
Equations, contractions, and unique solutions∗

Davide Sangiorgi

University of Bologna and INRIA

January 2017

Abstract

One of the most studied behavioural equivalences is bisimilarity. Its
success is much due to the associated bisimulation proof method, which
can be further enhanced by means of ‘bisimulation up-to’ techniques such
as ‘up-to context’.

A different proof method is discussed, based on unique solution of
special forms of inequations called contractions, and inspired by Milner’s
theorem on unique solution of equations. The method is as powerful as
the bisimulation proof method and its ‘up-to context’ enhancements. The
definition of contraction can be transferred onto other behavioural equiv-
alences, possibly contextual and non-coinductive. This enables a coinduc-
tive reasoning style on such equivalences, either by applying the method
based on unique solution of contractions, or by injecting appropriate con-
traction preorders into the bisimulation game.

The techniques are illustrated on CCS-like languages; an example deal-
ing with higher-order languages is also shown.

1 Introduction

Bisimilarity is employed to define behavioural equivalences and reason about
them. Originated in concurrency theory, bisimilarity is now widely used also in
other areas, as well as outside Computer Science.

In this paper, behavioural equivalences, hence also bisimilarity, are meant
to be weak because they abstract from internal moves of terms, as opposed to
the strong ones, which make no distinctions between the internal moves and the
external ones (i.e., the interactions with the environment). Weak equivalences
are, practically, the most relevant ones: e.g., two equal programs may produce
the same result with different numbers of evaluation steps.

In proofs of bisimilarity results, the bisimulation proof method has become
predominant, particularly with the enhancements of the method provided by the
so called ‘up-to techniques’ [32]. Among these, one of the most powerful ones
is ‘up-to expansion and context’, whereby the derivatives of two terms can be
rewritten using expansion and bisimilarity and then a common context can be
erased. Forms of ‘bisimulations up-to context’ have been shown to be effective

∗This is a revised and extended version of a paper presented at the POPL’15 conference,
Mumbai, India.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132785768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in various fields, including process calculi [32, 41, 30], λ-calculi [22, 21, 19, 42],
and automata [8, 37].

The landmark document for bisimilarity is Milner’s CCS book [24]. In the
book, Milner carefully explains that the bisimulation proof method is not sup-
posed to be the only method for reasoning about bisimilarity. Indeed, various
interesting examples in the book are handled using other techniques, notably
unique solution of equations, whereby two tuples of processes are component-
wise bisimilar if they are solutions of the same system of equations. (Further
techniques exposed in the book include techniques based on axioms and laws,
and on modal logic characterisations.) This method is important in verification
techniques and tools based on algebraic reasoning [35, 36, 3].

Milner’s theorem that guarantees unique solutions [24] has however limita-
tions: the equations must be ‘guarded and sequential’, that is, the variables of
the equations may only be used underneath a visible prefix and preceded, in the
syntax tree, only by the sum and prefix operators. This limits the expressive-
ness of the technique (since occurrences of other operators above the variables,
such as parallel composition and restriction, in general cannot be removed),
and its transport onto other languages (e.g., languages for distributed systems
or higher-order languages, which usually do not include the sum operator).

In this paper we propose a refinement of Milner’s technique in which equa-
tions are replaced by special inequations called contractions. Intuitively, for a
behavioural equivalence �, its contraction �� is a preorder in which P �� Q
holds if P � Q and, in addition, Q has the possibility of being as efficient as
P . That is, Q is capable of simulating P by performing less internal work.
It is sufficient that Q has one ‘efficient’ path; Q could also have other paths,
that are slower than any path in P . Uniqueness of the solution of a system of
contractions is defined as with systems of equations: any two solutions must be
equivalent with respect to �. The difference with equations is in the meaning
of solution: in the case of contractions the solution is evaluated with respect to
the preorder ��, rather than the equivalence �.

If a system of equations has a unique solution, then the corresponding system
of contractions, obtained by replacing the equation symbol with the contraction
symbol, has a unique solution too. The converse however is false: it may be
that only the system of contractions has a unique solution. More important,
the condition that guarantees a unique solution in Milner’s theorem about equa-
tions can be relaxed: ‘sequentiality’ is not required, and ‘guardedness’ can be
replaced by ‘weak guardedness’, that is, the variables of the contractions can be
underneath any prefix, including a prefix representing internal work. (This is
the same constraint in Milner’s ‘unique solution of equations’ theorem for strong
bisimilarity; the constraint is unsound for equations on weak bisimilarity.)

We show that Milner’s theorem is not complete for pure equations (equa-
tions in which recursion is only expressible through the variables of the equa-
tions, without using the recursion construct of the process language): there are
bisimilar processes that cannot be solutions to the same system of guarded and
sequential pure equations. In contrast, completeness holds for weakly-guarded
pure contractions. The contraction technique is also computationally complete:
any bisimulation R can be transformed into an equivalent system of weakly-
guarded contractions that has the same size of R (where the size of a relation is
the number of its pairs, and the size of a system of contractions is the number
of its contractions). An analogous result also holds with respect to bisimula-

2

tion enhancements such as ‘bisimulation up-to expansion and context’. The
contraction technique is in fact computationally equivalent to the ‘bisimulation
up-to contraction and context’ technique — a refinement of ‘bisimulation up-to
expansion and context’.

The contraction technique can be generalised to languages whose syntax is
the term algebra derived from some signature, and whose semantics is given as
an LTS. In this generalisation the weak-guardedness condition for contractions
becomes a requirement of autonomy, essentially saying that the processes that
replace the variables of a contraction do not contribute to the initial action
of the resulting expression. The technique can also be transported onto other
equivalences, including contextually-defined equivalences such as barbed con-
gruence, and non-coinductive equivalences such as contextual equivalence (i.e.,
may testing) and trace equivalence [27, 11, 12]. For each equivalence, one defines
its contraction preorder by controlling the amount of internal work performed.

Finally, we show that a contraction preorder can be injected into the bisim-
ulation game. That is, given an equivalence � and its contraction preorder ��,
we can define the technique of ‘bisimulation up-to �� and context’ whereby,
in the bisimulation game, the derivatives of the two processes can be manipu-
lated with �� and � (similarly to the manipulations that are possible in the
standard ‘bisimulation up-to expansion and context’ using the expansion rela-
tion and bisimilarity) and a common context can then be erased. The resulting
‘bisimulation up-to �� and context’ is sound for �. This technique allows us
to derive results for � using the (enhanced) bisimulation proof method.

The contraction technique cannot however be transported onto all (weak)
behavioural equivalences. For instance, it does not work in the setting of infini-
tary trace equivalence (whereby two processes are equal if they have the same
finite and infinite traces)[13, 12], and must testing [11]. A discussion on this
point is deferred to the concluding section.

We conclude the paper with an example of application of contractions to a
higher-order language, which exploits the autonomy condition.

Structure of the paper All background material is reported in Section 2.
Contractions and their properties are introduced in Section 3, for bisimilar-
ity and the CCS language. The extension to languages defined from a generic
signature is presented in Section 4. The transport of contractions onto other
behavioural equivalences is discussed in Sections 5 (barbed congruence), 6 (con-
textual equivalence), 7 (trace equivalence), and 8 (non-applicability to certain
equivalences). The injection of contractions into the bisimulation game is de-
scribed in Section 9. The example with higher-order languages is reported in
Section 10.

2 Background

2.1 CCS

We assume an infinite set of names a, b, . . . and a set of constant identifiers (or
simply constants) for writing recursive processes. The special symbol τ does
not occur in the names and in the constants. The class of the CCS processes is
built from the operators of parallel composition, guarded sum, restriction, and

3

Σi∈Iµi.Pi
µi−−→ Pi

P
µ−→ P ′

P | Q µ−→ P ′ | Q
P

a−→ P ′ Q
a−→ Q′

P | Q τ−→ P ′ | Q′
P

µ−→ P ′

νa P
µ−→ νa P ′

µ 6= a, a
P

µ−→ P ′

K
µ−→ P ′

if K
4
= P

Figure 1: The LTS for CCS

constants, and the guard of a sum can be an input, an output, or a silent prefix:

P := P1 | P2 | Σi∈Iµi.Pi | νa P | K

µ := a | a | τ

where I is a countable indexing set. Sums are guarded so to ensure that be-
havioural equivalences and preorders are substitutive. We write 0 when I is
empty, and P + Q for binary sums, with the understanding that, to fit the
above grammar, P and Q should be sums of prefixed terms. Each constant K

that appears in a process should have a process definition, of the form K
4
= P .

We sometimes omit trailing 0, e.g., writing a | b for a. 0 | b. 0 . We write µn.P
for P preceded by n µ-prefixes. In a few examples we write !µ.P as abbreviation

for the constant Kµ.P
4
= µ. (P | Kµ.P).

The operational semantics is given by means of an LTS, and is reported in
Figure 1 (the symmetric version of the two rules for parallel composition has
been omitted). The immediate derivatives of a process P are the elements of

the set {P ′ | P µ−→ P ′ for some µ }. We use ` to range over visible actions
(i.e., inputs or outputs, excluding τ).

Some standard notations for transitions: =⇒ is the reflexive and transitive
closure of

τ−→, and
µ

=⇒ is =⇒ µ−→=⇒ (the composition of the three relations).

Moreover, P
µ̂−→ P ′ holds if P

µ−→ P ′ or (µ = τ and P = P ′); similarly P
µ̂

=⇒ P ′

holds if P
µ

=⇒ P ′ or (µ = τ and P = P ′). We write P (
µ−→)nP ′ if P can become

P ′ after performing n µ-transitions. Finally, P
µ−→ holds if there is P ′ with

P
µ−→ P ′, and similarly for other forms of transitions.

Further notations Letters R,S range over relations. We use infix notation
for relations, e.g., P R Q means that (P,Q) ∈ R. We use a tilde to denote
a tuple, with countably many elements; thus the tuple may also be infinite.
All notations are extended to tuples componentwise; e.g., P̃ R Q̃ means that
Pi R Qi, for each component i of the tuples P̃ and Q̃. And C[P̃] is the process
obtained by replacing each hole [·]i of the context C with Pi. We write Rc for
the closure of a relation under contexts. Thus P Rc Q means that there are
a context C and tuples P̃ , Q̃ with P = C[P̃], Q = C[Q̃] and P̃ R Q̃. We use

symbol
def
= for abbreviations. For instance, P

def
= G, where G is some expression,

means that P stands for the expression G (in contrast, symbol
4
= is used for

the definition of constants, whereas = is used for syntactic equality and for
equations). If ≤ is a preorder, then ≥ is its inverse (and conversely).

4

2.2 Bisimilarity and expansion

We focus on weak behavioural equivalences, which abstract from the number of
internal steps performed by equivalent processes.

Definition 2.1 (bisimilarity) A process relation R is a bisimulation if, when-
ever P R Q, we have:

1. P
µ−→ P ′ implies that there is Q′ such that Q

µ̂
=⇒ Q′ and P ′ R Q′;

2. the converse of (1) on the actions from Q.

P and Q are bisimilar, written P ≈ Q, if P R Q for some bisimulation R. 2

We sometimes call bisimilarity weak bisimilarity, to distinguish it from strong
bisimilarity, ∼, obtained by replacing in the above definition the weak answer

Q
µ̂

=⇒ Q′ with the strong Q
µ−→ Q′. Other behavioural equivalences, possibly

non-coinductive, will be introduced in later sections.
The bisimulation proof method can be enhanced by means of up-to tech-

niques. One of the most useful auxiliary relations in up-to techniques is the
expansion relation �e [40]. This is an asymmetric version of ≈ where P �e Q
means that P ≈ Q, but also that Q achieves the same as P with no more work,
i.e. with no more τ actions. Intuitively, if P �e Q, we can think of Q as being
at least as fast as P or, more generally, we can think that P uses at least as
many resources as Q.

Definition 2.2 (expansion) A process relationR is an expansion if, whenever
P R Q,

1. P
µ−→ P ′ implies that there is Q′ with Q

µ̂−→ Q′ and P ′ R Q′;

2. Q
µ−→ Q′ implies that there is P ′ with P

µ
=⇒ P ′ and P ′ R Q′.

P expands Q, written P �e Q, if P R Q, for some expansion R. 2

Relation �e is studied — using a different terminology — by Arun-Kumar
and Hennessy [2]: they show that �e is a mathematically tractable preorder
and has a complete proof system for finite terms based on a modification of the
standard τ laws for CCS. In CCS, strong and weak bisimilarity are congruence
relations, and expansion is a precongruence. It holds that ∼⊆�e and �e ⊆≈;
moreover each inclusion is strict. The inclusions are obvious. For the strictness,
we have that P 6∼ τ .P , P �e τ .P , and τ .P 6�e P , τ .P ≈ P .

A powerful up-to technique is ‘bisimulation up-to �e and context’. It com-
bines ‘up-to expansion’ (the possibility of rewriting the derivatives of two related
processes using �e and ≈), with ‘up-to context’ (the possibility of removing a
common context from the derivatives). We recall that Rc is the context closure
of R.

Definition 2.3 (bisimulation up-to �e and context) A process relationR
is a bisimulation up-to �e and context if, whenever P R Q, we have:

1. P
µ−→ P ′ implies that there is Q′ with Q

µ̂
=⇒ Q′ and P ′ �e Rc ≈ Q′;

5

2. the converse of (1) on the actions from Q. 2

The occurrence of �e on the left of Rc cannot be replaced by ≈, as this
would break the soundness of the technique [32]. The technique is sound [38]:

Lemma 2.4 (soundness of bisimulation up-to �e and context) IfR is a
bisimulation up-to �e and context, then R ⊆ ≈. 2

2.3 An example

In examples in the paper, we sometimes use a version of CCS with value passing;
this could be translated into pure CCS [24], but having explicit value passing
improves readability. In a value-passing calculus, a(x).P is an input at a in
which x is the placeholder for the value received, whereas a〈n〉.P is an output
at a of the value n; and A〈n〉 is a parametrised constant. The following exam-
ple illustrates ‘bisimulation up-to �e and context’, and will then be used for
comparison with other techniques.

We wish to implement a server that, when interrogated by clients at a chan-
nel c, starts a certain interaction protocol with the client, after consulting an
auxiliary server A at a. Here the auxiliary server A is deterministic: at every
cycle it outputs an integer value, which changes with the cycle (this change is
represented by the successor function, for simplicity).

We consider two implementations of the server. The difference between them
is that the first server, L, is ‘lazy’, and consults A only after a request from a
client has been received. In contrast, the other server, E, is ‘eager’, and consults
A beforehand, so then to be ready in answering a client:

L
4
= c(z). a(x). (L | R〈c, x, z〉)

E
4
= a(x). c(z). (E | R〈c, x, z〉)

A〈n〉 4
= a〈n〉.A〈n+ 1〉

Here R〈c, x, z〉 represents the interaction protocol that is started with a client,
and can be any process. It may use the values x and z (obtained from the client
and the auxiliary server A); the interactions produced may indeed depend on
the values x and z. Process R〈c, x, z〉 may also use channel c, and therefore
trigger further interactions with the server; in contrast, R〈c, x, z〉 may not use
a (i.e., it may not interrogate the auxiliary server).

We use the ‘bisimulation up-to expansion and context’ technique to prove
that the composition of the two servers with A yields bisimilar lazy and eager
systems:

LS〈n〉 def
= νa (A〈n〉 | L)

ES〈n〉 def
= νa (A〈n〉 | E)

Relation R def
= ∪n{(LS〈n〉, ES〈n〉)} is a bisimulation up-to expansion and con-

text. Consider a pair (LS〈n〉, ES〈n〉). The two processes have one initial tran-
sition; the most interesting case is the challenge transition from ES〈n〉, and we
only consider this one. We have

ES〈n〉 τ−→ νa (A〈n+ 1〉 | c(z). (E | R〈c, n, z〉)) def
= E′

6

Process LS〈n〉 may not produce internal steps, hence its only possible answer is

LS〈n〉 =⇒ LS〈n〉

We can now perform some algebraic manipulations of E′: first, we employ the
CCS expansion law to pull out the prefix at c, then a structural law to resize
the scope of the restriction at a in which we exploit the property that R〈c, n, z〉
may not use a. (All these laws are valid for strong bisimilarity, hence also for
expansion.) We thus obtain:

E′ �e c(z). (νa (A〈n+ 1〉 | E) | R〈c, n, z〉)
= c(z). (ES〈n+ 1〉 | R〈c, n, z〉) def

= E′′

We can act similarly on LS〈n〉, and in addition also employing the law

νa (a(y).P | a〈v〉.Q) ≈ νa (P{v/y} | Q) (1)

This gives us:

LS〈n〉 ≈ c(z). (νa (A〈n+ 1〉 | L) | R〈c, n, z〉)
= c(z). (LS〈n+ 1〉 | R〈c, n, z〉) def

= L′

We have thus obtained two processes, E′′ and L′, in the context closure of R,
and we are done.

In the proof, the ‘up-to’ techniques allow us to work with a relation that
has exactly one pair for each integer. Specifically, ’up-to context’ avoids us
considering processes in parallel with the lazy and eager systems, whereas ‘up-
to expansion’ allows us to reason only on the ‘normal forms’ LS〈n〉 and ES〈n〉
for these systems (avoiding us to take all their reachable states into account).

2.4 Systems of equations

Uniqueness of solutions of equations [24] intuitively says that if a context C
obeys certain conditions, then all processes P that satisfy the equation P ≈ C[P]
are bisimilar with each other.

We need variables to write equations. We use capital letters X,Y, Z for
these variables and call them equation variables. The body of an equation is a
CCS expression possibly containing equation variables. Thus such expressions,
ranged over by E, live in the CCS grammar extended with equation variables.

Definition 2.5 Assume that, for each i of a countable indexing set I, we have
variables Xi, and expressions Ei possibly containing such variables. Then

{Xi = Ei}i∈I

is a system of equations. (There is one equation for each variable Xi.) 2

We write E[P̃] for the expression resulting from E by replacing each variable

Xi with the process Pi, assuming P̃ and X̃ have the same length. (This is
syntactic replacement, akin to the substitution of the holes of a context with
processes.) The components of P̃ need not be different from each other, as it

must be for the variables X̃. If the system has infinitely many equations, the
tuples P̃ and X̃ are infinite too.

7

Definition 2.6 Suppose {Xi = Ei}i∈I is a system of equations:

• P̃ is a solution of the system of equations for ≈ if for each i it holds that
Pi ≈ Ei[P̃].

• the system has a unique solution for ≈ if whenever P̃ and Q̃ are both
solutions for ≈, then P̃ ≈ Q̃. 2

Examples of systems with a unique solution for ≈ are:

1. X = a.X

2. X1 = a.X2, X2 = b.X1

The unique solution of the system (1), modulo ≈, is the constant K
4
= a.K:

for any other solution P we have P ≈ K. The unique solution of (2), modulo ≈,

are the constants K1,K2 with K1
4
= a.K2 and K2

4
= b.K1; again, for any other

pair of solutions P1, P2 we have K1 ≈ P1 and K2 ≈ P2. Examples of systems
that do not have a unique solution are:

1. X = X

2. X = τ .X

3. X = a | X

All processes are solutions of (1) and (2); examples of solutions for (3) are K

and K | b, for K
4
= a.K.

Definition 2.7 A system of equations {Xi = Ei}i∈I is

• guarded if, in each Ei, each occurrence of an equation variable is under-
neath a visible prefix;

• sequential if, in each Ei, each occurrence of an equation variable only
appears underneath prefixes and sums. 2

In other words, if the system is sequential, then for every expression Ei, any
subexpression of Ei in which Xj appears, apart from Xj itself, is a sum (of
prefixed terms). For instance,

• X = τ .X+µ. 0 is sequential but not guarded, because the guarding prefix
for the variable is not visible.

• X = `.X | P is guarded but not sequential.

• X = `.X + τ .νa (a. b | a. 0), as well as X = τ . (a.X + τ . b.X + τ) are
both guarded and sequential.

Theorem 2.8 (unique solution of equations, [24]) A system of guarded and
sequential equations has a unique solution for ≈. 2

8

The proof exploits an invariance property on immediate transitions for guarded
and sequential expressions, and then extracts a bisimulation (up-to bisimilarity)
out of the solutions of the system. To see the need of the sequentiality condition,
consider the equation (from [24])

X = νa (a.X | a)

where X is guarded but not sequential. Any processes that does not use a is a
solution.

3 Contractions

In Theorem 2.8 the constraints on guardedness and, especially, on sequentiality
limit its applicability. Essentially, it can only be applied when the only process
operators in the equations are prefixing and sum. Further, the same definitions
and examples discussed for bisimilarity (and hence also the same limitations)
apply to other behavioural equivalences; e.g., contextual equivalence and trace-
based equivalences.

One may wonder if the conditions of Theorem 2.8 can be relaxed by simply
requiring that each equation be sequentially guarded, that is, of the form X =
Σj`j .Ej (where `j is a visible action). Unfortunately, uniqueness still fails; a
counterexample is

X = a.νa (a | X) .

Any process P with P ≈ a.P ′, and P ′ unable to use a, (i.e., a is not in the sort
of P ′), is a solution. Examples are a. 0 and a. b. 0.

An equation X = a.E need not have a unique solution even if we confine
ourselves to processes that may only perform a transitions. An example is the
equation

X = a.νb (νa (a. !a. b | X) | !b. a) .

Here the body of the equation produces an a, cancels the first a from X and
then reproduces all other a’s. Any process P with P ≈ a.P ′ for some P ′, is a
solution; for instance, a. 0 or a. a. 0 or even !a. 0.

Remark 3.1 The unique-solution method incorporates the flavour of ‘up-to
context’: for equations X̃ = Ẽ, finding solutions P̃ and Q̃ means showing that
the behaviours of corresponding elements Pi and Qi of the solution can be given
a structure, represented by Ei, which may make use of other elements of the
solution (represented by the occurrences of the variables in Ei). However, the
sequentiality condition makes the up-to context useless: when X in E is reached,
there is no ‘context’ left. 2

3.1 Contraction preorders

The constraints on the unique-solution Theorem 2.8 can be weakened if we move
from equations to certain inequations that we call contractions.

Intuitively, for a behavioural equivalence �, its contraction �� is a preorder
in which P �� Q holds if P � Q and, in addition, Q has the possibility of
being at least as efficient as P . That is, if P can do some work (i.e., some
interactions with its environment), then Q should be able to do the same work

9

at least as quickly as P (i.e., performing no more τ -steps then those performed
by P). Process Q, however, may be nondeterministic and may have other ways
of doing the same work, and these could be slow (i.e., involving more τ -steps
than those performed by P). Thus we cannot really say that ‘Q is more efficient
than P ’, as we could have done if we had followed the schema of the expansion
preorder of Section 2.2.

We explain the idea of contraction on the concrete case of weak bisimilarity,
and then generalise it.

Definition 3.2 (bisimulation contraction) A process relation R is a bisim-
ulation contraction if, whenever P R Q,

1. P
µ−→ P ′ implies there is Q′ such that Q

µ̂−→ Q′ and P ′ R Q′;

2. Q
µ−→ Q′ implies there is P ′ such that P

µ̂
=⇒ P ′ and P ′ ≈ Q′.

Bisimilarity contraction, written �bis, is the union of all bisimulation contrac-
tions. 2

In the first clause Q is required to match P ’s challenge transition with at
most one transition. This makes sure that Q is capable of mimicking P ’s work
at least as efficiently as P . In contrast, the second clause of Definition 3.2, on
the challenges from Q, entirely ignores efficiency: it is the same clause of weak
bisimulation — the final derivatives are even required to be related by ≈, rather
than by R.

Bisimilarity contraction is coarser than the expansion relation �e of Def-
inition 2.2. Clause (1) is the same in the two definitions. But in clause (2)

expansion uses P
µ

=⇒ P ′, rather than P
µ̂

=⇒ P ′; moreover with contraction the
final derivatives are simply required to be bisimilar. An expansion P �e Q tells
us that Q is always at least as efficient as P , whereas the contraction P �bis Q
just says that Q has the possibility of being at least as efficient as P .

Example 3.3 We have a 6�bis τ . a. However, a + τ . a �bis a, as well as its
converse, a �bis a + τ . a. Indeed, if P ≈ Q then P �bis P + Q. The last two
relations do not hold with �e, which explains the strictness of the inclusion
�e ⊆ �bis. 2

As bisimilarity contraction follows expansion in one direction and bisimilar-
ity in the other, clearly separating the two, the precongruence and congruence
for such relations can be combined into a precongruence proof for the contrac-
tion.

Theorem 3.4 �bis is a precongruence in CCS.

Proof The proof is similar to analogous proofs for bisimilarity and expansion.
As an example, to show that �bis is preserved by parallel composition one shows
that the relation

{(P | R,Q | R) | P �bis Q}

is a bisimulation contraction. When analising the challenges from P , one uses
clause (1) of Definition 3.2, which is the same clause in the definition of expan-
sion, and reasons as in the analogous proof of precongruence for expansion. Thus

10

if P | R µ−→ P ′ | R′ one distinguishes the cases when P alone moves, R alone
moves, and both P and R move. We only consider the third case, the others be-

ing simpler. Thus suppose that µ = τ , P
a−→ P ′, and R

a−→ R′. From P �bis Q
we deduce Q

a−→ Q′ with P ′ �bis Q
′, and therefore also Q | R τ−→ Q′ | R′ with

P ′ | R′ R Q′ | R′.
When the challenges are from Q, in contrast, one reasons using clause (2) of

Definition 3.2, which is the same clause of the definition of weak bisimulation,
and therefore one can follow the reasoning in the congruence proof of weak
bisimulation. 2

3.2 Systems of contractions

A system of contractions is defined as a system of equations, except that the
contraction symbol � is used in the place of the equality symbol =. Thus a
system of contractions is a set {Xi � Ei}i∈I where I is an indexing set and
expressions Ei may contain the contraction variables {Xi}i∈I .

Definition 3.5 Given a behavioural equivalence � and its contraction ��, and
a system of contractions {Xi � Ei}i∈I , we say that:

• P̃ is a solution for �� of the system of contractions if P̃ �� Ẽ[P̃];

• the system has a unique solution for � if whenever P̃ and Q̃ are both
solutions for �� then P̃ � Q̃. 2

When we reason about bisimilarity, the contraction symbol � is interpreted
as the bisimilarity contraction �bis, and the equivalence � as the bisimilarity
≈. Thus P̃ being a solution for �bis of the system of contractions {Xi � Ei}i∈I
means that P̃ �bis Ẽ[P̃]; and the system having a unique solution for ≈ means

that whenever P̃ and Q̃ are both solutions for �bis then P̃ ≈ Q̃.

Lemma 3.6 If a system of equations {Xi = Ei}i∈I has a unique solution for ≈,
then also the corresponding system of contractions {Xi � Ei}i∈I has a unique
solution for ≈.

Proof Any solution for �� of the system of contractions is a solution for ≈ of
the corresponding system of equations. Hence if the latter system has a unique
solution for ≈ then also the former has a unique solution ≈. 2

The converse of the lemma, in contrast, is false: as we shall see, systems of
contractions more easily have a unique solution.

Remark 3.7 Any system of equations or contractions has at least one solution
for strong bisimilarity, obtained by interpreting the equations as recursive pro-
cess definitions. That is, for equations one associates to each equation Xi = Ei

a fresh constant Ki with definition Ki
4
= E{K̃/X̃}. Then K̃ is a solution to

the system of equations for strong bisimilarity, hence also for weak bisimilarity;
and it is also a solution for �� of the corresponding system of contractions
{Xi � Ei}i∈I . (We are assuming here that the alphabet of constants always
containts enough ‘fresh’ constants; for instance one may assume that it is an
uncountable set.) 2

11

We now study conditions that guarantee unique solutions for ≈ of systems
of contractions.

3.3 Conditions for unique solution of contractions

For contraction, the following weak-guardedness condition is sufficient to have
a unique solution. The condition is weaker than the guardedness condition
because the guarding prefix can be any prefix, not necessarily a visible one.

Definition 3.8 A system of contractions {Xi � Ei}i∈I is weakly guarded if, in
each Ei, each occurrence of a contraction variable is underneath a prefix. 2

In proofs about weakly-guarded contractions we will often unfold the con-
tractions, exploiting the substitutivity of the contraction preorder, with the
objective of placing processes that are solutions of the contractions underneath
a certain number of prefixes. Suppose P̃ are solutions of a system of contractions
{Xi � Ei}i∈I , and consider a context C[P̃]. Then the process obtained from

C[P̃] by unfolding the contractions once is C[Ẽ[P̃]]; the process obtained by un-

folding the contractions twice is C[Ẽ[Ẽ[P̃]]]; and similarly for the n-unfolding.

Lemma 3.9 Suppose P̃ and Q̃ are solutions for ≈ of a system of weakly-

guarded contractions. For any context C, if C[P̃]
µ

=⇒ R, then there is a context

C ′ such that R �bis C
′[P̃] and C[Q̃]

µ̂
=⇒≈ C ′[Q̃].

Proof Let n be the length of the transition C[P̃]
µ

=⇒ R (the number of ‘strong

steps’ of which it is composed), and let C ′′[P̃] and C ′′[Q̃] be the processes

obtained from C[P̃] and C[Q̃] by unfolding the definitions of the contractions
n times. Thus in C ′′ each hole is underneath at least n prefixes, and cannot
contribute to an action in the first n transitions.

Since both P̃ and Q̃ are solutions of the system of contractions, by the
precongruence properties of �bis we have C[P̃] �bis C

′′[P̃] and C[Q̃] �bis C
′′[Q̃].

Moreover, since each hole of the context C ′′ is underneath at least n prefixes,

applying the definition of �bis on the transition C[P̃]
µ

=⇒ R and reasoning by
induction on n, we infer the existence of C ′ such that

C ′′[P̃]
µ̂

=⇒ C ′[P̃] �bis R

and

C ′′[Q̃]
µ̂

=⇒ C ′[Q̃] .

Finally, again applying the definition of �bis on C[Q̃] �bis C
′′[Q̃], we derive

C[Q̃]
µ̂

=⇒≈ C ′[Q̃] .

2

Theorem 3.10 (unique solution of contractions for ≈) A system of weakly-
guarded contractions has a unique solution for ≈.

12

Proof Suppose P̃ and Q̃ are solutions of a system of weakly-guarded contrac-
tions, and consider the relation

R def
= {(R,S) | R ≈ C[P̃], S ≈ C[Q̃] for some context C} .

We show that R is a bisimulation. Suppose R R S via the context C, and

R
µ−→ R′. We have to find S′ with S

µ̂
=⇒ S′ and R′ R S′. From R ≈ C[P̃],

we derive C[P̃]
µ̂

=⇒ R′′ ≈ R′, for some R′′. By Lemma 3.9, there is C ′ with

R′′ �bis C
′[P̃] and C[Q̃]

µ̂
=⇒≈ C ′[Q̃]. Hence by definition of ≈, there is also

S′ with S
µ̂

=⇒ S′ ≈ C ′[Q̃]. This closes the proof, as we have R′ ≈ C ′[P̃] and

S′ ≈ C ′[Q̃]. 2

In comparison to Theorem 2.8 for equations, in Theorem 3.10 for contrac-
tions the ‘guardedness’ condition is weakened, allowing variables that are un-
derneath τ prefixes; most important, the sequentiality condition is removed,
allowing variables underneath any process constructs.

Example 3.11 The following contractions have a unique solution for ≈:

1. X � τ .X

2. X � a.νa (a | X))

3. X � a.νb (νa (a. !a. b | X) | !b. a)

We have seen in Section 2.4 and at the beginning of Section 3 that the corre-
sponding equations do not have a unique solution. The solutions of the con-
traction (1) are all inactive processes, where a process is inactive if it cannot
perform visible actions (i.e., if P is the process, then there is no P ′ and visible

action ` such that P =⇒ P ′
`−→). The contraction has a unique solution because

all inactive processes are bisimilar. It is easy to see that an inactive process is
solution. Conversely, suppose P is not inactive, and let n be the least n ≥ 0 such

that P (
τ−→)n

`−→ for some `; then P is not a solution of P � τ .P because τ .P
needs at least n + 1 τ -steps before exhibiting any visible action, and therefore
can never be more efficient than P . Example of solutions for (2) and (3) are
a.P and τ . a.P , where P is inactive. Any solution of (2) and (3) is bisimilar
with a. 0. 2

Remark 3.12 Results such as Lemma 3.9 and Theorem 3.10 also hold if the
game played in clause (1) of Definition 3.2 of bisimulation contraction is that

of strong simulation (i.e., “P
µ−→ P ′ implies there is Q′ such that Q

µ−→ Q′

and P ′ R Q′”). However, the resulting relation would not be coarse enough
to capture expansion — a major goal for this paper is understanding existing
‘bisimilarity up-to’ techniques, where expansion is important. 2

3.4 Completeness

An interesting class of contractions are those in which the body E of each
contraction X � E does not contain constants. In these systems, all forms of
infinity in the behaviour of processes are captured by recursive calls through

13

the contraction variables. We call such systems pure. Similarly we call pure a
system of equations without constants. Pure contractions and equations are the
kind of contractions or equations that we would normally write when reasoning
on systems. In this section we discuss the expressiveness of pure systems of
contractions and equations. (With constants the question is vacuous, as the
behaviour of any process P is captured by the guarded and sequential equation
X = P .) We show that the technique of weakly-guarded contractions given by
Theorem 3.10 is complete, whereas that of guarded and sequential equations
given by Theorem 2.8 is not.

If R is a relation then we can also view R as an ordered sequence of pairs
(e.g., assuming some lexicographical ordering). Then Ri indicates the tuple
obtained by projecting the pairs in R on the i-th component (i = 1, 2).

Theorem 3.13 (completeness) Suppose R is a bisimulation. Then there is
a system of weakly-guarded pure contractions of which R1 and R2 are solutions
for �bis.

Proof Suppose R is a bisimulation. We define a system of contractions of
which R1 and R2 are solutions. The variables of the contractions are of the
form XP,Q for P R Q, and there is one contraction for each pair in R.

We show how the contraction for a pair P R Q is built. Consider an enu-
meration of all the transitions from P :

P
µr−−→ Pr

where r ranges over some countable set IP . Following the bisimulation game,

for each r there is Qr s.t. Q
µ̂r

==⇒ Qr and Pr R Qr. Proceeding similarly on the

challenge transitions from Q, i.e. Q
µs−−→ Qs for s ∈ IQ, we find processes Ps

with P
µ̂s

==⇒ Ps and Ps R Qs. Then the contraction for the pair P,Q is:

XP,Q � Σrµr.XPr,Qr
+ Σsµs.XPs,Qs

(2)

The resulting system of contractions is weakly guarded. We now show that
R1 and R2 are solutions.

Consider an equation (2), in which the transitions from P and Q are enumer-
ated using the indexes r and s as above. We show that the challenge transitions
from P are matched by Σrµr.Pr + Σsµs.Ps as by clause (1) of Definition 3.2,
and the converse using clause (2). (One proceeds similarly for Q in place of P .)

If the challenge is P
µr−−→ Pr, the answer can simply be

Σrµr.Pr + Σsµs.Ps
µr−−→ Pr

since �bis is reflexive. For the converse, the interesting case is a challenge of the
form

Σrµr.Pr + Σsµs.Ps
µs−−→ Ps

In this case the answer is P
µ̂s

==⇒ Ps. 2

The contractions in the proof of the theorem are sequential and weakly
guarded, but not necessarily guarded.

14

Remark 3.14 In the final step of the proof above, relation
µ̂s

==⇒ comes from the

definition of weak bisimulation, and could not be replaced by
µs

==⇒. This explains
why the completeness proof fails with expansion in place of contraction. 2

The assertion of Theorem 3.13 can actually be refined: the technique based
on weakly-guarded contractions is also computationally complete with respect to
the bisimulation proof method, in the sense that the size of the structures needed
and the subsequent amount of checks are comparable. The size of a relation is
the number of its pairs. The size of a system of contractions is the number of
contractions. The proof of Theorem 3.13 shows that the system of contractions
derived from a bisimulation R has the same size as R; moreover, the work
needed to prove that R1 and R2 are solutions of the system of contractions
is precisely the work needed to check the challenge/response diagrams of the
bisimulation game for R.

In contrast, the method for equations resulting from Theorem 2.8 is not
complete. For instance, there is no system of guarded and sequential pure
equations in which one of the solutions is the process K so defined:

K
4
= τ . (a | K) + τ . 0 .

To see this, it is useful to express the behaviour of K via the following constants:

H0
4
= τ .H1 + τ

Hi
4
= τ .Hi+1 + a.Hi−1 + τ . ai (i > 0)

We have ai | K ≈ Hi, for each i, as witnessed by the relation

R def
= ∪i≥0{(ai | K,Hi)} ,

which is a bisimulation up-to strong bisimilarity. Now, for each n 6= m, we
have Hn 6≈ Hm (because, assuming n < m, Hm cannot match the transition

Hn
τ−→ an); moreover, for each n there is a transition Hn

τ−→ Hn+1. As a
consequence, the infinite sequence of transitions

H0
τ−→ H1

τ−→ · · ·Hn
τ−→ Hn+1

τ−→ · · · (3)

goes through states that are pairwise non-bisimilar. An equation of which K is
solution should be able to express the same behaviour. This is impossible, how-
ever, if the equation is sequential and guarded, because the equation variables
must be underneath a visible prefix, and can only be reached by performing a
visible action. Hence an infinite nesting of internal transitions as in (3) cannot
be derived.

3.5 Relationship with up-to context

The completeness of the contraction technique given by Theorem 3.13, including
the computational completeness discussed after the theorem, remains also with
respect to powerful enhancements of the bisimulation proof method such as
‘up-to context’ techniques.

We show that the contraction technique is in fact computationally equivalent
to the ‘up-to �bis and context’ technique, a refinement of the ‘up-to expansion
and context’ of Definition 2.3 (the former captures a larger set of relations
because bisimilarity contraction is coarser than expansion).

15

Definition 3.15 (bisimulation up-to �bis and context) A process relation
R is a bisimulation up-to �bis and context if, whenever P R Q, we have:

1. P
µ−→ P ′ implies there is Q′ such that Q

µ̂
=⇒ Q′ and P ′ �bis Rc ≈ Q′

2. the converse of (1) on the actions from Q. 2

Theorem 3.16 Suppose R is a bisimulation up-to �bis and context. Then
there is a system of weakly-guarded contractions, of the same size as R, of
which R1 and R2 are solutions for �bis.

Conversely, suppose P̃ and Q̃ are solutions for �bis to the same system of
weakly-guarded contractions. Then the relation {(Pi, Qi)}i is a bisimulation
up-to �bis and context.

Proof The first part of the theorem is proved along the lines of the proof of
Theorem 3.13 (we are in fact strengthening Theorem 3.13); we have however to
take contexts into account, thus the contraction variables may end up within
an arbitrary context. Specifically, suppose R is a bisimulation up-to �bis and
context. We define the contractions satisfied byR1 andR2. Each pair inR gives
rise to a contraction. We use the contraction variable Xi for the contraction
generated by the i-th pair in R. In the solutions of the contractions, Xi is
replaced by the i-th process in R1 or R2.

Consider P R Q, and an enumeration of all the transitions from P and Q

P
µr−−→ Pr

and
Q

µs−−→ Qs

where r, s range over some countable set. Let Cr, Cs be contexts obtained on
these challenge transitions from the game of bisimulation up-to�bis and context;
assume that the appearance of a hole [·]i in these contexts indicates that the hole

is filled with the processes in the i-th pair of R. For instance, if P
µr−−→ Pr is the

challenge transition, then by definition of bisimulation up-to �bis and context,

there are Q′ and a context Cr with Q
µ̂r

==⇒ Q′ and Pr �bis Cr[P̃], Q′ ≈ Cr[Q̃].
Let Er, Es be the expressions obtained from these contexts by replacing their

hole [·]i with Xi. Now, the contraction for the pair P,Q is, assuming this is the
pair j in R:

Xj � Σrµr.Er + Σsµs.Es

Now R1 and R2 are shown to be solutions of the resulting system of contraction
reasoning as in the proof of Theorem 3.13.

For the second part of the theorem, let {Xi � Ei}i∈I be the system of

contractions of which P̃ and Q̃ are solutions. Suppose Pi
µ−→ P ′. We have

Pi �bis Ei[P̃], hence, by definition of bisimilarity contraction and since the
contractions are weakly guarded, there are two subcases to consider:

1. Ei[P̃]
µ−→ E′i[P̃], for some E′i with P ′ �bis E

′
i[P̃];

2. µ = τ and P ′ �bis Ei[P̃].

16

In (1), also Ei[Q̃]
µ−→ E′i[Q̃]. It follows, from Q �bis Ei[Q̃], that Q

µ̂
=⇒ Q′ ≈

E′i[Q̃]. This is sufficient, up to the context derived from E′i. In (2), we use

Q =⇒ Q as matching transition, since P ′ �bis Ei[P̃] and Q ≈ Ei[Q̃], up to the
context derived from E.

2

Remark 3.17 The observation in Remark 3.14 applies also to Theorem 3.16:
the constructions in the theorem do not work with expansion in place of bisimi-
larity contraction. Indeed the definition of contraction was derived by attempts
at obtaining theorems such as 3.13 and 3.16. 2

From Theorems 3.16 and 3.10 we derive:

Corollary 3.18 (soundness of ‘bisimulation up-to �bis and context’). If R is
a bisimulation up-to �bis and context, then R ⊆ ≈. 2

Having shown that the techniques of weakly-guarded contractions and ‘bisim-
ulation up-to �bis and context’ are equivalent, we can derive the soundness of
one from the soundness of the other (in Corollary 3.18 we took the contraction
technique as primitive). The complexity of the soundness proofs of the two tech-
niques is similar. The main difference is that the expressions in the body of the
contractions are weakly guarded, whereas the contexts of the ‘up-to context’
bisimulation techniques need not be so. As a consequence, in the proofs for
the ‘up-to context’ techniques one has to reason about all possible interactions
between a context and the processes plugged into it, proceeding by transition
induction and a case analysis on the last rule used to derive a transition. With
contractions this is avoided, exploiting the weak-guardedness condition and the
unfolding of the contractions.

3.6 Example: the lazy and eager servers

We show a proof of the bisimilarity between the lazy and the eager systems of
Section 2.3 using the technique of unique solution of contractions. This serves
both as an an illustration of the application of the technique, and as a compar-
ison with the technique based on the bisimulation proof method employed in
the proof of Section 2.3.

The proof consists in showing that {LS〈n〉}n and {ES〈n〉}n are solutions of
the following system of contractions:

{Xn � c(z). (Xn+1 | R〈c, n, z〉)}n (4)

We establish that {ES〈n〉}n is a solution. For this we use simple algebraic laws:
the expansion law, laws for pulling a process or a prefix outside of a restriction,
and the laws

νa (a(x).P | a〈v〉.Q) ∼ τ .νa (P{v/x} | Q)

τ .P �bis P

17

These are essentially the laws used in proof in Section 2.3, using bisimulation
up-to expansion and context. We thus have:

ES〈n〉 ∼ νa (τ . (A〈n+ 1〉 | c(z). (E | R〈c, n, z〉)))
∼ τ . c(z). (νa (A〈n+ 1〉 | E) | R〈c, n, z〉)
�bis c(z). (νa (A〈n+ 1〉 | E) | R〈c, n, z〉)
= c(z). (ES〈n+ 1〉 | R〈c, n, z〉)

(The reader may want to compare this with the reasoning in Section 2.3
following the τ transition from ES〈n〉.) We proceed similarly for LS〈n〉.

The contraction (4) is not sequential, hence contractions and Theorem 3.10
cannot be replaced by equations and Theorem 2.8.

4 Language generalisation

We have shown the property of unique solution of weakly-guarded contractions
in CCS. We generalise here the theorem to an arbitrary process language, using
a more abstract condition. The generalisation serves both to better understand
the validity of the theorem, and for applicability to languages that, unlike CCS,
do not have an explicit prefixing construct.

For this generalisation we consider the case — standard in process algebra —
in which the syntax of the processes is the term algebra generated by some
signature, and the semantics is given as an LTS. We call process language any
such language. We use L to denote a generic process language, and L(X) for
its extension with the contraction variables in X .

Definition 4.1 A process language L is ≈-safe if, in L, ≈ is a congruence
relation, and its corresponding contraction �bis is a precongruence. 2

For the results in this section, the condition on ≈ being a congruence could
be weakened to ≈ being an equivalence.

In Theorem 3.10, the ‘weakly guarded’ hypothesis makes sure that the body
of a contraction alone determines the first interaction. The body is thus au-
tonomous: the interaction occurs without contributions from the terms that
replace the contraction variables. Whenever the bodies of the contractions are
autonomous in this sense, the unique-solution property holds.

Definition 4.2 (autonomous contractions) An expression E of L(X) is au-

tonomous if for all processes P̃ of L we have:

• if E[P̃]
µ−→ R, then there is a context C such that R = C[P̃], and for all

Q̃, also E[Q̃]
µ−→ C[Q̃].

A system of contractions {Xi � Ei}i∈I is autonomous if each expression Ei is
autonomous. 2

We also need to make sure that the autonomy property is preserved is pre-
served underneath a context.

Definition 4.3 A process language L respects autonomy if for any context C
of L and for any autonomous expressions Ẽ of L(X), also the expression C[Ẽ]
is autonomous. 2

18

For the unique solution theorem, the crux is proving the analogous of Lemma 3.9.

Lemma 4.4 Suppose L is safe and respects autonomy, and P̃ and Q̃ are solu-
tions for ≈ of a system of autonomous contractions. Then, for any context C, if

C[P̃]
µ

=⇒ R, there is a context C ′ such that R �bis C
′[P̃] and C[Q̃]

µ̂
=⇒≈ C ′[Q̃].

Proof Let n be the length of the transition C[P̃]
µ

=⇒ R (the number of ‘strong
steps’ of which it is composed). We proceed by induction on n. If n = 0

the assertion is trivial, for R = C[P̃] and C ′ = C. Suppose the assertion

holds for n − 1; we treat the case n. Thus C[P̃]
µ

=⇒ R can be written as

C[P̃]
µ1−−→ R′

µ2
==⇒ R where one between µ1 and µ2 is µ and the other is a τ

(they could also both be τ). Let C ′′[P̃] and C ′′[Q̃] be the processes obtained

from C[P̃] and C[Q̃] by unfolding the definitions of the contractions. Since
the contractions are autonomous and the language respects autonomy, also C ′′

(thought as an expression) is autonomous.

Since both P̃ and Q̃ are solutions of the system of contractions, by the
precongruence properties of �bis we have C[P̃] �bis C

′′[P̃] and C[Q̃] �bis C
′′[Q̃].

Applying the definition of �bis on the transition C[P̃]
µ1−−→ R′ we infer the

existence of C ′′′ such that

C ′′[P̃]
µ̂1−−→ C ′′′[P̃] �bis R

′

Since C ′′ is autonomous, also

C ′′[Q̃]
µ̂1−−→ C ′′′[Q̃]

Moreover, from R′
µ2

==⇒ R, we get C ′′′[P̃]
µ̂2

==⇒�bis R, with a transition
µ̂2

==⇒
composed of no more than n − 1 steps. We can therefore appeal to induction

and infer the existence of C ′ with R �bis C
′[P̃] and C ′′′[Q]

µ̂2
==⇒≈ C ′[Q̃].

Using this latter property, C ′′[Q̃]
µ̂1−−→ C ′′′[Q̃] and C[Q̃] �bis C

′′[Q̃] we infer

C[Q̃]
µ̂

=⇒≈ C ′[Q̃]

This, together with C[P̃]
µ

=⇒ R and R �bis C
′[P̃], concludes the proof. 2

Theorem 4.5 In a process language L that is safe and respects autonomy, a
system of autonomous contractions has a unique solution for ≈. 2

The proof of the theorem is similar to that of Theorem 3.10, using Lemma 4.4
in place of Lemma 3.9.

Checking the autonomy property is often straightforward. For instance, in
the case of the GSOS format [6], autonomy holds if, in the body E of a con-
traction, all variables are underneath an axiom operator, that is, an operator
that, as CCS prefix, is defined by means of SOS rules in which the set of hy-
pothesis is empty. The preservation of autonomy underneath contexts is then
straightforward.

Autonomy may not be preserved under a context if the language uses op-
erators whose SOS rules make use of a lookahead, as it may happen with the

19

tyft/tyxt format [14]. Technically, this means that an SOS rule may have two
premises with a variable in the target of one being present in the source of the
other premise. The following example shows that in this case autonomy may not
be preserved and systems of autonomous contractions may not have a unique
solution.

Example 4.6 Consider a process language with the following grammar

P ::= µ.P | f(P) | 0

where µ.P and 0 are the familiar CCS operators, and f is defined by means of
the following rule:

P
a−→ P ′ P ′

µ−→ P ′′

f(P)
µ−→ P ′′

Now, the expression a. f(X) is autonomous (for any P we have a. f(P)
a−→ f(P)

as the only transition); however f(a. f(X)) is not: when X is instantiated with
a. b. 0 we can derive an a-transition, but this is not possible if X is instantiated
with a process unable to perform first a and then b.

Furthermore, in the same language, the contraction

X � a. f(X)

is autonomous, and yet both a. b. 0 and a. c. 0 are solutions. 2

The example above is the same used in [32] to show the problems of looka-
heads in the techniques of ‘bisimulation up-to’. We leave further comparisons
for future work.

In some cases, autonomy may be better than the weakly-guarded hypothesis
even if the calculus has a prefix operator: we shall see an example in Section 10,
with the Higher-Order π-calculus, where autonomy allows us to capture occur-
rences of the contraction variables within output prefixes.

5 Barbed congruence

We (briefly) consider the application of the idea of contraction to barbed congru-
ence [25], for various reasons. First, barbed congruence is a contextually-defined
form of behavioural equivalence, and it paves the way to the treatment of other
forms of contextual equivalence. Second, we want to show that — sometimes —
the contraction techniques make it possible to work directly with barbed congru-
ence, even though it is contextually defined (e.g., the example with higher-order
processes in Section 10). Third, the definition of barbed congruence applies to
any language with a reduction semantics (i.e., a reduction relation and a barb,
or observation, predicate), as opposed to the LTS semantics of the languages in
earlier sections.

Thus the definitions and results in this section hold for any algebraic calculus
(the term algebra over a signature) equipped with a reduction semantics, that
is, a reduction relation −→ and a barb predicate ↓. We use RL for referring
to a generic such language, and RL(X) for its extension with the contraction

variables in X . (For CCS, −→ is
τ−→ and P ↓ holds if P

`−→, for some visible

20

action `.) As usual, =⇒ is the reflexive and transitive closure of −→; and P ⇓
holds if there is P ′ with P =⇒ P ′ and P ′ ↓.

Definition 5.1 (barbed bisimulation and congruence) A relation R on
the processes of RL is a barbed bisimulation if whenever P R Q:

1. P −→ P ′ implies there is Q′ such that Q =⇒ Q′ and P ′ R Q′;

2. the converse, on the τ -transitions emanating from Q, i.e., Q −→ Q′ implies
there is P ′ such that P =⇒ P ′ and P ′ R Q′;

3. if P ↓ then Q ⇓;

4. the converse, i.e., if Q ↓ then P ⇓.

Barbed bisimilarity, written ≈bar, is the union of all barbed bisimulations. Two
processes P and Q are barbed congruent, written P ≈c

bar Q, if for each context
C, it holds that C[P] ≈bar C[Q]. 2

Remark 5.2 The definitions of barbed congruence in the literature often make
use of a set of barb predicates; we use only one barb here for mere simplicity
of presentation. A variant of barbed congruence is reduction-closed barbed con-
gruence [16], in which the closure under contexts is placed within the definition
of bisimilarity. The difference between the two variants has no consequences on
the results in the paper. 2

In the ‘contraction version’ of barbed bisimilarity we write Q
∧−→ Q′ if

Q −→ Q′ or Q = Q′.

Definition 5.3 (barbed contraction, barbed congruence contraction). A rela-
tion R on the processes of RL is a barbed contraction if, whenever P R Q:

1. P −→ P ′ implies there is Q′ such that Q
∧−→ Q′ and P ′ R Q′;

2. Q −→ Q′ implies there is P ′ such that P =⇒ P ′ and P ′ ≈bar Q
′;

3. P ↓ implies Q ↓;

4. Q ↓ implies P ⇓.

Barbed contraction, written �bar, is the union of all barbed contractions. Barbed
congruence contraction, written �c

bar, relates two processes P and Q if, for each
context C, it holds that C[P] �bar C[Q]. 2

We transport the concept of autonomy to reduction-based semantics. A
similar concept, called nondiscriminating context, has been used by Bonchi et
al. [9].

Definition 5.4 (reduction-autonomous contractions) An expression E of

RL(X) is reduction-autonomous if for all processes P̃ and context C of RL:

• if C[E[P̃]] −→ R, then there is a context C ′ such that R = C ′[P̃] and, for

all Q̃, also C[E[Q̃]] −→ C ′[Q̃];

21

• if C[E[P̃]] ↓ then, for all Q̃, also C[E[Q̃]] ↓.

A system of contractions {Xi � Ei}i∈I is reduction-autonomous if each expres-
sion Ei is reduction-autonomous. 2

Barbed congruence and its contraction are, by definition, fully substitutive.
Hence the safety requirement of Theorem 4.5 is not needed. In the property of
unique solution for barbed congruence, the symbols � and �� of Definition 3.5
become ≈c

bar and �c
bar, respectively.

Theorem 5.5 In RL, any system of reduction-autonomous contractions has a
unique solution for ≈c

bar.

Proof As for Theorems 3.10 and 4.5, we first prove something similar to
Lemmas 3.9 and 4.4, namely:

Suppose P̃ and Q̃ are solutions for �c
bar to a system of reduction-

autonomous contractions. Then for any context C, if C[P̃] =⇒ R,

there is a context C ′ such that R �bar C
′[P̃] and C[Q]

µ̂
=⇒≈bar

C ′[Q̃].

Using this fact, then one shows that, for P̃ and Q̃ solutions, the set of all pairs
(A,B) such that there is a context C with A ≈bar C[P̃] and B ≈bar C[Q̃] is a
barbed bisimilarity. 2

6 Uniqueness of solution of contractions for non-
coinductive equivalences

We consider now non-coinductive equivalences. We focus on contextual equiv-
alence [27] (i.e., may testing [11]), because it is widely studied. As the barbed
congruence of Section 5, so contextual equivalence is contextually defined. Thus
the setting considered is the same: an algebraic process language equipped with
a reduction semantics. We reuse notations and terminologies from Section 5.
Intuitively, two terms are contextually equivalent when they are equally observ-
able, in any context.

Definition 6.1 (contextual equivalence) P ≈ctx Q holds when C[P] ⇓ iff
C[Q] ⇓, for all C. 2

The definition of the contextual equivalence contraction uses the predicates
P ⇓n, indicating that a barb is reached in n steps (i.e., P (

τ−→)nP ′ ↓, for some
P ′).

Definition 6.2 (contextual equivalence contraction) P �ctx Q if for all
C:

1. C[P] ⇓n implies C[Q] ⇓m, for some m ≤ n;

2. C[Q] ⇓ implies C[P] ⇓. 2

22

Thus, referring to contextual equivalence, the symbols � and �� of Defini-
tion 3.5 become ≈ctx and �ctx.

Theorem 6.3 A system of reduction-autonomous contractions has a unique
solution for ≈ctx.

Proof Suppose P̃ and Q̃ are solutions for �ctx of a system of contractions
{Xi � Ei}, and consider a context C. We show that C[P̃] ⇓ implies C[Q̃] ⇓.

Suppose C[P̃] ⇓n. We proceed by induction on n. First the case n = 0, where
⇓0=↓.

Since P̃ �ctx Ẽ[P̃], we have also C[Ẽ[P̃]] ↓ and, as Ẽ are reduction-autonomous,

also C[Ẽ[Q̃]] ↓. Therefore, from Q̃ �ctx Ẽ[Q̃], we derive C[Q̃] ⇓.

Now the case n > 0. Since P̃ �ctx Ẽ[P̃], we have C[Ẽ[P̃]] ⇓m for some

m ≤ n. This means that either C[Ẽ[P̃]] ↓, or

C[Ẽ[P̃]] −→ C ′[P̃] ⇓m−1 (5)

(as Ẽ are reduction-autonomous, the processes used for the variables do not con-

tribute to the reduction). If C[Ẽ[P̃]] ↓, we get C[Q̃] ⇓, reasoning as above. Con-

sider now (5). We also have C[Ẽ[Q̃]] −→ C ′[Q̃]. By induction, from C ′[P̃] ⇓m−1
we infer C ′[Q̃] ⇓. Therefore we have C[Ẽ[Q̃]] ⇓. From Q̃ �ctx Ẽ[Q̃], we deduce

C[Q̃] ⇓. 2

Corollary 6.4 In CCS, a system of weakly-guarded contractions has a unique
solution for ≈ctx. 2

6.1 Example: the lazy and eager servers, revisited

Contextual equivalence does not have the congruence problems of bisimilarity
for summation that motivated, in the presentation of CCS in Section 2, the use
of guarded sums. We can therefore admit the full summation construct ΣiPi
in the grammar for the CCS processes. Such a flexibility will be useful in this
example.

We revisit the lazy and eager servers in the example of Section 2.3. We
modify the auxiliary server A, which was consulted by the main server before
starting an interaction protocol with a client. In Section 2.3, the server was
deterministic; now it is nondeterministic. Thus all definitions remain the same
except that A always returns an arbitrary integer:

A
4
= Σn∈N a〈n〉.A

The system with the lazy main server is now LS
def
= νa (A | L), and the

system with the eager main server is ES
def
= νa (A | E), where L and E are

as in Section 2.3. The timing difference between LS and ES in consulting A is
observable under bisimilarity. The reason is that an interaction

ES −→ νa (A | c(z). (E | R〈c, n, z〉)) ,

23

in which n is received from the auxiliary server A, is a commitment to using n
in the interaction with the next client. In contrast, LS is unable to make such
a commitment — its only initial transition is a visible one.

The difference is however not observable under contextual equivalence. We
prove LS ≈ctx ES using the technique of unique solution of weakly-guarded
contractions. The proof is similar to that with the deterministic auxiliary server
and the bisimilarity contraction in Section 3.6, with a further simplification: a
single contraction is sufficient, namely

X � c(z). Σn(X | R〈c, n, z〉) (6)

To show that both LS and ES are solutions for �ctx of this contraction, we
employ the same laws and algebraic reasoning of Section 3.6 (which are sound
because bisimilarity implies contextual equivalence). An additional law is re-
quired in the proof of ES:

Σiα.Ri �ctx α. ΣiRi (α is any prefix) (7)

(the law is actually valid for strong contextual equivalence, where two equal
processes are required to reach an observable in the same number of steps).
This is one of the most distinguishing laws of contextual equivalence. Using the
laws we have:

ES = νa (A | E) �ctx Σnτ . c(z).νa (A | E | R〈c, n, z〉)
�ctx Σnc(z).νa (A | E | R〈c, n, z〉)
�ctx c(z). Σn(νa (A | E | R〈c, n, z〉))
�ctx c(z). Σn(νa (A | E) | R〈c, n, z〉)

= c(z). Σn(ES | R〈c, n, z〉)

which shows that ES is a solution of the contraction (6). The proof that also
LS is a solution is simpler.

The above proof is similar to the proofs with the servers in Sections 2.3 and
3.6. All these proofs, explicitly or implicitly, employ ‘up-to context’ reasoning;
above the common context is c(z). Σn([·] | R〈c, n, z〉).

A proof that follows the definition of contextual equivalence would be hard
due to the quantification on all contexts. In CCS, contextual equivalence co-
incides with trace equivalence. The equality in the example cannot be proved
purely algebraically, using standard axiom systems for trace equivalence, be-
cause the systems compared are not finite or finite state (axiomatisations are
complete only on these systems). One could show that ES and LS have the
same traces proceeding by induction on the length of the traces. The proof is
tedious, for instance because R could be any process.

Remark 6.5 The proof of the equality between ES and LS reveals the essence
of the technique based on unique solution of contractions. One employs some
simple algebraic laws to prove that two tuples of terms are solutions of a certain
system of contractions, from which the equality between the two tuples is derived
from the unique-solution theorem. The algebraic laws may have been obtained
in various ways (e.g., an axiomatisation of the equality for the finite terms). In
our example we have used laws for bisimilarity, because it implies contextual

24

equivalence, plus law (7). Law (7) is a well-known law in axiomatisations of trace
equivalence; the law can also be easily proved directly in terms of contextual
equivalence, reasoning by induction on the length on the number of τ -steps
needed to reach an observable. 2

7 Trace equivalence

In this section we briefly consider trace equivalence. In CCS and most process
algebras, trace equivalence is a direct characterisation of contextual equivalence,
in the same way as bisimilarity is for barbed congruence. Aside from this, the
reason why we look at trace equivalence is that it is an example of a non-
contextual and inductive behavioural equivalence. We use s to range over traces,
i.e., non-empty sequences of visible actions.

We assume to be in a generic process language L with an LTS semantics,

as in Section 4. We write P
µ

=⇒n P ′ if P
µ

=⇒ P ′ is derived using n strong

transitions (i.e., we have P (
τ−→)m

µ−→ (
τ−→)m

′
P ′ and n = m + m′ + 1. If

s = `1, . . . , `n, then we write P
s

=⇒ if P
`1=⇒ P1

`2=⇒ P2 . . . Pn−1
`n==⇒ Pn, for

some processes P1, . . . , Pn. Similarly we write P
s

=⇒m if there are P1, . . . , Pn

with P
`1=⇒m1

P1
`2=⇒m2

P2 . . . Pn−1
`n==⇒mn

Pn, and m = Σimi.

Definition 7.1 Two processes P,Q of L are trace equivalent, written P ≈tr Q,
if for each trace s we have P

s
=⇒ iff Q

s
=⇒.

Two processes P,Q are in the trace equivalence contraction, written P �tr Q,
if, for each trace s:

1. if P
s

=⇒n then Q
s

=⇒m for some m ≤ n;

2. if Q
s

=⇒ then P
s

=⇒.

A process language is ≈tr-safe if ≈tr is a congruence and �tr a precongruence.
2

Theorem 7.2 In a process language L that is ≈tr-safe and respects autonomy,
a system of autonomous contractions has a unique solution for ≈tr. 2

Refined forms of trace equivalence exist. For instance, ready trace equivalence
[4, 13] combines traces with barbs. The idea of contraction and Theorem 7.2 can
be adapted to ready traces by combining the treatment of traces in Definition 7.1
with the treatment of barbs in Definitions 5.3 and 6.2.

8 Non-applicability of the technique

The contraction technique may be applied to any equivalence whose observables
are finitary, in the sense that if an observable holds then it can be reached in
a finite number of transitions. Bisimilarity is in this class: the observables are

the weak transitions
µ

=⇒; each use of
µ

=⇒ is finitary because it is obtained by

composing a finite number of strong transitions (
τ−→ and

µ−→). Different uses of
µ

=⇒ may have different lengths, but each length is finite. The same argument

25

holds for ⇓, the observable of contextual equivalence. In all these cases, the
contraction preorder precisely arises by playing with such finite measures.

There are behavioural equivalences, however, in which the observables are
not finitary. For instance, an observable may be inherently coinductive, as for
observables such as infinite traces and non-termination. We illustrate the pos-
sible failure of the contraction techniques in these cases using infinitary trace
equivalence, whereby two processes are equated if they have the same traces,
including the infinite ones. It is unclear how the contraction of infinitary trace
equivalence should be defined. In any case, however, ‘unique solution’ would
fail, even for guarded and sequential contractions. As an example, consider the

processes P
def
= Σna

n and Q
def
= P + a. !a. 0. These processes are not infini-

tary trace equivalent. However, in an ‘infinitary trace’ semantics they both are
solutions to the (guarded and sequential) contraction

X � a+ a.X

The definition of the the contraction for infinitary trace equivalence is irrele-
vant here, because the processes have no τ -transitions. Similar problems arise
for must equivalence, where non-termination is observable — the same coun-
terexample of infinitary trace equivalence applies.

9 Injecting contractions into the bisimulation
game

An advantage of bisimilarity, with respect to other behavioural equivalences, is
the locality of the required checks: related states only have to match each other’s
immediate transitions. We can inject some locality also in other equivalences
by introducing the corresponding contraction into a ‘bisimulation up-to’ game.
We illustrate this possibility with contextual equivalence, which is inductive
and contextual and therefore faraway from bisimilarity and its local checks. We
consider the concrete case of the CCS language; thus in remainder of the section
a process is meant to be a CCS process, and similarly for a relation.

Definition 9.1 (bisimulation up-to �ctx) A relationR is a bisimulation up-
to �ctx if, whenever P R Q, we have:

1. P
µ−→ P ′ implies Q

µ̂
=⇒ Q′ and P ′ �ctx R ≈ctx Q

′;

2. the converse of (1) on the actions from Q. 2

As in the case of ordinary bisimulation, bisimulation up-to �ctx may be
enhanced by combination with further up-to techniques. For instance, in the
bisimulation up-to �ctx and context the requirement P ′ �ctx R ≈ctx Q

′ on the
derivatives of Definition 2.3 becomes

P ′ �ctx Rc ≈ctx Q
′

It is sufficient to analyse the most powerful technique (‘up-to �ctx and con-
text’), and the results will also hold for the weaker ‘up-to �ctx’. We derive
soundness from that of the corresponding contraction technique.

26

Lemma 9.2 Suppose R is a bisimulation up-to �ctx and context. Then there
is a system of reduction-autonomous contractions, of the same size as R, of
which R1 and R2 are solutions for �ctx.

Proof The proof is similar to that of the first part of Theorem 3.16; we sketch
below the main steps.

Suppose R is a bisimulation up-to �ctx and context. We define the contrac-
tions satisfied by R1 and R2. Each pair in R gives rise to a contraction. We
use the contraction variable Xi for the contraction generated by the i-th pair
in R. In the solutions of the contractions, Xi is replaced by the i-th process in
R1 or R2. Consider P R Q, and an enumeration of all the transitions from P
and Q

P
µr−−→ Pr

and
Q

µs−−→ Qs

where r, s range over some countable set. Let Cr, Cs be contexts obtained on
these challenge transitions from the game of bisimulation up-to�ctx and context;
assume that the appearance of a hole [·]i in these contexts indicates that the
hole is filled with the processes in the i-th pair of R.

Let Er, Es be the expressions obtained from these contexts by replacing their
hole [·]i with Xi. Now, the contraction for the pair P,Q is, assuming this is the
pair j in R:

Xj � Σrµr.Er + Σsµs.Es

The contractions are weakly guarded, which in CCS implies the reduction-
autonomous property. 2

A corollary of the lemma, and of the soundness of the unique-solution tech-
nique for reduction-autonomous contractions, is the soundness of the bisimula-
tion technique.

Corollary 9.3 (soundness of bisimulation up-to �ctx and context). Suppose a
relation R is a bisimulation up-to �ctx and context. Then R ⊆ ≈ctx.

Proof Follows from Theorem 6.3 and Lemma 9.2. 2

We have seen that, in the case of bisimilarity, the techniques of ‘unique solu-
tion of contractions for ≈’ and of ‘bisimulation up-to contraction and context’
are equivalent. For contextual equivalence, however, the former technique is
more powerful. The reason is that, in the ‘bisimulations up-to �ctx and con-
text’ game, laws and equalities for ≈ctx are applied only after the derivatives
of the processes in the pairs have been chosen. For instance, the lazy and eager
servers of Section 6.1, LS and ES, cannot be a pair of a bisimulation up-to
�ctx and context, for the same reason why they are not bisimilar: the challenge
transition

ES
τ−→ νa (A | c(z). (E | R〈c, n, z〉))

cannot be matched by LS.
In some cases, however, the obstacle can be bypassed. We show this for

the processes LS and ES of the server example. We relate LS to a contraction

27

ES′ of ES, obtained by abstracting the initial private communication with the
auxiliary server A:

ES �ctx Σnνa (A | c(z). (E | R〈c, n, z〉)) def
= ES′ (8)

Now, the singleton relation {(LS,ES′)} is a bisimulation up-to �ctx and context.
The processes in the pair initially may only perform an input at c; if v is the
value received in the input, then the transitions are

ES′
c〈v〉−−−→ Σnνa (A | E | R〈c, n, v〉) def

= ES′1

and LS = νa (A | c(z). a(x). (L | R〈c, x, z〉))
c〈v〉−−−→ νa (A | a(x). (L | R〈c, x, v〉)) def

= LS1

Now we have, using algebraic reasoning similar to that in previous examples
with the servers and (8):

ES′1 ∼ Σn(νa (A | E) | R〈c, n, v〉)
�ctx Σn(ES′ | R〈c, n, v〉)

and LS1 �ctx Σn(νa (A | L) | R〈c, x, v〉)
= Σn(LS | R〈c, x, v〉)

This is sufficient, up-to �ctx and context. Finally, having proved ES ≈ctx ES
′

and ES′ ≈ctx LS, we derive ES ≈ctx LS by transitivity.
Other behavioural equivalences and their contractions can be injected into

the ‘bisimulation up to’ game, along the lines of what is done here for contextual
equivalence.

10 Higher-order languages

The contraction technique may also be used in higher-order languages such as
the λ-calculus and the Higher-Order π-calculus [41]. We refrain from attempt-
ing to produce a general theory of contractions for higher-order languages, com-
parable in power to the bisimulation proof method for these languages. We
leave this for future work. (For instance, in higher-order languages bisimilar-
ity is usually rather different in shape to the standard bisimilarity of Defini-
tion 2.1, and this should have a considerable impact on contractions and their
proofs.) Here we simply show that the transport to a higher-order setting of
the most basic contraction techniques — those involving a reduction semantics
and contextually-defined equivalences — can still be useful. We illustrate this
on the Higher-Order π-calculus. We consider the Higher-Order π-calculus in its
simplest form, where only processes can be communicated. Below is the syntax.

P ::= a〈P 〉.Q output prefix

| a(x).P input prefix

| x process variable

| νa P restriction

| P | Q parallel composition

| 0 nil

28

Structural congruence: the least congruence ≡ such that

• P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R, P | 0 ≡ P ; νa 0 ≡ 0,
νa νb P ≡ νb νa P ; (νa P) | Q ≡ νa (P | Q), if a not free in Q

The reduction relation P −→ Q is the least relation such that:

a(x).R | a〈P 〉.Q −→ R{P/x} | Q P −→ P ′

P | Q −→ P ′ | Q
P −→ P ′

νa P −→ νa P ′

P ≡ P ′ −→ P ′′ ≡ P ′′′

P −→ P ′′′′

Figure 2: The reduction semantics for HOπ

The reduction semantics is standard. It uses a structural congruence that per-
mits the rearrangement of parallel compositions and restrictions so that the
participants in a potential communication can be brought into immediate prox-
imity; and a reduction relation that describes the act of communication itself.
The rules are reported in Figure 2.

We use a, b, c, . . . to range over names, and x, y, z, . . . to range over variables;
we call them language variables (to distinguish them from the contraction or
equation variables such as X,Y). An input a(x).P binds the free occurrences of
variable x in P ; similarly a restriction νa P binds the free occurrences of name
a in P . A term is open or closed depending on whether it may, or may not,
have free language variables (in any case, it may have free names).

Systems of contractions in the Higher-Order π-calculus In the defini-
tion of barbed congruence and its contraction, the only technicality of higher-
order languages that has to be taken into account is the distinction between open
and closed terms. This is dealt with in the expected manner. All running terms
are supposed to be closed. Thus the definitions of equivalences and preorders in
earlier sections (e.g., barbed congruence and its contraction) are meant to be on
closed terms. The definitions are generalised to open expressions by requiring
instantiation of the language variables with all closing substitutions, i.e., sub-
stitutions that make the terms closed (using, in contextual definitions, closing
contexts rather than closing substitutions would yield the same relations).

An example The example is about two ways of modeling the replication
operator. We consider the equality (barbed congruence) between the terms
c〈A〉 and c〈B〉, where

A
def
= b(y).νa (M | a〈M〉) for M

def
= a(x). (y | x | a〈x〉)

and
B

def
= b(y).νa (N | a〈y | N〉) for N

def
= a(x). (x | a〈x〉).

Terms c〈A〉 and c〈B〉 send on c processes (A and B) that can receive a process
at b and then replicate this process. Indeed, if P is the process so received,

29

assuming a does not occur free in P , in one case we obtain the term

AP
def
= νa (M{P/y} | a〈M{P/y}〉)

and in the other case
BP

def
= νa (N | a〈P | N〉) ,

and then we have:

AP −→ P | AP −→ P | P | AP −→ · · ·

BP −→ P | BP −→ P | P | BP −→ · · ·

The internal structure of AP and BP is however different.
A system of contractions that proves c〈A〉 ≈c

bar c〈B〉 is the following:

X � c〈Y 〉. 0
Y � b(y).Z
Z � τ . (y | Z)

These contractions are reduction-autonomous, and therefore have a unique so-
lution for barbed congruence. Note that, in the first contraction, a contraction
variable occurs within the initial output prefix. Thus the contraction is not
weakly guarded. Still, the contraction is reduction-autonomous because a pro-
cess that replaces the variable (and that therefore represents the value emitted
in the output) does not contribute to the first action. Note also that the third
contraction is open — it has y as a free variable. Two solutions for �c

bar (the
barbed congruence contraction) to the above system of three contractions are,
respectively:

1. c〈A〉, A, and νa (M | a〈M〉);

2. c〈B〉, B, and νa (N | a〈y | N〉).

The third process of each solution has y free, as its corresponding contraction.
To prove that these are solutions, we need a few simple algebraic laws. such as

• νa (a〈R〉.P | a(x).Q) �c
bar νa (P | Q{R/x}),

and laws that modify the scope of a restriction.
Using the bisimulation proof method, the proof of the equality between

c〈A〉 and c〈B〉 is more cumbersome; with the bisimulation techniques currently
available, a proof requires an infinite relation. Even in the case of environmental
bisimulation, where a form of ‘up-to context’ is available, the relation used in
[42] for the same example is infinite because, intuitively, the values emitted, A
and B, have to be stored in an environment, and can then be played back at any
time, possibly several times. What makes the difference is that contractions here
allow us to extract a common context that incorporates the prefix for the initial
action (cf. the contraction for the variable X). In contrast, in ‘up-to context’
techniques for bisimulation, contexts are only removed from the derivatives,
after firing an initial prefix.

30

11 Further related work

Milner’s theorem about unique solution of equations stems from an axiomatisa-
tion of bisimulation on finite-state processes [26]. Indeed, in axiomatisations of
behavioural equivalences [24, 3], the corresponding rule plays a key role and is
called fixed-point rule, or recursive specification principle; see also [33], for trace
equivalence. The possible shapes of the solutions of systems of equations, in
connection with conditions on the guardedness of the equations, is studied by
Baeten and Luttik [5]; the setting, however, in contrast with our paper, is that
of strong behavioural equivalences.

Unique solution of equations has been considered in various settings, includ-
ing languages, algebraic power series and pushdown automata (see the surveys
[20, 29]), as well as in coalgebras (e.g., [23]). These models, however, may not
have the analogous of ‘internal step’, around which all the theory of contrac-
tions is built. In functional languages, unique solution of equations is sometimes
called ‘unique fixed-point induction principle’. See for instance [39], in which
the conditions resembles Milner’s conditions of Theorem 2.8, and [18], which
studies equations on streams advocating a condition based on the notion of
‘contractive function’ (the word ‘contraction’ here is unrelated to its use in our
paper). In automata theory and formal languages, Arden’s Rule (or Lemma)
[1] is widely used for deriving the languages accepted by automata and manip-
ulating regular expressions via solutions to equations. Conditions on the empty
word are needed to guarantee guardedness of the equations and hence unicity of
a solution (one may see similarities between the empty word of automata and
the τ actions of processes, see the discussion in the next section).

A tutorial on bisimulation enhancements is [32]. ‘Up-to context’ techniques
have been formalised in a coalgebraic setting, and adapted to languages whose
LTS semantics adheres to the GSOS format [6]; see for instance [7], which uses
lambda-bialgebras, a generalisation of GSOS to the categorical framework.

The techniques in Section 9, transporting the bisimulation proof method and
some of its enhancements onto non-coinductive equivalences, remind us of tech-
niques for reducing non-coinductive equivalences to bisimilarity. For instance,
trace equivalence on nondeterministic processes can be reduced to bisimilarity on
deterministic processes, following the powerset construction for automata [17]; a
similar reduction can be made for testing equivalence [10]. These results rely on
transformations of transitions systems, which modify the nondeterminism and
the set of states, in such a way that a given equivalence on the original systems
corresponds to bisimilarity on the altered systems. In contrast, in the techniques
of Section 9 the transformation of processes is performed dynamically, alongside
the bisimulation game: two processes are manipulated only when necessary, i.e.,
when their immediate transitions would break the bisimulation game.

In CSP [15], some beautiful results have been obtained in which systems of
equations have unique solutions provided their least fixed point (intuitively ob-
tained by infinite unfolding of the equations) does not contain divergent states;
see [35, 36]. In CSP the semantics has usually a denotational flavour and, most
important, the reference behavioural equivalence, failure equivalence, is diver-
gent sensitive. As mentioned in Section 8, currently we do not know how to
handle divergence in the theory of contractions, as divergence is not a finitary
observable. We note however that (at least in the equivalences considered in
the paper) unique solution of contractions holds in cases where the infinite un-

31

folding of the contractions would introduce divergence: e.g., the contractions
of Example 3.11, as well as the contractions employed in the examples about
the lazy and eager servers (where divergence may appear if, in the interaction
protocol with a client, the main server is called back).

12 Conclusions and future work

In this paper we have presented operational techniques, based on the idea of con-
traction, for proving weak behavioural equivalences, that is, equivalences that
abstract from internal moves. We have focused on concurrent languages but the
techniques are not meant to be specific to concurrency. We have illustrated the
techniques with bisimulation, the most natural ground of application, discussing
also completeness. We have then shown that the technique of unique solution of
contractions can be transported onto other equivalences, with finitary observ-
ables (e.g., contextual equivalence, barbed congruence, trace equivalence). We
have also seen that the contraction preorders can be injected into the bisimula-
tion game. In the case of bisimulation, this leads to a (minor) improvement of
an existing technique, namely ‘bisimulation up-to expansion and context’. The
case of non-coinductive or contextual equivalences such as contextual equiva-
lence is more interesting: we can use the bisimulation proof method (enhanced
with up-to context) for reasoning on these equivalences, combined with alge-
braic laws for manipulating states whose immediate transitions would break the
bisimulation game. Such techniques allow us, implicitly, to transfer ‘up-to con-
text’ forms of reasoning, originally proposed for labeled bisimilarities and their
proof method, onto equivalences that are contextual or non-coinductive.

As for the technique based on equations, so the technique based on contrac-
tions is meant to be used in combination with algebraic reasoning, on terms
whose behaviour is not finite or finite-state: the recursion on the contraction
variables captures the infinite behaviour of terms, and the proof that certain
processes are solutions is carried out with pure algebraic reasoning.

In comparison with equations, a drawback of unique solution of contractions
for an equivalence � is that the solutions are not �-interchangeable: it may be
that P is solution and Q is not, even though P � Q.

The proof of completeness of the ‘unique solution of contractions’ method
with respect to the bisimulation proof method uses the sum operator to express
the possible initial actions of a process. We would like to see how completeness
can be recovered in languages in which the sum operator is missing. One may
consider the introduction of an operator akin to sum, to be used only for writing
contractions. Also, we did not tackle completeness in equivalences other than
bisimilarity.

We have related the contraction technique to bisimulation enhancements
such as ‘up-to expansion and context’. While powerful, these are not the only
possible enhancements. It would be interesting to see whether other enhance-
ments can be captured using contractions or similar notions.

We would like to understand on which behavioural equivalences the tech-
nique of unique solution of contractions works. We mentioned in Section 8 that
it seems to work if the observables of the equivalence are finitary. More experi-
mentation is needed to clarify this point, and formalise appropriate conditions.
A first candidate for further experiments could be fair-must testing [28, 34].

32

In the example with a higher-order language, we have applied the most
basic contraction techniques — those for contextually-defined equivalences. The
use of other contraction techniques requires further investigation. Such study
may shed light on the applicability of up-to context techniques to higher-order
languages. In a higher-order language, while there are well-developed techniques
for proving that a bisimulation is a congruence [31], up-to context is still poorly
understood [22, 21, 19, 42, 30]. For instance, for pure λ-calculi and applicative
bisimilarity, the soundness of the full up-to context technique (allowing one
to remove any context, possibly binding variables of the enclosed terms) still
represents an open problem.

Another setting in which up-to context techniques have been recently applied
is that of language equivalence for automata, see e.g., [8, 37]. The technique
we have developed in this paper are for languages with internal moves. In the
case of automata, a τ -action could correspond to the empty word, which is
absorbed in concatenations of words, in the same way as τ -actions are absorbed
in concatenation of traces. However, taking into account the way the empty
word (or the empty language) and τ -steps are used, the analogy seems light. It
is unclear whether contractions could be useful on automata.

Our original motivation for studying contractions was to better understand
‘up-to context’ enhancements of the bisimulation proof method and their sound-
ness. More broadly, the goal of the line of work reported is to improve our under-
standing of bisimilarity and the proof techniques for it, including the possibility
of exporting the techniques onto other equivalences.

Acknowledgments

I have benefited from discussions with Luca Aceto, Jos Baeten, Filippo Bonchi,
Matthew Hennessy, Bill Roscoe, David Sands, and from the comments of the
anonymous referees. This work has been partially supported by the ANR project
12IS02001 ‘PACE’, and the MIUR-PRIN project ‘CINA’.

References

[1] D.Ñ.Ãrden. Delayed logic and finite state machines. Theory of Computing
Machine Design, 1–35, Univ. of Michigan Press, USA, 1960.

[2] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes.
Acta Informatica, 29:737–760, 1992.

[3] J.C.M. Baeten, T. Basten, and M.A. Reniers. Process Algebra: Equational
Theories of Communicating Processes. Cambridge University Press, 2010.

[4] Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. Ready-trace
semantics for concrete process algebra with the priority operator. Comput.
J., 30(6):498–506, 1987.

[5] Jos C. M. Baeten and Bas Luttik. Unguardedness mostly means many
solutions. Theor. Comput. Sci., 412(28):3090–3100, 2011.

[6] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journal
of the ACM, 42(1):232–268, 1995.

33

[7] Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. Coin-
duction up to in a fibrational setting. Proc. LICS’14, to appear., 2014.

[8] Filippo Bonchi and Damien Pous. Checking nfa equivalence with bisimula-
tions up to congruence. In Roberto Giacobazzi and Radhia Cousot, editors,
Proc. POPL’13, pages 457–468. ACM, 2013.

[9] Filippo Bonchi, Fabio Gadducci, and Giacoma V. Monreale A General The-
ory of Barbs, Contexts, and Labels ACM Trans. Comput. Log., 15(4):35:1–
35:27, 2014.

[10] Rance Cleaveland and Matthew Hennessy. Testing equivalence as a bisim-
ulation equivalence. Formal Asp. Comput., 5(1):1–20, 1993.

[11] R. De Nicola and R. Hennessy. Testing equivalences for processes. Theo-
retical Computer Science, 34:83–133, 1984.

[12] R.J. van Glabbeek. The linear time—branching time spectrum II (the
semantics of sequential systems with silent moves). In E. Best, editor,
Proc. CONCUR ’93, volume 715. Springer Verlag, 1993.

[13] R.J. van Glabbeek. The linear time—branching time spectrum I. In
A. Ponse J. Bergstra and S. Smolka, editors, Handbook of Process Alge-
bra, pages 3–99. Elsevier, 2001.

[14] J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence. Information and Computation, 100:202–260,
1992.

[15] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[16] K. Honda and N. Yoshida. On reduction-based process semantics. Theo-
retical Computer Science, 152(2):437–486, 1995.

[17] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-
Wesley, Boston, MA, USA, 2006.

[18] G. Hutton and M. Jaskelioff. Representing Contractive Functions on
Streams. Submitted, 2011.

[19] Vassileios Koutavas and Mitchell Wand. Small bisimulations for reasoning
about higher-order imperative programs. In Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 141–152, 2006.

[20] Michal Kunc. Simple language equations. Bulletin of the EATCS, 85:81–
102, 2005.

[21] S.B. Lassen. Relational reasoning about contexts. In Higher-order opera-
tional techniques in semantics, pages 91–135. Cambridge University Press,
1998.

[22] S.B. Lassen. Bisimulation in untyped lambda calculus: Böhm trees and
bisimulation up to context. Electr. Notes Theor. Comput. Sci., 20:346–
374, 1999.

34

[23] S. Milius, L.S̃. Moss, and D. Schwencke. Abstract GSOS rules and a modu-
lar treatment of recursive definitions. Logical Methods in Computer Science,
9(3), 2013.

[24] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[25] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor,
Proc. 19th ICALP, volume 623 of Lecture Notes in Computer Science, pages
685–695. Springer Verlag, 1992.

[26] Robin Milner. A complete axiomatisation for observational congruence of
finite-state behaviors. Inf. Comput., 81(2):227–247, 1989.

[27] James H. Morris. Lambda-Calculus Models of Programming Languages.
Phd thesis MAC-TR-57, M.I.T., project MAC, Dec. 1968.

[28] V. Natarajan and Rance Cleaveland. Divergence and fair testing. In Pro-
ceedings of ICALP’95, volume 944 of Lecture Notes in Computer Science,
pages 648–659. Springer Verlag, 1995.

[29] Ion Petre and Arto Salomaa. Algebraic systems and pushdown au-
tomata. In Handbook of Weighted Automata, EATCS Series, pages 257–289.
Springer, 2009.

[30] Adrien Piérard and Eijiro Sumii. Sound bisimulations for higher-order dis-
tributed process calculus. In Martin Hofmann, editor, Proc. FOSSACS, vol-
ume 6604 of Lecture Notes in Computer Science, pages 123–137. Springer,
2011.

[31] Andrew Pitts. Howe’s method. In Davide Sangiorgi and Jan Rutten, ed-
itors, Advanced Topics in Bisimulation and Coinduction. Cambridge Uni-
versity Press, 2012.

[32] Damien Pous and Davide Sangiorgi. Enhancements of the bisimulation
proof method. In Davide Sangiorgi and Jan Rutten, editors, Advanced Top-
ics in Bisimulation and Coinduction. Cambridge University Press, 2012.

[33] Alexander Moshe Rabinovich. A complete axiomatisation for trace congru-
ence of finite state behaviors. In Stephen D. Brookes, Michael G. Main,
Austin Melton, Michael W. Mislove, and David A. Schmidt, editors, Proc.
9th MFPS, volume 802 of Lecture Notes in Computer Science, pages 530–
543. Springer, 1993.

[34] Arend Rensink and Walter Volger. Fair testing. Information and Compu-
tation, 205:125–198, 2007.

[35] A. W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.

[36] A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.

[37] Jurriaan Rot, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Coin-
ductive proof techniques for language equivalence. In Adrian Horia Dediu,
Carlos Mart́ın-Vide, and Bianca Truthe, editors, Proc. LATA, volume 7810
of Lecture Notes in Computer Science, pages 480–492. Springer, 2013.

35

[38] D. Sangiorgi. Locality and true-concurrency in calculi for mobile processes.
In TACS’94, volume 789 of Lecture Notes in Computer Science, pages 405–
424. Springer, 1994.

[39] David Sands. Computing with Contexts: A simple approach. ENTCS,
volume 10, Elsevier, 1998.

[40] D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In
W.R. Cleveland, editor, Proc. CONCUR ’92, volume 630 of Lecture Notes
in Computer Science, pages 32–46. Springer Verlag, 1992.

[41] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[42] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental
bisimulations for higher-order languages. ACM Trans. Program. Lang.
Syst., 33(1):5, 2011.

36

