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Abstract

CHEBYSHEV COEFFICIENTS FOR
L1-PREDUALS AND FOR SPACES

WITH THE EXTENSION PROPERTY

JOSÉ M . BAYOD AND M . CONCEPCIÓN MASA

We apply the Chebyshev coefficients Af and Ab, recently introduced by
the authors, to obtain some results related to certain geometric properties
of Banach spaces . We prove that a real normed space E is an Ll-predual
if and only if \ f(E) = 1/2, and that if a (real or complex) normed space
E is a 'P, space, then Ab(E) equals Ab(K), where oá is the ground field of
E.

In this note, IK will be the real or complex field, and E a normed space over
IK ; when we want to state a result only for the real case or the complex case,
we will indícate it specificaly. We will use the notations of [2], to which we
refer for all concepts of the theory of normed spaces which may appear without
defining them here .

If S is a non empty subset of E, the number

r(S) = inf sup lix - y¡¡
YEE-ES

is called the Chebyshev radius of S, and b(S) denotes the diameter of S .

Deflnition . We will call the finite Chebyshev coeficient of E the real number

Af(E) = sup{r(S)/b(S) : S C E, S finite, b(S) > 0},

and the bounded Chebyshev coeficient of E the real number

Ab(E) = sup{r(S)/b(S) : S C E, 0 < b(S) < oo} .

It is easy to prove that, in general,

1/2 < Af(E) < Ab(E) < 1.
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Moreover, when E is finite dimensional, we have Af(E) = ab(E).

Specifically, the Chebyshev coefficients associated to the scalar fields are

Af(R) = Ab(R) = 1/2

,\f(C) = Ab(C) = 1/4.

Let us recall that a P,,(aá) space, where a is a real number greater than or
equal to 1, is a Banach space E for which any of following equivalent condition
holds :

(i) Given two Banach spaces, F and G, a linear isometry into,

	

: F --> G,
and a bounded linear operator, L : F -> E, there exists a bounded linear
operator L : G -+ E, which extends L, in the sense of L o 0 = L, and
such that JILII < aJILI1 (a-extension property) .

(ii) Given a Banach space F, and a linear isometry,

	

: E -+ F, there exists
a projection, P : F-+ O(E), such that JIPI¡ < a (a-projection property) .

It is said that a Banach space E is a Na space, where a is a real number
greater than or equal to 1, when there exists a collection (E.y ) .,Er of finite
dimensional subspaces of E, which is upwards directed, their union is dense in
E and every one of them is a Pa.(K) space. Note that a . Banach ..space is .an
Ll -predual space if and only if it is a N,, space for every a > 1 ([2, theorem 2,
pg . 232]) .

Theorem 1 . If ¡he Banach space E is an L1 -predual, then

af (E) = a f(K) .

Proof- We fix an a > 1 . Given that E is an Ll -predual, it is a Na space,
and, so, there exists a collection (Ej-,Er of subspaces of E according to the
definition above . We put F= U E,, which, because it is dense in E, satisfies

yEr
af(E) = af(F).

Let S be a finite subset of F with more than one point . There exists y E P
such that S C E.y , and, if we indícate with subíndices the Chebyshev radii in
subspaces of E, we have

r(S) = r, (S) :5 re, (S) :5 b(S).Af(E-,) :5 b(S) .a.af(K),

where the last inequality is due to E, E P,,(IK) .
Therefore, Af(E) = af(F) < a.Af(K), for every a > 1, so Af(E) < Af(K) .

On the other hand, by the Hanh-Banach theorem, there exists a projection
of norm 1 from E to K, so af(K) < af(E) .

If *E is a non-standard enlargement of E, then, over the set fin*E = {x E
*E : 3y E E, lix - y¡¡ is a finite hyperreal number} of the finite elements of *E,
consider the equivalence relation "x is infinitely close to y", denoted by x - y,
and defined by "l[x - y¡¡ is infinitesimal" . In the quotient set, denoted E, the
norm ¡IxII = stlixil, í E E, is defined, and the resulting normed space is called
an infinitesimal hull of E.
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Lemma 2. Af(É) = Af(E).

Proof.. Let S be a finite subset of E with more than one point . Then, S is a
finite subset of fin*E without infinitely Glose points .

It is obvious that 6(S) = 6(S) and r(S) < r(S) . We suppose that r(S) <
r(S), and take a real number t such that r(S) < t < r(S) . Then, there exists
c E fin*E such that S C B[c, t], and so, lix - cil < r(S) for every x E S . Since
S is finite, *S = S, and we have a c E *E such that lix - cil < r(S) for every
x E *S . Applying the Transfer Principle, there exists a standard element c E E
such that lix - cil < r(S) for every x E S, and again because S is finite, this
would imply S C B[c, p], with p = mS lix - cil < r(S) .

	

Therefore, it is true

r(S) = r(S) and we conclude A f(E) < Af (E) .
Let S be now a finite subset of fin*E with some points not infinitely Glose .

Then, S is a *-finite subset of *E with some points not infinitely Glose and S is
a finite subset of E such that 6(S) -*6(S) .

Since the relation r(T) < 6(T) .Af(E) is true for every finite subset T of E,
by the Transfer Principle, we have *r(T) <_*6(T).Af(E) for every *-finite T,
and, in particular, *r(S) <*6(S) .Af(E) - 6(S) .Af(E).

Let t be a hiperreal number such that t >*r(S), t - 6(S),Af(E) . There
exists a c E *E such that S C B[c, t], and then,

Iix - ¿Ii = stjjx - cil - lIx - cil < t'- 6(S) .Xf(E), tlx E S.

Since the first and last members are standard, we have 11 i-c11 < 6(S) .Af(E),
for every x E S, so that r(S) < 6(S).Af(E), and we conclude Af(E) < Af(E).

Theorem 3 . If E is a real Banach &pace such that Af(E) = 1/2, then E is
an Ll -predual.

Proof: We consider an infinitesimal hull E of E. Then, E has the radial
intersection property (2,4), that is, given four closed balls in E with the &ame
radius, which intersect in pairs, the total intersection is non empty.

Indeed, let p be a positive real number, and let xl, í2, i3, 24 E E, such
that II .ii - xi il < 2p, for i,j = 1, 2, 3, 4 . We take S = {xi, i2, ,i3, ¡J, a finite
subset of E with 6(S) _< 2p, and, so, r(S) _< p. For every natural number
p, there exists cp E E such that Iixi - Q¡ < p + (1/2p), for i = 1, 2, 3, 4,
and, consequently, there exists cp E fin*E such that lixi - CP11 < p + (1/p),
for i = 1, 2, 3, 4 . We consider now the sequence (cp)PEN in *E, which can be
enlarged to an internal sequence (cp)pE*rN in *E . The set of index p E *h1 such
that lixi -cp jj < p+(1/p), for i = 1, 2, 3,4 is an internal subset of *N containing
all standard natural numbers, and, so, if we work in a suitably saturated model
(cf . [3]), it contains an infinite index, w E *NI . Then, the element c,, E *E is
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finite, because Ilxi - cw ll <_ p, so that we can take c�, E E thus verifying that
j1x i - c u, 11< p, for i = 1, 2, 3, 4.

Therefore, E is an L1 -predual ([2, theorem 6, pg . 212]), that is, E' is an Ll
space . Projecting E' over E' by means of the functiori T E É' -> TSE E E', we
have that E' is also an Li space ([2, theorem 3, pg . 1620, and then E is an
Ll -predual .

Lemma 4. ab(E) is the infmum of the positive real numbers r such that for
every -y > 0, whenever (xcJaEI C E is a y-Cauchy net (that is, given e > 0,
there exists ceo E I such that lixa - xpll < -y + e, for every pair of subíndices
a, ,p E I greater ¡han or equal to ao), (xcjcrEI has some ry-limit x in E (that
is, given e > 0, there exists ao E I such that Iix a - xjj <_ ry -I- e, for every
subindex a E I greater than or equal to ao) .

Proof.. Let S be a bounded subset of E, with more than one point . For every
natural númber n, we consider S(n) = S x {n} and the bijection

x r-r x(n) = (x, n) .

We take now I = U S(n) with the order relation
nEN

a < p

	

a = /0 V (a = x(n), ,Q = y(-), n < m),

which makes I a directed set . Over it, we build the net (xa)aC-I defined by
x, = x if a E I is such that a = x(n), for some n E N . Thus, (xa)aEI ls a
6(S)-Cauchy net in E, with range S, and such that for every y E S and every
a E I, there exists a /3 E I, /i >_ a, which satisfies xp = y, that is, for every
y E S there exists and infinite index 0 which satisfies xp = y .
We call A'(E) the infimum of the positive real numbers r such that for every

y > 0, every y-Cauchy net has an ry-limit in E, and let t be greater than
a'(E) . The previously builded net (xa)aEI has a t6(S)-limit x E E, and, so,
Ilx a - xil ;5 tó(S) for every infinite índex a . Hence, we have ¡¡y - xjj S t6(S)
for every y E S, and, because both members are standard, lix - y¡¡ < t6(S) for
every y E S, that is, S C E[s,tb(S)j . Thus, r(S) <_ t6(S) for every t > A'(E),
and ab(E) < A'(E) .

Conversely, if (xa)arj is a
, .
-y-Cauchy net in E for some y > 0, we put S« _

{xp : 3 E I, fl >_ a}, for every a E I . Thus, every set SI is bounded and we
can suppose that it has more than one point (otherwise the proof is trivial) ;
therefore, given e > 0, there exists a E I such that ó(Sa ) < y+e/Ab(E) . Then,

r(Sa) :5 ó(Sa) .Aj(E) < (y + e/Ab(E))-ME) = - Y- ,\b(E) + e,

and, so, there exists, cE E E such that Iixp-ce¡¡ <_ y,Ab(E)+e for every ,Q > a .
Hence, cE is a (y.Ab(E) -I- e)-limit of (xa)aEI, and, since this is true for every
e > 0 and for every y-Cauchy net in E, it follows that A'(E) < Ab(E) .
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Theorem 5. If E is a P1(K) space, then Ab(E) = Ab(K) .

Proof. If we embed K into E by means of a linear isometry, identifying it
with a onedimensional subspace of E, the Hahn-Banach theorem assures the
existence of a projection of norm 1, P : E ---> K, whence we deduce Ab(K) <
Ab(E) .
We will prove the reciproca¡ inequality in several stages :
(I) In the first place, we observe that if E E Pl(K) and E is an infinitesi-

mal hull of E, then Ab(E) <_ Ab(E), because, considering the canonical linear
isometry E --+ E, there exists a contractive projection E -+ E.

(II) Let F be a non empty set . We denote by P0(I', K) the set of all bounded
functions from F to K, with the uniform norm . Giving to r the discrete to-
pology, we know that 1°°(r, K) is linearly isometric to the space C(fI', K) of
continuous functions with values in K defined over the Stone-Cech compactifi-
cation of r ; so, l00(17,K) E PI(K) ([2]), and Ab(100(r , K)) < ab(¡-(r,K)), by
(I) .

(III) We suppose that F is a finite set . We will prove that, in this case,
Ab(1'(17, K)) < Ab(K) .
Because 100(17, K) is a finite dimensional, we know that its bounded and finite

Chebyshev coefficients are equal, as are those of K .
Let p be a real number, p > Af(K), and let S = {xl. . . . . . xx,,} be a finite

subset of 1 0° (17, K) . Fixed ^y E F, we consider the finite subset of K S7 =
{xl (y), . . . , x .(-y)} ; then, r(Sy)/S(S7) < Af(K) < p, and

r(S .y ) < p.ó(S .,) = p .

	

max

	

I xi(y) - xi(y)j < p.

	

max

	

11xi - xj1l = p .b(S) .
1<i, j<n

	

1 :5i, ,1<n

Then, there exists a centre c, E K such that S 7 C B[c7 , p.b(S)] C K . We
define thus a function from F in K which associates c ., to every -y, and which
satisfies

Ilxi - cil = sup Ixi( -y) - cl C p.b(S), i = 1, . . . , n,
YEr

so that S C B[c, p.b(S)] C 100 (17, K) . Therefore, r(S) < p.b(S), and we conclude
A f(l'(r

K))
< Af (K) .

(IV) The inequality Ab(100(F , K)) < Ab(K) is valid also when F is an infinite
set .

Indeed, let (xa)aEI be a y-Cauchy net in 1 00(F,K), for y > 0 . We take
Xo = K U F U I in order to build a superstructure X with base Xo and over
it a polysaturated nonstandard model satisfying the Ro-isomorphism property
(cf . [3, sec . 0.4 .]) . In this case, we can identify ¡00 (17, K) to ¡00(w, K), for
every infinite natural number w, since ¡'(w, K) is isometrically isomorphic to
¡00 (INI,K), and this is so to ¡00(I',K) ([4, theorem 2.11]) .

Let p be a natural number . There exists an index ap E I such that
Ilxa - xp11 < y + 1/(2p), when a�0 E `I, a,/l > ap . We consider the set
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S = {x,, : a E *I,a >_ ap }, an internal *-bounded subset of 1°° (w, K), where
we can apply (III), and so

*r(S)l*6(S) < I\b(K)
*r(S) < a b (K)*6(S) < ab(K)(-Y+ 1/(2p)) < t,

where t = Ab(K)(-y -F- 1/p) .

	

Since *r(S) < t, there exists cp E 1°°(w, IK) such
that S C B[cp , t] and cp E l-(w, K) = l-(I', K) satisfies

	

cp ll < t, for
aEI,a>a p .

Bearing in mind that 1°°(I',IK) E Pj(IK), consider the natural embedding
1°°(I', IK) --> Í'(I', VK) ; then, there exists a projection of norm 1, P : (I', IK) ->
1-(r, K), and x = P(cp ) is an element of 1'(I',OK)`which satisfies

lix« - xjj = IIP(xa) T P(cjj C j1xa - Ql < t, a E I, a > ap .

Thus, for every p > Ab(K), taking a p E N greater than the real number
Ab(K)/y(P - Ab(K)), we Nave

IIx« - XII < ab(K)(y +
p)

< P7, a E I, a >_ ap,

that is, x is a p -y-limit of (xj,, in 1°°(I', Bá) .

	

Since this is valid for every y-
Cauchy net in 100(I',IK) and for any -y > 0 we conclude by Lemma 4 that
ab(1'(r,K)) _< ab(o-c) .

(V) Now, we can embed E linearly and isometrically into 1°°(E, IK) by means
of the application

0 :E -> 100(E, K)
x->¢(x) :E-~6á

y

	

O(x)(y) = fy(x)

where fy is a continuous linear functional from E to K which satisfies jjf y jj = 1
and fy (y) = 11yII, the existente of which is guaranteed by the Hahn-Banach
theorem . So, there exists a projection of norm 1, 1°°(E, IK) -> E, which permits
us to deduce the inequality Ab(E) < Ab(1°°(E,IK)), and, from the result in the
preceding paragraph, Ab(E) < Ab(K) .
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