is indeed a preorder, and analogously
for equivalence. The definitions of contextual preorder and equivalence can be applied to
both closed and open terms. If the term is open, the contexts can bind the free variables
of terms.
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Chapter 7

Full abstraction for probabilistic
applicative simulation

In [DLSA14], Abramsky’s applicative bisimulation [Abr90] is generalized to the call-by-
name, untyped λ-calculus with a binary, fair, probabilistic choice [DZ12]. Probabilistic
applicative bisimulation is shown to be a congruence, thus included in context equivalence.
Completeness, however, fails, but can be recovered if call-by-value evaluation is considered,
as shown in [CD14]. This can appear surprising, given that in nondeterministic λ-calculi,
both when call-by-name and call-by-value evaluation are considered, applicative bisimi-
larity is a congruence, but finer than context equivalence [Las98]. But there is another,
even less expected result: the aforementioned correspondence does not hold anymore if we
consider applicative simulation and the contextual preorder.

The reason why this happens can be understood if one looks at the testing-based
characterization of probabilistic similarity and bisimilarity from the literature [DEP02;
BMOW05]: the class of tests characterizing bisimilarity (see Section 2.3.3) is simple enough
to allow any test to be implementable by a program context. This is impossible for tests
characterizing similarity, which, as we will see in Section 7.4, include not only conjunction
(which can be implemented as copying) but also disjunction, an operator that seems to
require the underlying language to be parallel.

In this chapter we show that, indeed, the presence of Plotkin’s parallel disjunction
[Plo77; AO93] turns applicative similarity into a relation which coincides with the con-
text preorder. This is done by checking that the proof of precongruence for applicative
bisimilarity [DLSA14; CD14] continues to hold (Section 7.3), and by showing how tests
involving conjunction and disjunction can be implemented by contexts (Section 7.4.1).
This somehow completes the picture about how applicative (bi)similarity behaves in a
probabilistic scenario.

7.1 Probabilistic applicative simulation and bisimulation

In this section we recall the notions of probabilistic applicative simulation and bisimulation
from [DLSA14; CD14] for the pure, probabilistic λ-calculus presented in Section 6.2. We
directly define the relations for call-by-value calculi. The definitions for call-by-name
calculi can be obtained as usual by considering terms as arguments, instead of values.

97
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Given a relation R ⊆ X × Y and a set Z ⊆ X, let R (Z) = {y | ∃x ∈ Z such that
xR y}.

Definition 7.1. A relation R ⊆ Λ⊕ × Λ⊕ is a probabilistic applicative simulation if
M RN implies:
• for all X ⊆ V⊕, JMK(X) ≤ JNK(R (X))
• if M = λx.M ′ and N = λx.N ′ then M ′{V/x}RN ′{V/x} for all V ∈ V⊕.

A relation R is a probabilistic applicative bisimulation if both R and R−1 are proba-
bilistic applicative simulations. We say that M is simulated by N (M . N) if there exists
a probabilistic applicative simulation R such that M RN . Terms M,N are bisimilar
(M ≈ N) if there exists a probabilistic applicative bisimulation R such that M RN .

Analogously to what happens in pure λ-calculi, these definitions correspond to simu-
lations and bisimulations on a probabilistic first-order system.
We show how to define an RPLTS representing terms of Λ⊕ and their evaluation. States
in the RPLTS correspond to λ-terms, and the states M,N in the RPLTS are in the sim-
ulation preorder (respectively, bisimilar) if and only if terms M,N are in the applicative
simulation preorder (respectively: applicative bisimilar).

In order to model divergence, we are now considering terms that evaluate to sub-
distributions. Hence, we loosen the definition of RPLTS by allowing subdistributions
(as opposed to distributions) to be reached after performing a state transition, follow-
ing [DEP02]. In what follows, we use RPLTS to denote systems defined as in Definition
2.3, except that we have subdistributions instead of distributions.

Definition 7.2. The Reactive Probabilistic Labeled Transition System L⊕ = (S,A, −→ )
is given by:
• A set of states S = {Λ⊕} ] {V̂⊕}, where terms and values are taken modulo α-

equivalence and V̂⊕ = {V̂ | V ∈ V⊕} is the set of distinguished values, containing
copies of the values in Λ⊕ decorated with .̂
• A set of labels A = V⊕ ] {eval}, where, again, terms are taken modulo α-equivalence.
• A probabilistic transition relation −→⊆ (S ×A×D(S)) such that:

• for every M ∈ Λ⊕, M
eval−−−→ ˆJMK, with ˆJMK a probability subdistribution that

behaves analogously to JMK on distinguished values, i.e., ˆJMK(V̂ ) = JMK(V ) for

every V̂ ∈ V̂⊕, and ˆJMK(M ′) = 0 for all M ′ ∈ Λ⊕;

• for every ˆλx.M ∈ V̂⊕ and for every V ∈ V⊕, ˆλx.M
V−→ dirac(M{V/x}).

If V ∈ V⊕, then both V and V̂ are states of the RPLTS L⊕. This RPLTS is defined in
[DLSA14] for the call-by-name untyped probabilistic λ-calculus Λ⊕, and for a call-by-value
typed probabilistic version of PCF in [CD14]. As in the first-order LTS for non-probabilistic
calculi (Definition 6.5), actions in V⊕ and action eval respectively represent the application
of a term to a value and the evaluation of a term.

On an RPLTS with subdistributions, instead of distributions, we can directly apply
the definition of bisimulation as defined by Larsen and Skou in [LS91] (see definition
(PB1) in Section 2.3).8 For probabilistic simulation, we can use a definition based on the

8 To apply the definition based on lift(R) , we have to redefine the probabilistic lifting by allowing
distributions to have weight smaller than 1. By contrast, when it comes to probabilistic simulation,
requiring the reached probability subdistributions to be in the lifting lift(R) of the simulation relation
R is too strong a condition, since it would imply that the subdistributions must have the same weight.
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λy.(Ω⊕ I ) (λy.Ω)⊕ (λy. I )

̂λy.(Ω⊕ I ) λ̂y.Ω λ̂y. I

(Ω⊕ I ) Ω I

Î

eval
eval

1
2

1
2

V V V

eval1
2 eval

Figure 7.1: RPLTS for M,N .

comparison of the weights of the R images of sets of states, as in [BMOW05; DLSA14;
CD14].

Definition 7.3. Let L = (S,A,−→) be an RPLTS. A probabilistic simulation is a binary
relation R on S such that if (s1, s2) ∈ R then for all a ∈ A it holds that s1

a−→∆1 implies
s2

a−→∆2 with ∆1(S′) ≤ ∆2(R(S′)) for all S′ ⊆ S.

Requiring a simulation to be a preorder is not necessary, since the largest probabilistic
simulation according to Definition 7.3 is a preorder, and it coincides with the union of
all simulations. We let .PS denote the simulation preorder based on this definition;
probabilistic bisimilarity coincides with.PS ∩ .−1

PS [DLSA14]. The definition of simulation
implies that whenever M is simulated by N we have that weight(JMK) ≤ weight(JNK).
Analogously, if M is bisimilar to N , then weight(JMK) = weight(JNK).

An applicative simulation R on terms of Λ⊕ can be easily seen as a simulation relation
R ′ on states of L⊕, obtained by adding to relation R the pairs {(V̂ , Ŵ ) | V RW}.
Analogously, a simulation relation on L⊕ corresponds to an applicative simulation for Λ⊕.

Hence, we derive that on terms of Λ⊕, applicative similarity . and bisimilarity ≈
coincide with .PS and ∼PB defined on the RPLTS L⊕.

In what follows, we will often use the characterizations of simulation and bisimulation
for the RPLTS L⊕. Moreover, . coincides with the simulation preorder defined in [CD14],
which requires simulations to be preorders themselves. Consider now the terms M and
N defined in Example 7.6 and represented in Figure 7.1 as states in L⊕. Term M is not
simulated by N : if a simulation R relates them, then it must also relate term (Ω⊕ I ) to
both term Ω and term I . However, (Ω⊕ I ) can perform eval and reach I with probability
one half, while Ω has zero probability of becoming a value, which means that R cannot be
a simulation relation. In the other direction, we have that N cannot be simulated by M
either. If R is simulation such that N RM then it must relate term I to term (Ω⊕ I ),
but the former has probability one of convergence and the latter has probability one half
of convergence.
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7.2 A probabilistic λ-calculus with parallel disjunction

In this section, we present the syntax and operational semantics of Λ⊕or, a λ-calculus
endowed with probabilistic choice and parallel disjunction (or “parallel or”) operators.

Definition 7.4. The terms of Λ⊕or are expressions generated by the following grammar:

M,N,L = x | λx.M | M ⊕N | M N | [M ‖ N ]� L

where x ∈ Var .

We let FV (M) denote the set of free variables of the term M . A term M is closed
if FV (M) = ∅. Given a set x of variables, Λ⊕or(x) is the set of terms M such that
FV (M) ⊆ x. We write Λ⊕or for Λ⊕or(∅).

The constructs of the λ-calculus have their usual meanings, and M ⊕N is the binary,
fair, probabilistic choice operator. The construct [M ‖ N ] � L corresponds to the so-
called parallel disjunction operator: if the evaluation of M or N terminates, then the
behavior of [M ‖ N ] � L is the same as the behavior of L, otherwise this term does
not terminate. Since we are in a probabilistic calculus, this means that [M ‖ N ] � L
converges to L with a probability that is equal to the probability that either M or N
converge. (This formulation of parallel disjunction is equivalent to the binary one, without
the third term.)

The evaluation relation is the extension to Λ⊕or of the evaluation relation presented in
Figure 6.2 for the untyped probabilistic λ-calculus. Since the calculus has a call-by-value
evaluation strategy, function arguments are evaluated before being passed to functions.
Hence, the operational semantics is given by adding the rule in Figure 7.2 to the rules for
the probabilistic call-by-value λ-calculus.

M ⇓ ∆ N ⇓ Θ L ⇓ Ξ
Or

[M ‖ N ]� L ⇓ (weight(∆) + weight(Θ)− (weight(∆) · weight(Θ))) · Ξ

Figure 7.2: Big-step semantics for parallel disjunction

Lemma 7.5. For every term M , if M ⇓ ∆, and M ⇓ Θ, then there exists a distribution
Ξ such that M ⇓ Ξ with ∆ ≤ Ξ, and Θ ≤ Ξ.

Proof. The proof is by induction on the structure of derivations for M ⇓ ∆. We only
consider two cases, since the others are the same as in [DZ12]:

• If the derivation for M ⇓ ∆ is Empty
M ⇓ ∅ , then it is enough to take Ξ = Θ, and

since ∅ ≤ Θ and Θ ≤ Θ the result holds.
• If the derivation for M ⇓ ∆ is of the form:

P ⇓ ∆1 N ⇓ ∆2 L ⇓ ∆3
Or

M = [P ‖ N ]� L ⇓ ∆ = (weight(∆1) + weight(∆2)− (weight(∆1) · weight(∆2))) ·∆3

Since M = [P ‖ N ]� L , there are only two possible structures for the derivation of
M ⇓ Θ: either Θ = ∅ and the result holds by Ξ = ∆, or the structure of M ⇓ Θ is the
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following:

P ⇓ Θ1 N ⇓ Θ2 L ⇓ Θ3
Or

M = [P ‖ N ]� L ⇓ Θ = (weight(Θ1) + weight(Θ2)− (weight(Θ1) · weight(Θ2))) ·Θ3

By applying the induction hypothesis, we obtain that there exist Ξ1,Ξ2,Ξ3

value distributions such that P ⇓ Ξ1, N ⇓ Ξ2, L ⇓ Ξ3, and, more-
over, ∆1,Θ1 ≤ Ξ1, ∆2,Θ2 ≤ Ξ2, and ∆3,Θ3 ≤ Ξ3. We define Ξ =
(weight(Ξ1) + weight(Ξ2)− (weight(Ξ1) · weight(Ξ2)))·Ξ3, and we have that M ⇓ Ξ.
We must show that ∆ ≤ Ξ and Θ ≤ Ξ. Let f : [0, 1] × [0, 1] → [0, 1] be the function
defined by f(x, y) = x+y−x ·y. The result follows from the fact that f is an increasing
function, which holds since its two partial derivatives are positive.

2

Since distributions form an ω-complete partial order, and for every M the set of those
distributions ∆ such that M ⇓ ∆ is a countable directed set (by Lemma 7.5), the infini-
tary big-step semantics JMK = supM⇓∆ ∆ is well-defined, and associates a unique value
distribution to every term.

The definitions of probabilistic applicative bisimulation and simulation can be directly
applied to Λ⊕or and its operational semantics, and the RPLTS L⊕or for Λ⊕or is defined as
L⊕. The contextual equivalence and preorder are as in Definition 6.12, using the contexts
of Λ⊕or, which are defined by the following grammar:

C ::= x | [·] | λx.C | CM | MC | C ⊕M | M ⊕ C
| [C ‖M ]� N | [M ‖ C]� N | [M ‖ N ]� C .

Example 7.6. To see how things differ when we consider the contextual preorder in Λ⊕
and in Λ⊕or, consider the following terms of Λ⊕:

M = λy.(Ω⊕ I ) N = (λy.Ω)⊕ (λy. I ).

where Ω and I are defined as in Example 6.10. We let ≤⊕ and =⊕ respectively denote
the contextual preorder and equivalence for the language Λ⊕, i.e., the relations restricted
to terms and contexts without the parallel disjunction construct. In [CD14] it is proved
that M ≤⊕ N . The converse does not hold, since if we take the Λ⊕ context

C = (λx.(x I )(x I ))[·]

we have that in C[M ] the term λy.(Ω⊕ I ) is copied with probability one, while in C[N ]
both term λy.Ω and term λy. I are copied with probability one half. Hence, C[M ] converges
with probability one quarter (i.e., the probability that Ω⊕ I converges two times in a row)
while C[N ] has probability one half of diverging (i.e., one half times the probability that Ω
diverges two times in a row) and one half of converging (i.e., one half times the probability
that I converges two times in a row). In Λ⊕or we still have that N 6≤ctx M , since the
contexts of Λ⊕ are contexts of Λ⊕or as well, but we also have that M 6≤ctx N . Consider
the context

C = (λx. [(x I ) ‖ (x I )]� I )[·]

If we put term M in context C then λy.(Ω⊕ I ) is copied, and λy.(Ω⊕ I ) has probabil-
ity one half of converging when applied to I . Hence, by summing the probabilities of
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convergence of the two copies of (λy.(Ω⊕ I )) I and subtracting the probability that they
both converge, we obtain that JC[M ]K = 3

4 · dirac( I ). Term C[N ] only converges with
probability one half, since with one half probability we have the parallel disjunction of two
terms that never converge and with one half probability we have the parallel disjunction
of two terms that always converge. Hence, both in Λ⊕ and in Λ⊕or terms M,N are not
contextually equivalent, but it is only in Λ⊕or that neither M is below N nor N is below
M in the contextual preorder. We will see in the following section that this corresponds
to what happens when we consider the simulation preorder.

7.3 The simulation preorder is a precongruence

The extension -◦ of the applicative simulation preorder to open terms is defined by con-
sidering all closing substitutions, i.e., for all M,N ∈ Λ⊕or(x1, . . . , xn), we have M-◦N
if

M{V1, . . . , Vn/x1, . . . , xn}-◦N{V1, . . . , Vn/x1, . . . , xn}, for all V1, . . . , Vn ∈ V⊕or.

Here we show that -◦ is a precongruence, i.e., closed with respect to the operators of
Λ⊕or.

It is here convenient to work with generalizations of relations called Λ⊕or-relations, i.e.
sets of triples in the form (x,M,N), where M,N ∈ Λ⊕or(x). Given a relation R on open
terms, if M RN and M,N ∈ Λ⊕or(x) then the triple (x,M,N) is in the corresponding
Λ⊕or-relation. We denote this by x `M RN . We extend the usual notions of symmetry,
reflexivity and transitivity to Λ⊕or-relations as expected.

Definition 7.7. A Λ⊕or-relation R is compatible if and only if the following conditions
hold:
(Com1) ∀x,∀x ∈ x, x ` xRx ;
(Com2) ∀x,∀x 6∈ x,∀M,N , x ∪ {x} `M RN =⇒ x ` λx.M Rλx.N ;
(Com3) ∀x,∀M,N,P,Q, x `M RN ∧ x ` P RQ =⇒ x `MP RNQ;
(Com4) ∀x,∀M,N,P,Q, x `M RN ∧ x ` P RQ =⇒ x `M ⊕ P RN ⊕Q;
(Com5) ∀x,∀M,N,P,Q, T , x `M RN ∧ x ` P RQ =⇒

x ` [M ‖ P ]� T R [N ‖ Q]� T .

It follows from these properties that a compatible relation is reflexive, since this holds
by (Com1) on variables, and it is preserved by the other operators by (Com2)-(Com5):

Proposition 7.8. If a relation is compatible, then it is reflexive.

7.3.1 Howe’s method

The main idea of Howe’s method consists in defining an auxiliary relation -H◦ such that
it is easy to see that it is compatible, and then prove that -◦ =-H◦ .

Definition 7.9. Let R be a relation. We define inductively the relation RH by the rules
in Figure 7.3.

We are now going to show that if the relation R we start from satisfies minimal
requirements, namely that it is reflexive and transitive, then RH is guaranteed to be
compatible and to contain R. This is a direct consequence of the following results, whose
proofs are standard inductions:
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x ∪ {x} ` x RM

x ∪ {x} ` x RH M

x ∪ {x} `M RH N x ` λx.N RL

x ` λx.M RH L

x `M RH N x ` LRH P x ` NP RR
x `MLRH R

x `M RH N x ` LRH P x ` N ⊕ P RR

x `M ⊕ LRH R
x `M RH N x ` LRH P x ` [N ‖ P ]� T RR

x ` [M ‖ L]� T RH R

Figure 7.3: Howe’s construction

• Let R be a reflexive relation. Then RH is compatible.
• Let R be transitive. Then:(

x `M RH N
)
∧ (x ` N R L)⇒

(
x `M RH L

)
(7.1)

• If R is reflexive, then x `M R N implies x `M RH N .
We can now apply Howe’s construction to -◦, since it is clearly reflexive and transitive.
The properties above then tell us that -H◦ is compatible and that -◦ ⊆-H◦ . What we are
left with, then, is proving that -H◦ is also a simulation.9

Lemma 7.10. -H◦ is value-substitutive: for all terms M,N and values V,W such that
x `M -H◦ N and ∅ ` V -H◦ W , it holds that ∅ `M{V/x} -H◦ N{W/x}

Proof. By induction on the derivation of x `M -H◦ N . 2

We also need an auxiliary, technical, lemma about probability assignments, that we
will use in the proof of the Key Lemma (7.13).

Definition 7.11. P =
(
{pi}1≤i≤n, {rI}I⊆{1,...,n}

)
is said to be a probability assignment

if for every I ⊆ {1, .., n}, it holds that
∑

i∈I pi ≤
∑

J∩I 6=∅ rJ .

Lemma 7.12 (Disentangling Sets). Let P =
(
{pi}1≤i≤n, {rI}I⊆{1,...,n}

)
be a probability

assignment. Then for every non-empty I ⊆ {1, . . . , n}, and for every k ∈ I, there is an
sk,I ∈ [0, 1] satisfying the following conditions:
• for every I, it holds that

∑
k∈I sk,I ≤ 1;

• for every k ∈ 1, . . . , n, it holds that pk ≤
∑
{I|k∈I} sk,I · rI .

The proof is an application of the Max-Flow Min-Cut Theorem, see e.g., [DLSA14;
CD14].

Given a set of set of open terms X, let λx.X = {λx.M |M ∈ X}.
9In the proof of congruence for the probabilistic call-by-value λ-calculus presented in [CD14], the tran-

sitive closure of -H◦ is considered, since the definition of simulation required the relation to be preorder,
which implies that the transitivity of -H◦ is needed. Since we relaxed the definition of simulation, this is
not anymore necessary.
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Lemma 7.13 (Key Lemma). For all terms M,N , if ∅ ` M -H◦ N , then for every
λx.X ⊆ V⊕or it holds that JMK (λx.X) ≤ JNK

(
-◦
(
λx. -H◦ (X)

))
.

Proof. We show that the inequality holds for every approximation of the semantics of
M , which implies the result since the semantics is the supremum of the approximations.
In particular, we prove by induction on the structure of the derivation of M ⇓ ∆ that,
for any M,N , if M ⇓ ∆ and ∅ ` M -H◦ N , then for every λx.X ⊆ V⊕or it holds that
∆ (λx.X) ≤ JNK

(
-◦
(
λx. -H◦ (X)

))
. We consider separately every possible rule which

can be applied at the bottom of the derivation:

• If the rule used corresponds to the fact that, for every term, the empty distribution is
an approximate semantics, the derivation is: M ⇓ ∅ then ∆ = ∅, and for all set of

values λx.X, ∆(λx.X) = 0, and it concludes the proof.

• If M is a value V = λx.L and the last rule of the derivation is V ⇓ dirac(V )
then ∆ = dirac(V ) is the Dirac distribution for V and, by the definition of Howe’s
lifting,

(
∅ ` λx.L -H◦ N

)
was derived by the following rule:

x ` L -H◦ P ∅ ` λx.P-◦N

∅ ` λx.L -H◦ N

It follows from the definition of applicative simulation and from (∅ ` λx.P -◦N) that
1 = JNK(-◦ {λx.P}). Let λx.X ⊆ V⊕or. If λx.L 6∈ λx.X then ∆(λx.X) = 0
and the thesis holds. Otherwise, ∆(λx.X) = ∆(λx.L) = 1 = JNK(-◦ {λx.P}). It
follows from L -H◦ P and from λx.L ∈ λx.X that λx.P ∈ λx.(-H◦ X); hence,
JNK(-◦ {λx.P}) ≤ JNK(-◦ λx.(-H◦ X)).

• If the derivation of M ⇓ ∆ is of the following form:

M1 ⇓ Φ M2 ⇓ Ξ {P{V/x} ⇓ ΘP,V }λx.P∈supp(Φ),V ∈supp(Ξ)

M1M2 ⇓
∑
V ∈supp(Ξ) Ξ(V )

(∑
λx.P∈supp(Φ) Φ(λx.P ) ·ΘP,V

)
Then M = M1M2 and we have that the last rule used in the derivation of ∅ `M -H◦ N
is:

∅ `M1 -H◦ M ′1 ∅ `M2 -H◦ M ′2 ∅ `M ′1M ′2-◦N

∅ `M1M2 -H◦ N

Let supp(Φ) = {λx.P1, . . . , λx.Pn} and Ki = -◦{λx.L | x ` Pi -H◦ L} and, sym-
metrically, supp(Ξ) = {V1, . . . , Vl} and Xk = -◦{λx.L | Vk = λx.M ′ and x `
M ′ -H◦ L}. Then by the inductive hypothesis on M1 ⇓ Φ and M2 ⇓ Ξ we have
that Φ

(⋃
i∈I{λx.Pi}

)
≤ JM ′1K

(⋃
i∈I Ki

)
for every I ⊆ {1, .., n} and Ξ(

⋃
k∈I{Vk}) ≤

JM ′2K
(⋃

k∈I Xk

)
for every I ⊆ {1, .., l}.

Lemma 7.12 allows us to derive that for all U ∈
⋃

1≤i≤nKi there exist probability
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values rU1 , . . . , r
U
n and for all W ∈

⋃
1≤k≤lXk there exist probability values sW1 , .., sWl

such that:

JM ′1K(U) ≥
∑

1≤i≤n
rUi JM ′2K(W ) ≥

∑
1≤k≤l

sWk ∀U ∈
⋃

1≤i≤n
Ki,W ∈

⋃
1≤k≤l

Xk

Φ(λx.Pi) ≤
∑
U∈Ki

rUi Ξ(Vk) ≤
∑
W∈Xk

sWk ∀ 1 ≤ i ≤ n, 1 ≤ k ≤ l

Hence, for every value Z ∈ V⊕or, we have that:

∆(Z) =
∑

1≤k≤l
Ξ(Vk) ·

∑
1≤i≤n

Φ(λx.Pi) ·ΘPi,Vk(Z)

≤
∑

1≤k≤l

∑
W∈Xk

sWk ·
∑

1≤i≤n

∑
U∈Ki

rUi ·ΘPi,Vk(Z)

If U = λx.U ′ ∈ Ki then there exists S such that:

(2) ∅ ` λx.S-◦ U (3) x ` Pi -H◦ S

By (2), ∅ ` S{W/x}-◦ U ′{W/x}. By (3) and by Lemma 7.10, for W ∈ Xk we have
that ∅ ` Pi{Vk/x} -H◦ S{W/x}. It follows from (7.1) that ∅ ` Pi{Vk/x} -H◦ U ′{W/x}.
Hence, by the induction hypothesis applied to Pi{Vk/x} we derive that ΘPi,Vk(λx.X) ≤
JU ′{W/x}K(-◦λx.(-H◦ X)). Therefore,

∆(λx.X) ≤
∑

1≤k≤l

∑
W∈Xk

sWk ·
∑

1≤i≤n

∑
U∈Ki

rUi ·ΘPi,Vk(λx.X)

≤
∑

W∈
⋃

1≤k≤l
Xk

∑
U∈

⋃
1≤i≤n

Ki

( ∑
{k|W∈Xk}

sWk

)
·
( ∑
{i|U∈Ki}

rUi

)
JLU,W K(-◦λx.(-H◦ X))

≤
∑

W∈
⋃

1≤k≤l
Xk

∑
U∈

⋃
1≤i≤n

Ki

JM ′2K(W ) · JM ′1K(U) · JLU,W K(-◦λx.(-H◦ X))

≤ JM ′1M
′
2K(-◦λx.(-

H
◦ X))

where LU,W = U ′{W/x} for any U such that U = λx.U ′.
A detailed proof for this case is presented in Section 7.5.

• If M ⇓ ∆ is derived by:

M1 ⇓ ∆1 M2 ⇓ ∆2

M1 ⊕M2 ⇓ 1
2∆1 + 1

2∆2

then ∅ `M -H◦ N is derived by:

∅ `M1 -H◦ N1 ∅ `M2 -H◦ N2 ∅ ` N1 ⊕N2-◦N

∅ `M1 ⊕M2 -H◦ N
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By the inductive hypothesis, for i ∈ {1, 2} we have that for any λx.X ⊆ V⊕or,

∆i(λx.X) ≤ JNiK(-◦λx.(-H◦ X))

Hence, the result follows from:

1
2 ·∆1(λx.X) + 1

2 ·∆2(λx.X) ≤ 1
2 · JN1K(-◦λx.(-H◦ X)) + 1

2 · JN2K(-◦λx.(-H◦ X))

• If the last rule applied in the derivation of M ⇓ ∆ is of the following form:

M1 ⇓ ∆1 M2 ⇓ ∆2

[M1 ‖M2]� T ⇓ (weight(∆1) + weight(∆2)− weight(∆1) · weight(∆2)) · dirac(T )

then M = [M1 ‖M2]� T and ∅ `M -H◦ N is derived by:

∅ `M1 -H◦ N1 ∅ `M2 -H◦ N2 ∅ ` [N1 ‖ N2]� T -◦N

∅ ` [M1 ‖M2]� T -H◦ N

By inductive hypothesis on M1 ⇓ ∆1 we have that for any λx.X ⊆ V⊕or, ∆1(λx.X) ≤
JN1K(-◦λx.(-H◦ X)). Hence, for λx.X = supp(∆1) we have that:

weight(∆1) = ∆1(λx.X) ≤ JN1K(-◦λx.(-H◦ X)) ≤ JN1K(supp(JN1K)) = weight(JN1K)

and, symmetrically, by the inductive hypothesis on M2 ⇓ ∆2 we have weight(∆2) ≤
weight(JN2K). Therefore,

weight(∆)1 + weight(∆)2 − weight(∆)1 · weight(∆)2

≤ weight(JN1K) + weight(JN2K)− weight(JN1K) · weight(JN2K)

Let λx.X ⊆ V⊕or. If T 6∈ λx.X then ∆ = 0 and the result follows. Otherwise, it follows
from T = λx.T ′ ∈ -◦λx.(-H◦ {T ′}) (since both -◦ and -H◦ are reflexive) that

∆(λx.X) = ∆(λx.T ′) = weight(∆)1 + weight(∆)2 − weight(∆)1 · weight(∆)2

≤ weight(JN1K) + weight(JN2K)− weight(JN1K) · weight(JN2K)

= JNK(λx.T ′) = JNK(-◦λx.(-H◦ X))
2

A consequence of the Key Lemma, then, is that relation -H◦ on closed terms is an
applicative simulation, thus included in the largest one, namely .. Hence, if M,N are
open terms and x1, . . . , xn ` M -H◦ N then it follows from Lemma 7.10 that for all
V1, . . . , Vn,W1, . . . ,Wn such that ∅ ` Vi -H◦ Wi we have that

∅ `M{V1, . . . , Vn/x1, . . . , xn} -H◦ N{W1, . . . ,Wn/x1, . . . , xn}

which implies (by the reflexivity of -H◦ and by -H◦ ⊆ -◦ on closed terms) that for all
V1, . . . , Vn we have that

∅ `M{V1, . . . , Vn/x1, . . . , xn}-◦N{V1, . . . , Vn/x1, . . . , xn}

i.e., M-◦N . Since -◦ is itself included in -H◦ , we obtain that -◦ =-H◦ . Hence, it follows
from the transitivity of -◦ and from the fact that -H◦ is compatible that:
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Theorem 7.14 (Congruence). -◦ is a precongruence .

The congruence of-◦ allows us to prove that it is a sound with respect to the contextual
preorder.

Theorem 7.15 (Soundness). If M-◦N then M ≤ N .

Proof. Let M-◦N . Using Theorem 7.14, it can be easily proved by induction on C that
for any context C it holds that C[M ]-◦C[N ]. If C[M ]-◦C[N ] then weight(JC[M ]K) ≤
weight(JC[M ]K), which implies the result. 2

7.4 Full abstraction

As we have seen in Section 2.3.3, bisimilarity on reactive probabilistic processes is charac-
terized by the language of tests T, defined by the following grammar:

t,u ::= ω | a.t | 〈t,u〉
where a ∈ A ranges over the actions of the considered probabilistic transition system.
This characterization is used in [CD14] to show that applicative bisimilarity on terms is
fully abstract with respect to contextual equivalence.

This full-abstraction result is based on the fact that, when we consider the particular
probabilistic transition system for the probabilistic λ-calculus defined in Section 7.1, any
of these tests can actually be encoded by a context. However, the characterization of the
simulation preorder requires to add disjunctive tests.

Definition 7.16. Let L = (S,A,−→) be a RPLTS. The test language T∨ is given by the
grammar t,u ::= ω | a.t | 〈t,u〉 | t ∨ u, where a ∈ A.

The probability of success of a test is defined as in Section 2.3.3, for ω, the test for
actions a.t and the conjunctive test 〈t,u〉. The probability of success of the disjunctive
test corresponds to the probability that at least one of the two tests is successful:

Pr(t ∨ u, s) = Pr(t, s) + Pr(u, s)− Pr(t, s) · Pr(u, s)

The following proposition characterizes the simulation preorder on RPLTSs by means of
sets of tests.

Proposition 7.17 ([BMOW05]). Let L = (S,A,−→) be an RPLTS and let s, s′ ∈ S. Then
s . s′ if and only if for every t ∈ T∨ it holds that Pr(t, s) ≤ Pr(t, s′).

Example 7.18. Consider the two terms M = λx.( I ⊕Ω) and N = (λx. I )⊕ (λx.Ω) from
Example 7.6. We already know that, since they do not verify M . N , there exists a
test t ∈ T∨ whose success probability when executed on M is strictly greater that its
success probability when executed on N . We can actually explicitly give such a test: let
t = eval .( I .eval .ω ∨ I .eval .ω). Then it holds that:

Pr(t, λx.( I ⊕ Ω)) =
3

4
; Pr(t, (λx. I )⊕ (λx.Ω)) =

1

2
.
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7.4.1 From tests to contexts

It is shown in [CD14] that the applicative simulation preorder is not fully abstract for
PCFL⊕ with respect to the contextual preorder: a direct consequence is that disjunctive
tests cannot be simulated by contexts. In other words, it is not possible to write a program
that has access to two sub-programs, and terminates with a probability equal to the
probability that at least one of its sub-programs terminates. The proof of [CD14] is based
on an encoding from T to the set of contexts. We are going to extend it into two encodings
from T∨ to the set of contexts of Λ⊕or: one encoding (denoted by Enc) expresses the action

of tests on states of the form M , and the other one (denoted by Ênc) on states of the form

V̂ . The intuitive idea behind Enc and Ênc is the following: if we take a test t, its success
probability starting from the state M is the same as the convergence probability of the
context Enc(t) filled by M , and similarly, its success probability starting from the state
V̂ is the same as the convergence probability of the context Enc(t) filled by V .

We let C denote the set of all contexts of Λ⊕or.

Definition 7.19. Let Ênc : T∨ → C and Enc : T∨ → C be defined by:

Enc(ω) = λx.[·]; Ênc(ω) = λx.[·];

Enc(V.t) = Ω[·]; Ênc(V.t) = Enc(t)[([·]V )];

Enc(eval .t) = (λx.Ênc(t)[x])[·]; Ênc(eval .t) = Ω[·];

Enc(t ∨ u) = g(Enc(t),Enc(u)); Ênc(t ∨ u) = g(Ênc(t), Ênc(u));

Enc(〈t,u〉) = f(Enc(t),Enc(u)); Ênc(〈t,u〉) = f(Ênc(t), Ênc(u));

where f, g : C × C → C are defined by:

f(C,D) = (λx.(λy, z. I )(C[x I ])(D[x I ]))(λx.[·]);
g(C,D) = (λx.( [C[x I ] ‖ D[x I ]]� I )(λx.[·]).

The apparently complicated structure of f and g comes from the fact that we chose not
to build contexts with several holes, to highlight how unary contexts can mimic polyadic
contexts in the calculus. Intuitively, we could say that g(C,D) would correspond to a
multihole context [C ‖ D] � I . Moreover, the encoding of the fragment of T∨ corre-
sponding to T does not use parallel disjunction, i.e., the image of T by the encoding is a
subset of the contexts of Λ⊕. We can now apply this encoding to the test we defined in
Example 7.18.

Example 7.20. Recall the test t = eval .( I .eval .ω ∨ I .eval .ω) defined in Example 7.18.
We can apply the encoding to this particular test:

Enc(t) = (λx. (λz. [(λy.(λw.y))z I I ‖ (λy.(λw.y))z I I ]� I ) (λy.x)) [·].

We can see that if we consider the termsM = λx.( I ⊕ Ω) andN = (λx. I )⊕ (λx.Ω) defined
in Example 7.6, the probability of convergence of the context Enc(t) is the probability of
success of the test t with respect to M and N :

Pr(t,M) = weight(JEnc(t)[M ]K) Pr(t, N) = weight(JEnc(t)[N ]K).
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Theorem 7.21. Let t be a test in T∨. For every closed term M and every closed value
V it holds that:

Pr(t,M) = weight(JEnc(t)[M ]K) Pr(t, V̂ ) = weight(JÊnc(t)[V ]K).

Proof. We prove the thesis by induction on the structure of t.

• If t = ω, then for every closed termM and every closed value V , Pr(ω,M) = Pr(ω, V̂ ) =

1, and we have defined Enc(ω) = Ênc(ω) = λx.[·]. Since Enc(ω)[M ] and Ênc(ω)[V ] are
values, the weight of their semantics is 1, and so the result holds.
• If t = 〈u1,u2〉, we can directly adapt the construction proposed in [CD14] to the

untyped case. By the inductive hypothesis, for 1 ≤ i ≤ 2 it holds that for every closed
term M and every closed value V ,

Pr(ui,M) = weight(JEnc(ui)[M ]K) Pr(ui, V̂ ) = weight(JÊnc(ui)[V ]K).

The overall effect of f is to copy the content of the hole into the holes of the two
contexts C and D. For any closed term M , we can express the convergence probability
of f(C,D)[M ] as a function of the convergence probability of C[M ] and D[M ]:

weight(Jf(C,D)[M ]K) = (weight(JC[(λx.M) I ]K)) · (weight(JD[(λx.M) I ]K))
= (weight(JC[M ]K)) · (weight(JD[M ]K))

Recall that we have defined:

Enc(〈u1,u2〉) = f(Enc(u1),Enc(u2))

Ênc(〈u1,u2〉) = f(Ênc(u1), Ênc(u2))

We have that, for any closed term M , and any closed value V :

weight(JEnc(〈u1,u2〉)[M ]K) = Pr(u1,M) · Pr(u2,M) = Pr(〈u1,u2〉,M)

weight(JÊnc(〈u1,u2〉)[V ]K) = Pr(u1, V̂ ) · Pr(u2, V̂ ) = Pr(〈u1,u2〉, V̂ )

• Now the case t = u1 ∨ u2. By the inductive hypothesis, for all 1 ≤ i ≤ 2 it holds that
for every closed term M and every closed value V ,

Pr(ui,M) = weight(JEnc(ui)[M ]K) Pr(ui, V̂ ) = weight(JÊnc(ui)[V ]K).

The definition of g allows us to show:

weight(Jg(C,D)[M ]K) = weight(JC[M ]K) + weight(JD[M ]K)
− weight(JC[M ]K) · weight(JD[M ]K)

and now it is straightforward to see that:

weight(JEnc(u1 ∨ u2)[M ]K) = Pr(u1 ∨ u2,M);

weight(JÊnc(u1 ∨ u2)[V ]K) = Pr(u1 ∨ u2, V̂ ).

• If t = a.u, there are two different kinds of actions:
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• when a = eval , we first consider Ênc(t): since the eval action is relevant only for

states of L⊕or which are terms (and not distinguished values), we want Ênc(t)[V ] to

always diverge. Since Ênc(t) = Ω[·] and since JΩK = ∅, we have that for any closed

value V , JÊnc(t)[V ]K = ∅.
Now, we consider Enc(t). By the inductive hypothesis, we know that:

Pr(u, V̂ ) = weight(JÊnc(u)[V ]K).

We have defined: Enc(a.u) = λx.(Ênc(u)[x])[·]. Let be M a closed term. Then it
holds that:

weight(JEnc(a.u)[M ]K) =
∑
V

JMK(V ) · weight(JÊnc(u)[V ]K)

=
∑
V

JMK(V ) · Pr(u, V̂ )

=
∑
V̂

ˆJMK(V̂ ) · Pr(u, V̂ )

= Pr(u,M)

• When a = V , with V ∈ V⊕or, we consider first Enc(V.u). It has been designed
to be a context which diverges whatever its argument is, and so we indeed have:
Pr(V.u,M) = 0 = weight(JEnc(V.u)[M ]K). Then we consider Ênc(t). Recall that

we have defined: Ênc(V.u) = Enc(u)[[·]V ]. Let W = λx.M be a closed value:

weight(JÊnc(V.u)[W ]K) = weight(JEnc(u)[WV ]K)
= Pr(u,WV )

= Pr(u,M{V/x}) since JWV K = JM{V/x}K
= Pr(V.u,W ).

2

Theorem 7.22. . is fully abstract with respect to the contextual preorder.

Proof. We already know that . is sound, that is .⊆≤ctx. Hence, what is left to show
is that ≤ctx⊆., which follows from Theorem 7.21. Let M and N be two closed terms
such that M ≤ctx N . We want to show that M . N . By the testing characterization of
simulation, it is sufficient to show that, for every test t ∈ T∨, Pr(t,M) ≤ Pr(t, N). Then
the result is a consequence of Theorem 7.21, since every test t of T∨ can be encoded by
a context of Λ⊕or.

2

7.5 Proofs

Proof of Theorem 7.13 - application case

We show the detailed proof of the application case of the Key Lemma.
If the derivation of M ⇓ ∆ is of the following form:
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M1 ⇓ Φ M2 ⇓ Ξ {P{V/x} ⇓ ΘP,V }λx.P∈supp(Φ),
V ∈supp(Ξ)

M1M2 ⇓
∑
V ∈supp(Ξ) Ξ(V )

(∑
λx.P∈supp(Φ) Φ(λx.P ) ·ΘP,V

)
then M = M1M2 and we have that the last rule used in the derivation of ∅ `M -H◦ N

is:

∅ `M1 -H◦ M ′1 ∅ `M2 -H◦ M ′2 ∅ `M ′1M ′2-◦N

∅ `M1M2 -H◦ N

We are first going to apply the induction hypothesis to the derivation of M1 ⇓ Φ. The
support of the value distribution Φ is a finite set, say supp(Φ) = {λx.P1, . . . , λx.Pn}. For
every λx.Pi, we define the set Ki = -◦{λx.L | x ` Pi -H◦ L}. Now we can apply the
induction hypothesis to the derivation of M1 ⇓ Φ. Since we know that ∅ `M1 -H◦ M ′1, we
derive from the induction hypothesis that for all I ⊆ {1, .., n},

Φ

(⋃
i∈I
{λx.Pi}

)
≤ JM ′1K

(⋃
i∈I

Ki

)
(7.2)

Inequation (7.2) allows us to apply Lemma 7.12. For every i ∈ {1, . . . , n}, let pi =
Φ(λx.Pi) and for every I ⊆ {1, .., n} define rI =

∑
U s.t. {i|U∈Ki}=I

JM ′1K(U). We can see that

((pi)1≤i≤n, (rI)I⊆{1,...,n}) is a probabilistic assignment. So we can conclude, by applying
Lemma 7.12, that for I ⊆ {1, . . . , n} and for i ∈ I, there are si,I that satisfy the conditions
in the Lemma.

For every U ∈
⋃

1≤i≤m
Ki and for every i ∈ {1, . . . , n}, define rUi = si,{j|U∈Kj} · JM ′1K(U)

if i ∈ {j | U ∈ Kj} and rUi = 0 otherwise. We have that:

JM ′1K(U) ≥
∑

1≤i≤n
rUi ∀U ∈

⋃
1≤i≤n

Ki

Φ(Vi) ≤
∑
U∈Ki

rUi ∀ 1 ≤ i ≤ n

In the same way, we can apply the inductive hypothesis to M2. Let supp(Ξ) = {V1, . . . , Vl}
and let Xi = -◦{λx.L | Vi = λx.M ′ and x ` M ′ -H◦ L}. We have by the induction
hypothesis that for all I ⊆ {1, .., l}, Ξ({Vk | k ∈ I}) ≤ JM ′2K

(⋃
k∈I Xk

)
. Hence, for all

W ∈
⋃

1≤k≤lXk, there exist l real numbers sW1 , .., sWl , such that:

JM ′2K(W ) ≥
∑

1≤k≤l
sWk ∀W ∈

⋃
1≤k≤l

Xk

Ξ(Vk) ≤
∑
W∈Xk

sWk ∀ 1 ≤ k ≤ l

For every value Z ∈ V⊕or, we have that:

∆(Z) =
∑

1≤k≤l
Ξ(Vk)

∑
1≤i≤n

Φ(λx.Pi) ·ΘPi,Vk(Z)
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≤
∑

1≤k≤l

 ∑
W∈Xk

sWk

 ∑
1≤i≤n

∑
U∈Ki

rUi

 ·ΘPi,Vk(Z)

=
∑

1≤k≤l

 ∑
W∈Xk

sWk

 ∑
1≤i≤n

∑
U∈Ki

rUi ·ΘPi,Vk(Z)


We prove that for any λx.X ⊆ V⊕or, if U = λx.U ′ ∈ Ki, and 1 ≤ i ≤ n, and W ∈ Xk,
then ΘPi,Vk(λx.X) ≤ JU ′{W/x}K(λx. -H◦ X).

Let U ∈ Ki and W ∈ Xk for some i, k such that 1 ≤ i ≤ n and 1 ≤ k ≤ l. Then there
exists S such that

∅ ` λx.S-◦ U (7.3)

x ` Pi -H◦ S (7.4)

Moreover, since W ∈ Xk we have that:

∅ ` Vk -H◦ W (7.5)

By (7.3), ∅ ` S{W/x}-◦ U ′{W/x}, and by (7.4), (7.5) and Lemma 7.10 we have that
∅ ` Pi{Vk/x} -H◦ S{W/x}. It follows by (7.1) that ∅ ` Pi{Vk/x} -H◦ U ′{W/x}. Hence, by the
induction hypothesis applied to Pi{Vk/x} we have ΘPi,Vk(λx.X) ≤ JU ′{W/x}K(-◦λx.(-H◦
X)). Then we derive:

∆(λx.X)

≤
∑

1≤k≤l

 ∑
W∈Xk

sWk

 ∑
1≤i≤n

∑
U∈Ki

rUi ·ΘPi,Vk(λx.X)


≤
∑

1≤k≤l

 ∑
W∈Xk

sWk

 ∑
1≤i≤n

∑
U∈Ki

rUi · JLU,W K(-◦λx.(-H◦ X))


≤

∑
W∈

( ⋃
1≤k≤l

Xk

)
∑

U∈
( ⋃

1≤i≤n
Ki

)
 ∑
k s.t. W∈Xk

sWk

 ·
 ∑
i s.t. U∈Ki

rUi

 JLU,W K(-◦λx.(-H◦ X))

≤
∑

W∈
( ⋃

1≤k≤l
Xk

)
∑

U∈
( ⋃

1≤i≤n
Ki

)
(
JM ′2K(W )

)
·
(
JM ′1K(U)

)
JLU,W K(-◦λx.(-H◦ X))

≤ JM ′1M
′
2K(-◦λx.(-

H
◦ X))

where LU,W = U ′{W/x} for any U such that U = λx.U ′.



Chapter 8

Probabilistic environmental
bisimulation

Applicative simulations and bisimulations are known to have some significant limitations,
as we have seen in Chapter 6. With probabilities, the drawbacks of applicative bisimilarity
are magnified: full abstraction with respect to contextual equivalence may fail also in a
pure λ-calculus, and Howe’s technique has to be enriched with non-trivial ‘disentangling’
properties for sets of real numbers, these properties themselves proved by modeling the
problem as a flow network and then applying the Max-flow Min-cut Theorem (see Section
7.3.1 in the previous chapter).

The price to pay to go beyond these limitations is moving to a more complex definition
of bisimulation, based on a notion of environment. In this chapter, we define environmental
bisimulations for probabilistic higher-order languages. As representative calculi we con-
sider call-by-name and call-by-value λ-calculi, and a (call-by-value) λ-calculus extended
with higher-order references.

In Section 8.1, we discuss the main features of our definitions of environmental bisimu-
lations for probabilistic calculi. We then present in Section 8.2 environmental bisimulations
for pure call-by-name, establish basic properties including full abstraction for bisimilar-
ity and similarity, and develop various up-to techniques. Section 8.3 is devoted to the
pure call-by-value λ-calculus, and in Section 8.4 we study the extension with imperative
features. In each case we derive full abstraction results for probabilistic environmental sim-
ilarity and bisimilarity with respect to the contextual preorder and contextual equivalence,
respectively.

8.1 Main features

We discuss here the main differences of our proposals in comparison with ordinary (i.e.,
non probabilistic) environmental (bi)simulations.

Static and dynamic environments In ordinary environmental bisimulation the val-
ues produced during the bisimulation game are placed into the environment, so that the
observer can later play them at will during the bisimulation game. This schema is irrespec-
tive of the evaluation strategy (call-by-name or call-by-value), and is the distinguishing
feature of environmental bisimulations over the applicative ones. ‘Playing a term’ means

113
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copying it. However, in the λ-calculus the copying possibilities for call-by-name and call-
by-value are quite different. In call-by-name, evaluation only occurs in functional position
and therefore the term resulting from the evaluation may not be copied. In call-by-value,
in contrast, a term may be evaluated also in argument position, and then given as input to
a function; thus copying is possible also after evaluation. The different copying behavior
is well visible, for instance, in linear logic interpretations of call-by-name and call-by-value
[MOTW99].

Now, as we have seen in the previous chapter, the semantics of probabilistic languages is
sensitive to the copying operation; for instance the probability of success of an experiment,
if non-trivial, may be lowered by playing the experiment several times. This has a strong
impact on behavioral equivalences for call-by-name and call-by-value in probabilistic λ-
calculi. As an example,

A
def
= λx.(x⊕ Ω) and B

def
= (λx.x)⊕ (λx.Ω) (8.1)

are contextually equivalent in call-by-name: if evaluated alone they always terminate; if
evaluated with an argument, they return the argument with the same probability. More
generally, in call-by-name abstraction distributes over probabilistic choice. In contrast, dis-
tributivity fails in call-by-value, exploiting the possibility of copying evaluated terms; e.g.,
the probabilities of termination for A and B are different in the context (λx.x (xλy.y))[·]
(see Example 7.6).

To be able to express such behavioral differences, in our environmental bisimulations
the values produced during the bisimulation game are placed into the environment only
in call-by-value. We call such a value environment a dynamic environment because it may
grow during the bisimulation game. It is precisely the use of the dynamic environment
that allows us to separate the two terms A and B above. In probabilistic call-by-name,
dynamic environments would break full abstraction for contextual equivalence. The only
environment for call-by-name is static. The static environment for two compared objects
F,G is a pair of λ-terms M,N , which are, intuitively, the initial λ-terms from which, using
evaluation and interaction according to the bisimulation game, the objects F,G have been
derived. This (small) static environment is sufficient to ensure that the congruence proof of
the bisimilarity remains in the style of ordinary environmental bisimulation (i.e., it does not
require sophisticated techniques such as Howe’s). In short, the static environment reflects
the copying possibility for terms before evaluation, whereas the dynamic environment
reflects the copying possibility for values resulting from evaluation.

Formal sums In our probabilistic relations the objects compared are not plain λ-terms
but formal sums, that are the objects produced by the semantics of a term. These are,
intuitively, syntactic representations of probability distributions. As a consequence, envi-
ronments are not just tuples of values, but formal sums of tuples of values. To see why
related objects must be formal sums, consider again the terms A and B in (8.1): our en-
vironmental bisimulation for call-by-name equates A and B by relating A and the formal
sum resulting from the evaluation of B. None of the components of the formal sum, λx.x
and λx.Ω, could separately be related with A. (A form of bisimulation on formal sums,
namely a probabilistic version of logical bisimulation, is already defined in [DLSA14] for
call-by-name; its drawbacks are discussed in Section 9.1.)

In pure call-by-value λ-calculus, full abstraction for contextual equivalence would also
hold without formal sums (i.e., relating plain λ-terms), for the same reason why, in the
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same language, applicative bisimilarity on plain terms is fully abstract [CD14]. We do not
pursue this simplification of environmental bisimulations because it would be unsound in
extensions of the calculus. For instance, consider the following terms of a probabilistic
λ-calculus with store (again, an instance of distributivity):

H
def
= (ν x :=0)(λ.(M ⊕N)) K

def
= (ν x :=0)(λ.M ⊕ λ.N)

where, as in Section 6.1.2, (ν x :=0) indicates the creation of a new reference, initialized
with 0, λ.L is a thunk (i.e., λz.L for z not free in L), and where, using L1 seq L2 for the
sequential evaluation of L1 followed by L2,

M
def
= if !x = 0 then (x := 1 seq true) else Ω

N
def
= if !x = 0 then (x := 1 seq false) else Ω .

The terms M and N only differ at their first evaluation, when the fresh location l (that
was created with value 0 and substituted to x) is set to 1 and M produces true whereas
N produces false; thereafter l is 1 and both terms diverge. As a consequence, H and K
are contextually equivalent: at their first evaluation they always terminate, each returning
true and false with the same probability, and at later evaluations they always diverge.

To place H and K in a bisimulation, H has to be related with the formal sum obtained
from the evaluation of K; again, the single components alone would be distinguished. Once
more, this is a copying issue, due to the possibility of copying terms but not stores.

Big-step reduction, term closure, and congruence proof To achieve full abstrac-
tion, in the probabilistic case the bisimulation clauses have to use a big-step, rather than
a small-step, reduction relation. As we have seen in Section 6.2, the semantics of the prob-
abilistic λ-calculus is given by taking the supremum of its finitary big-step approximants.
Consider once again the terms defined in Example 6.11:

P
def
= RR and Q

def
= λ.Ω , for R

def
= λx.(xx)⊕Q (8.2)

The terms P and Q are contextually equivalent. However, only by exploring the whole
computation tree produced by P does one find out that the infinite number of leaves in
the tree makes a probability 1 of obtaining Q (i.e., a formal sum made of a finite subset
of the leaves of the tree would not be equivalent to Q).

When the reduction relation is small-step, as in ordinary environmental bisimulations
[SKS11], the related terms need not be values, because a normalizing term need not
produce a value in a single step and bisimulations must be closed under the reduction
adopted. In contrast, as our environmental bisimulations are big-steps, the bisimulation
game may be confined to values.

A more significant consequence of the adoption of big-step reductions concerns the
congruence proof. In environmental bisimulations the proof of congruence goes by in-
duction over contexts, as in proofs for first-order languages. For this, the proofs in the
literature rely on a ‘small-step’ reduction relation. This allows a tight control over the
syntax of the contexts, which fails with big-step reductions because in a higher-order lan-
guage contexts may arbitrarily grow during reduction. The induction over contexts in the
proofs of congruence for ordinary environmental bisimulations is replaced, in probabilistic
environmental bisimulation, by an induction on the number of small-step reductions with
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which a big-step approximant is derived (possibly coupled with an induction on the size
of a context), combined with two levels of continuity arguments. One level stems from the
least fixed point construction employed in the definition of the infinitary big-step seman-
tics on terms. The second level stems from a characterization of bisimilarity as the kernel
of the similarity preorder and, in turn, as the kernel of a finitary similarity in which (on
the challenger side) the big-step reduction relation employed is finite. The proof of the
characterization with the finitary similarity makes use of least fixed-points via a saturation
construction on formal sums where, intuitively, a formal sum is better than another formal
sum if the former one conveys more accurate probabilistic information than the latter one.

Up-to techniques Our proofs and examples rely on a few enhancements of the bisim-
ulation proof method (‘bisimulations up-to’), some of which are extensions of common
(bi)simulation enhancements, others are specific to probabilistic calculi. An example of
the latter is ‘simulation up-to lifting’, whereby it is sufficient, in the coinductive game,
that two derivative formal sums are in the probabilistic lifting of the candidate relation,
rather than in the candidate relation itself.

While the bisimulations act on formal sums and use infinitary big-step reductions to
values, we also explore coinductive games played on plain λ-terms and on finitary multi-
step reductions to terms (not necessarily values) as sound proof techniques. In particular,
we combine these with up-to context, so to be able to compare terms in the middle of
their evaluation when a common context can be isolated and removed.

8.2 Probabilistic call-by-name λ-calculus

The terms of the probabilistic λ-calculus, as we have seen in Chapter 6, are generated by
the following grammar:

M,N ::= x
∣∣∣ λx.M ∣∣∣ MN

∣∣∣ M ⊕N
In probabilistic languages, the semantics of a term is usually a (sub)distribution, that
is, a function that specifies the probabilities of all possible outcomes for that term. We
define here an alternative semantics based on formal sums, i.e., syntactic representations
of distributions. Formal sums allow us a tighter control on the manipulations of the
operational semantics, which is important in various places of our coinductive definitions
and proofs. Formal sums have the form∑

i∈I pi;Mi

where 0 < pi ≤ 1, for each i,
∑

i∈I pi ≤ 1, and I is a (possibly infinite) indexing set. In a
summand pi;Mi of a formal sum, pi is its probability value (or weight), and Mi is its term.
The terms of different summands of a formal sum need not be different. We extend some
definitions for probability distributions to formal sums. The weight weight(

∑
i∈I pi;Mi)

of a formal sum is
∑

i∈I pi. We let F,G range over formal sums, and we write the empty
formal sum as ∅ (i.e., the formal sum with no summands). We write F = G if F and G
are syntactically equal modulo a permutation of the summands and modulo the presence
of ∅ as summand. We use ‘+’ for binary sums, in the usual infix form, and sometimes
apply it also to formal sums, as in F + G. We write the empty formal sum as ∅. Value
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formal sums, ranged over by Y,Z are formal sums in which the term of each summand is
a value.

There is an obvious mapping from formal sums to distributions, whereby a formal sum
F yields the distribution in which the probability of a term M is the sum of the weights
with which M appears in summands of F . The mapping is not injective: in general,
infinitely many formal sums yield the same distribution (because of possible duplicates in
the terms of the summands of a formal sum). For instance, 1

2 ;M + 1
4 ;M and 3

4 ;M are
two different formal sums, that correspond to the same distribution assigning probability
3
4 to term M and probability 0 to any N such that N 6= M .

We sometimes decompose formal sums using a lifting construction. Given formal sums
Fi =

∑
j∈Ji pi,j ;Mi,j , for i ∈ I, we define∑

i∈I pi·Fi
def
=
∑

i∈I,j∈Ji pi · pi,j ;Mi,j ,

with pi · ∅ = ∅. The semantics of a term M , written JMK, is a value formal sum produced
as the supremum of the value formal sums obtained by finite computations starting from
M , using a preorder ≤apx on formal sums in which F1 ≤apx F2 if F1 is an approximant of
F2 (in other words F2 conveys more information than F1); formally, F2 = F1 +G for some
G. The semantics is obtained in various steps, whose rules are presented in Figure 8.1:

1. a single-step reduction relation −→ from terms to formal sums (where the evaluation
contexts are the usual ones for call-by-name, i.e., C := [·] | CM) ;

2. a multi-step reduction relation =⇒ from terms and formal sums to formal sums,
from which a relation Z=⇒ to value formal sums is extracted by retaining only the
summands whose term is a value via the function val:

val(
∑

i pi;Mi)
def
=
∑
{i|Miis a value} pi;Mi ;

3. the semantics J K, mapping terms and formal sums to value formal sums via the
supremum construction.

If M =⇒
∑

i∈I pi;Mi then I is finite, and each i represents a ‘possible world’ of the
probabilistic run of M , with probability pi and outcome Mi. The subset of possible worlds
in which Mi is a value makes for an approximant of M , and from such approximants the
semantics of M is obtained.

Since value formal sums form an ω-complete partial order with respect to the ≤apx

preorder, and for every M the set of those value formal sums Y such that M Z=⇒ Y is a
countable directed set, the semantics JMK of a term M exists and is unique.

Relations =⇒ and Z=⇒ are finitary in the sense that a derivation proof where one of such
relations appears in the conclusion only contains a finite number of ‘small steps’ (relation
−→). When reasoning by induction, sometimes we will need to make such number explicit,
therefore writing =⇒n and Z=⇒n, respectively.

Rule MulT, in contrast with MulFS, does not need a finitary condition on the in-
dexing set because a formal sum obtained in a small step from a term may have at most
two summands.

Additional notation. We introduce here some additional notation, allowing us to easily
manipulate terms and formal sums. This simplified notation is only used in the proofs
of our results; in the rest of the paper, we use the extended notation defined above. For
Y =

∑
i pi;λx.Mi and F =

∑
i pi;Mi, we define:
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single-step reduction relation from terms to formal sums

Beta
(λx.M)N −→ 1;M{N/x}

Sum
M1 ⊕M2 −→ 1

2 ;M1 + 1
2 ;M2

Eval
M −→

∑
i pi;Mi C is an evaluation context

C[M ] −→
∑

i pi;C[Mi]

Evaluation Contexts C := [·] | CM

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
multi-step reduction relation from terms to formal sums

Mul0
M =⇒ 1;M

MulT
M −→

∑
i pi;Mi Mi =⇒ Fi

M =⇒
∑

i pi·Fi
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

multi-step reduction relation from formal sums to formal sums:

MulFS
Mi =⇒ Fi∑

i∈I pi;Mi +G =⇒
∑

i∈I pi·Fi +G
I finite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
multi-step reduction relation from terms and formal sums to value formal sums

MulVT
M =⇒ F val(F ) = Y

M Z=⇒ Y
MulVFS

F =⇒ F ′ val(F ′) = Y

F Z=⇒ Y

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
the semantic mapping, from terms and formal sums to value formal sums

JMK def
= sup {Y | M Z=⇒ Y } JF K def

= sup {Y | F Z=⇒ Y }

Figure 8.1: Operational semantics for call-by-name

- λx.M • P = M{P/x} ;

- Y • P def
=
∑

i pi;Mi{P/x} ;

- C[F ]
def
=
∑

i pi;C[Mi] ;

- FP
def
=
∑

i pi;MiP .

Remark 8.1. By default, the results and definitions of environmental bisimulations we
will present are (implicitly) stated for closed terms. They can be generalized to open terms
in a standard way for bisimulations in λ-calculi [SP07a; KW06b; SKS11], essentially deriv-
ing properties between open terms M and N from the corresponding properties between
the closed terms λx̃.M and λx̃.N , for {x̃} ⊇ FV (M) ∪ FV (N). We will often omit the
word “closed” when referring to closed terms and values.
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8.2.1 Environmental bisimulation

In call-by-name, a probabilistic environmental relation is a set of elements each of which
is of the form (M,N) or ((M,N), Y, Z), where M,N, Y, Z are all closed, M,N are Λ⊕-
terms and Y,Z value formal sums. Intuitively, in the former elements M and N are terms
that we wish to prove equal, and in the latter elements Y and Z are value formal sums
obtained from M and N via evaluations and interactions with the environment. We use
R,S to range over probabilistic environmental relations. In a triple ((M,N), Y, Z) the pair
component (M,N) is the static environment, and Y, Z are the tested formal sums. We
write R(M,N) for the relation {(Y,Z) | ((M,N), Y, Z) ∈ R}; we accordingly use the infix
notation Y R(M,N) Z, and similarly for M R N . In the remainder of the chapter, when
discussing probabilistic environmental relations, bisimulations, simulations, or similar, we
abbreviate ‘probabilistic environmental’ as ‘PE’, or even omit it when non-ambiguous.
Static environments (that is, pairs of Λ⊕-terms) are ranged over by E . If E = (M,N) then
its context closure, written E?, is the set of all pairs of the form (C[M ], C[N ]). We use a
similar notation for the context closure of relations on λ-terms.

Remark 8.2 (Static environment). Our results would also hold admitting arbitrary sets
of pairs of Λ⊕-terms as static environments, rather then single pairs. We have chosen
single pairs so to bring up the minimal requirement on static environments for our proofs
to hold (notably the congruence for bisimilarity).

Definition 8.3 (Environmental bisimulation, call-by-name). A PE relation R is a (PE)
bisimulation if

1. M R N implies JMK R(M,N) JNK ;

2.
∑

i pi;λx.Mi RE
∑

j qj ;λx.Nj implies:

(a)
∑

i pi =
∑

j qj ;

(b) for all (P,Q) ∈ E?,
∑

i pi·JMi{P/x}K RE
∑

j qj ·JNj{Q/x}K .

We write ≈ for (PE) bisimilarity, the union of all PE bisimulations.

While ≈ is a PE relation, we are ultimately interested in comparing λ-terms (M ≈ N
if M RN for some bisimulation R).

Remark 8.4. Using the additional notation defined in Section 8.2, we can write the
bisimulation clauses for formal sums as follows:

(2) Y RE Z implies:

(a) weight(Y ) = weight(Z) ;

(b) for all (P,Q) ∈ E?, JY • P K RE JZ •QK .

Example 8.5. We have

M
def
= (λ.λ.Ω)⊕ (λ.Ω) ≈ λ.(λ.Ω⊕ Ω)

def
= N .

This is proved noting that JMK = 1
2 ;λ.λ.Ω+ 1

2 ;λ.Ω and JNK = 1;N , using the bisimulation
R in which M RN , JMK R(M,N) JNK, 1

2 ;λ.Ω R(M,N)
1
2 ;λ.Ω, and ∅ R(M,N) ∅. Terms M,N

could not be equated by a bisimulation that acted only on terms (ignoring formal sums),
as neither λ.λ.Ω nor λ.Ω can be equated to N .
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Definition 8.6 (Simulation). In Definition 8.3, and in the remainder of the chapter for
other definitions of probabilistic bisimulation, the corresponding simulation is obtained
by replacing the equality ’=’ on the weights with ‘≤’; thus in Definition 8.3, clause (2a)
becomes

∑
i pi ≤

∑
j qj .

The union of all simulations, similarity, is written ..

Theorem 8.7.

1. ≈ and . are the largest bisimulation and simulation, respectively.

2. . is a preorder, and ≈ an equivalence.

3. ≈ = . ∩ .−1.

Proof. 1. If M ≈ N then there is a bisimulation R such that M R N . Therefore,
((M,N), JMK, JNK) ∈R⊆≈. Analogously, if (E , Y, Z) ∈≈ then (E , Y, Z) ∈R for
some bisimulationR and the formal sums have the same weight and, for all P,Q ∈ E?,
(E , JY • P K, JZ •QK) ∈R⊆≈. The same holds for simulation.

2. Identity is a simulation, hence . is reflexive. If R ,S are simulations, then their
relational composition

R S= {(M,N) | ∃P such that M RP S N}
∪{((M,N), Y, Z) | ∃Y ′, P such that Y R (M,P )Y

′ S(P,N) Z}

is a simulation. If M R P S N then JMK R(M,P ) JP K S(P,N) JNK. Hence,
JMK(R S)(M,N)JNK. If Y R (M,P )Y

′ S(P,N) Z then weight(Y ) ≤ weight(Y ′) ≤
weight(Z) and for every C, JY •C[M ]K R(M,P ) JY ′ •C[P ]K S(P,N) JZ •C[N ]K. Then
. is transitive and reflexive. Analogously, ≈ is reflexive and transitive, and for any
bisimulation R it holds that

R−1 = {(M,N) | N RM} ∪ {((M,N), Y, Z) | ZR (N,M)Y }

is a bisimulation as well

3. The result follows from (1) and from the fact that the calculus is deterministic:

(a) if R is a bisimulation then both R and R−1 are simulations;

(b) to prove that . ∩ .−1 ⊆≈, we show that . ∩ .−1 is a bisimulation. Let
R and S be two simulations. If M R N and N S M then JMK R(M,N)

JNK and JNK S(N,M) JMK, which implies that ((M,N), JMK, JNK) ∈. ∩ .−1.
If ((M,N), Y, Z) ∈ R and ((N,M), Z, Y ) ∈ S then for all C we have JY •
C[M ]K R(M,N) JZ • C[N ]K and JZ • C[N ]K S(N,M) JY • C[M ]K. Therefore,
((M,N), JY •C[M ]K, JZ •C[N ]K) ∈. ∩ .−1. Finally the clause on the weights
holds by ((M,N), Y, Z) ∈ R and ((N,M), Z, Y ) ∈ S, which imply weight(Y ) ≤
weight(Z) and weight(Z) ≤ weight(Y ), respectively.

2

The bisimilarity, or similarity, is directly defined using the semantics of terms, which
is a least-fixed point on top of big-step approximants. When proving properties about
bisimilarity and similarity, therefore, we need to reason about such approximants. For this,
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we introduce a finite-step simulation in which the challenge reductions of the simulation
game employ the big-step approximants (the relation Z=⇒ of Figure 8.1). We cannot
have characterizations of bisimilarity in terms of a finite-step bi -similarity because in
general the weights of the approximants of two bisimilar terms are different, as shown in
Example 8.8. Hence, to reason about bisimilarity we go through its characterization via
similarity (Theorem 8.7), and then the characterization of similarity via the finite-step
similarity (Corollary 8.12).

Example 8.8. Let P and Q be the terms discussed in (8.2) in Section 8.1. A bisimulation
relating P and Q is

{(P,Q), ((P,Q),
∑

n≥1
1

2n ;Q, 1;Q), ((P,Q), ∅, ∅)} .

We could not prove the equality using finite-step approximants for bisimulation, since
those for P are of the form

∑
1≤n≤m

1
2n ;Q, for some m, and thus have a smaller total

weight than the formal sum 1;Q immediately produced by Q.

Definition 8.9. A PE relation R is a finite-step simulation if

1. M RN and M Z=⇒ Y imply Y R(M,N) JNK ;

2.
∑

i pi;λx.Mi RE
∑

j qj ;λx.Nj implies:

(a)
∑

i pi ≤
∑

j qj ;

(b) for all (P,Q) ∈ E?, if
∑

i pi;Mi{P/x} Z=⇒ Y then Y RE
∑

j qj ·JNj{Q/x}K .

We write .fin for finite-step similarity. In finite-step simulations, the challenges are
expressed by finitary reductions. Moreover, any result about finite-step similarity .fin on
Λ⊕-terms can be established using a finite-step simulation with finite formal sums on the
challenger side, though this constraint is not required in the definition.

Remark 8.10. Clause (2b) of Definition 8.9 cannot be written thus:
for all (P,Q) ∈ E?, if Mi{P/x} Z=⇒ Yi for every i
then

∑
i pi·Yi RE

∑
j qj ·JNj{Q/x}K

because, as the index set I can be infinite, the challenge in the bisimulation game might
not be finitary. By contrast, reduction Z=⇒ on formal sums (from Figure 8.1) is finitary.
This allows proofs by induction on the number of single-steps in a reduction.

We denote by Pairs(R) the set of pairs of terms in a PE relation R . We use two
saturation constructions to turn a simulation into a finite-step simulation and conversely.
Given a PE relation R, its saturation by approximants is

Pairs(R) ∪ {(E , Y, Z) | there is Y ′ with Y ′ RE Z and Y ≤apx Y
′ }

and its saturation by suprema is
⋃
nRn, where

R0 def
= R

Rn+1 def
= Rn∪ {(E , Y, Z) | there are {Yi}i with

Yi RnE Z, Yi ≤apx Yi+1, and Y = sup{Yi}i}.
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Lemma 8.11.

1. The saturation by approximants of a simulation is a finite-step simulation.

2. The saturation by suprema of a finite-step simulation is a simulation.

Proof. The proof of (1) follows from the definition of JMK as the supremum of the set
{Y | M Z=⇒ Y }. For (2), the crux is proving by induction on n that if

∑
i pi;λx.Mi RnE∑

j qj ;λx.Nj then:

1.
∑

i pi ≤
∑

j qj ;

2.
∑

i pi;Mi{P/x} Z=⇒ Y implies Y RnE
∑

j qj ·JNj{Q/x}K, for all (P,Q) ∈ E?.

The details of the proof can be found in Section 8.5. 2

Corollary 8.12. The similarity and finite-step similarity preorders, . and .fin, coincide.

Proof. The result follows from Lemma 8.11 and from the fact that a simulation (respec-
tively: a finite-step simulation) is included in its saturation by approximants (respectively:
by suprema). 2

The following example highlights the differences between simulations and finite-step
simulations, by proving the equality in Example 8.8 using finite-step simulations.

Example 8.13. Terms P and Q of Example 8.8 can be proved equivalent by exhibiting

the following finite-step simulations, where Y0
def
= ∅ and Ym

def
=
∑

1≤n≤m
1

2n ;Q for m ≥ 1:

R def
= {(P,Q), ((P,Q), ∅, ∅)} ∪ {((P,Q), Ym, 1;Q) | m ≥ 0}

S def
= {(Q,P ), ((Q,P ), ∅, ∅), ((Q,P ), 1;Q,

∑
n≥1

1
2n ;Q)}.

2

To derive the substitutivity properties of the similarity, and hence of the bisimilarity,
we also need an up-to technique for the finite-step similarity. Specifically, we need an
up-to lifting technique whereby, in the simulation game, two derivative formal sums can
be decomposed into ‘smaller’ formal sums and it is then sufficient that these are pairwise
related. We write lift(S) for the probabilistic lifting of a relation S on formal sums:10

lift(S)
def
= {(F,G) | there are I, pi, Fi, Gi, for i ∈ I, with
Fi S Gi and F =

∑
i pi·Fi and G =

∑
i pi·Gi}.

Definition 8.14. A PE relation R is a finite-step simulation up-to lifting if

1. M RN and M Z=⇒ Y imply Y lift(R(M,N)) JNK ;

2.
∑

i pi;λx.Mi RE
∑

j qj ;λx.Nj implies:

(a)
∑

i pi ≤
∑

j qj ;

(b) for all (P,Q) ∈ E?, if
∑

i pi;Mi{P/x} Z=⇒ Y then Y lift(RE)
∑

j qj ·JNj{Q/x}K.
10In contrast with the lifting relation defined in Chapter 2 (definition 2.10), the lifting relation defined

here takes a relation on formal sums and returns a relation on formal formal sums. The lifting relation
in Chapter 2 takes a relation on states (corresponding to terms in the setting of the present chapter) and
returns a relation on distributions on states (formal sums in the present chapter).
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Lemma 8.15. If R is a finite-step simulation up-to lifting then R ⊆ .fin.

Proof. Let R be a finite-step simulation up-to lifting. Then S is finite-step simulation:

Sdef= Pairs(R ) ∪ {((M,N), Y, Z) | Y lift(R (MN))Z}

If M S N then M RN , which implies that if M Z=⇒ Y then Y lift(R (M,N)) JNK.
Hence, Y S(M,N) JNK.
Let Y S(M,N) Z, i.e., Y =

∑
i pi·Yi, Z =

∑
i pi·Zi and YiR (M,N)Zi. For every i,

weight(Yi) ≤ weight(Zi), hence weight(Y ) ≤ weight(Z).
For every i, Yi • C[M ] Z=⇒ Y ′i implies Y ′i lift(R (M,N)) JZi •C[N ]K by the definition of R.
Since Y • C[M ] Z=⇒ Y ′ implies Y ′ =

∑
i pi·Y ′i , for some Y ′i such that Yi • C[M ] Z=⇒ Y ′i ,

and JZ •C[N ]K =
∑

i pi; JZi • C[N ]K, then Y ′ lift( lift(R (M,N)) ) JZ •C[N ]K. The result
follows from lift( lift(R (M,N)) ) = lift(R (M,N)) . 2

Example 8.16. Let P
def
= λ.Ω, Q

def
= λ.λ.Ω, and

M
def
= (P ⊕ P )⊕ (Q⊕Q) , N

def
= (P ⊕Q)⊕ (P ⊕Q) .

The following finite-step simulation up-to lifting shows M.finN :

R def
= {(M,N), ((M,N), 1;P, 1;P ), ((M,N), 1;Q, 1;Q),

((M,N), ∅, 1;P ), ((M,N), ∅, 1;Q)} .

The ‘up-to lifting’ technique allows us to have a relation with only empty or Dirac formal
sums (i.e., a single summand with probability 1).

Remark 8.17. We have seen in Example 8.8 that the terms P and Q defined in (8.2),
Section 8.1, cannot be proved equivalent using a bisimulation with small-step, finitary
clauses. We could prove the terms equivalent by using a bisimulation with small-step
clauses if we allowed the reached formal sums to be decomposed into equally weighted for-
mal sums (formally: using the up-to-distribution-and-lifting technique discussed in Section
8.2.3). In this case, it would be sufficient to define a bisimulation relating P and Q, and
we would only need to consider the formal sum 1

2 ;P + 1
2 ;Q (reached by P in one step)

and decompose 1;Q (the formal sum reached in zero steps by Q) as 1
2 ;Q+ 1

2 ;Q.
However, such a bisimulation would not be complete, since the same reasoning would

not apply to the terms M and N defined below, where R1
def
= λx.(xx) ⊕ λx.Q and

R2
def
= λx.(xx)⊕Q

M
def
= (R1R1)⊕ λ.λ.Q N

def
= λ.(R2R2)⊕ λ.Q

Terms M and N cannot be proved equivalent using a small-step bisimulation, since 1;N
is only equivalent to the semantics of M , which is not reachable in a finite number of
steps. Indeed, no decomposition of 1;N can be matched with a decomposition of any
approximation of the semantics of M .

Lemma 8.18. If M.finN then C[M ].finC[N ], for any context C.
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Proof. Given a a finite-step simulation R saturated by approximants, we prove that the
PE relation

{(C[M ], C[N ]) | M RN}
∪{((C[M ], C[N ]), 1;λx.C ′[M ], 1;λx.C ′[N ]) | M RN}
∪{((C[M ], C[N ]), Y, Z) | Y R (M,N)Z}
∪{((M,N), ∅, Z) | for some M,N,Z}

is a finite-step simulation up-to lifting. The details of the proof can be found in Section
8.5. 2

Hence, (pre)congruence results for bisimilarity and similarity follow from Lemma 8.18,
Corollary 8.12 and the fact that ≈ = . ∩ .−1 (Theorem 8.7).

Corollary 8.19. On Λ⊕-terms, ≈ is a congruence, and . a precongruence.

8.2.2 Contextual equivalence

The contextual preorder and equivalence are defined as in Section 6.2.2, using the weight

of the semantics of terms, which are now formal sums. We set M ⇓ def
= weight(JMK) (the

probability of termination).

Definition 8.20 (Contextual preorder and equivalence). M and N are in the contextual
preorder, written M ≤ctx N , (resp. in contextual equivalence, written M =ctx N), if
C[M ] ⇓ ≤ C[N ] ⇓ (resp. C[M ] ⇓ = C[N ] ⇓), for every context C.

Lemma 8.21 (Completeness). On Λ⊕-terms, ≤ctx ⊆ ..

Proof. We prove that the following is a simulation:

R def
= (≤ctx) ∪ {((M,N), JC[M ]K, JC[N ]K) | M ≤ctx N}

We have M R N if and only if M ≤ctx N , which by definition of R implies that
JMK R(M,N) JNK.
If Y R(M,N) Z then Y = JC[M ]K and Z = JC[N ]K for some context C. Hence, for any C ′ we
have JY •C ′[M ]K = JJC[M ]K•C ′[M ]K = JC[M ]C ′[M ]K and JZ•C ′[N ]K = JJC[N ]K•C ′[N ]K =
JC[N ]C ′[N ]K and by the definition of R we have JC[M ]C ′[M ]KR (M,N)JC[N ]C ′[N ]K.

2

Corollary 8.22 (Full abstraction). On Λ⊕-terms:

1. relations ≤ctx and . coincide.

2. relations =ctx and ≈ coincide.

Proof. Completeness of the simulation preorder holds by Lemma 8.21. The converse, i.e.,
soundness, follows from the fact that . is a precongruence (Corollary 8.19) and M . N
implies weight(JMK) ≤ weight(JNK) (by clause (2a) of simulation). Hence, M . N
implies C[M ] . C[N ] implies weight(JC[M ]K) ≤ weight(JC[N ]K).
Completeness and soundness for ≈ follow from (1) and the fact that ≈ (respectively: =ctx)
is the kernel of . (respectively: ≤ctx), by item (3) of Theorem 8.7. 2
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8.2.3 Up-to techniques

We have pointed out (Example 8.5 and 8.8) that our simulations (and bisimulations) have
to be based on formal sums and cannot employ finitary reductions, as in ordinary envi-
ronmental bisimulations, in order to faithfully represent contextual equivalence. However
each of these features is sound and can therefore be used in proof techniques. In this
section we show examples of such techniques. These techniques are very limited and we
leave for future work the development of more conclusive ones.

Finitary reductions — the possibility of stopping the evaluation of a term after a
few β-reductions — are interesting in enhancements with up-to context (the ability of
isolating and removing common contexts in derivative terms) because sometimes such
common contexts appear in the middle of a reduction. For applicability, up-to context
is usually combined with further up-to techniques that allow us to bring up the common
contexts. In the first up-to technique, where the coinduction game still uses formal sums,
we combine up-to context with up-to lifting, so to be able to decompose related formal
sums into pieces with different common contexts. In the technique, the context closure of
the up-to context is only applied onto λ-terms. The closure could probably be made more
powerful by applying it also on formal sums, at the price of a more complex proof, but its
usefulness is unclear.

In clause (2b) below, and in the remainder of the chapter, we use the function dirac

that takes a set of pairs of λ-terms (M,N) and returns the pairs of their (Dirac) formal
sums (1;M, 1;N).

Definition 8.23. A PE relation R is a finite-step simulation up-to lifting and context if:

1. M RN and M Z=⇒ Y imply Y lift(R (M,N)) JNK ;

2.
∑

i pi;λx.Mi RE
∑

j qj ;λx.Nj implies:

(a)
∑

i pi ≤
∑

j qj ;

(b) for all (P,Q) ∈ E?, one of the following holds:

• there are F,G such that
∑

i pi;Mi{P/x} =⇒ F and
∑

j qj ;Nj{Q/x} =⇒ G with
F lift(dirac(E?))G ;

• if
∑

i pi;Mi{P/x} Z=⇒ Y then
Y lift( dirac(E?) ∪ RE )

∑
j qj ·JNj{Q/x}K .

The following lemma proves the soundness of the up-to lifting and context technique.

Lemma 8.24. If R is a finite-step simulation up-to lifting and context then R ⊆ .fin.

Proof. Let R be a finite-step simulation up-to lifting and context. We prove that

R′ def= Pairs(R)
∪ {((M,N), Y, Z) | Y ′R (M,N)Z and Y ≤apx Y

′, for some Y ′}
∪ {((M,N), 1;λx.C[M ], 1;λx.C[N ]) | M R N}
∪ {((M,N), ∅, Z) | for some M,N,Z}

is a finite-step simulation up-to lifting, from which the result follows by R ⊆ R′. The
details of the proof can be found in Section 8.5.

2
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Example 8.25. The up-to lifting and context technique allows us to prove that terms
A,B defined in (8.1) in Section 8.1 are bisimilar. We prove A . B using the PE relation

{(A,B), ((A,B), JAK, JBK)} .

Indeed, JAK = 1;A and JBK = 1
2 ;λx.x+ 1

2 ;λx.Ω and, for any pair of arguments of the form
(C[A], C[B]) used to test the formal sums, we have 1;C[A]⊕ Ω −→ 1

2 ;C[A]+ 1
2 ; Ω and the

pair (1
2 ;C[A] + 1

2 ; Ω, 1
2 ;C[B] + 1

2 ; Ω) is in lift(dirac({(A,B)}?)) . Analogously, using the
relation {(B,A), ((B,A), JBK, JAK)} ∪ {((B,A), ∅, Z) | for any Z} we prove B . A .

In the second up-to technique, the game is entirely played on terms, without appeal to
formal sums. We present the technique in combination with forms of up-to context, up-to
distribution, up-to reduction, and up-to lifting. This technique will allow us to prove the
equivalence of two probabilistic fixed-point combinators in Section 8.2.4.

A term relation is a relation T(M,N) on values of Λ⊕ and the index (M,N) is a pair of
Λ⊕-terms. The index corresponds, intuitively, to a static environment of an environmental
bisimulation. We use the notation T ?−(M,N) for T(M,N) ∪ {(M,N)}?.

A term M deterministically reduces to G (notation:
d

=⇒) if M =⇒ G and only the
last reduction in the sequence may be derived using rule Sum. We write M �M ′ if M
and M ′ deterministically reduce to the same formal sum, but M ′ takes fewer steps. That

is, there are G,m,m′ with m ≥ m′ and with M
d

=⇒m G, and M ′
d

=⇒m′ G. Thus, in
Definition 8.26, �? T ?−(M,N) is the set

{(P,Q) | P �? P ′ for P ′ with P ′(T(M,N) ∪ {(M,N)}?)Q} .

We then write F =dis F
′ if F and F ′ represent the same probability distribution. In the

up-to technique below, � gives us the ‘up-to reduction’, and =dis the ’up-to distribution’.
We use up-to distribution to manipulate formal sums, which are purely syntactic objects.

Finally,
d

=⇒=dis is the composition of the two relations, i.e., M
d

=⇒=dis F if there is F ′

with M
d

=⇒ F ′ and F ′ =dis F .

Definition 8.26. A term relation T(M,N) is a bisimulation up-to context closure, distri-
bution, reduction, and lifting if

1. JMK =dis dirac(T(M,N)) =dis JNK ;

2. if λx.M ′ T(M,N) λx.N
′ then for all (P,Q) ∈{(M,N)}?,

M ′{P/x} d
=⇒=dis lift(dirac(�? T ?−(M,N))) =dis

d⇐= N ′{Q/x} .

We first establish the soundness of the up-to distribution and lifting technique. For
a relation R on formal sums, we write dislift(R) for the set of pairs F,G such that
F =dis lift(R) =dis G. The up-to distribution and lifting technique is obtained by
substituting lift(·) with dislift(·) in Definition 8.14.

Lemma 8.27. If R is a finite-step simulation up-to distribution and lifting then R ⊆ .fin.

The proof follows as the one for the up-to lifting technique (Lemma 8.15), and exploits
the fact that dislift(dislift(·)) = dislift(·). Then we derive the soundness of the
full technique (the proof can be found in Section 8.5).
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Lemma 8.28. If T(M,N) is a bisimulation up-to context closure, distribution, reduction,
and lifting then (M,N) ∈ ≈.

Remark 8.29. The first clause of the up-to technique in Definition 8.26 is not sound if

T(M,N) is substituted by T ?−(M,N): in this case, for any pair of values V,W , relation T(V,W )
def
=

∅ would satisfy the definition, since JV K = 1;V , JW K = 1;W and 1;V dirac({(V,W )}?)1;W.

8.2.4 Fixed-point combinator example

In the reductions of this example, we write a Dirac formal sum 1;M as M , so to have
reductions between λ-terms. We exploit the up-to technique of Definition 8.26 to prove
the equivalence between two fixed-point combinators. One of the combinators is Υ:

Υ
def
= λy.y(Dy(Dy))

whereD
def
= λy.λx.y(xx) .

For any term L we have

ΥL −→ L(DL(DL))
and then DL(DL)−→−→L(DL(DL)) .

(8.3)

The other combinator at any cycle can probabilistically decide whether to behave
differently (i.e., as Turing’s fixed-point combinator) or to turn for good into the previous
Υ combinator:

Υ′
def
= D′D′

where D′
def
= λx.λy.((y(Dy(Dy)))⊕ (y(xxy))) .

Thus the computation of Υ′L will unveil, for a while, some L’s while computing as Turing’s
combinator, and then will continue unveiling L’s by computing as Υ. Indeed, for

Υ′1
def
= λy.((y(Dy(Dy)))⊕ (y(D′D′y))) ,

we have
Υ′L −→ Υ′1L−→ (L(DL(DL)))⊕ (L(D′D′L))

−→ 1
2 ;L(DL(DL)) + 1

2 ;L(D′D′L) .

(8.4)

We can establish Υ ≈ Υ′ using the term relation

T(Υ,Υ′)
def
= {(Υ,Υ′1)} .

The interesting case is the bisimulation clause for (Υ,Υ′1). Take any M {(Υ,Υ′)}? N .

By (8.3), we have ΥM −→M(DM(DM)), whereas by (8.4), Υ′N
d

=⇒ 1
2 ;N(DN(DN)) +

1
2 ;N(D′D′N). Now we could conclude, up-to context closure, distribution, reduction, and
lifting, if we can show that the pairs

(M(DM(DM)), N(DN(DN)))
and (M(DM(DM)), N(Υ′N))

are in �? T ?−(M,N) This holds because: the first pair is in {(Υ,Υ′)}?; for the second pair, by

(8.3) we deduce DM(DM) � ΥM , and then we have

M(DM(DM)) �? M(ΥM) {(Υ,Υ′)}? N(Υ′N).

The example also shows the usefulness of static environments (whose terms need not
be values) for context closures in ‘up-to context’ techniques.
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8.3 Probabilistic call-by-value λ-calculus

In call-by-value, the static environments are not anymore sufficient. As in ordinary envi-
ronmental bisimulations, we need a dynamic environment to record the values produced
during the bisimulation game. In ordinary environmental bisimulations we can see such
environments as tuples of values.11 In the probabilistic case formal sums come into the
picture. Environment formal sums are terms of the form∑

i pi; Ṽi

(i.e., sums of weighted tuples) in which all tuples Ṽi have the same length and, as for
ordinary formal sums, 0 < pi ≤ 1 for each i and

∑
i pi ≤ 1. We call the length of the

tuples Ṽi’s the length of the environment formal sum. The tuples Ṽi represent the dynamic
environment: the knowledge that an observer has accumulated during the bisimulation
game. There may be several such elements Ṽi, reflecting the possible worlds produced by
the probabilistic evaluation. During the bisimulation game, the environment formal sum
is updated. Viewing the environment formal sum as a matrix, in which Ṽi represents the
i-row and the elements (Ṽ1)r, (Ṽ2)r, . . . (the r-th element of each row) represent the r-th
column, a column is a set of values that the various possible worlds have produced at the
same step of the bisimulation game. (This explains why the tuples Ṽi’s of the sum have
the same length.)

More precisely, in the bisimulation game at each possible world i a term Mi (con-
structed from the Ṽi’s using a context closure discussed below) is evaluated. The evalua-
tion of Mi yields, probabilistically, a multiset of values (as a formal sum). This multiset
is empty when all evaluations from Mi diverge; in this case the whole row i disappears,
meaning that in the i-th possible world the observer never receives an answer. When the
multiset is non-empty, the row i is split into as many possible worlds as the values in the
multiset. For instance if the evaluation of Mi produces V with probability 1

2 and V ′ with

probability 1
3 then the row pi; Ṽi is split into the two rows 1

2 · pi; Ṽi, V and 1
3 · pi; Ṽi, V

′.
This splitting operation is captured by the following multiplication of an environment

formal sum
∑

i∈I pi; Ṽi and a tuple of formal sums Yi =
∑

j∈Ji pi,j ;Vi,j :∑
i∈I pi; Ṽi · Yi

def
=
∑

i∈I,j∈Ji pi · pi,j ; Ṽi, Vi,j .

We use Y,Z to range over environment formal sums, and we sometimes treat a formal
sum as a special case of environment formal sum in which all tuples have length one.

The view of environment formal sums as matrices is illustrated in Figure 8.2, for an

environment formal sum Y
def
=
∑

1≤i≤3 pi; Ṽi of length 4. The figure also illustrates the
extraction of the column r of the formal sum, written Y�r, that yields the tuple of values
along the same column, and the multiplication of an environment formal sum with formal
sums resulting from the semantics of terms, one per row (where I = λx.x is the identity
function).

The dynamic environment of two environment formal sums
∑

i∈I pi; Ṽi and
∑

j∈J qj ; W̃j

is the pair of tuples (of tuples) ({Ṽi}i∈I , {W̃j}j∈J). In environmental bisimulations, the

11 The definition of environmental bisimulation given in Chapter 6 (Definition 6.7) for non-probabilistic
calculi has a unique notion of environment E , which corresponds to what we call here the dynamic environ-
ment. In remark 6.8, we have seen how this environment can be alternatively formalized in non-probabilistic
calculi using tuples of values.
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Y�1 Y�2 Y�3 Y�4

p1; V1,1 V1,2 V1,3 V1,4

p2; V2,1 V2,2 V2,3 V2,4

p3; V3,1 V3,2 V3,3 V3,4

Y =
∑ Ṽ1

Ṽ2

Ṽ3

p1; V1,1 V1,2 ·JI ⊕ ΩK
p2; V2,1 V2,2 ·JI ⊕ λ.ΩK

∑ p1
2 ; V1,1 V1,2 I
p2
2 ; V2,1 V2,2 I
p2
2 ; V2,1 V2,2 λ.Ω

=
∑

Figure 8.2: Formal sums as matrices

input for two higher-order functions is constructed as the context closure of their environ-
ments. In call-by-value, the environments have both a static and a dynamic component
and the inputs are constructed accordingly. Given a static environment (M,N) and a

dynamic environment ({Ṽi}i, {W̃j}j), their context closure, written

({M, Ṽi}i, {N, W̃j}j)?̂

is the set of all pairs of tuples ({Ti}i, {Uj}j) for which there is a context C such that for

every i we have Ti = C[M, Ṽi], and for every j we have Uj = C[N, W̃j ]. Thus every Ti
is obtained from the same context C by filling its holes with the first element M of the
static environment and the dynamic environment Ṽi. Similarly for Uj , using N , the tuple

W̃j and the same context C. Moreover, as we are in call-by-value, C should be a value
context, that is, terms Ti and Uj are values for all i, j.

The operational semantics of call-by-value is defined as in call-by-name, provided that
the rule for β-reduction and the evaluation contexts are redefined thus:

BetaV
(λx.M)V −→ 1;M{V/x}

Evaluation contexts C = [·]
∣∣∣ CM ∣∣∣ V C

8.3.1 Environmental bisimulation

In call-by-value, a probabilistic environmental relation (that we still abbreviate as PE
relation) is like for call-by-name, except that formal sums are replaced by environment
formal sums. That is, each element of the relation is either of the form (M,N) (a pair of
Λ⊕-terms) or Y RE Z (two environment formal sums, collecting the dynamic environment,
with a static environment).
If E = (M,N) is a static environment, then E1 and E2 denote the projections, i.e., the
terms M and N , respectively.

In a PE relation, related environment formal sums are compatible, meaning that they
have the same length. In the remainder, compatibility of environment formal sums is
tacitly assumed.
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Definition 8.30 (Environmental bisimulation, call-by-value). A PE relation is a (PE)
bisimulation if

1. M R N implies JMK R(M,N) JNK ;

2.
∑

i pi; Ṽi RE
∑

j qj ; W̃j implies:

(a)
∑

i pi =
∑

j qj ;

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then for all ({Ti}i, {Uj}j) ∈
({E1, Ṽi}i, {E2, W̃j}j)?̂ we have∑

i pi; Ṽi · JMi{Ti/x}K RE
∑

j qj ; W̃j · JNj{Uj/x}K ;

(c)
∑

i pi; Ṽi · JE1K RE
∑

j qj ; W̃j · JE2K .

(PE) bisimilarity, ≈, is the union of all PE bisimulations, and the corresponding
similarity is ..

The structure of the above definition is similar to that of ordinary environmental
bisimulations. There are three main differences: first, the appearance of formal sums and
of probability measures (notably in clause (2a)); second, the use of an (infinitary) big-step
semantics, rather than a small-step, which shows up in the function J K in clauses (1),
(2b) and (2c); thirdly the appearance of a static environment, that is used in the context
closure and in clauses (1) and (2c). In clause (2b), the related environment formal sums,
viewed as matrices, grow by the addition of a new column resulting, on left-hand side,
from the multiplication of each row pi; Ṽi with the formal sum JMi{Ti/x}K, and similarly
on the right-hand side. Thus the compatibility between related environment formal sums
is maintained. Clause (2c) allows to re-evaluate the static environment at any time. This
clause and other features are necessary in order to achieve full abstraction in the imperative
case (see Section 8.4.1); they could be removed in pure call-by-value, following [CD14].

Remark 8.31. Clause (1) could be substituted by

(1′) M R N implies 1; ∅ R(M,N) 1; ∅

where 1; ∅ is the Dirac formal sum with empty environment. Clause (2c) then guarantees
that JMK R(M,N) JNK. We did not use this definition for continuity with the call-by-
name case, and since not needed for pure calculi. By contrast, a modification of clause
(1) analogous to (1′) is used in Definition 8.41 of bisimulation for imperative calculi (see
Example 8.42).

Theorem 8.32.

1. ≈ and . are the largest bisimulation and simulation, respectively.

2. . is a preorder, and ≈ an equivalence.

3. ≈ = . ∩ .−1.

Proof. The proof is analogous to the one for call-by-name. The addition of the dynamic
environment is not relevant for this proof, and the extra clause (2c) is treated analogously
to clause (2b). 2
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Example 8.33. Terms M and N in Example 8.5 are equivalent in call-by-name, but
not in call-by-value. A bisimulation relating these terms should contain the formal sums
JMK = 1

2 ;λ.λ.Ω + 1
2 ;λ.Ω and JNK = 1;N , with static environment E = (M,N), and

thus the triple (E , 1
2 ;λ.λ.Ω, λ.Ω, 1

2 ;N,λ.Ω) would be in the relation as well. However, the
values in the first column of the dynamic environment can be tested again, by clause (2b)
of bisimulation, leading to the triple

(E , 1
2 ;λ.λ.Ω, λ.Ω, λ.Ω, 1

4 ;N,λ.Ω, λ.Ω) ,

which does not satisfy clause (2a).

The main results for environmental bisimilarity and similarity in call-by-value (congru-
ence and full abstraction with respect to contextual preorder and equivalence) are as for
call-by-name, and the structure of the proofs is similar. The details are however different
due to the presence of dynamic environments. As for call-by-name, so in call-by-value to
reason about bisimilarity and similarity we need a finite-step simulation, with challenges
produced by the finitary big-step approximants. To make sure that the challenges are
finite-step, we define extended environment formal sums, i.e., terms∑

i pi; Ṽi;Mi

in which the environment formal sum
∑

i pi; Ṽi is extended with an additional column

of arbitrary Λ⊕-term (not necessarily values). Intuitively, an element Ṽi;Mi indicates
that the λ-term Mi has to be run with an observer whose knowledge is Ṽi. Extended
environment formal sums are ranged over by F,G and val(F) is defined analogously to
formal sums:

val(
∑

i pi; Ṽi;Mi)
def
=
∑
{i|Miis a value} pi; Ṽi,Mi .

Extended environment formal sums allow us to define the multi-step reduction re-
lation from extended environment formal sums to environment formal sums: for F =∑

i∈I pi; Ṽi;Mi + G, where I is a finite set, we set

Mi Z=⇒ Yi for every i

F Z=⇒
∑

i∈I pi; Ṽi · Yi + val(G)

This intuitively corresponds to the multi-step reduction relation from formal sums to value
formal sums. In clause (1) below we see formal sums as special cases of environment formal

sums. For an extended environment formal sum F =
∑

i pi; Ṽi;Mi, we let JFK def
= sup{Y |

F Z=⇒ Y}. Since
∑

i pi; Ṽi ·JMiK = JF K, we could have equivalently defined the operational
semantics for call-by-value directly on extended environment formal sums.

Additional notation. We extend to (extended) environment formal sums the notations
for β-reduction, contexts, and application on formal sums, and introduce a notation for
extending the dynamic environments. We use r to range over indexes of columns of
environment formal sums, and we let | Y | denote the length of an environment formal
sum Y. Abusing notation, we sometimes write | Y | also for the index set {1, ..., | Y |}.
Let Y =

∑
i pi; Ṽi and F =

∑
i pi; Ṽi;Mi and P be a term.

- for any r, if (Ṽi)r = λx.Mi we let Y; Y�r • P
def
=
∑

i pi; Ṽi;Mi{P/x} ;
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- for any r, if (Ṽi)r = λx.Mi and C is a context with holes with indexes ranging over

| Y | +1 we let Y; Y�r • C[P,Y]
def
=
∑

i pi; Ṽi;Mi{C[P, Ṽi]/x} ;

- Y;P
def
=
∑

i pi; Ṽi;P ;

- for any context C, we let C[F]
def
=
∑

i pi; Ṽi;C[Mi] ;

- for Fj =
∑

i∈Ij pj,i;Mj,i, we let
∑

j qj ;Cj [Fj ]
def
=
∑

j,i∈Ij qj · pi,j ;Cj [Mj,i].

Using this notation, the call-by-value bisimulation clauses for environment formal sums
become as follows:

(2) Y RE Z implies:

(a) weight(Y) = weight(Z) ;

(b) for all r and for all contexts C, JY; Y�r • C[E1,Y]K RE JZ; Z�r • C[E2,Z]K ;

(c) JY; E1K RE JZ; E2K .

As for call-by-name, we will use this additional notation only for proofs.

Definition 8.34. A PE relation is a finite-step simulation if

1. M RN and M Z=⇒ Y imply Y R(M,N) JNK ;

2.
∑

i pi; Ṽi RE
∑

j qj ; W̃j implies:

(a)
∑

i pi ≤
∑

j qj ;

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then for all ({Ti}i, {Uj}j) ∈
({E1, Ṽi}i, {E2, W̃j}j)?̂ we have

∑
i pi; Ṽi;Mi{Ti/x} Z=⇒ Y implies

Y RE
∑

j qj ; W̃j · JNj{Uj/x}K ;

(c)
∑

i pi; Ṽi; E1 Z=⇒ Y implies YR E
∑

j qj ; W̃j · JE2K .

We write .fin for the union of all finite-step simulations. Analogously to call-by-
name, we use a saturation by approximants and a saturation by suprema to move from
a simulation to a finite-step simulation and conversely, and exploit this to prove that
similarity and finite-step similarity coincide.

Lemma 8.35. Relations . and .fin coincide.

The proof follows as in call-by-name. We prove that the saturation by approximants of
a simulation is a finite-step simulation and that the saturation by suprema of a finite-step
simulation is a simulation. Clause (2c) is treated analogously to clause (2b).

As in call-by-name, we derive congruence for bisimilarity and similarity by first prov-
ing the property for finite-step similarity. We also exploit a combination of two up-to
techniques for finite-step simulation, namely up-to lifting and up-to environment. Up-to
lifting is defined analogously to call-by-name, using the lifting operation on environment
formal sums. Up-to environment intuitively allows us to exchange columns of environment
formal sums (when these are viewed as matrices as in Figure 8.2), and to add new columns.
Adding columns is safe because it means enlarging the dynamic environment: terms that
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are equal in the larger environment are also so in the smaller environment as the tests
that can be built (when playing the bi-simulation game) with the latter environment are
a subset of those that are obtained from the former environment.

The up-to environment technique is based on the definition of the preorder ≤env on
pairs of formal sums (where, for each pair, the formal sums in the pair have the same
length). Environment formal sums (Y,Z) are below formal sums (Y′,Z′) if, in the second
pair, the dynamic environment of the first pair is extended and the columns have been
possibly permuted. Formally, (Y,Z) ≤env (Y′,Z′) if Y =

∑
i pi; Ṽi,Z =

∑
j qj ; W̃j ,Y

′ =∑
i pi; Ṽ

′
i ,Z

′ =
∑

j qj ; W̃
′
j and for every index r in | Y | there is an index r′ in | Y′ | such

that Y�r = Y′�r′ and Z�r = Z′�r′ .
Hence, given a relation R on environment formal sums, Y lift(≥env (R)) Z holds if there
are pi, Yi and Zi, for i ranging over some index set, such that Y =

∑
i pi·Yi and Z =∑

i pi·Zi, and for every i there are Y′i,Z
′
i such that Y′iRZ′i and (Yi,Zi) ≤env (Y′i,Z

′
i).

Definition 8.36. A PE relation is a probabilistic finite-step simulation up-to lifting and
environment if:

1. M RN implies M Z=⇒ Y implies Y lift(≥env (R(M,N))) JNK ;

2.
∑

i pi; Ṽi RE
∑

j qj ; W̃j implies:

(a)
∑

i pi ≤
∑

i qi ;

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then for all ({Ti}i, {Uj}j) ∈
({E1, Ṽi}i, {E2, W̃j}j)?̂ we have that

∑
i pi; Ṽi;Mi{Ti/x} Z=⇒ Y implies

Y lift(≥env (RE))
∑

j qj ; W̃j · JNj{Uj/x}K ;

(c)
∑

i pi; Ṽi; E1 Z=⇒ Y implies Y lift(≥env (RE))
∑

j qj ; W̃j · JE2K .

We now prove that the up-to lifting and environment technique is sound.

Theorem 8.37. If R is a finite-step simulation up-to lifting and environment then R ⊆
.fin.

Proof. Let R be a finite-step simulation up-to lifting and environment. Then the following
is a finite-step simulation:

S= Pairs(R ) ∪
⋃
E lift(≥env (RE))

If M S N then M RN , which implies that if M Z=⇒ Y then Y lift(≥env (R(M,N))) JNK.
Hence, Y S(M,N) JNK.
Let Y S(M,N) Z, i.e., Y =

∑
i pi·Yi, Z =

∑
i pi·Zi and for every i there are Y′i R(M,N) Z′i

such that (Yi,Zi) ≤env (Y′i,Z
′
i).

Clause (a) holds since for every i, weight(Y′i) ≤ weight(Z′i). Therefore, weight(Y) ≤
weight(Z).
To prove clause (b), suppose that Y; Y�r • C[M,Y] Z=⇒ W. Then W =

∑
i pi·Wi, for

some Wi such that Yi; Yi�r • C[M,Yi] Z=⇒Wi. Analogously, we have

JZ; Z�r • C[N,Z]K =
∑

i pi·JZi; Zi�r • C[N,Zi]K.
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Suppose that Yi; Yi�r • C[M,Yi] =
∑

j qj ; Ṽj ;Mj and Zi; Zi�r • C[M,Zi] =
∑

k q
′
k; W̃k;Nk.

Then it follows from the definition of the environment preorder ≤env that there are
ri and Ci such that Y′i; Y

′
i�ri • Ci[M,Y′i] =

∑
j qj ; Ṽ

′
j ;Mj and Z′i; Z

′
i�ri • Ci[N,Z′i] =∑

k q
′
k; W̃

′
k;Nk. Therefore, there is a W′

i such that Y′i; Y
′
i�ri • Ci[M,Y′i] Z=⇒W′

i and

(Wi, JZi; Zi�r • C[N,Zi]K) ≤env (W′
i, JZ

′
i; Z
′
i�ri • Ci[N,Z′i]K)

with W′
i lift(≥env (R(M,N))) JZ′i; Z

′
i�ri • Ci[N,Z′i]K), since R is a finite-step simulation

up-to lifting and environment and Y′i R(M,N) Z′i. Hence, we have

W lift(≥env ( lift(≥env (R(M,N))) )) JZ; Z�r • C[N,Z]K

and the result follows from lift(≥env ( lift(≥env (R(M,N))) )) = lift(≥env (R(M,N))) .
Finally, clause (c) follows analogously to clause (b).

2

Having these up-to techniques, we derive the result by showing that the context closure
(which, differently from call-by-name, is now applied both to terms and to the environ-
ments of formal sums) of a finite-step simulation saturated by approximants is a finite-step
simulation up-to lifting and environment.

Lemma 8.38. If M.finN then for every context C we have that C[M ].finC[N ].

Proof. We first define, for any pairs of terms (M,N), the preorder ≤cce(M,N) (context
closure of environments) on pairs of environment formal sums: (Y,Z) ≤cce(M,N) (Y′,Z′)

if Y =
∑

i pi; Ṽi, Z =
∑

j qj ; W̃j with | Y |=| Z |, Y′ =
∑

i pi; Ṽ
′
i , Z′ =

∑
j qj ; W̃

′
j with

| Y′ |=| Z′ | and

• for every index r in | Y | there is an index r′ in | Y′ | such that such that Y�r = Y′�r′
and Z�r = Z′�r′

• for every index r′ in | Y′ | there is a value-context C whose indexes range over

| Y | such that for every i, j, (Ṽ ′i )r′ = C[M, Ṽi] and (W̃ ′j)r′ = C[N, W̃j ] (i.e.,

(Y′�r′ ,Z′�r′) ∈ ({(M, Ṽi}i, {N, W̃j}j)?̂).

Intuitively, this corresponds to considering all finite subsets of the context closure of
a relation: given formal sums (Y,Z), related elements are columns of their environments
that have the same indexes, and (Y′,Z′) expands (Y,Z) (up-to permutation of columns of
the pair) with columns that are obtained by filling the same context with related columns
and with the static environment.

Let R be a finite-step simulation saturated by approximants such that M R N . We
can assume without loss of generality that this is the only pair of terms in R and that for
any E such that R E ⊆ R we have E = (M,N). We can also assume that R(M,N) contains
all pairs in relation {(∅,Y) | Y is an environment formal sum}, and that it contains the
pair of Dirac formal sums with empty environment (1; ∅, 1; ∅), since these pairs trivially
satisfy the finite-step simulation clauses.

Let Rcce
(M,N)

def
=≤cce(M,N) (R(M,N)), which is turn denotes the set

{(Y,Z) | ∃Y′,Z′ such that (Y′,Z′) ≤cce(M,N) (Y,Z) ∧ Y′ R(M,N) Z′}.
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We prove that the following is a finite-step simulation up-to lifting and environment:

Sdef= {(C[M ], C[N ] |M R N} ∪ {((C[M ], C[N ]),Y,Z) | Y Rcce
(M,N) Z}.

We require R(M,N) to contain the pair (1; ∅, 1; ∅) in order to include triples such as

((λx.C[M ], λx.C[N ]), 1;λx.C[M ], 1;λx.C[N ])

which must be in S since λx.C[M ] S λx.C[N ].
We assume ∅ R(M,N) Z for any Z since, for any C that is not a value context, we have
C[M ] Z=⇒ ∅, so we want to derive ∅ lift(≥env (Rcce

(M,N))) JC[N ]K.
Finally, relation R must be saturated by approximants since, as shown in Example 8.13,
a finite-step simulation need not to be and it might contain, e.g., the triple ((P,Q), 1

2 ;Q+
1
4 ;Q, 1;Q) but not the triple ((P,Q), 1

4 ;Q, 1;Q). However, if C = I [·] then 1
2 ;C[Q] +

1
4 ;C[Q] Z=⇒ 1

4 ;Q and it might be the case that there are no Y,Z such that Y R(P,Q) Z

and (1
4 ;Q, 1;Q) ≤cce (Y,Z).

The proof follows the same steps as the congruence proof for the imperative λ-calculus,
and we thereby refer the reader to Section 8.5, proof of Theorem 8.51. 2

8.3.2 Contextual equivalence

The definitions of the contextual preorder and equivalence, ≤ctx and =ctx, are as for
call-by-name.

Theorem 8.39 (Completeness). If M≤ctxN then M.N .

Proof. We prove that the relation

R = {((M,N),
∑

i pi;V
i

1 , ..., V
i
n ,
∑

j qj ;W
j
1 , ...,W

j
n) |

M ≤ctx N ∧ ∃C such that JC[M ]K =
∑

i pi;λx.xV
i

1 ...V
i
n

∧ JC[N ]K =
∑

j qj ;λx.xW
j
1 ...W

j
n}

is a simulation. Then we derive the result as follows: let M ≤ctx N and P = (λyλx.xy).
Then if JMK =

∑
i pi;Vi and JNK =

∑
j qj ;Wj then JPMK =

∑
i pi;λx.xVi and JPNK =∑

j qj ;λx.xWj , which implies that JMK R(M,N) JNK. Hence, M . N .
To prove that R is a simulation, suppose that there are M,N,C such that M ≤ctx N ,

JC[M ]K =
∑

i pi;λx.xV
i

1 ...V
i
n and JC[N ]K =

∑
j qj ;λx.xW

j
1 ...W

j
n. Let Y =

∑
i pi;V

i
1 , ..., V

i
n

and Z =
∑

j qj ;W
j
1 , ...,W

j
n.

We want to prove that for any r ∈ {1, ..., n} and for any context C ′′,

JY; Y�r • C ′′[M,Y]K R(M,N) JZ; Z�r • C ′′[N,Z]K

which is equivalent to saying that there is a context D such that

JD[M ]K =
∑

i pi;λx.(xV
i

1 ...V
i
nJV i

r • C ′′[M,V i
1 , ..., V

i
n]K)

JD[N ]K =
∑

j qj ;λx.(xW
j
1 ...W

j
nJW j

r • C ′′[N,W j
1 , ...,W

j
n]K).

Let C ′ be any context and let

PM,C′ = λx1, ..., xn.(λz, x.xx1...xnz)C
′[M,x1, ..., xn]
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and PN,C′ the same term with M substituted to N . It follows from M ≤ctx N that
C[M ]PM,C′ ≤ctx C[N ]PN,C′ . We have that:

JC[M ]PM,C′K = JJC[M ]KPM,C′K
= J
∑

i pi; (PM,C′V
i

1 ...V
i
n)K

= J
∑

i pi; (λz, x.xV i
1 ...V

i
nz)C

′[M,V i
1 , ..., V

i
n]K

=
∑

i pi; (λz, x.xV i
1 ...V

i
nz)JC ′[M,V i

1 , ..., V
i
n]K

=
∑

i pi; (λx.xV i
1 ...V

i
nJC ′[M,V i

1 , ..., V
i
n]K)

and analogously for N :

JC[N ]PN,C′K =
∑

j qj ; (λx.xW j
1 ...W

j
nJC ′[N,W j

1 , ...,W
j
n]K)

Then by the definition of R we have that for any context C ′,

∑
i pi;V

i
1 , ..., V

i
n · JC ′[M,V i

1 , ..., V
i
n]K R(M,N)

∑
j qj ;W

j
1 , ...,W

j
n · JC ′[N,W j

1 , ...,W
j
n]K

This holds in particular for any context of the form C ′ = [·]r+1C
′′, for r ∈ {1, ..., n} and

C ′′ a value-context, which implies the clause (b) of simulation on formal sums.
Clause (c) is proved using the same result, by taking C ′ = [·]1.
Finally, to verify the first clause of simulation on formal sums, we must prove that

∑
i pi ≤∑

j qj , which directly follows from M ≤ctx N , weight(JMK) =
∑

i pi and weight(JNK) =∑
j qj . 2

Theorem 8.40 (Full abstraction). On Λ⊕-terms:

1. relations ≤ctx and . coincide;

2. relations =ctx and ≈ coincide.

Proof. . is complete by Theorem 8.39. The soundness follows from the fact that it is a
congruence, which is obtained by exploiting the characterization .= .fin.
The result for the equivalences follows from ≈=. ∩ .−1 and =ctx =≤ctx ∩ ≤−1

ctx. 2

8.4 Probabilistic imperative λ-calculus

In this section we add imperative features, namely higher-order references (locations),
to the call-by-value calculus, along the lines of the languages in [KW06b; SKS11]. The
language is an extension of the one presented in Section 6.1.2. The syntax of terms and
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values is:
M ::= x variables

| c constants

| λx.M functions

| M1M2 applications

| l locations

| (ν x :=M1)M2 new location

| !M dereferencing

| M1 := M2 assignments

| op(M1, ...,Mn) primitive operations

| if M1 then M2 else M3 if-then-else

| #i(M) projection

| (M1, ...,Mn) tuples

| M1 ⊕M2 probabilistic choice

V ::= c | λx.M | l | (V1, ..., Vn)

We use s, t to range over stores, i.e., mappings from locations to closed values, and l, k
over locations. Then s[l → V ] is the update of s (possibly an extension of s if l is not in
the domain of s). The locations that occur in a term M are Loc(M). We assume that the
set of primitive operations contains the equality function on constants, and write ? for the
unit value (i.e., the nullary tuple).

The language is typed — a simply-typed system with recursive types — to make sure
that the values in the summands of a formal sum have the same structure (e.g., they
are all abstractions). We allow recursive types to maintain the peculiar possibility of
probabilistic languages of having infinite but meaningful computation trees. Whenever
possible, we omit any mention of the types. For instance, in any store update s[l → V ]
it is intended that V has the type appropriate for l; in this case we say that the type of
V is consistent with that of l. In examples, M1 seqM2 denotes term (λ.M2)M1, i.e., the
execution of M1 and M2 in sequence.

Reduction is defined on terms with a store, i.e., configurations of the form 〈s ; M〉;
hence such configurations appear also in formal sums (where we omit brackets). The
small-step reduction and the evaluation contexts are defined in Figure 8.3, where we
assume that the semantics of primitive operations is already given by the function Prim.
The rules for the semantic mapping, J K, and the multistep reductions relations, =⇒ and
Z=⇒, remain those of Figure 8.1, with the addition of a store. In all semantic rules, any
configuration 〈s ; M〉 is well-formed, in that M is closed and all the locations in M and
s are in the domain dom(s) of s. As in the previous calculi, it is easy to check that the
semantics of a term exists and is unique.

Notations and terminology for (environment) formal sums are adapted to the extended
syntax in the expected manner. We only recall the multiplication of an environment formal

sum Y
def
=
∑

i pi; si; Ṽi and formal sums Yi
def
=
∑

j∈Ji pi,j ; si,j ;Vi,j which is defined as:

∑
i pi; Ṽi · Yi

def
=
∑

i,j∈Ji pi · pi,j ; si,j ; Ṽi, Vi,j .
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Beta
〈s ; (λx.M)V 〉 −→ 1; s;M{V/x}

Sum
〈s ; M1 ⊕M2〉 −→ 1

2 ; s;M1 + 1
2 ; s;M2

Assign
〈s ; l := V 〉 −→ 1; s[l→ V ]; ?

Deref
s(l) = V

〈s ; !l〉 −→ 1; s;V

New
l not in the domain of s

〈s ; (ν x :=V )M〉 −→ 1; s[l→ V ];M{l/x}

IfTrue
〈s ; if true then M1 else M2〉 −→ 1; s;M1

IfFalse
〈s ; if false then M1 else M2〉 −→ 1; s;M2

Proj
〈s ; #i(Ṽ )〉 −→ 1; s; (Ṽ )i

PrimOp
Prim(op, c̃) = c′

〈s ; op(c̃)〉 −→ 1; s; c′

Eval
〈s ; M〉 −→

∑
i pi; si;Mi C is an evaluation context

〈s ; C[M ]〉 −→
∑

i pi; si;C[Mi]

Evaluation contexts C := [·] | CM | V C | !C | C := M | l := C

| if C then M1 else M2 | (Ṽ , C, M̃) | #iC

| op(c̃, C, M̃)

Figure 8.3: Single-step reduction relation for imperative probabilistic λ-calculus

The context closure of an environment, ({M, Ṽi}i, {N, W̃j}j)?̂, is defined as in the
previous section, but now contexts are location-free, i.e., no locations occur in the contexts.
This constraint, standard in environmental bisimulations for imperative languages, ensures
well-formedness of the terms and is not really a limitation because locations may occur in
terms of the environments and may thus end up in the terms of the context closure.

8.4.1 Environmental bisimulation

The notion of environmental relation is modified to accommodate stores, which are needed
to run terms. The elements of an environmental relation are now well-formed pairs of
configurations (〈s ; M〉, 〈t ; N〉) or well-formed triples

(E ,
∑

i pi; si; Ṽi,
∑

j qj ; tj ; W̃j) .
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Well-formedness on triples ensures that the store si of the possible world i defines all
locations that appear in si, Ṽi, and E1, and similarly for tj , W̃j and E2. Further, the
triples must be compatible: the related environment formal sums should have the same
length, and should respect the types, that is, corresponding columns of the environment
formal sums should contain terms that have the same type.

Since locations could occur in the terms we want to prove equivalent, we parametrize
bisimulations with respect to a set {l̃} of locations such that the pairs of terms in the
relation must have stores with domain {l̃}. This allows us to put these locations in the
dynamic environment of the relation (clause (1)), which reflects the fact that the locations
occurring in the terms are public (i.e., contexts can access them). In what follows, when
we write {l̃} we assume that no repetitions of the same location occur in the sequence
l̃. For a pair ({si}i, {tj}j) of (tuples of) stores, we say that locations ({li}i, {kj}j) are
({si}i, {tj}j)-fresh if for every i, j we have li 6∈ dom(si) and kj 6∈ dom(tj).

Definition 8.41 (Environmental bisimulation, imperative). A PE relation is a (PE) {l̃}-
bisimulation if

1. 〈s ; M〉R 〈t ; N〉 implies dom(s) = dom(t) = {l̃} and 1; s; l̃ R(M,N) 1; t; l̃ ;

2.
∑

i pi; si; Ṽi RE
∑

j qj ; tj ; W̃j implies:

(a)
∑

i pi =
∑

j qj ;

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then

for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)?̂,∑
i pi; Ṽi · J〈si ; Mi{Ti/x}〉K lift(RE)

∑
j qj ; W̃j · J〈tj ; Nj{Uj/x}〉K ;

(c) for all r, if (Ṽi)r = li and (W̃j)r = kj then

•
∑

i pi; si; Ṽi, si(li) lift(RE)
∑

j qj ; tj ; W̃j , tj(kj) ,

• for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)?̂,∑
i pi; si[li → Ti]; Ṽi RE

∑
j qj ; tj [kj → Uj ]; W̃j ;

(d) for any ({si}i, {tj}j)-fresh locations ({li}i, {kj}j),
and for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)?̂,∑

i pi; si[li → Ti]; Ṽi, li RE
∑

j qj ; tj [kj → Uj ]; W̃j , kj ;

(e) for all r, if (Ṽi)r = ci and (W̃j)r = cj then all constants in the two columns are
the same (i.e., there is a c with ci = cj = c for all i, j);

(f) for all r, if (Ṽi)r = (Vi,1, ..., Vi,n) and (W̃j)r = (Wj,1, ...,Wj,n) then∑
i pi; si; Ṽi, Vi,1, ..., Vi,n lift(RE)

∑
j qj ; tj ; W̃j ,Wj,1, ...,Wj,n ;

(g)
∑

i pi; Ṽi · J〈si ; E1〉K lift(RE)
∑

j qj ; W̃j · J〈tj ; E2〉K .
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We let ≈{l̃} denote the union of all {l̃}-bisimulations.

With respect to the definition for pure call-by-value, the definition above has the
additional ingredient of the store, and of clauses (2c) and (2d) to deal with the case in
which the values are locations: (2c) gives an observer the possibility of reading and writing
the store, and (2d) the possibility of extending the store with fresh locations. Clause (2f)
adds all elements of a tuple to the dynamic environment. These aspects are similar to
those in ordinary environmental bisimulations for imperative languages [SKS11; KLS11].

Three further aspects, however, are new. First, by clause (2e), related environment
formal sums should be first-order consistent, meaning that corresponding columns of con-
stants should contain exactly one constant. This constraint is a consequence of the equality
test on constants in the language. To ensure that first-order consistency is maintained in
the bisimulation game, most of the clauses use a lifting construction. Thus, when the
evaluation of first-order terms may probabilistically yield different constants, lifting allows
us to separate the final possible worlds according to the specific constants obtained. This
constraint is further discussed in Examples 8.45 and 8.46. A second new aspect is that,
since the effect of the evaluation of the terms in the static environment may change de-
pending on the current store, clauses (1) and (2g) allow us to derive a congruence result for
arbitrary terms (not necessarily values), as illustrated in the example below. Finally, we
parametrize the relation with a set of locations in order to deal with terms where (public)
locations may occur.

In what follows, we sometimes omit any reference to the set of locations parametrizing
the relation, and simply refer to (bi)simulations and (bi)similarity when the parametrizing
set is not relevant.

Example 8.42. Let M
def
= l := 1 and N

def
= if !l = 0 then l := 1 else Ω. Without

the static environment, terms 〈l = 0 ; M〉 and 〈l = 0 ; N〉 are bisimilar. However, they are

not contextually equivalent: if C
def
= [·] seq [·], then 〈l = 0 ; C[M ]〉 terminates whereas

〈l = 0 ; C[N ]〉 does not. This aspect is determined by the store, probabilities do not really
matter. Ordinary environmental bisimulations do not have a static environment, and
cannot therefore test repeated runs of given terms that are not values; as a consequence
M and N are equated, and bisimulation is not fully substitutive on arbitrary terms (see
[SKS11, Section 5.2]).
Clause (1) is also modified with respect to pure call-by-name and call-by-value calculi.
Indeed, if we defined the clause as follows:

〈s ; M〉R 〈t ; N〉 implies J〈s ; M〉K lift(R(M,N)) J〈t ; N〉K

then the bisimulation would not be sound with respect to terms that diverge at the first

run. For instance, the terms M
def
= if !l = 1 then true else Ω and N

def
= if !l =

1 then false else Ω (that are not contextually equivalent thanks to context C
def
=

l := 1 seq [·]) would be bisimilar with store l = 0, by simply considering the relation
{(〈l = 0 ; M〉, ), 〈l = 0 ; N〉}.
Even if we make the location l public by starting the bisimulation game from terms (M, l)
and (N, l) and by exploiting clause (2f), so as to allow contexts to use the location as in
[SKS11, Theorem 5.10], we still have that 〈l = 0 ; (M, l)〉 and 〈l = 0 ; (N, l)〉 are bisimilar,
since J〈l = 0 ; (M, l)〉K = J〈l = 0 ; (N, l)〉K = ∅.
Hence, clause (1) ensures that location l is actually put in the dynamic environment, so
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that we can use clause (2c) to change the value of l and then evaluate again M and N
using clause (2g).

If the domains of the stores are empty then we can consider bisimulations parametrized
by the empty set of locations, and in clause (1) we will have empty sequences of values
in the dynamic environment. Anyway, clause (2g) can be applied independently of the
presence of values in the dynamic environment.

The following examples are meant to further illustrate and motivate the form and the
clauses of our bisimulation. The examples only use boolean and integer locations, and
we accordingly assume that all locations in the language are of these types. Higher-order
locations would not affect the essence of the examples and would complicate the description
of the required bisimulations due to the possibility of extending the store (clause (2d)).
(The full abstraction results will not rely on the existence of locations of specific types.)
Moreover, since the terms compared always have the same locations, we assume that fresh
locations for the extensions of the store are the same on both sides.

Example 8.43 shows that in imperative call-by-value, in contrast with pure call-by-
value, to achieve full abstraction it is necessary to define bisimulation on formal sums
rather than on terms.

Example 8.43. We have explained in Section 8.1 why the terms

H
def
= (ν x :=0)(λ.(M ⊕N)) K

def
= (ν x :=0)(λ.M ⊕ λ.N)

where

M
def
= if !x = 0 then x := 1 seq true else Ω

N
def
= if !x = 0 then x := 1 seq false else Ω

are contextually equivalent, but would be separated by a bisimulation that acted on terms.
With our bisimulation, we can prove H and K equal using a relation that contains the pair
(〈s ; H〉, 〈s ; K〉), for s the empty store, and all triples ((H,K),Y,Z) in which Y,Z are
first-order consistent, have the same total weight and, seeing them as matrices, for every
column r of the dynamic environments that is not made of constants one of the following
properties holds:

(a) there is l such that all terms in Y�r are λ.(M ⊕ N){l/x}, whereas all terms in Z�r
are either λ.M{l/x} or λ.N{l/x}; moreover l does not occur elsewhere in terms of the
dynamic environment and its value in the stores is 1;

(b) there is l such that all terms in Y�r are λ.(M ⊕ N){l/x}, whereas Z�r contains
both λ.M{l/x} and λ.N{l/x}; moreover l does not occur elsewhere in the dynamic
environment and its value in the stores is 0. The right-hand matrix obtained by
erasing all columns that are not of this shape is either ∅ or (without considering the
stores) of the form (...((Y1 ·Y2) ·Y3) · ...) ·Yn, for Yi = 1

2 ;λ.M{li/x}+ 1
2 ;λ.N{li/x}. This

clause guarantees that λ.M{li/x} and λ.N{li/x} have the same probability in every
column (if li is set to 0 in the stores), and that this property still holds if the matrix
is splitted by separating the rows with λ.M{li/x} from the rows with λ.N{li/x};

(c) there is l such that all terms in Y�r and Z�r are l; moreover l is set to the same
value in all the stores.
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Finally, we add to the relation the triple ((H,K), 1; s; ∅, 1; s; ∅), where ∅ denotes the empty
dynamic environment, to satisfy clause (1) of Definition 8.41. Clause (2g) is handled
appealing to item (b). The most interesting case is the bisimulation clause (2b) applied
to a column r of functions that satisfy item (b). The result of the evaluation of such
functions (with ? as argument) is that l is set to 1 and then true and false are returned,
with the same probability. Using the lifting construction we can now split the possible
worlds in which true has been produced and those in which false has been produced,
yielding two pairs of environment formal sums both of which are in the bisimulation (note
that the lifting splits the original column r so that the corresponding column in the two
final pairs satisfies item (a) above).

In this work we sometimes view environment formal sums as matrices (Figure 8.2).
This however is only for representation convenience: our environments are tuples of rows
(each row representing a possible world originated by the probabilistic evaluation of terms),
rather than tuples of columns, that is, tuples of formal sums. The next example shows
that if the environments were tuples of formal sums, where formal sums are added to
the environment following the evaluation of terms during the bisimulation game, then
bisimilarity would not be complete. Intuitively this happens because the histories of
different possible worlds would not be anymore separated and could interfere.

Example 8.44. Let

A
def
= (ν y :=0)(L⊕M) B

def
= (ν y :=0)(L⊕N)

L
def
= λ.!y M

def
= λ.(y := 1 seq 2) N

def
= λ.2 .

Terms A and B create a new location and allow the reading capability on it in the
subterm L. The writing capability, in contrast, exists only in the subterm M of A. A
behavior from A that could not be mimicked with B is the run of M , where 1 is assigned
to the location x, followed by a run of L, where x is read and 1 is emitted (with B, any
value produced by L would be 0). This behavior, however, is impossible, because L and M
are in a probabilistic choice and are therefore obtained in two distinct possible worlds, in
one of which x can only be read, in the other x can only be written. Moreover, the writing
capability alone is irrelevant, because the location is private; hence it can be omitted
from M , resulting in the term N that appears in B. Indeed, A and B are contextually
equivalent.

However, the ‘wrong’ behavior above for A could be reproduced in the bisimulation if
the environments were tuples of formal sums (that is, all possible worlds have the same
environment, made of formal sums). The formal sum obtained by the evaluation of A,
with summand terms L and M , would be stored in the environment and could then be
executed several times, with possible interleaving of evaluations of L and M . (The example
could be made more complex so as to obtain a ‘wrong’ behavior from the execution of two
different formal sums in the environment, rather than by multiple executions of the same
formal sum.)

With our bisimulation, we can prove A,B equal using a relation composed by (A,B)
(for simplicity, we leave out the store) and by all triples ((A,B),Y,Z) where the environ-
ment formal sums Y = 1; s;V1, ..., Vn and Z = 1; t;W1, ...,Wn are first-order consistent,
and for each column r that does not contain constants one of the following holds:
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(a) there is l such that Vr = L{l/y} = Wr; moreover l does not occur elsewhere in the
dynamic environment or within a location of the stores, and is set to 0 in both stores;

(b) there is l such that Vr = M{l/y} and Wr = N ; and, again, l does not occur elsewhere
in the dynamic environment or within a location of the stores; moreover in the store
s we have s(l) ∈ {0, 1} whereas in t we have t(l) = 0;

(c) Vr = Wr = l for some l assigned to the same value in both stores.

The proof that this relation is a bisimulation crucially exploits the lifting construction.
For instance, using (a) and (b) one shows that the semantics of A and B are in the lifting
of the relation, and similarly one proceeds when handling clause (2g) of the bisimulation.

The main purpose of the lifting construct in Definition 8.41 of environmental bisimu-
lation is to maintain the first-order consistency of related environment formal sums. One
may wonder whether something simpler would suffice, namely avoiding the lifting con-
struct altogether and simply requiring that, whenever two first-order terms are evaluated,
the probability of obtaining a given constant is the same on both sides (and thus main-
taining fist-order consistency by avoiding the addition of such values onto the dynamic
environments). The example below shows that this would be unsound.

Example 8.45. We compare the terms A
def
= (ν x:=0)(M,N1) and B

def
= (ν x:=0)(M,N2)

where

M
def
= λ. if !x = 0 then ((x := 1 seq true)⊕ (x := 2 seq false)) else Ω

N1
def
= λ. if !x = 2 then x := 3 seq n else Ω

N2
def
= λ. if (!x = 1 ∨ !x = 2) then x := 3 seq (n⊕ Ω) else Ω

and n is any integer. The terms A and B produce the values (M,N1){l/x} and (M,N2){l/x}
and l is a location that is accessible only to such values. The definitions of M{l/x} and
Ni{l/x} (for i = 1, 2) use conditionals on the content of l in such a way that the only
meaningful manipulations with the values (M{l/x}, Ni{l/x}) is to evaluate M{l/x} first,
and then, possibly, to evaluate Ni{l/x}. Any other order of evaluation would produce a
divergence.

We explain why, intuitively, bisimilarity would equate A and B if, on constants, bisim-
ulation simply checked the probabilities of obtaining each constant (rather than employing
the lifting construction). The evaluation of (the body of) M{l/x} produces true or false,
with the same probability 1

2 and with l respectively set to 1 and 2. Then the only meaning-
ful observation is the evaluation of the values Ni{l/x}. This means evaluating the formal
sums

F1
def
= 1

2 ; l = 1;N1{l/x}?+ 1
2 ; l = 2;N1{l/x}?

and F2
def
= 1

2 ; l = 1;N2{l/x}?+ 1
2 ; l = 2;N2{l/x}? .

The evaluation of F1 terminates only when l = 2, yielding the value formal sum Y1
def
=

1
2 ; l = 3;n. The evaluation of F2, in contrast, may terminate under both stores, yielding

the value formal sum Y2
def
= 1

4 ; l = 3;n + 1
4 ; l = 3;n. Both in Y1 and in Y2 the outcome n

has the overall probability 1
2 .

The terms A and B however are not contextually equivalent, because distinguished
by a context C that evaluates M{l/x} and then proceeds with the evaluation Ni{l/x} only
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when the outcome from M{l/x} was true. Now, C[A] never terminates, whereas C[B]
terminates and produces n with probability 1

4 .

Our environmental bisimulation distinguishes A from B because we separately analyze
the possible worlds in which the evaluation of M{l/x} has produced true and the possible
worlds in which the evaluation has produced false, somehow mimicking the effect of the
context C above.

Yet another possibility for avoiding the lifting construct of the Definition 8.41 of bisim-
ulation might have been to drop the requirement of first-order consistency, allowing envi-
ronment formal sums in which a first-order column may contain different constants. Thus
constants would be added to the dynamic environment as any other type of value, and one
would simply check that, at any time, the weights for the occurrences of a given constant
in related columns are the same; formally, replacing clause (2e) with:

(2e′) for every column r and every constant c,∑
{i | (Ṽi)r=c} pi =

∑
{j | (W̃j)r=c}

qj .

Example 8.46 shows that this choice would be unsound too. We write (ν x, y :=0)M
for the creation of two locations in which the initialization of the first one is irrelevant.

Example 8.46. This is a variation of the previous example.

We compare the terms M1
def
= (ν x, y :=0)(A,B1) and M2

def
= (ν x, y :=0)(A,B2) where

A
def
= λ. if !y = 0 then y := 1 seq (λz.(x := z seq z))(true⊕ false) else Ω

B1
def
= λ. if !y = 1 then y := 2 seq !x else Ω

B2
def
= λ. if !y = 1 then y := 2 seq (true⊕ false) else Ω

As in the previous example, M1 and M2 respectively yield the values (A,B1){l, l′/x, y} and
(A,B2){l, l′/x, y}, and the interactions of the terms with the store is such that the only
meaningful experiment is to evaluate A{l, l′/x, y} first, and then Bi{l, l

′
/x, y} (indeed, the

location l′ is only used to this end).

We explain why, intuitively, the variant (2e′) above of the clause for first-order values
would incorrectly equate M1 and M2. The evaluation of A{l, l′/x, y} adds to the dynamic
environment the formal sum

1
2 ; l = true, l′ = 1; true + 1

2 ; l = false, l′ = 1; false

(the values produced are also placed in the location l).

Now, in one case the evaluation of B1{l, l
′
/x, y} adds to the dynamic environment a

column of boolean values identical to the column produced above (because B1{l, l
′
/x, y}

emits the value stored in l, which is identical to the value produced by the evaluation of
A{l, l′/x, y}). This means that we end up with an environment formal sum in which the
relevant columns are

1
2 ; true , true
1
2 ; false , false

(8.5)

In contrast, when evaluating B2{l, l
′
/x, y} each possible world is split into two, in each

of which true and false have probability 1
2 . Thus the relevant columns of the final
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environment formal sum are
1
4 ; true , true
1
4 ; true , false
1
4 ; false , true
1
4 ; false , false

In each of these columns, the probabilities for true and false are the same as in the
columns of (8.5), as required by (2e′).

However the terms are not contextual equivalent. They are separated by a context
that evaluates Bi{l, l

′
/x, y} only if the outcome of the evaluation of A{l, l′/x, y} is true.

Thus the overall probability of obtaining true at the end is 1
2 in one case, and 1

4 in the
other. Similarly the terms are distinguished in our bisimulation, reasoning along the lines
of Example 8.45.

The definition of {l̃}-simulation is the same as the definition of {l̃}-bisimulation, but for
the first clause on environment formal sums with stores, which becomes:

∑
i pi ≤

∑
j qj .

We let .{l̃} denote {l̃}-similarity.
The basic properties and definitions for environmental (bi)simulations in pure call-by-

value remain valid, with the due adjustments. In some cases, however, some subtleties
arise.

It can be easily proved that, for any set {l̃}, {l̃}-bisimilarity and {l̃}-similarity are an
equivalence and a preorder relation respectively. For proving transitivity, in particular, the
restriction to parametrized relations, rather than to arbitrary relations, is fundamental.
Analogously, we have that {l̃}-(bi)simulations are closed under union, and thus relations

≈{l̃} and .{l̃} are respectively the largest {l̃}-bisimulation and {l̃}-simulation.
In finite-step simulation, clauses (2b) and (2g) are modified so to make sure that only a

finite number of reductions are performed on the challenger side. No modification is made
to the clauses (1), (2c), (2d), (2e) and (2f) for locations, constants, and tuples, because
there is no evaluation of terms involved.

The definition of extended environment formal sum and of the multi-step reduction
from extended environment formal sums to environment formal sums is adapted to the
imperative case as expected, by assuming that when

∑
i pi; si; Ṽi;Mi Z=⇒ Y there is only

a finite number of 〈si ; Mi〉 that actually perform some reduction steps.

Definition 8.47. A PE relation is a finite-step {l̃}-simulation if it satisfies the same
clauses (1), (2a), (2c), (2d), (2e) and (2f) of (the simulation version of) Definition 8.41;
and, in place of clauses (2b) and (2g) we have:

(2)
∑

i pi; si; Ṽi RE
∑

j qj ; tj ; W̃j implies:

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then

for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)?̂,
if
∑

i pi; si; Ṽi;Mi{Ti/x} Z=⇒ Y then Y lift(RE)
∑

j qj ; W̃j · J〈tj ; Nj{Uj/x}〉K ;

(g) if
∑

i pi; si; Ṽi; E1 Z=⇒ Y then Y lift(RE)
∑

j qj ; W̃j · J〈tj ; E2〉K .

We write .{l̃}fin for finite-step {l̃}-similarity. We prove that {l̃}-similarity and finite-step

{l̃}-similarity coincide by exploiting the saturation by approximants and the saturation by
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suprema of {l̃}-simulations and finite-step {l̃}-simulations, respectively. Since only clauses
(2b) and (2g) are modified, we can proceed as in the proofs for the pure calculi.

Theorem 8.48. .{l̃}= .{l̃}fin .

Precongruence is derived for the finite-step similarity using ‘up-to lifting and envi-
ronment’ techniques, and then transported to similarity, from which it is transported to
bisimilarity using the characterization of bisimilarity as the equivalence induced by the
simulation preorder.

The up-to lifting and environment technique is defined analogously to the probabilistic
call-by-value case. The environment preorder is as follows: (Y,Z) ≤env (Y′,Z′) if Y =∑

i pi; si; Ṽi,Z =
∑

j qj ; tj ; W̃j with | Y |=| Z | and Y′ =
∑

i pi; si; Ṽ
′
i ,Z

′ =
∑

j qj ; tj ; W̃
′
j

with | Y′ |=| Z′ | and for every index r in | Y | there is an index r′ in | Y′ | such that for

all i, j, (Ṽi)r = (Ṽ ′i )r′ and (W̃j)r = (W̃ ′j)r′ .

Definition 8.49. A PE relation is a finite-step {l̃}-simulation up-to lifting and environ-
ment if:

1. 〈s ; M〉R 〈t ; N〉 implies dom(s) = dom(t) = {l̃} and 1; s; l̃ R(M,N) 1; t; l̃ ;

2.
∑

i pi; si; Ṽi RE
∑

j qj ; tj ; W̃j implies:

(a)
∑

i pi ≤
∑

i qi ;

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then

for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)?̂,
if
∑

i pi; si; Ṽi;Mi{Ti/x} Z=⇒ Y then Y lift(≥env (RE))
∑

j qj ; W̃j ·J〈tj ; Nj{Uj/x}〉K ;

(c) for all r, if (Ṽi)r = li and (W̃j)r = kj then

for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)?̂,

•
∑

i pi; si; Ṽi, si(li) lift(≥env (RE))
∑

j qj ; tj ; W̃j , tj(kj) ,

•
∑

i pi; si[li → Ti]; Ṽi lift(≥env (RE))
∑

j qj ; tj [kj → Uj ]; W̃j ;

(d) for any ({si}i, {tj}j)-fresh locations ({li}i, {kj}j),
and for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)?̂,∑

i pi; si[li → Ti]; Ṽi, li lift(≥env (RE))
∑

j qj ; tj [kj → Uj ]; W̃j , kj ;

(e) for all r, if (Ṽi)r = ci and (W̃j)r = cj then all constants in the two columns are
the same (i.e., there is ca with ci = cj = ca for all i, j) ;

(f) for all r, if (Ṽi)r = (Vi,1, ..., Vi,n) and (W̃j)r = (Wj,1, ...,Wj,n) then∑
i pi; si; Ṽi, Vi,1, ..., Vi,n lift(≥env (RE))

∑
j qj ; tj ; W̃j ,Wj,1, ...,Wj,n ;

(g)
∑

i pi; si; Ṽi; E1 Z=⇒ Y then Y lift(≥env (RE))
∑

j qj ; W̃j · J〈tj ; E2〉K .

Theorem 8.50. If R is a finite-step {l̃}-simulation up-to lifting and environment then

R ⊆ .{l̃}fin .
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The soundness of the up-to lifting and environment technique follows as in call-by-
value (Lemma 8.37). Given a finite-step {l̃}-simulation up-to lifting and environment R ,
we prove that S= Pairs(R ) ∪

⋃
E lift(≥env (RE)) is a finite-step {l̃}-simulation.

We first prove congruence of finite-step {l̃}-similarity for contexts with locations in
{l̃}, and then we show how to derive congruence for general contexts. The proofs of these
results are reported in Section 8.5. The proof structure for Theorem 8.51 is as in call-by-
value; we define the context closure of a finite-step {l̃}-simulation and we prove that it is
a finite-step {l̃}-simulation up-to lifting and environment.

Theorem 8.51. Finite-step {l̃}-similarity is a precongruence for contexts with locations

in {l̃}: if 〈s ; M〉.{l̃}fin 〈t ; N〉 then 〈s ; C[M ]〉.{l̃}fin 〈t ; C[N ]〉, for every C with Loc(C) ⊆ {l̃}.

Then we derive precongruence for general contexts by showing how to move from
relations parametrized by a set {l̃} to relations parametrized by {l̃′}, for {l̃′} a set including
{l̃}.

Theorem 8.52. Let l̃′ = l̃, l̃′′ and let Ṽ ′ = Ṽ , Ṽ ′′ be a sequence of values whose types are
consistent with those of l̃′, and with locations in {l̃′}. Let C be a context with locations in

{l̃′}. If 〈s ; M〉.{l̃}fin 〈t ; N〉 then:

• 〈s[l̃′′ → Ṽ ′′] ; C[M ]〉.{l̃
′}

fin 〈t[l̃
′′ → Ṽ ′′] ; C[N ]〉 ;

• 〈l̃′ → Ṽ ′ ; C[M ]〉.{l̃
′}

fin 〈l̃
′ → Ṽ ′ ; C[N ]〉 .

8.4.2 Contextual equivalence

We set 〈s ; M〉 ⇓= weight(J〈s ; M〉K). Contextual equivalence and the contextual preorder
are defined by quantifying over all stores and contexts.

Definition 8.53. M and N are in the contextual preorder, written M ≤ctx N , (resp.
contextually equivalent, written M =ctx N), if, for any store s and context C such that
〈s ; C[M ]〉 and 〈s ; C[N ]〉 are well-formed, 〈s ; C[M ]〉⇓ ≤ 〈s ; C[N ]〉⇓ (resp. 〈s ; C[M ]〉⇓ =
〈s ; C[N ]〉⇓).

Theorem 8.54 (Completeness). Let Loc(M) ∪ Loc(N) ⊆ {l̃}. If M ≤ctx N then 〈l̃ =

Ṽ ; M〉 .{l̃} 〈l̃ = Ṽ ; N〉, for any Ṽ whose types and locations are consistent with l̃.

Proof. We prove that the relation

R = {(〈l̃ = Ṽ ; M〉, 〈l̃ = Ṽ ; N〉) | M ≤ctx N ∧ {l̃} = Loc(M) ∪ Loc(N)}∪
{((M,N),

∑
i pi; si;V

i
1 , ..., V

i
n ,
∑

j qj ; tj ;W
j
1 , ...,W

j
n) | M ≤ctx N

∧ ∃C, Ṽ such that (J〈l̃ = Ṽ ; C[M ]〉K =
∑

i pi; si;λx.xV
i

1 ...V
i
n

∧ J〈l̃ = Ṽ ; C[N ]〉K =
∑

j qj ; tj ;λx.xW
j
1 ...W

j
n

with Loc(C) ∪ Loc(M) ∪ Loc(N) ⊆ {l̃}
∧ they are first-order consistent)}

is a {l̃}-simulation. The full proof is in Section 8.5. 2
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We can now derive full abstraction for the simulation preorder and bisimilarity. Con-
textual equivalence and preorder are defined on terms, while bisimilarity and the simula-
tion preorder are defined over configurations of a term and a store. In the full abstraction
result we show that congruence on terms corresponds to bisimilarity when an arbitrary
store is considered.

Theorem 8.55 (Full abstraction). Let {l̃} be the set of locations that occur in M or N .
We have, for any Ṽ whose types and locations are consistent with l̃:

• M ≤ctx N if and only if 〈l̃ = Ṽ ; M〉 .{l̃} 〈l̃ = Ṽ ; N〉 ;

• M =ctx N if and only if 〈l̃ = Ṽ ; M〉 ≈{l̃} 〈l̃ = Ṽ ; N〉 .

Proof. Theorem 8.54 proves completeness. For soundness, suppose that 〈l̃ = Ṽ ; M〉 .{l̃}
〈l̃ = Ṽ ; N〉 for some Ṽ consistent with l̃. Let s be a store and C a context such
that 〈s ; C[M ]〉 and 〈s ; C[N ]〉 are well-formed. We want to prove that 〈s ; C[M ]〉 ⇓≤
〈s ; C[N ]〉 ⇓.
By well-formedness, we know that s = ∅[l̃′ → Ṽ ′], for some l̃′ such that l̃′ = l̃, l̃′′ and for

some consistent Ṽ ′, and that C has locations in {l̃′}. By 〈l̃ = Ṽ ; M〉 .{l̃} 〈l̃ = Ṽ ; N〉 we

have 〈l̃ = Ṽ ; M〉.{l̃}fin 〈l̃ = Ṽ ; N〉 and by Theorem 8.52 we derive 〈l̃′ = Ṽ ′ ; C[M ]〉.{l̃}fin 〈l̃
′ =

Ṽ ′ ; C[N ]〉. Then 〈l̃′ = Ṽ ′ ; C[M ]〉 ⇓≤ 〈l̃′ = Ṽ ′ ; C[N ]〉 ⇓.
2

The universal quantification over stores in the full abstraction is outside, and not
inside, the double implication, i.e., we do not prove

M ≤ctx N if and only if for all consistent Ṽ , 〈l̃ = Ṽ ; M〉 .{l̃} 〈l̃ = Ṽ ; N〉

but rather

for all consistent Ṽ , M ≤ctx N if and only if 〈l̃ = Ṽ ; M〉 .{l̃} 〈l̃ = Ṽ ; N〉.

The former statement implies the latter one, since the latter allows us to only consider
one store. The reason why we can use the latter one, and thereby consider an arbitrary
store, is that the definition of simulation and bisimulation already includes the universal
quantification over different assignments of the locations in l̃, since the locations are in the
dynamic environment and we can apply the second item of clause (2c), as we have seen in
the proof of Theorem 8.55.

8.5 Proofs

Proof of Lemma 8.11

1. The proof of (1) follows from the definition of JMK as the supremum of the set
{Y |M Z=⇒ Y } with respect to the ≤apx preorder. Let R be a simulation and let S
be its saturation by approximants.
If M S N then JMK S(M,N) JNK, since ≤apx is reflexive and JMK R(M,N) JNK. If
Y S(M,N) Z then there is a Y ′ such that Y ≤apx Y

′ and Y ′ R(M,N) Z. We have
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that weight(Y ) ≤ weight(Y ′), by the definition of approximant, and weight(Y ′) ≤
weight(JZK), since R is a simulation.
Suppose Y + Y ′′ = Y ′. Then, for any context C,

JY • C[M ]K ≤apx JY • C[M ]K + JY ′′ • C[M ]K = JY ′ • C[M ]K R(M,N) JZ • C[N ]K

which implies JY • C[M ]K S(M,N) JZ • C[N ]K.

2. Let S =
⋃
nRn be the saturation by suprema of a finite-step simulation R. The

clause on λ-terms is immediate, since M S N and M Z=⇒ Y implies Y R0
(M,N) JNK

(by the definition of finite-step simulation), which in turn implies that JMK R1
(M,N)

JNK (since JMK = sup{Y | M Z=⇒ Y } and thus we can find an ordered sequence of
formal sums that satisfies the condition for R1).
For the clause on formal sums, the crux is proving the following lemma.

Lemma 8.56. If
∑

i pi;λx.Mi RnE
∑

j qj ;λx.Nj then:

(a)
∑

i pi ≤
∑

j qj

(b)
∑

i pi;Mi{P/x} Z=⇒ Y implies Y RnE
∑

j qj ·JNj{Q/x}K, for all P,Q ∈ E?.

Proof. The proof is by induction on n.
For the case n = 0, the two properties above are immediate consequences of the
definition of R .
For the inductive case, if Y R n+1

(M,N)Z then either Y R n
(M,N)Z, and the result follows

by the inductive hypothesis, or Y = supS for S = {Yk}k≥0 a set of formal sums such
that YkR n

(M,N)Z for all k and Yk ≤apx Yk+1. As a consequence, there is a sequence

Y ′k such that Y0 = Y ′0 and Yk+1 = Yk +Y ′k+1, i.e., Yk =
∑

0≤h≤k Y
′
h. Hence, it follows

from Y = supS that Y =
∑

k≥0 Y
′
k.

The first item follows by the inductive hypothesis, since Y is the supremum of S and
Yk ∈ S implies weight(Yk) ≤ weight(Z).
As to the second item, we have that Y •C[M ] = sup{Yk •C[M ]} =

∑
k≥0 Y

′
k •C[M ].

We want to prove that if
∑

k≥0 Y
′
k • C[M ] Z=⇒ X for some formal sum X then

XR n+1
(M,N)JZ • C[N ]K.

If
∑

k≥0 Y
′
k •C[M ] Z=⇒ X then, by the definition of the multi-step reduction relation

(which guarantees that only a finite number of terms are evaluated in the formal
sum), there is an m ≥ 0 such that

∑
0≤k≤m Y

′
k • C[M ] Z=⇒ X ′ and X = X ′ +

val(
∑

k>m Y
′
k • C[M ]) .

For any m′ ≥ 0 we have that∑
0≤k≤m+m′ Y

′
k • C[M ] Z=⇒ X ′ + val(

∑
m≤k≤m+m′ Y

′
k • C[M ])

Since
∑

0≤k≤m+m′ Y
′
k = Ym+m′ and Ym+m′ R n

(M,N)Z, by the inductive hypothesis we

have
∑

0≤k≤m+m′ Y
′
k • C[M ] Z=⇒ X ′ + val(

∑
m≤k≤m+m′ Y

′
k • C[M ]) implies

X ′ + val(
∑

m≤k≤m+m′ Y
′
k • C[M ]) R n

(M,N)JZ • C[N ]K.

Hence, by the definition of R n+1
(M,N) and by

X = sup{X ′ + val(
∑

m≤k≤m+m′ Y
′
k • C[M ]) }m′≥0
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we derive that XR n+1
(M,N)JZ • C[N ]K.

2

Then the result follows since Y =
∑

i pi;λx.Mi SE
∑

j qj ;λx.Nj = Z implies Y RnE Z
for some n, and we have

∑
i pi ≤

∑
j qj (by the first item of Lemma 8.56), and∑

i pi; JMi{P/x}K = sup{Y |
∑

i pi;Mi{P/x} Z=⇒ Y } Rn+1
E

∑
j qj ; JNj{Q/x}K,

for all P,Q ∈ E? (by the second item of Lemma 8.56 and by the definition of relation
Rn+1), which implies Rn+1

E ⊆SE .

Proof of Lemma 8.18
Let R be a finite-step simulation saturated by approximants and let

S= {(C[M ], C[N ]) | M RN} ∪ {((C[M ], C[N ]), Y, Z) | Y S ′(M,N) Z}

with
S ′ = {((M,N), 1;λx.C ′[M ], 1;λx.C ′[N ]) |M R N}

∪{((M,N), Y, Z) | Y R(M,N) Z}
∪{((M,N), ∅, Z) | for some M,N,Z}

We first prove the following result:

Lemma 8.57. For any context C, if M R N and C[M ] Z=⇒ Y then Y lift(S ′(M,N)) JC[N ]K .

Proof. We prove by induction on the length n of the reduction that M RN and C[M ] Z=⇒n

Y imply Y lift(S ′(M,N)) JC[N ]K. If Y = ∅ then the result follows by the third set of S ′.
Suppose that Y 6= ∅. If n = 0 then we have two cases:

• C = [·] and M is a value. Then M Z=⇒ Y and since R is a finite-step simulation we
have that Y R (M,N)JNK = JC[N ]K, which implies that they are in S ′(M,N) as well.

• C = λx.C ′. Then Y = 1;λx.C ′[M ] S ′(M,N) 1;λx.C ′[N ] = JC[N ]K, by the first set of

S ′.

Suppose now that C[M ] Z=⇒n+1 Y .

• C = [·] and M Z=⇒n+1 Y . The result follows from the fact that R is a finite-step
simulation, as in the first case of n = 0.

• C = C1 ⊕ C2 and C[M ] −→ 1
2 ;C1[M ] + 1

2 ;C2[M ] Z=⇒n Y . Then C1[M ] Z=⇒n1 Y1,
C2[M ] Z=⇒n2 Y2 and Y = 1

2 ;Y1+ 1
2 ;Y2. We have JC[N ]K = 1

2 ; JC1[N ]K+ 1
2 ; JC2[N ]K and

it follows from the inductive hypothesis on n1 and n2 that Y1 lift(S ′(M,N)) JC1[N ]K
and Y2 lift(S ′(M,N)) JC2[N ]K. Hence, Y lift(S ′(M,N)) JC[N ]K.

• C = C1C2. Then C[M ] Z=⇒n+1 Y implies that C[M ] =⇒n1 Y1C2[M ] Z=⇒n2 Y ,
where C1[M ] Z=⇒n1 Y1 =

∑
i pi;λx.Pi. Since n1 ≤ n (by Y 6= ∅), we can ap-

ply the inductive hypothesis and derive that Y1 lift(S ′(M,N)) JC1[N ]K, i.e., Y1 =∑
j rj ·Y ′j and JC1[N ]K =

∑
j rj ·Z ′j for Y ′j S ′(M,N) Z

′
j . Hence, Y1C2[M ] Z=⇒n2 Y
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implies Y ′jC2[M ] Z=⇒n′j
Y ′′j , with

∑
j n
′
j = n2 and Y =

∑
j rj ·Y ′′j , and JC[N ]K =

JJC1[N ]KC2[N ]K = J
∑

j rj ·Z ′jC2[N ]K =
∑

j rj ·JZ ′jC2[N ]K =
∑

j rj ; JZ
′
j • C2[N ]K.

Since lift( lift(R ) ) = lift(R ) for any relation R , the result follows if we can
prove that for every j it holds that Y ′jC2[M ] Z=⇒n′j

Y ′′j implies Y ′′j lift(S ′(M,N)) JZ ′j •
C2[N ]K. If Y ′j S ′(M,N) Z

′
j then either Y ′j = ∅ and the result trivially follows or one of

the following cases hold:

– Y ′j = 1;λx.C ′[M ] and Z ′j = 1;λx.C ′[N ]. Hence, either Y ′′j = ∅, in which case the

result follows by the third set of S ′, or Y ′jC2[M ] −→ 1;C ′[M ]{C2[M ]/x} Z=⇒n′′j

Y ′′j , with n′′j ≤ n. Terms C ′[M ]{C2[M ]/x} and C ′[N ]{C2[N ]/x} are respectively
of the form C ′′[M ] and C ′′[N ], so we can apply the inductive hypothesis to
derive that Y ′′j lift(S ′(M,N))Z

′
j • C2[N ].

– Y ′j R (M,N)Z
′
j . It is easy to check that Y ′jC2[M ] Z=⇒ Y ′′j iff Y ′′′j •C2[M ] Z=⇒ Y ′′j for

some Y ′′′j ≤apx Y
′
j . Since R is finite-step simulation saturated by approximants

we have that Y ′′′j •C2[M ] Z=⇒ Y ′′j implies Y ′′j R (M,N)JZ ′j • C2[N ]K, and the result
follows from R (M,N) ⊆ lift(S ′(M,N)) .

2

We derive from Lemma 8.57 that S is a finite-step simulation up-to lifting as follows:

• Let C[M ] S C[N ] with M RN . If C[M ] Z=⇒ Y then by Lemma 8.57 we have
Y lift(S ′(M,N)) JC[N ]K. Therefore, Y lift(S(C[M ],C[N ])) JC[N ]K.

• Let 1;λx.C ′[M ] SC[M ],C[N ] 1;λx.C ′[N ] with M RN . Then for any C ′′ there is a con-
text C ′′′ such that 1;λx.C ′[M ]•C ′′[C[M ]] = 1;C ′′′[M ] and 1;λx.C ′[N ]•C ′′[C[N ]] =
1;C ′′′[N ]. It is easy to check that 1;P Z=⇒ Y iff P Z=⇒ Y and that J1;P K = JP K
for any term P . Therefore, by Lemma 8.57 we derive that 1;C ′′′[M ] Z=⇒ Y implies
Y lift(S ′(M,N)) J1;C ′′′[M ]K, which implies that Y lift(SC[M ],C[N ]) J1;C ′′′[M ]K.

• Let Y R C[M ],C[N ]Z with Y R (M,N)Z. Then by the fact that R is a finite-step
simulation it holds that for any C ′, Y • C ′[C[M ]] Z=⇒ Y ′ implies Y ′R (M,N)JZ •
C ′[C[N ]]K, which in turn implies Y ′ SC[M ],C[N ] JZ • C ′[C[N ]]K.

• Let ∅R C[M ],C[N ]Z. Then for any P we have that ∅ •P Z=⇒ Y implies Y = ∅ and we
stay in the third set.

Proof of Lemma 8.24
Let R be a finite-step simulation up-to lifting and context. We prove that

R′ def= Pairs(R)
∪ {((M,N), 1;λx.C[M ], 1;λx.C[N ]) | M R N}
∪ {((M,N), Y, Z) | Y ′R (M,N)Z and Y ≤apx Y

′, for some Y ′}
∪ {((M,N), ∅, Z) | for some M,N,Z}

is a finite-step simulation up-to lifting, from which the result follows by R ⊆ R′.
Note that the relation lift(R′(M,N)) is saturated by approximants, i.e., the following

property holds: if Y ≤apx Y
′ lift(R′(M,N))Z then Y lift(R′(M,N))Z. We first prove the

following result:
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Lemma 8.58. For any context C, if M R N and C[M ] Z=⇒ Y then Y lift(R′(M,N)) JC[N ]K.

Proof. We prove by induction on the number of small-step reductions n that M R N and
C[M ] Z=⇒n Y imply Y lift(R′(M,N)) JC[N ]K. If Y = ∅ then the result holds by the last

set of R′. Suppose that Y 6= ∅. If n = 0 then we have two cases:

• C = [·] and M is a value. Then M Z=⇒ Y and we have that Y lift(R(M,N)) JNK =
JC[N ]K.

• C = λx.C ′. Then Y ≤apx 1;λx.C ′[M ]dirac((M,N)?)1;λx.C ′[N ] = JC[N ]K.

Suppose now that C[M ] Z=⇒n+1 Y .

• C = [·] and M Z=⇒n+1 Y . The result follows from the fact that R is a finite-step
simulation up-to lifting and context, as in the first case of n = 0.

• C = C1 ⊕ C2 and C[M ] −→ 1
2 ;C1[M ] + 1

2 ;C2[N ] Z=⇒n Y . Then C1[M ] Z=⇒n1 Y1,
C2[N ] Z=⇒n2 Y2 with n1 + n2 ≤ n and Y = 1

2 ;Y1 + 1
2 ;Y2. We have JC[N ]K =

1
2 ; JC1[N ]K + 1

2 ; JC2[N ]K and it follows from the inductive hypothesis on n1 and
n2 that Y1 lift(R′(M,N)) JC1[N ]K and Y2 lift(R′(M,N)) JC2[N ]K. Hence, we derive

Y lift(R′(M,N)) JC[N ]K.

• C = C1C2. Then C[M ] Z=⇒n+1 Y implies that C[M ] =⇒n1 Y1C2[M ] Z=⇒n2 Y ,
where C1[M ] Z=⇒n1 Y1 =

∑
i pi;λx.Pi. Since n1 ≤ n (by Y 6= ∅), we can ap-

ply the inductive hypothesis and derive that Y1 lift(S ′(M,N)) JC1[N ]K, i.e., Y1 =∑
j rj ·Y ′j and JC1[N ]K =

∑
j rj ·Z ′j for Y ′jR′(M,N)Z

′
j . Hence, Y1C2[M ] Z=⇒n2 Y im-

plies Y ′jC2[M ] Z=⇒n′j
Y ′′j , with

∑
j n
′
j = n2 and Y =

∑
j rj ·Y ′′j , and JC[N ]K =

JJC1[N ]KC2[N ]K = J
∑

j rj ·Z ′jC2[N ]K =
∑

j rj ·JZ ′jC2[N ]K =
∑

j rj ; JZ
′
j • C2[N ]K.

Since lift( lift(R ) ) = lift(R ) for any relation R , the result follows if we can
prove that for every j it holds that Y ′jC2[M ] Z=⇒n′j

Y ′′j implies Y ′′j lift(R′(M,N)) JZ ′j •
C2[N ]K. If Y ′j R′(M,N) Z

′
j then one of the following cases hold:

– Y ′j = 1;λx.C ′[M ] and Z ′j = 1;λx.C ′[N ]. Hence, either Y ′′j = ∅, in which case

the result follows by the last set ofR′, or Y ′jC2[M ] −→ 1;C ′[M ]{C2[M ]/x} Z=⇒n′′j

Y ′′j , with n′′j ≤ n. Terms C ′[M ]{C2[M ]/x} and C ′[N ]{C2[N ]/x} are respectively
of the form C ′′[M ] and C ′′[N ] and we can apply the inductive hypothesis to
derive that Y ′′j lift(R′(M,N)) JZ ′j • C2[N ]K.

– Y ′j ≤apx XR (M,N)Z
′
j . If Y ′jC2[M ] =⇒ Y ′′j then there is a X ′ such that

XC2[M ] Z=⇒n′′j
X ′ and Y ′′j ≤apx X

′, for some n′′j ≤ n′j . It is easy to check

that there is exists a X ′′ such that X • C2[M ] Z=⇒n′′′j
X ′′ and X ′ ≤apx X

′′, for

some n′′′j < n′′j . Since XR (M,N)Z
′
j , there are two cases:

∗ X • C2[M ] =⇒ F and Z ′j • C2[N ] =⇒ G with F lift(dirac((M,N)?))G.
Hence, F Z=⇒n′′′′j

X ′′′ with X ′′ ≤apx X
′′′, for some n′′′′j ≤ n′′′j < n. We

can apply the inductive hypothesis to the pairs in (M,N)? whose projec-
tions respectively compose F and G through the lifting, and derive that
X ′′′ lift( lift(R′(M,N)) ) JGK. It follows from Y ′′j ≤apx X

′′′ that

Y ′′j lift(R′(M,N)) JGK = JZ ′j • C2[N ]K .
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∗ X ′′ lift(dirac((M,N)?)∪ R(M,N)) JZ ′j • C2[N ]K.
Since Y ′′j ≤apx X ′′, this allows us to derive that Y ′′j lift(R′M,N ) JZ ′j •
C2[N ]K, since lift(R′(M,N)) is saturated by approximants.

– the result is immediate if Y ′j = ∅.
2

Then we derive from Lemma 8.58 that R′ is a finite-step simulation up-to lifting:

1. if M R′ N then M R N , and M Z=⇒ Y implies Y lift(R(M,N)) JNK, by the defini-
tion of R. Then the result follows by R ⊆ R′.

2. if Y R′(M,N) Z then:

• if Y ≤apx Y
′ R(M,N) Z then for all P,Q ∈ (M,N)? we have two cases:

– Y ′ • P =⇒ F and Z •Q =⇒ G with F lift(dirac((M,N)?))G.
If Y • P Z=⇒ Y ′′ then there is a Y ′′′ such that Y ′ • P =⇒ F Z=⇒ Y ′′′ and
Y ′′ ≤apx Y

′′′. It follows from F lift(dirac((M,N)?))G and from Lemma
8.58 that F Z=⇒ Y ′′′ implies Y ′′′ lift( lift(R′(M,N)) ) JGK, which is equiv-

alent to saying that Y ′′′ lift(R′(M,N)) JZ • QK. Since F ′′ ≤apx Y ′′′ and

lift(R′(M,N)) is saturated by approximants we derive Y ′′′ lift(R′(M,N)) JZ•
QK.

– Y ′ • P Z=⇒ X and X lift(dirac((M,N)?)∪ R(M,N)) JZ •QK.
If Y •P Z=⇒ Y ′′ then there is a Y ′′′ such that Y ′ •P Z=⇒ Y ′′+Y ′′′ = X and,
by the definition of R, Y ′′ + Y ′′′ lift(dirac((M,N)?)∪ R(M,N)) JZ • QK,
which implies Y ′′+ Y ′′′ lift(R′(M,N)) JZ •QK. Since Y ′′ ≤apx Y

′′+ Y ′′′, we

have Y ′′ lift(R′(M,N)) JZ •QK.

• if Y = 1;λx.C[M ] and Z = 1;λx.C[N ] with M R N then for all P,Q ∈ (M,N)?

we have Y • P = 1;C ′[M ] and Z •Q = 1;C ′[N ] for some C ′. Then by Lemma
8.58 we have that Y • P Z=⇒ Y ′ implies Y ′ lift(R′(M,N)) JZ •QK.

• if Y = ∅ then the simulation clause holds and we stay in the last set of R′.

Proof of Lemma 8.28

Let �?t denote the transitive closure of �?, i.e., P �?t P ′ if there are P = P1, P2, ..., Pk =

P ′ such that for every 1 ≤ i < k there are a context Ci and tuples P̃i, P̃ ′i with Pi = Ci[P̃i]

and Pi+1 = Ci[P̃ ′i ] = Ci+1[P̃i+1] and P̃i � P̃ ′i .

Define the following term relation

R(M,N)
def
= (�?̂t (M,N)?̂) ∪ (�?̂tT(M,N))

Let liftd() denote lift(dirac()) .

Lemma 8.59. We prove that

(*) P �?t P ′ and P Z=⇒n Y imply P ′ Z=⇒n′ Y
′ with n ≥ n′ and Y liftd(�?̂t) ≤apx Y

′

(**) P (�?t (M,N)?)Q and P Z=⇒ Y imply Y disliftd(R(M,N)) ≤apx JQK
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Proof. We first prove (*). Let P = P1, P2, ..., Pk = P ′ be such that for every i, for 1 ≤ i <
k, there are a context Ci and tuples P̃i, P̃ ′i with Pi = Ci[P̃i] and Pi+1 = Ci[P̃ ′i ] = Ci+1[P̃i+1]

and P̃i � P̃ ′i . Suppose that P Z=⇒n Y . We prove by induction on k that for every i such

that 1 ≤ i < k we have Pi Z=⇒mi Yi and mi ≥ mi+1 and Yi liftd(�?̂t) ≤apx Yi+1.
The result is trivial for k = 1. Suppose that k = k′ + 1. The result follows from the
inductive hypothesis and from

Y liftd(�?̂t) ≤apx Y
′ liftd(�?̂t) ≤apx Y

′′ implies Y liftd(�?̂t) ≤apx Y
′′,

if we can prove that for any C and P̃ , P̃ ′ such that P̃ � P̃ ′ we have C[P̃ ] Z=⇒m Y implies

C[P̃ ′] Z=⇒m′ Y
′ with m ≥ m′ and Y liftd(�?̂t) ≤apx Y

′. This is proved by induction on

m. If m = 0 then Y = Y ′ and the result follows. Suppose C[P̃ ] Z=⇒m+1 Y . We have three
cases:

• if C = [·] then the result immediately follows by P̃ = P � P ′ = P̃ ′.

• C = C1 ⊕ C2.
Then there are Y1, Y2 such that Y = 1

2 ;Y1 + 1
2 ;Y2 and Ci[P̃ ] =⇒mi Yi for i = 1, 2

and mi < m+ 1. The result follows from the inductive hypothesis

• C = C1C2.
If C1[P̃ ] is a value then, by the definition of �, C1[P̃ ′] is exactly the same value.

Then the terms resulting after the β-reduction are in �?̂t, and we conclude by the
inductive hypothesis.
If C1[P̃ ] Z=⇒m1 Y1 then we can apply the inductive hypothesis to mi and the result
follows.

We can now prove (**) by showing by induction on n that P (�?t (M,N)?)Q and
P Z=⇒n Y imply Y disliftd(R(M,N)) ≤apx JQK.
Let P �?t P ′, P ′ = C[M ] and Q = C[N ]. If n = 0 and Y 6= ∅ then P is a value, Y = 1;P

and by (*) P ′ is a value too, with P �?̂t P ′. We have two cases:

• C = [·], with P ′ = M a value, and Q = N .
By the definition of T(M,N) we have 1;P ′ = JMKdisliftd(T(M,N))JNK and it follows

from P �?̂t P ′ that Y disliftd(�?̂tT(M,N))JQK.

• P ′ = λx.C ′[M ] and Q = λx.C ′[N ].

Then Y disliftd(�?̂t (M,N)?̂)JQK.

If P Z=⇒n+1 Y then by (*) we have that P ′ Z=⇒m Y ′ with m ≤ n+1 and Y liftd(�?̂t) ≤apx

Y ′. Suppose that Y ′ 6= ∅. We have three cases:

• C = [·]. If M Z=⇒m Y ′ then Y ′ ≤apx JMKdisliftd(T(M,N))JNK, which implies

Y disliftd(T(M,N)) ≤apx JNK

by ≤apx disliftd(T(M,N)) ≤apx⊆ disliftd(T(M,N)) ≤apx. Since for any S,S ′ we
have liftd(S) disliftd(S ′) ⊆ disliftd(SS ′), we derive

Y disliftd(�?̂tT(M,N)) ≤apx JNK .
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• C = C1 +C2. Then there are Y1, Y2 such that Y ′ = 1
2 ;Y1 + 1

2 ;Y2 and Ci[M ] =⇒mi Yi
for i = 1, 2 and mi ≤ n. By the inductive hypothesis, we have that

Y ′ liftd(dislift(R(M,N))) ≤apx JQK .

Hence, since for any pari of relations S,S ′ we have liftd(disliftd(·)) = disliftd(·),
and liftd(S) disliftd(S ′) ⊆ disliftd(SS ′), and by �?t�?t=�?t, we derive

Y dislift(R(M,N)) ≤apx JQK .

• C = C1C2. We consider two cases:

– C1[M ] = M and M = λx.M ′ and N = λx.N ′ are values.

Then M T(M,N) N and we have MC2[M ] Z=⇒m Y ′ iff M ′{C2[M ]/x} d
=⇒ F Z=⇒m′

Y ′, with m′ < m ≤ n + 1 and JNC2[N ]K = JN ′{C2[N ]/x}K = JGK, where
Fdisliftd(�?T ?−(M,N))G (note that here the determinism of the reduction to

F is used in order to guarantee that F Z=⇒m′ Y
′ and that m′ < m ≤ n + 1).

Hence, we have Y ′dislift({(Yi, Zi)}i)JGK, with either Yidirac(�?̂T ?−(M,N))Zi
(which implies Yidirac(R(M,N))Zi) or Mi Z=⇒mi Yi and JNiK = Zi for Mi �

?

(M,N)?Ni and mi ≤ m′ < n + 1, and by applying the inductive hypoth-
esis we derive Yidisliftd(R(M,N)) ≤apx Zi. Therefore, Y liftd(�?t) ≤apx

Y ′disliftd(R(M,N)) ≤apx JQK, and the result follows.

– C1[M ] = λx.C ′1[M ] and C1[N ] = λx.C ′1[N ].
We can apply the inductive hypothesis to C ′1[M ]{C2[M ]/x} Z=⇒m′ Y

′ to derive

Y ′disliftd(R(M,N)) ≤apx JC ′[N ]{C2[N ]/x}K,

then we have Y liftd(�?t) ≤apx Y
′disliftd(R(M,N)) ≤apx JC ′[N ]{C2[N ]/x}K,

which implies the result.
2

We can now derive that the relation

S= {(M,N)} ∪ {((M,N), 1;V, 1;W ) | V R(M,N) W} ∪ {((M,N), ∅, Z) | for any Z}

is a finite-step simulation up-to distribution and lifting:

• since M(�?t (M,N)?)N , by Lemma 8.59(**) we have that if M Z=⇒ Y then

Y disliftd(R(M,N))Y
′ ≤apx JNK,

which implies Y dislift(S(M,N))JNK (using the last set of relation S(M,N) to elimi-
nate the approximation preorder ≤apx).

• the weight of the formal sums is the same.

• if 1;V S(M,N) 1;W and V �?̂t V ′(M,N)?̂W then for any (P,Q) ∈ (M,N)? we have

that V P �?t V ′P (M,N)?WQ. Then clause (2b) of finite-step simulation holds by
Lemma 8.59(**).
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If V �?̂t V ′ T(M,N) W then for any (P,Q) ∈ (M,N)? we have that V P �?t V ′P .

Hence, V P Z=⇒ Y implies by Lemma 8.59(*) that V ′P Z=⇒ Y ′ with Y liftd(�?̂t) ≤apx

Y ′. By the definition of T(M,N) and by the fact that
d

=⇒ is deterministic, we de-
rive from V ′P Z=⇒ Y ′ and from Lemma 8.59(**) that Y ′disliftd(R(M,N)) ≤apx

JWQK (see the proof of Lemma 8.59(**), application case, for more details). Then
Y disliftd(R(M,N)) ≤apx JWQK, which implies Y disliftd(S(M,N))JWQK.

Proof of Theorem 8.51
Let R be a finite-step {l̃}-simulation saturated by approximants. We first define,

for any pair of terms (M,N), the preorder ≤cce(M,N) (context closure of environments)
on pairs of environment formal sums with store: (Y,Z) ≤cce(M,N) (Y′,Z′) if Y =∑

i pi; si; Ṽi,Z =
∑

j qj ; tj ; W̃j with | Y | = | Z | and Y′ =
∑

i pi; si; Ṽ
′
i ,Z

′ =
∑

j qj ; tj ; W̃
′
j

with | Y′ | = | Z′ | and

• for every index r in | Y | there is an index r′ in | Y′ | such that Y�r = Y′�r′ and
Z�r = Z′�r′ ;

• for every index r′ ≤| Y′ | there is a location-free value-context C such that for every

i, j it holds that r′(Ṽ ′i ) = C[M, Ṽi] and r′(W̃ ′j) = C[N, W̃j ] (i.e., (Y′�r′ ,Z′�r′) ∈
({(M, Ṽi}i, {N, W̃j}j)?̂).

For any indexed relation R(M,N) on environment formal sums, we write Rcce
(M,N) for

relation ≤cce(M,N) (RM,N ), i.e.,

Rcce
(M,N)= {(Y,Z) | ∃Y′,Z′ such that (Y′,Z′) ≤cce(M,N) (Y,Z) ∧ Y′ R(M,N) Z′}

Note that we can add to a finite-step {l̃}-simulation R saturated by approximants the
set

{((M,N), ∅,Y) | Y is an environment formal sum}

for any (M,N), and we still have that R is a finite-step {l̃}-simulation saturated by
approximants, since the presence of the empty formal sum on the left is irrelevant and
trivially satisfies the simulation clauses. Hence, we assume that finite-step simulations
have this property, that we refer to as R is saturated by ∅.

The following result is used in the proof of Lemma 8.61 (in Lemma 8.60 and 8.61, the
set of locations parametrizing the relations is not relevant, hence we omit it).

Lemma 8.60. Let R be a finite-step simulation and let

Y =
∑

i pi; si; Ṽi Rcce
(M,N)

∑
j qj ; tj ; W̃j = Z

Let ({λx.Pi}i, {λx.Qj}j) ∈ ({M, Ṽi}i, {N, W̃j}j)?̂ and ({Ti}i, {Uj}j) ∈ ({M, Ṽi}i, {N, W̃j}j)?̂.
Then one of the following holds:

• ({Pi{Ti/i}}i, {Qj{Uj/x}}j) ∈ ({M, Ṽi}i, {N, W̃j}j)?

• for every W,
∑

i pi; si; Ṽi, λx.Pi;Pi{Ti/i} Z=⇒W implies

W lift(Rcce
(M,N)) J

∑
j qj ; tj ; W̃j , λx.Qj ;Qj{Uj/x}K
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Proof. We have three cases:

• if λx.Pi = λx.C ′[M, Ṽi] and λx.Qj = λx.C ′[N, W̃j ] for some location-free context C ′,
then there is a location-free context C ′′ such that∑

i pi; si; Ṽi;Pi{Ti/x} =
∑

i pi; si; Ṽi;C
′′[M, Ṽi]∑

j qj ; tj ; W̃j ;Qj{Uj/x} =
∑

j qj ; tj ; W̃j ;C
′′[N, W̃j ]

and the first item holds.

• if there is an r such that λx.Pi = (Ṽ ′i )r and λx.Qj = (W̃ ′j)r for some

Y′ =
∑

i pi; si; Ṽ
′
i R(M,N)

∑
j qj ; tj ; W̃

′
j = Z′

such that (Y′,Z′) ≤cce(M,N) (Y,Z), then it follows from the fact that R is a finite-

step simulation that
∑

i pi; si; Ṽ
′
i ;Pi{Ti/x} Z=⇒W′ implies

W′ lift(R(M,N)) J
∑

j qj ; tj ; W̃
′
j ;Qj{Uj/x}K.

Since
∑

i pi; si; Ṽi, λx.Pi;Pi{Ti/i} Z=⇒W implies

(W′, J
∑

j qj ; tj ; W̃
′
j ;Qj{Uj/x}K) ≤cce(M,N) (W, J

∑
j qj ; tj ; W̃j , λx.Qj ;Qj{Uj/x}K),

we derive
W lift(Rcce

(M,N)) J
∑

j qj ; tj ; W̃j , λx.Qj ;Qj{Uj/x}K

• if λx.Pi = M and λx.Qj = N then M and N are values and by clause (2g) applied
to R(M,N) we have ∑

i pi; si; Ṽ
′
i ,M R(M,N)

∑
j qj ; tj ; W̃

′
j , N

for some (
∑

i pi; si; Ṽ
′
i ,
∑

j qj ; tj ; W̃
′
j) ≤cce(M,N) (Y,Z). By clause (2b) applied to

R(M,N) we have
∑

i pi; si; Ṽ
′
i ,M ;Pi{Ti/x} Z=⇒W′ implies

W′ lift(R(M,N)) J
∑

j qj ; tj ; W̃
′
j , N ;Qj{Uj/x}K .

Since by assumption λx.Pi = M and λx.Qj = N , there are already columns in the
dynamic environments of Y and Z composed by M and N respectively, and thus

(W′, J
∑

j qj ; tj ; W̃
′
j , N ;Qj{Uj/x}K) ≤cce(M,N)≥env (W, J

∑
j qj ; tj ; W̃j ;Qj{Uj/x}K),

from which the result follows.
2

In what follows, we sometimes use relations ≤lift and ≤lift≤env, defined as follows:

• (Y,Z) ≤lift {(Yg,Zg)}g if there are probability values pg such that Y =
∑

g pg ·Yg

and Z =
∑

g pg · Zg ;
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• (Y,Z) ≤lift≤env {(Yg,Zg)}g if there are probability values pg such that Y =
∑

g pg ·
Y′g and Z =

∑
g pg · Z′g with (Y′g,Z

′
g) ≤env (Yg,Zg) for every g.

The notation, as for relations ≤env and ≤cce(M,N), is extended to environment formal sums
with running terms by requiring the running term to be the same everywhere.

Lemma 8.61. Suppose that R(M,N) is a finite-step simulation saturated by approximants
(only defined on formal sums). For any location-free context C if Y Rcce

(M,N) Z and

Y;C[M,Y] Z=⇒W then W lift(≥env (Rcce
(M,N))) JZ;C[N,Z]K.

Proof. Suppose that Y =
∑

i pi; si; Ṽi Rcce
(M,N)

∑
j qj ; tj ; W̃j = Z, with Y′ =

∑
i pi; si; Ṽ

′
i

and Z′ =
∑

j qj ; tj ; W̃
′
j related by R(M,N) and such that (Y′,Z′) ≤cce(M,N) (Y,Z).

We prove by induction on n and then by induction on the structure of C that∑
i pi; si; Ṽi;C[M, Ṽi] Z=⇒n W implies W lift(≥env (Rcce

(M,N))) J
∑

j qj ; tj ; W̃j ;C[N, W̃j ]K.

(In the proof we sometimes assume that Ṽi = Ṽ ′i , Ṽ
′′
i and W̃j = W̃ ′j , W̃

′′
j . This does not

affect the results since the context closure of environments allows to permute the columns
in the formal sums.)

If W = ∅ then the result follows by the fact that R is saturated by ∅. Suppose that
W 6= ∅ and n = 0. We have one of the following cases:

• C = [·]1 and M is a value. Then∑
i pi; Ṽ

′
i · (1; 〈si ; ; 〉M) lift(R(M,N))

∑
j qj ; W̃

′
j · J〈tj ; N〉K

and we derive∑
i pi; Ṽi · (1; 〈si ; ; 〉M)( lift(Rcce

(M,N)) )
∑

j qj ; W̃j · J〈tj ; N〉K .

• C 6= [·]1 and for every i, j, C[M, Ṽi] and C[N, W̃j ] are values. Then it follows from
the definition of ≤cce(M,N) that

W =
∑

i pi; si; Ṽi, C[M, Ṽi] Rcce
(M,N)

∑
j qj ; tj ; W̃j , C[N, W̃j ] = J

∑
j qj ; tj ; W̃j , C[N, W̃j ]K .

Suppose now that
∑

i pi; si; Ṽi;C[M, Ṽi] Z=⇒n+1 W, with W 6= ∅. We have the follow-
ing cases:

• C = [·]1 and M is not a value. Then the result follows analogously to the n = 0
case.

• C = C1 ⊕ C2. We have that
∑

i pi; si; Ṽi; (C1 ⊕ C2)[M, Ṽi] Z=⇒W implies∑
i pi; si; Ṽi; (C1 ⊕ C2)[M, Ṽi] −→ 1

2 ·
∑

i pi; si; Ṽi;C1[M, Ṽi]+
1
2

∑
i pi; si; Ṽi;C2[M, Ṽi]

and W = 1
2 ·W1 + 1

2 ·W2, with
∑

i pi; si; Ṽi;Ch[M, Ṽi] Z=⇒nh Wh, for h = 1, 2 and
nh ≤ n. Since

J
∑

j qj ; tj ; W̃j ; (C1 ⊕ C2)[N, W̃j ]K =
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1
2 · J

∑
j qj ; tj ; W̃j ;C1[N, W̃j ]K + 1

2 · J
∑

j qj ; tj ; W̃j ;C1[N, W̃j ]K

we can apply the inductive hypothesis to n1 and n2 and derive

W lift( lift(≥env (Rcce
(M,N))) ) J

∑
j qj ; tj ; W̃j ; (C1 ⊕ C2)[N, W̃j ]K

The result follows from lift( lift(R) ) = lift(R) .

• C = C1C2.
Suppose that there exists some i such that C1[M, Ṽi] are not values and they perform
some small steps in the reduction leading to W. Hence, there is a set I ′ ⊆ I such
that∑

i∈I pi; si; Ṽi;C1[M, Ṽi]C2[M, Ṽi] =⇒n1

∑
i∈I′⊆I,k pi,k; si,k; Ṽi;Vi,kC2[M, Ṽi] Z=⇒n2 W

with n1 > 1 and∑
i∈I pi; si; Ṽi;C1[M, Ṽi] Z=⇒n1

∑
i∈I′,k pi,k; si,k; Ṽi, Vi,k .

We have that

J
∑

j∈J qj ; tj ; W̃j ;C1[N, W̃j ]C2[N, W̃j ]K = J
∑

j∈J ′⊆J,h qj,h; tj,h; W̃j ;Wj,hC2[N, W̃j ]K

for J
∑

j∈J qj ; tj ; W̃j ;C1[N, W̃j ]K =
∑

j∈J ′,h qj,h; tj,h; W̃j ,Wj,h. Then we can apply the
inductive hypothesis to n1 and derive that∑

i∈I′,k pi,k; si,k; Ṽi, Vi,k lift(≥env (Rcce
(M,N)))

∑
j∈J ′,h qj,h; tj,h; W̃j ,Wj,h

which is equivalent to saying that

(
∑

i∈I′,k pi,k; si,k; Ṽi, Vi,k,
∑

j∈J ′,h qj,h; tj,h; W̃j ,Wj,h) ≤lift≤env {(Yg,Zg)}g ⊆Rcce
(M,N)

with Yg =
∑

i,k∈Ig p
′
i,k; si,k; Ṽi,k, and Zg =

∑
j,h∈Jg q

′
j,h; tj,h; W̃j,h such that for every

g there is a context Cg such that for all i, k ∈ Ig and for all j, h ∈ Jg we have

Vi,kC2[M, Ṽi] = Cg[M, Ṽi,k] and Wj,hC2[N, W̃j ] = Cg[N, W̃j,h].

If
∑

i∈I′⊆I,k pi,k; si,k; Ṽi;Vi,kC2[M, Ṽi] Z=⇒n2 W then for every g there is a Wg such

that
∑

i,k∈Ig p
′
i,k; si,k; Ṽi,k;Cg[M, Ṽi,k] Z=⇒n′g Wg and

∑
g n
′
g = n2 and

(W, J
∑

j∈J qj ; tj ; W̃j ;C1[N, W̃j ]C2[N, W̃j ]K)

≤lift≤env {(Wg, J
∑

j,h∈Jg q
′
j,h; tj,h; W̃j,h;Cg[N, W̃j,h]K)}g

By the inductive hypothesis on each of the n′g we derive that

{(Wg, J
∑

j,h∈Jg qj,h; tj,h; W̃j,h;Cg[N, W̃j,h]K)}g ⊆ lift(≥env (Rcce
(M,N)))

from which the result follows by lift(≥env ( lift(≥env (R)) )) = lift(≥env (R)) .
We now consider the case when no C1[M, Ṽi] contributes to the multi-step reduction
to W. If there exist some i such that C2[M, Ṽi] contributes to the multi-step
reduction to W, then we can derive the result using the same reasoning as above.
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Otherwise, there is a set I ′ ⊆ I such that C1[M, Ṽi] and C2[M, Ṽi] are values for
every i ∈ I ′, and∑

i∈I′ pi; si; Ṽi;C1[M, Ṽi]C2[M, Ṽi] =
∑

i∈I′ pi; si; Ṽi; (λx.Pi)C2[M, Ṽi]

=⇒n1

∑
i∈I′ pi; si; Ṽi;Pi{C2[M, Ṽi]/x}

Z=⇒n2 W

with n1 ≤ n+ 1 and n2 ≤ n.
Suppose that for all j we have that C1[N, W̃j ] = λx.Qj is a value and C2[N, W̃j ] is
a value. Then,

J
∑

j qj ; tj ; W̃j ;C1[N, W̃j ]C2[N, W̃j ]K =

J
∑

j qj ; tj ; W̃j ;λx.QjC2[N, W̃j ]K =

J
∑

j qj ; tj ; W̃j ;Qj{C2[N, W̃j ]/x}K

Since R is saturated by approximants,∑
i∈I′ pi; si; Ṽi Rcce

(M,N)

∑
j qj ; tj ; W̃j

which implies by Lemma 8.60 that one of the following holds:

– there is a context C ′ such that∑
i∈I′ pi; si; Ṽi;Pi{C2[M, Ṽi]/x} =

∑
i∈I′ pi; si; Ṽi;C

′[M, Ṽi]

and ∑
j qj ; tj ; W̃j ;Qj{C2[N, W̃j ]/x} =

∑
j qj ; tj ; W̃j ;C

′[N, W̃j ].

Then we can apply the inductive hypothesis on the reduction∑
i∈I′ pi; si; Ṽi;C

′[M, Ṽi] Z=⇒n2 W

and derive the result.

– for any W′, if
∑

i∈I′ pi; si; Ṽi, λx.Pi;Pi{C2[M, Ṽi]/x} Z=⇒W′ then

W′ lift(Rcce
(M,N)) J

∑
j qj ; tj ; W̃j , λx.Qj ;Qj{C2[N, W̃j ]/x}K.

Then we have

(W, J
∑

j qj ; tj ; W̃j ;Qj{C2[N, W̃j ]/x}K)

≤env (W′, J
∑

j qj ; tj ; W̃j , λx.Qj ;Qj{C2[N, W̃j ]/x}K)

and the result follows by ≥env lift(R) ⊆ lift(≥env (R)) .

It remains to consider the case when C1[N, W̃j ] or C2[N, W̃j ] are not values for some

j. If C1[N, W̃j ] is not a value for some j then C1 = [·]1 and N is not a value. Suppose

C2[N, W̃j ] is a value for all j. Then we have

J
∑

j∈J qj ; tj ; W̃j ;NC2[N, W̃j ]K =

J
∑

j∈J ′⊆J,h qj,h; tj,h; W̃j ;λx.Qj,hC2[N, W̃j ]K =

J
∑

j∈J ′⊆J,h qj,h; tj,h; W̃j ;Qj,h{C2[N, W̃j ]/x}K
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for J
∑

j∈J qj ; tj ; W̃j ;NK =
∑

j∈J ′,h qj,h; tj,h; W̃j , λx.Qj,h. Since R is a finite-step sim-
ulation saturated by approximants, by clause (2g) we derive∑

i∈I′ pi; si; Ṽ
′
i , λx.Pi lift(R(M,N))

∑
j∈J ′,h qj,h; tj,h; W̃ ′j , λx.Qj,h

which implies∑
i∈I′ pi; si; Ṽi, λx.Pi lift(Rcce

(M,N))
∑

j∈J ′,h qj,h; tj,h; W̃j , λx.Qj,h .

Then

(
∑

i∈I′ pi; si; Ṽi, λx.Pi,
∑

j∈J ′,h qj,h; tj,h; W̃j , λx.Qj,h) ≤lift {(Yg,Zg)}g ⊆Rcce
(M,N)

with Yg =
∑

i∈Ig p
′
i; si; Ṽi, λx.Pi, and Zg =

∑
j,h∈Jg q

′
j,h; tj,h; W̃j , λx.Qj,h such that

for every g we have that∑
i∈Ig p

′
i; si; Ṽi, λx.Pi;λx.PiC2[M, Ṽi]

and ∑
j,h∈Jg q

′
j,h; tj,h; W̃j , λx.Qj,h;λx.Qj,hC2[N, W̃j ]

satisfy the premises of Lemma 8.60. Then we can proceed as in the previous case

and derive that
∑

i∈Ig p
′
i; si; Ṽi, λx.Pi;Pi{C2[M, Ṽi]/x} Z=⇒Wg implies

Wg lift(≥env (Rcce
(M,N))) J

∑
j,h∈Jg q

′
j,h; tj,h; W̃j , λx.Qj,h;Qj,h{C2[N, W̃j ]/x}K ,

from which the result follows.

Finally, if there are are some j such that C2[N, W̃j ] is not a value then we can proceed
as in the previous case, exploiting clause (2g) on R(M,N) in order to evaluate N in
argument position as well.

• case C = !C ′.
The interesting case is when for every i we have that C ′[M, Ṽi] does not contribute
to the reduction (otherwise, we can apply the inductive hypothesis analogously to
the application case), i.e., there is a subset I ′ ⊆ I such that∑

i∈I′ pi; si; Ṽi; !C ′[M, Ṽi] =
∑

i∈I′ pi; si; Ṽi; !li =⇒n+1
∑

i∈I′ pi; si; Ṽi, si(li)

Since R is saturated by approximants,
∑

i∈I′ pi; si; Ṽ
′
i R(M,N)

∑
j qj ; tj ; W̃

′
j .

Since contexts are location-free, there are two cases:

– C ′[M, Ṽi] ∈ Ṽ ′i . Then C ′[N, W̃j ] = l′j ∈ W̃ ′j and by clause (2c) on R we have∑
i∈I′ pi; si; Ṽ

′
i , si(li) lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , ti(l

′
j)

and the result follows from

J
∑

j qj ; tj ; W̃
′
j ; !l′jK =

∑
j qj ; tj ; W̃

′
j , ti(l

′
j)
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– C = [·]1 and M = l.
Suppose that N = l′. Then by clause (2g) we have∑

i∈I′ pi; si; Ṽ
′
i ,M R(M,N)

∑
j qj ; tj ; W̃

′
j , N

and by clause (2c)∑
i∈I′ pi; si; Ṽ

′
i ,M, si(li) lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , N, tj(l

′
j)

Then ∑
i∈I′ pi; si; Ṽi, si(li) lift(≥env (Rcce

(M,N)))
∑

j qj ; tj ; W̃j , tj(l
′
j)

The case when N is not a value follows analogously.

• C = C1 := C2.
Again, the interesting case is when for every i neither C1[M, Ṽi] nor C2[M, Ṽi] con-
tributes to the reduction, i.e., there is a subset I ⊆ I ′ such that∑

i∈I′ pi; si; Ṽi;C1[M, Ṽi] := C2[M, Ṽi]

=
∑

i∈I′ pi; si; Ṽi; li := Ti
Z=⇒n+1

∑
i∈I′ pi; si[li → Ti]; Ṽi, ?

As above, since R is saturated by approximants,
∑

i∈I′ pi; si; Ṽ
′
i R(M,N)

∑
j qj ; tj ; W̃

′
j

and, since contexts are location-free, there are two cases:

– C1[M, Ṽi] ∈ Ṽ ′i . Then C1[N, W̃j ] = l′j ∈ W̃ ′j . Suppose that C2[N, W̃j ] = Uj is

a value for every j. Then ({Ti}i, {Uj}j) ∈ ({M, Ṽ ′i }i, {N, W̃ ′j}j)?̂ and by clause
(2c) on R we have∑

i∈I′ pi; si[li → Ti]; Ṽ
′
i lift(R(M,N))

∑
j qj ; tj [l

′
j → Uj ]; W̃

′
j

and the result follows.
If C2[N, W̃j ] is not a value for some j then C2[M, Ṽj ] = M and C2[N, W̃j ] = N .
Then we derive from clause (2g) that∑

i∈I′ pi; si; Ṽ
′
i ,M R(M,N) J

∑
j qj ; tj ; W̃

′
j ;NK =

∑
j,h qj,h; tj,h; W̃ ′j ;Uj,h

and we can derive, as in the previous case, that∑
i∈I′ pi; si[li →M ]; Ṽ ′i ,M lift(R(M,N))

∑
j,h qj ; tj [l

′
j → Uj,h]; W̃ ′j , Uj,h

from which the result follows.

– C = [·]1 and M = l.

Suppose that N = l′ and C2[N, W̃j ] = Uj is a value for every j. Then

({Ti}i, {Uj}j) ∈ ({M, Ṽ ′i }i, {N, W̃ ′j}j)?̂. Then by clause (2g) we have∑
i∈I′ pi; si; Ṽ

′
i ,M R(M,N)

∑
j qj ; tj ; W̃

′
j , N
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and by clause (2c) on R we have∑
i∈I′ pi; si[l→ Ti]; Ṽ

′
i ,M lift(R(M,N))

∑
j qj ; tj [l

′ → Uj ]; W̃
′
j , N

and the result follows.
If N or C2[N, W̃j ] are not values then we proceed analogously to the previous
cases, by proving that we can add to the environment the values they evaluate
to while staying in relation R(M,N).

• C = (ν x :=C1)C2, with C2 a context with free variable x.
We consider the case when∑

i∈I′ pi; si; Ṽi; (ν x :=C1[M, Ṽi])C2[M, Ṽi]

=
∑

i∈I′ pi; si; Ṽi; (ν x :=Ti)C2[M, Ṽi]

=⇒n1

∑
i∈I′ pi; si[li → Ti]; Ṽi;C2[M, Ṽi]{li/x}

Z=⇒n2 W

and C1[M, Ṽi] = Uj is a value for every j, thus

J
∑

j qj ; tj ; W̃j ; (ν x :=C1[N, W̃j ])C2[N, W̃j ]K
= J
∑

j qj ; tj [kj → Uj ]; W̃j ;C2[N, W̃j ]{kj/x}K

for ({Ti}i, {Uj}j) ∈ ({M, Ṽ ′i }i, {N, W̃ ′j}j)?̂ and for locations ({li}i, {kj}j) which are
({si}i, {tj}j)-fresh. By clauses (2d) and (2c) we have∑

i∈I′ pi; si[li → Ti]; Ṽ
′
i , li R(M,N)

∑
j qj ; tj [kj → Uj ]; W̃

′
j , kj

which implies that∑
i∈I′ pi; si[li → Ti]; Ṽi, li;C2[M, Ṽi]{li/x}

Rcce
(M,N)

∑
j qj ; tj [kj → Uj ]; W̃j , kj ;C2[N, W̃j ]{kj/x} .

Then the result follows from the inductive hypothesis on n2.

• case C = if C1 then C2 else C3 and case C = op(C1, ..., Cm).
The result follows from the fact that Rcce

(M,N) satisfies clause (2e) for constants and
then from the inductive hypothesis.

• C = (C1, ..., Cm).
Since the multi-step reduction to W has length strictly greater than one, there is
some z such that 1 ≤ z ≤ m and some i such that Cz[M, Ṽi] contributes to the
multi-step reduction to W. Then we can apply the inductive hypothesis on the
contexts to Cz and derive that:∑

i∈I′ pi; si; Ṽi;Cz[M, Ṽi] Z=⇒n′
∑

i∈I′,k pi,k; si,k; Ṽi, Vi,k

for n′ ≤ n+ 1 implies∑
i∈I′,k pi,k; si,k; Ṽi, Vi,k lift(≥env (Rcce

(M,N)))
∑

j∈J ′,h qj,h; tj,h; W̃j ,Wj,h

= J
∑

j qj ; tj ; W̃j ;Cz[N, W̃j ]K
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i.e.,

(
∑

i∈I′,k pi,k; si,k; Ṽi, Vi,k,
∑

j∈J ′,h qj,h; tj,h; W̃j ,Wj,h) ≤lift≤env {(Yg,Zg)}g ⊆Rcce
(M,N)

with Yg =
∑

i,k∈Ig p
′
i,k; si,k; Ṽi,k, and Zg =

∑
j,h∈Jg q

′
j,h; tj,h; W̃j,h and for every g

there is a context Cg such that for every i, k ∈ Ig and j, h ∈ Jg:

C[M, Ṽi]{Vi,k/Cz[M, Ṽi]} = Cg[M, Ṽi,k]

C[N, W̃j ]{Wj,h/Cz[N, W̃j ]} = Cg[N, W̃j,h]

(where the substitution only concerns the specific instance of Cz[M, Ṽi] in Cz[M, Ṽi]

that occurs as the z-th element of the tuple C[M, Ṽi], and the same for Cz[N, W̃i]).
Finally, we derive the result by applying the inductive hypothesis on the number of
reductions from ∑

i,k∈Ig p
′
i,k; si,k; Ṽi,k;Cg[M, Ṽi,k] .

• C = #z(C
′).

We consider the case when C ′[M, Ṽi] = (Vi,1, ..., Vi,m) is a value for every i and∑
i∈I pi; si; Ṽi; #z(C

′[M, Ṽi]) −→W =
∑

i∈I pi,k; si,k; Ṽi, Vi,a

We have three cases:

– C ′[M, Ṽi] = (Vi,1, ..., Vi,m) ∈ Ṽ ′i .

Then C ′[N, W̃j ] = (Uj,1, ..., Uj,m) ∈ W̃ ′j and we have by clause (2f) on R that∑
i pi; si; Ṽ

′
i , Vi,1, ..., Vi,m lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , Uj,1, ..., Uj,m

Therefore,

(W, J
∑

j qj ; tj ; W̃j ,#z(Uj,1, ..., Uj,m)K)
≤env (

∑
i pi; si; Ṽi, Vi,1, ..., Vi,m,

∑
j qj ; tj ; W̃j , Uj,1, ..., Uj,m) ∈ lift(Rcce

(M,N))

– C ′[M, Ṽi] = (C1[M, Ṽi], ..., Cm[M, Ṽi]).

Then C ′[N, W̃j ] = (C1[N, W̃j ], ..., Cm[N, W̃j ]) and the result directly follows
from the definition of the preorder ≤cce(M,N).

– C ′ = [·]1.
The result follows from clauses (2g) and (2f) for R.

2

Lemma 8.62. Suppose that R(M,N) is a finite-step {l̃}-simulation saturated by approxi-

mants (only defined on formal sums), and that C is a context with locations in {l̃}. The
following relation satisfies the clauses on formal sums for finite-step simulations up-to
lifting and environment:

S= {((C[M ], C[N ]),Y,Z) | Y Rcce
(M,N) Z}
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Proof. We can assume that the relation R(M,N) is closed by {l̃}, i.e., each location l ∈ {l̃}
occurs in corresponding columns in the dynamic environment of the formal sums (formally:
for any Y,Z in the relation and for every l ∈ {l̃} there is an index r, for 1 ≤ r ≤| Y |, such
that both Y�r and Z�r are tuples composed by location l). This assumption simplifies
our proof, while not affecting the results. Indeed, we can eliminate all the pairs that do
not satisfy the requirement of {l̃}-closure and we still have a finite-step {l̃}-simulation
saturated by approximants.

The proof exploits the fact that if R(M,N) is closed by {l̃} then Rcce
(M,N) is closed

by {l̃} and, for any C such that Loc(C) ⊆ {l̃}, if
∑

i pi; si; Ṽi Rcce
(M,N)

∑
j qj ; tj ; W̃j and

({Ti}i, {Uj}j) ∈ ({C[M ], Ṽi}i, {C[N ], W̃j}j)?̂ then ({Ti}i, {Uj}j) ∈ ({M, Ṽi}i, {N, W̃j}j)?̂,
since the locations in {l̃} are guaranteed to occur at corresponding columns in {Ṽi}i and

{W̃j}j and then C can be turned into a location-free context.
The condition (2a) on the weights is immediately satisfied by the definition of Rcce

(M,N),
since R is a simulation.
Then we prove that the conditions from (2b) to (2g) of finite-step simulation up-to lift-
ing and environment are satisfied by S. Suppose that Y =

∑
i pi; si; Ṽi S(C[M ],C[N ])∑

j qj ; tj ; W̃j = Z with Y′ =
∑

i pi; si; Ṽ
′
i ,Z

′ =
∑

j qj ; tj ; W̃
′
j related by R(M,N) and such

that (Y′,Z′) ≤cce(M,N) (Y,Z).

(2b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then

for all ({Ti}i, {Uj}j) ∈ ({C[M ], Ṽi}i, {C[N ], W̃j}j)?̂,
if
∑

i pi; si; Ṽi;Mi{Ti/x} Z=⇒W then

W lift(≥env (S(C[M ],C[N ])))
∑

j qj ; W̃j · J〈tj ; Nj{Uj/x}〉K

Proof. We have three cases:

– if (Ṽi)r = λx.C ′[M, Ṽ ′i ] and (W̃j)r = λx.C ′[N, W̃ ′j ] for some location-free context

C ′ then, since R(M,N) is closed with respect to l̃, there is a location-free context
C ′′ such that ∑

i pi; si; Ṽi;Mi{Ti/x} =
∑

i pi; si; Ṽi;C
′′[M, Ṽi]∑

j qj ; tj ; W̃j ;Nj{Uj/x} =
∑

j qj ; tj ; W̃j ;C
′′[N, W̃j ]

and we derive the result by Lemma 8.61.

– if (Ṽi)r = (Ṽ ′i )r′ and (W̃j)r = (W̃ ′j)r′ for some r′ then, since R(M,N) is closed

with respect to l̃, there is a location-free context C ′′ such that∑
i pi; si; Ṽi;Mi{Ti/x} =

∑
i pi; si; Ṽi;Mi{C

′′[M, Ṽ ′i ]/x}∑
j qj ; tj ; W̃j ;Nj{Uj/x} =

∑
j qj ; tj ; W̃j ;Nj{C

′′[N, W̃ ′j ]/x}

Since R(M,N) is a finite-step simulation,∑
i pi; si; Ṽ

′
i ;Mi{C

′′[M, Ṽ ′i ]/x} Z=⇒W

implies W lift(RM,N ) J
∑

j qj ; tj ; W̃
′
j ;Nj{C

′′[N, W̃ ′j ]/x}K, which in turn implies
the result analogously to Lemma 8.60.
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– if (Ṽi)r = M and (W̃j)r = N then M and N are values and by clause (2g)
applied to R(M,N) we have∑

i pi; si; Ṽ
′
i ,M lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , N

Hence, by clause (2b) applied to R(M,N) we have∑
i pi; si; Ṽ

′
i ,M ;Mi{C

′′[M, Ṽ ′i ]/x} Z=⇒W

implies W lift(R(M,N)) J
∑

j qj ; tj ; W̃
′
j , N ;Nj{Uj/x}K, which in turn implies the

result (see the proof of Lemma 8.60).

2

(2c) for all r, if (Ṽi)r = li and (W̃j)r = kj then

–
∑

i pi; si; Ṽi, si(li) lift(S(C[M ],C[N ]))
∑

j qj ; tj ; W̃j , tj(kj) ,

– for all ({Ti}i, {Uj}j) ∈ ({C[M ], Ṽi}i, {C[N ], W̃j}j)?̂ we have∑
i pi; si[li → Ti]; Ṽi S(C[M ],C[N ])

∑
j qj ; tj [kj → Uj ]; W̃j .

Proof. Since contexts used in ≤cce(M,N) are location-free and R(M,N) is closed with

respect to the locations in l̃ (and thereby the locations in C[M ], C[N ] are in the
dynamic environment of the formal sums inR(M,N) in corresponding columns), there

is an r′ such that (Ṽ ′i )r′ = li and (W̃ ′j)r′ = kj , then:

–
∑

i pi; si; Ṽ
′
i , si(li) lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , tj(kj) and we have∑

i pi; si; Ṽi, si(li)i lift(Rcce
(M,N))

∑
j qj ; tj ; W̃j , tj(kj)j ,

from which the result follows.

– by ({Ti}i, {Uj}j) ∈ ({M, Ṽ ′i }i, {N, W̃ ′j}j)?̂ we derive∑
i pi; si[li → Ti]; Ṽ

′
i R(M,N)

∑
j qj ; tj [kj → Uj ]; W̃

′
j ,

which implies∑
i pi; si[li → Ti]; Ṽi S(C[M ],C[N ])

∑
j qj ; tj [kj → Uj ]; W̃j .

2

(2d) for any ({si}i, {tj}j)-fresh locations ({li}i, {kj}j),
and for all ({Ti}i, {Uj}j) ∈ ({C[M ], Ṽi}i, {C[N ], W̃j}j)?̂,∑

i pi; si[li → Ti]; Ṽi, li S(C[M ],C[N ])

∑
j qj ; tj [kj → Uj ]; W̃j , kj .

Proof. The result follows from ({Ti}i, {Uj}j) ∈ ({M, Ṽ ′i }i, {N, W̃ ′j}j)?̂ as in the pre-
vious clause, by exploiting clause (2d) on R. 2
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(2e) for all r, if (Ṽi)r = ci and (W̃j)r = cj then all constants in the two columns are the
same (i.e., there is ca with ci = cj = ca for all i, j).

Proof. For every r, there are three cases: either Y�r = Y′�r′ and Z�r = Z′�r′ for
some r′, in which case both columns are composed by the same constant, since R
is a finite-step simulation; or the value-context is a constant and Y�r = Z�r = c; or
the constants are respectively M and N , in which case∑

i pi; si; Ṽ
′
i ,M lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , N

(by clause (2g)) and thus they have to be the same constant, otherwise R would not
respect condition (2e). 2

(2f) for all r, if (Ṽi)r = (Vi,1, ..., Vi,n) and (W̃j)r = (Wj,1, ...,Wj,n) then∑
i pi; si; Ṽi, Vi,1, ..., Vi,n lift(S(C[M ],C[N ]))

∑
j qj ; tj ; W̃j ,Wj,1, ...,Wj,n .

Proof. If Y�r = Y′�r′ and Z�r = Z′�r′ for some r′ then it follows from the definition
of R that∑

i pi; si; Ṽi, Vi,1, ..., Vi,n lift(S(C[M ],C[N ]))
∑

j qj ; tj ; W̃j ,Wj,1, ...,Wj,n.

Otherwise, for 1 ≤ h ≤ n we have that ({Vi,h}i, {Uj,h}j) ∈ ({M, Ṽ ′i }i, {N, W̃ ′j}j)?̂,
which implies that

(Y′,Z′) ≤cce(M,N) (
∑

i pi; si; Ṽi, Vi,1, ..., Vi,n,
∑

j qj ; tj ; W̃j ,Wj,1, ...,Wj,n),

i.e., the formal sums are in relation lift(S(C[M ],C[N ])) .

Finally, if (Ṽi)r = M and (W̃j)r = N then the clause follows as in the previous cases

from
∑

i pi; si; Ṽ
′
i ,M lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , N , by clause (2g). 2

(2g)
∑

i pi; Ṽi · J〈si ; C[M ]〉K lift(S(C[M ],C[N ]))
∑

j qj ; W̃j · J〈tj ; C[N ]〉K .

Proof. Since R(M,N) is closed with respect to l̃, there is a location-free context C ′

such that
Y;C[M ] = Y;C ′[M,Y]
Z;C[N ] = Z;C ′[N,Z]

and the result follows from Lemma 8.61. 2

2

We can now derive from Lemma 8.62 the congruence result. Let C be a context such
that Loc(C) ⊆ {l̃}. Let R be a finite-step {l̃}-simulation such that 〈s ; M〉 R 〈t ; N〉.
Then the relation

{(〈s ; C[M ]〉, 〈t ; C[N ]〉)} ∪ {((C[M ], C[N ]),Y,Z) | Y Rcce
(M,N) Y}

is a finite step simulation up-to lifting and environment, since:
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• clause (1) on terms follows since Loc(C) ⊆ {l̃} and by clause (1) for R we have that
(1; s; l̃, 1; t; l̃) ∈ R(M,N) ⊆Rcce

(M,N);

• the clauses for formal sums follow by Lemma 8.62.

Proof of Theorem 8.52
Let l̃′ = l̃, l̃′′ and let Ṽ ′ = Ṽ , Ṽ ′′ be a sequence of values whose types are consistent

with those of l̃′ and with locations in {l̃′}. Let C be a context with locations in {l̃′} and let
R be a finite-step {l̃}-simulation (saturated by approximants) relating 〈s ; M〉 and 〈t ; N〉.
Then 1; s; l̃ R(M,N) 1; t; l̃ and by repeatedly applying clause (2d) we derive that

1; s[l̃′′ → W̃ ]; l̃′ R(M,N) 1; t[l̃′′ → W̃ ]; l̃′

for a consistent sequence of values W̃ . (Note that we cannot guarantee by just using
clause (2d) that the tuple of values Ṽ ′′ is assigned to l̃′′, since locations in l̃′′ might occur
in any value in Ṽ ′′. Hence, we first have to put all the locations in {l̃′′} in the dynamic
environment.) Then by repeatedly applying clause (2c) we derive

1; s[l̃′′ → Ṽ ′′]; l̃′ R(M,N) 1; t[l̃′′ → Ṽ ′′]; l̃′ .

It is easy to see that if we restrict R(M,N) to those pairs of formal sums whose dynamic

environments begin with the sequence l̃′ of locations then the clauses of finite-step {l̃′}-
simulation are satisfied. Let R′(M,N) be such a restriction of R(M,N). Then we can apply

Lemma 8.62 (see the proof of Theorem 8.51) and derive that relation

S= {((C[M ], C[N ]),Y,Z) | Y R′cce(M,N) Z}

is a finite-step {l̃′}-simulation (up-to lifting and environment). Since

(1; s[l̃′′ → Ṽ ′′]; l̃′, 1; t[l̃′′ → Ṽ ′′]; l̃′) ∈ R′(M,N) ⊆ R
′cce
(M,N) =S(C[M ],C[N ])

we conclude 〈s[l̃′′ → Ṽ ′′] ; C[M ]〉.{l̃
′}

fin 〈t[l̃
′′ → Ṽ ′′] ; C[N ]〉.

Finally, by repeatedly applying clause (2c) to locations l̃ in the pair

1; s[l̃′′ → Ṽ ′′]; l̃′ S(C[M ],C[N ]) 1; t[l̃′′ → Ṽ ′′]; l̃′

we derive
1; l̃′ = Ṽ ′; l̃′ S(C[M ],C[N ]) 1; l̃′ = Ṽ ′; l̃′

which in turn implies 〈l̃′ = Ṽ ′ ; C[M ]〉.{l̃
′}

fin 〈l̃
′ = Ṽ ′ ; C[N ]〉.

Proof of Theorem 8.54
We prove that the relation

R = {(〈l̃ = Ṽ ; M〉, 〈l̃ = Ṽ ; N〉) | M ≤ctx N ∧ {l̃} = Loc(M) ∪ Loc(N)}∪
{((M,N),

∑
i pi; si;V

i
1 , ..., V

i
n ,
∑

j qj ; tj ;W
j
1 , ...,W

j
n) | M ≤ctx N

∧ ∃C, Ṽ such that (J〈l̃ = Ṽ ; C[M ]〉K =
∑

i pi; si;λx.xV
i

1 ...V
i
n

∧ J〈l̃ = Ṽ ; C[N ]〉K =
∑

j qj ; tj ;λx.xW
j
1 ...W

j
n

with Loc(C) ⊆ {l̃} = Loc(M) ∪ Loc(N)
∧ they are first-order consistent)}



8.5 Proofs 169

satisfies the clauses of {l̃}-simulation. Let l̃ = l1, ....ln = Loc(M) ∪ Loc(N) and 〈l̃ =
Ṽ ; M〉 R 〈l̃ = Ṽ ; N〉. Hence, M ≤ctx N and clause (1) holds since, using context
C = λx.xl1...ln (with no holes) we derive from M ≤ctx N that 1; l̃ = Ṽ ; l1, ..., ln R(M,N)

1; l̃ = Ṽ ; l1, ..., ln.
To prove that R satisfies the clauses of simulation for formal sums, we first show the

following lemma.

Lemma 8.63. If Y R(M,N) Z then for any C with Loc(C) ⊆ Loc(M) ∪ Loc(N):

• If JY;C[M,Y]K and JZ;C[N,Z]K are first-order consistent then

JY;C[M,Y]K R(M,N) JZ;C[N,Z]K ;

• If JY;C[M,Y]K and JZ;C[N,Z]K are not first-order consistent then

JY;C[M,Y]K lift(R(M,N)) JZ;C[N,Z]K .

Proof. If Y =
∑

i pi; si;V
i

1 , ..., V
i
n R(M,N)

∑
j qj ; tj ;W

j
1 , ...,W

j
n = Z then they are first-

order consistent environment formal sums and there are C, s such that J〈s ; C[M ]〉K =∑
i pi; si;λx.xV

i
1 ...V

i
n and J〈s ; C[N ]〉K =

∑
j qj ; tj ;λx.xW

j
1 ...W

j
n and Loc(C) ⊆ {l̃} =

Loc(M) ∪ Loc(N).
Let C ′ be any context with Loc(C) ⊆ {l̃} = Loc(M) ∪ Loc(N) and let

PM,C′ = λx1, ..., xn.(λz, x.xx1...xnz)C
′[M,x1, ..., xn]

and PN,C′ the same term with M substituted to N . It follows from M ≤ctx N that
C[M ]PM,C′ ≤ctx C[N ]PN,C′ .

We have that:

J〈s ; C[M ]PM,C′〉K = JJ〈s ; C[M ]〉KPM,C′K
= J
∑

i pi; si; (PM,C′V
i

1 ...V
i
n)K

= J
∑

i pi; si; (λz, x.xV i
1 ...V

i
nz)C

′[M,V i
1 , ..., V

i
n]K

=
∑

i,k pi,k; si,k; (λz, x.xV i
1 ...V

i
nVi,k)

for J
∑

i pi; si;C
′[M,V i

1 , ..., V
i
n]K =

∑
i,k pi,k; si,k;Vi,k and analogously for N :

J〈s ; C[N ]PN,C′〉K =
∑

j,h qj,h; tj,h;λx.xW j
1 ...W

j
nWj,h

for J
∑

j qj ; tj ;C
′[N,W j

1 , ...,W
j
n]K =

∑
j,k qj,h; tj,h;Wj,h.

If J
∑

i pi; si;C
′[M,V i

1 , ..., V
i
n]K and J

∑
j qj ; tj ;C

′[N,W j
1 , ...,W

j
n]K are first order consistent,

then we can conclude, by the definition of R , that∑
i pi;V

i
1 , ..., V

i
n · J〈si ; C ′[M,V i

1 , ..., V
i
n]〉K

R(M,N)

∑
j qj ;W

j
1 , ...,W

j
n · J〈tj ; C ′[N,W j

1 , ...,W
j
n]〉K

If J
∑

i pi; si;C
′[M,V i

1 , ..., V
i
n]K and J

∑
j qj ; tj ;C

′[N,W j
1 , ...,W

j
n]K are not first order consis-

tent, which means that the dynamic environment is composed of different constants, then
for any constant c we can use the term

PM,C′,c = λx1, ..., xn.(λz, x.xx1...xnz) if C ′[M,x1, ..., xn] = c then c else Ω
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to derive, analogously as above, that∑
{i,k|Vi,k=c} pi,k; si,k;V

i
1 , ..., V

i
n, Vi,k R(M,N)

∑
{j,h|Wj,h=c} qj,h; tj,h;W j

1 , ...,W
j
n,Wj,h

and thus

Y;C[M,Y] =
∑

c

∑
{i,k|Vi,k=c} pi,k; si,k;V

i
1 , ..., V

i
n, Vi,k

lift(R(M,N))∑
c

∑
{j,h|Wj,h=c} qj,h; tj,h;W j

1 , ...,W
j
n,Wj,h = Z;C[N,Z]

2

Let Y =
∑

i pi; si;V
i

1 , ..., V
i
n R(M,N)

∑
j qj ; tj ;W

j
1 , ...,W

j
n) = Z be first-order consistent

environment formal sums and let C, s be such that J〈s ; C[M ]〉K =
∑

i pi; si;λx.xV
i

1 ...V
i
n

and J〈s ; C[N ]〉K =
∑

j qj ; tj ;λx.xW
j
1 ...W

j
n. We can now prove that R satisfies the simu-

lation clauses on formal sums.

(2a) It follows from the definition of ≤ctx that M ≤ctx N implies C[M ] ≤ctx C[N ], which
implies weight(Y) = weight(J〈s ; C[M ]〉K) ≤ weight(J〈s ; C[N ]〉K) = weight(Z).

(2b) Let V i
r = λx.Mi and W j

r = λx.Nj . The result follows from Lemma 8.63, using
context C = [·]r+1C

′, for any value context C ′.

(2c) Let V i
r = li and W j

r = kj . The result follows from Lemma 8.63, respectively using
contexts C1 = ![·]r+1 and C2 = [·]r+1 := C ′, for any value context C ′. In the latter
case, since the formal sums are first-order consistent we can use directly relation
R(M,N), without the lifting construction (by the first item of Lemma 8.63).

(2d) The result follows from the first item of Lemma 8.63, using context C = (ν x:=C1)C2,
for C1 a value context and C2 a context with free variable x.

(2e) The result directly follows from the definition of R.

(2f) For all r, if V i
r = (Vi,1, ..., Vi,n) and W j

r = (Wj,1, ...,Wj,n) then the result follows by
iteratively applying Lemma 8.63, using contexts C1 = #1([·]r+1),..., Cn = #n([·]r+1).

(2g) The result follows from Lemma 8.63, using context C = [·]1.
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Conclusions

9.1 Additional related works

We discuss here some additional works on probabilistic calculi based on different notions
of bisimulations (with respect to applicative or environmental) or different techniques for
proving contextual equivalence.

In [DLSA14] and [CD14] probabilistic applicative bisimulations for pure call-by-name
and call-by-value λ-calculi are shown to be congruences. Completeness however only holds
in call-by-value, while it fails in call-by-name. In call-by-name, completeness is obtained
using coupled logical bisimulation, a probabilistic version of the logical bisimilarity for de-
terministic languages [SKS07]. While applicative bisimulation requires two functions to
be related whenever they take as input the same argument, logical bisimulation requires
two functions to be related whenever they take as input terms in the contextual closure
of the relation itself. Since the contextual closure of a relation includes identity, the set
of terms with which related functions are tested is enlarged with respect to applicative
bisimilarity. This makes the congruence proof easier by allowing a direct use of the induc-
tive hypothesis, thereby removing the need for Howe’s technique. Drawbacks of all forms
of logical bisimilarity are a non-monotone functional (which makes it harder to prove that
bisimilarity is the largest bisimulation) and a confinement to pure λ-calculi. Further, up-
to techniques may be difficult in logical bisimilarity. For instance, Example 8.25 cannot
be proved with the techniques in [DLSA14]: the equality fails for applicative bisimilarity,
and the up-to context technique provided for logical bisimilarity is not powerful enough
(the paper shows a similar example, akin to Example 8.5, where however the functions
employed immediately throw away their input, and this is essential for the proof).

An alternative bisimulation for enriched calculi is normal form (or open) bisimulation
[San94; SL07; LL07; JPR09]. This is complete (with respect to contextual equivalence)
only in certain extensions of the λ-calculus (e.g., call-by-value with both state and callcc),
and would be incomplete in other languages (such as λ-calculus without state or/and
callcc, and languages with constants or types).

Another approach to contextual equivalence in higher-order languages is via logical
relations (see, e.g., [Mit96, Chapter 8] and [Pit05]). This technique has been applied to
probabilistic typed higher-order languages by Bizjak and Birkedal [BB15]. Their prob-
abilistic logical relation uses biorthogonality, and is defined on terms, rather than on
distributions. These features introduce some universal quantification (e.g., on evaluation

171
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contexts) which makes it difficult to prove examples such as 8.43, as discussed in [Biz16,
Section 1.5]. Proof techniques combining features of bisimulations and logical relations in
the non-probabilistic case are studied in [HDNV12; Nei+15; JT15].

In denotational semantics, fully abstract models for probabilistic PCF have been stud-
ied in [GL15] using domain theory and adding statistical termination testers, and in
[ETP14] using probabilistic coherence spaces. [DH02] provides a fully abstract game se-
mantics for probabilistic Algol, using a quotienting step.

Finally, in this work we have only considered exact behavioral equivalences, as op-
posed to approximate behavioral equivalences (allowing the programs to differ up to a
certain probability value p) or metrics (measuring the distance between the behaviors of
probabilistic programs) [DLT08; DJGP02]. Bisimulation metrics for an affine probabilistic
pure λ-calculus have been recently proposed in [CD15]. Applicative bisimulation metric is
proved to be sound with respect to the contextual distance, and a metric for an extensions
of the language with tuples is defined. In order to be sound with respect to the contextual
metric, the tuple distance is endowed with a notion of environment.

9.2 Conclusions and future work

In probabilistic λ-calculi, even in cases where applicative bisimilarity is fully abstract for
contextual equivalence, the corresponding simulation may not be fully abstract for the
contextual preorder. Pure call-by-value is such an example. We have seen in Chapter
7 that extending the probabilistic call-by-value λ-calculus with a parallel disjunction op-
erator allows us to recover full abstraction with respect to the contextual preorder. The
soundness proof is carried out throught Howe’s technique enriched with non-trivial ‘dis-
entangling’ properties for sets of real numbers; the completeness proof is based on the
encoding of “logical” tests characterizing probabilistic simulation on RPLTSs.

In Chapter 8 we have studied fully abstract environmental bisimulations for proba-
bilistic pure call-by-name and call-by-value λ-calculi, and for a probabilistic λ-calculus
with higher-order, local references. In all the considered calculi, full abstraction for envi-
ronmental bisimilarity carries over to the corresponding simulation, with a similar proof.
This shows a further difference between applicative and environmental (bi)simulations in
the probabilistic setting.

While we have tried to respect the general schema of environmental bisimulations, our
definitions and results present noticeable technical differences. Some differences, such as
the appeal to formal sums, are specific to probabilities. Other differences, however, may
be seen as insights into environmental bisimulations that were suggested by the study of
probabilities. An example is the distinction between a static and a dynamic environment,
which reflects the copying facilities of the language on the terms of the environment. This
distinction yields sharper congruence results, which show up well in the imperative λ-
calculus: with ordinary environmental bisimulations, bisimilarity is fully substitutive only
for values, since for general terms substitutivity holds only for evaluation contexts (see
Example 8.42).12 The example in Section 8.2.4 shows that static environments can also
be useful in context closures of ‘up-to context’ techniques.

12As a consequence, in ordinary bisimulation, we can prove that terms M and N are contextually
equivalent by showing that λ.M and λ.N are bisimilar [SKS11].
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To understand environmental bisimulations for call-by-value calculi, we have found
important the study of the imperative extension. Only in the richer language do vari-
ous aspects of our definitions find a justification: the use of formal sums (Example 8.43);
dynamic environments as formal sums of tuples of values, as opposite to, e.g., tuples of for-
mal sums (Example 8.44); the lifting construct to handle first-order values (Example 8.45).
The pure call-by-value calculus has allowed us to present the concepts in a simpler set-
ting, as a stepping stone towards the imperative extension, but seems a rather peculiar
language, one in which a number of variations of the definitions collapse.

The dynamic environments are used only for the call-by-value calculi. In general, the
form of the bisimulation clauses depends on the features of the calculus. It would be
interesting to investigate an abstract formulation of bisimulation, of which the concrete
definitions presented in Chapter 8 would be instances. Possible bases for such a framework
could be coalgebras [RJ12] or bigraphs [Mil06].

Related to the problems with congruence of applicative bisimulations are also the
difficulties with “up-to context” techniques (the usefulness of these techniques in higher-
order languages and its problems with applicative bisimulations have been studied by
Lassen [Las98]; see also [San97; KW06b; PS12b]). Enhancements of the bisimulation
proof method, as up-to techniques, are particularly useful for environmental bisimulations
[SKS11] because of the quantification over contexts that appear in the definition and that
can make bisimulation proofs tedious. We have explored some basic enhancements, mainly
in call-by-name, including new forms of up-to techniques specific to probabilities such as
‘up-to lifting’. The study of powerful enhancements goes beyond the scopes of this work.
It could be pursued in a number of directions, for instance investigating other forms of
up-to and strengthening the ‘up-to context’ enhancements.

Another interesting direction for future work is the addition of concurrency. A major
consequence of this could be the move to semantics that combine probabilities with non-
determinism.
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