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Propofol is a chemical agent commonly used as an intravenous general anesthetic. At the cellular
level, this short-acting ananesthetic positively modulates GABAergic inhibitory activity by targeting
GABA-A receptors [1]. This type of receptors are widespread in the brain and can be present both
within synaptic clefts, as well as on extrasynaptic locations along the dendrites and neuron membrane
where they are responsible for tonic inhibition. At the macroscopic level of SEEG (deep Stereographic-
Electro Encephalogram) or EEG (Electro Encephalogram) recordings, one observes, with certain doses
of propofol, a paradoxical excitation phenomenon [2] the generation mechanisms of which are not
clearly understood. In this study, we suggest a potential mechanism for the appearance of paradoxical
excitation occurring under propofol-induced general anaesthesia.

We show, with a model network of Hodgkin-Huxley neurons, that tonic inhibition – induced by the
binding of propofol to extra-synaptic receptors – together with an increase of the synaptic time constant
within an certain range [3] can account for the phenomenon of paradoxical excitation. However,
changes in the gain (or conductance) of the synaptic inhibition do not correspond to a sudden increase
in neuronal population firing rate nor synchrony as described in the experiments [3]. The action of
propofol on extrasynaptic GABAergic receptors was modelled by varying the conductance gton of a
tonic current in the form Iton = gton(V −Eton) as described in [4]. Figure 1 shows the evolution of the
neuronal population firing rate and the coherence (or synchrony) of the network activity as the tonic
inhibition and the synaptic conductance vary. The plots are given for different values of the synaptic
time constants. The increase of these three variables, synaptic time constant and conductance, and
tonic conductance reflect an increase in propofol doses.
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(a) Network frequency for
τi = 10ms.
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(b) Network synchronisation for
τi = 10ms.
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(c) Network frequency for
τi = 14ms.
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(d) Network synchronisation for
τi = 14ms.
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(e) Network frequency for
τi = 30ms.
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(f) Network synchronisation for
τi = 30ms.
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Figure 1: Propofol-enhanced tonic inhibition allows for tighter network synchronisation, regardless of the presence
of stronger inhibitory synapses. In all the plots, the x axis represents the tonic conductance (gton) and the y axis
represents the inhibitory synaptic weight (wi). (A) Given τi = 10ms, the network frequency decelerates as tonic
inhibition strengthens until a critical value at which it accelerates. (B) This acceleration is due to an abrupt increase
in network synchronisation at gton ≥ 15nS for all values of wi. (C) A longer synaptic time constant (τi = 14ms)
shifts the network frequency bump towards lower values of gton. (D) Similarly, the network synchronisation bump shifts
towards lower values of gton. (E) Extending the synaptic time constant (τi = 30ms) causes the bump-like pattern of
the network frequency to disappear in favour of a linearly decelerating trend. (F) Similarly, the bump-like pattern of
the network synchronisation disappears in favour of a linearly decelerating trend. The network was stimulated with a
constant current Istim = 0.4nA.
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Pharmacology (J. Schüttler and H. Schwilden, eds.), pp. 227–252, Springer Verlag, 2008.

[2] E. N. Brown, P. L. Purdon, and C. J. Van Dort, “General Anesthesia and Altered States of Arousal:
A Systems Neuroscience Analysis,” Annual review of neuroscience, vol. 34, no. 1, pp. 601–628, 2011.

[3] S. J. McDougall, T. W. Bailey, D. Mendelowitz, and M. C. Andresen, “Propofol enhances both
tonic and phasic inhibitory currents in second-order neurons of the solitary tract nucleus (NTS),”
Neuropharmacology, vol. 54, no. 3, pp. 552–563, 2008.

[4] A. Hutt and L. Buhry, “Study of GABAergic extra-synaptic tonic inhibition in single neurons
and neural populations by traversing neural scales: application to propofol-induced anaesthesia.,”
Journal of computational neuroscience, vol. 37, pp. 417–37, dec 2014.

3


