CHEBYSHEV COEFFICIENTS FOR L¹-PREDUALS AND FOR SPACES WITH THE EXTENSION PROPERTY

JOSÉ M. BAYOD AND M. CONCEPCIÓN MASA

Abstract .

We apply the Chebyshev coefficients λ_f and λ_b , recently introduced by the authors, to obtain some results related to certain geometric properties of Banach spaces. We prove that a real normed space E is an L^1 -predual if and only if $\lambda_f(E) = 1/2$, and that if a (real or complex) normed space E is a \mathcal{P}_1 space, then $\lambda_b(E)$ equals $\lambda_b(\mathbb{K})$, where \mathbb{K} is the ground field of E.

In this note, K will be the real or complex field, and E a normed space over K; when we want to state a result only for the real case or the complex case, we will indicate it specificaly. We will use the notations of [2], to which we refer for all concepts of the theory of normed spaces which may appear without defining them here.

If S is a non empty subset of E, the number

$$r(S) = \inf_{y \in E} \sup_{x \in S} \|x - y\|$$

is called the Chebyshev radius of S, and $\delta(S)$ denotes the diameter of S.

Definition. We will call the finite Chebyshev coefficient of E the real number

$$\lambda_f(E) = \sup\{r(S)/\delta(S) : S \subset E, S \text{ finite, } \delta(S) > 0\},\$$

and the bounded Chebyshev coefficient of E the real number

$$\lambda_{\delta}(E) = \sup\{r(S)/\delta(S) : S \subset E, 0 < \delta(S) < \infty\}.$$

It is easy to prove that, in general,

$$1/2 \leq \lambda_f(E) \leq \lambda_b(E) \leq 1.$$

Moreover, when E is finite dimensional, we have $\lambda_f(E) = \lambda_b(E)$. Specifically, the Chebyshev coefficients associated to the scalar fields are

$$\lambda_f(\mathbf{R}) = \lambda_b(\mathbf{R}) = 1/2$$
$$\lambda_f(\mathbf{C}) = \lambda_b(\mathbf{C}) = 1/\sqrt{3}.$$

Let us recall that a $\mathcal{P}_{\alpha}(\mathbf{K})$ space, where α is a real number greater than or equal to 1, is a Banach space E for which any of following equivalent condition holds:

- (i) Given two Banach spaces, F and G, a linear isometry into, φ : F → G, and a bounded linear operator, L : F → E, there exists a bounded linear operator L̂ : G → E, which extends L, in the sense of L̂ ∘ φ = L, and such that ||L̂|| ≤ α||L|| (α-extension property).
- (ii) Given a Banach space F, and a linear isometry, $\phi : E \to F$, there exists a projection, $P : F \to \phi(E)$, such that $||P|| \leq \alpha$ (α -projection property).

It is said that a Banach space E is a N_{α} space, where α is a real number greater than or equal to 1, when there exists a collection $(E_{\gamma})_{\gamma \in \Gamma}$ of finite dimensional subspaces of E, which is upwards directed, their union is dense in E and every one of them is a $\mathcal{P}_{\alpha}(\mathbb{K})$ space. Note that a Banach space is an L^{1} -predual space if and only if it is a N_{α} space for every $\alpha > 1$ ([2, theorem 2, pg. 232]).

Theorem 1. If the Banach space E is an L^1 -predual, then

 $\lambda_f(E) = \lambda_f(\mathbb{K}).$

Proof: We fix an $\alpha > 1$. Given that E is an L^1 -predual, it is a N_{α} space, and, so, there exists a collection $(E_{\gamma})_{\gamma \in \Gamma}$ of subspaces of E according to the definition above. We put $F = \bigcup_{\gamma \in \Gamma} E_{\gamma}$, which, because it is dense in E, satisfies

 $\lambda_f(E) = \lambda_f(F).$

Let S be a finite subset of F with more than one point. There exists $\gamma \in \Gamma$ such that $S \subset E_{\gamma}$, and, if we indicate with subindices the Chebyshev radii in subspaces of E, we have

$$r(S) = \tau_{F}(S) \le \tau_{E_{\gamma}}(S) \le \delta(S) \cdot \lambda_{f}(E_{\gamma}) \le \delta(S) \cdot \alpha \cdot \lambda_{f}(\mathsf{K}),$$

where the last inequality is due to $E_{\gamma} \in \mathcal{P}_{\alpha}(\mathbb{K})$.

Therefore, $\lambda_f(E) = \lambda_f(F) \leq \alpha . \lambda_f(\mathbb{K})$, for every $\alpha > 1$, so $\lambda_f(E) \leq \lambda_f(\mathbb{K})$.

On the other hand, by the Hanh-Banach theorem, there exists a projection of norm 1 from E to K, so $\lambda_f(K) \leq \lambda_f(E)$.

If *E is a non-standard enlargement of E, then, over the set $fin^*E = \{x \in I^*E : \exists y \in E, ||x - y|| \text{ is a finite hyperreal number} \}$ of the finite elements of *E, consider the equivalence relation "x is infinitely close to y", denoted by $x \cong y$, and defined by "||x - y|| is infinitesimal". In the quotient set, denoted \hat{E} , the norm $||\hat{x}|| = st||x||, \hat{x} \in \hat{E}$, is defined, and the resulting normed space is called an infinitesimal hull of E.

Lemma 2. $\lambda_f(\hat{E}) = \lambda_f(E)$.

Proof: Let S be a finite subset of E with more than one point. Then, S is a finite subset of fin^{*}E without infinitely close points.

It is obvious that $\delta(\hat{S}) = \delta(S)$ and $r(\hat{S}) \leq r(S)$. We suppose that $r(\hat{S}) < r(S)$, and take a real number t such that $r(\hat{S}) < t < r(S)$. Then, there exists $c \in \text{fin}^*E$ such that $\hat{S} \subset B[\hat{c}, t]$, and so, ||x - c|| < r(S) for every $x \in S$. Since S is finite, *S = S, and we have a $c \in *E$ such that ||x - c|| < r(S) for every $x \in *S$. Applying the Transfer Principle, there exists a standard element $c \in E$ such that ||x - c|| < r(S) for every $x \in S$, and again because S is finite, this would imply $S \subset B[c, \rho]$, with $\rho = \max_{x \in S} ||x - c|| < r(S)$. Therefore, it is true $r(\hat{S}) = r(S)$ and we conclude $\lambda_f(E) \leq \lambda_f(\hat{E})$.

Let S be now a finite subset of fin^{*}E with some points not infinitely close. Then, S is a *-finite subset of *E with some points not infinitely close and \hat{S} is a finite subset of \hat{E} such that $\delta(\hat{S}) \cong^* \delta(S)$.

Since the relation $r(T) \leq \delta(T) \cdot \lambda_f(E)$ is true for every finite subset T of E, by the Transfer Principle, we have $r(T) \leq \delta(T) \cdot \lambda_f(E)$ for every *-finite T, and, in particular, $r(S) \leq \delta(S) \cdot \lambda_f(E) \cong \delta(\hat{S}) \cdot \lambda_f(E)$.

Let t be a hiperreal number such that t > r(S), $t \cong \delta(\hat{S})$, $\lambda_f(E)$. There exists a $c \in E$ such that $S \subset B[c, t]$, and then,

$$\|\hat{x} - \hat{c}\| = st \|x - c\| \cong \|x - c\| \le t \cong \delta(\hat{S}) \lambda_f(E), \forall \hat{x} \in \hat{S}.$$

Since the first and last members are standard, we have $\|\hat{x} - \hat{c}\| \leq \delta(\hat{S}) \lambda_f(E)$, for every $\hat{x} \in \hat{S}$, so that $r(\hat{S}) \leq \delta(\hat{S}) \lambda_f(E)$, and we conclude $\lambda_f(\hat{E}) \leq \lambda_f(E)$.

Theorem 3. If E is a real Banach space such that $\lambda_f(E) = 1/2$, then E is an L^1 -predual.

Proof: We consider an infinitesimal hull \hat{E} of E. Then, \hat{E} has the radial intersection property (2,4), that is, given four closed balls in \hat{E} with the same radius, which intersect in pairs, the total intersection is non empty.

Indeed, let ρ be a positive real number, and let $\hat{x}_1, \hat{x}_2, \hat{x}_3, \hat{x}_4 \in \hat{E}$, such that $\|\hat{x}_i - \hat{x}_j\| \leq 2\rho$, for i, j = 1, 2, 3, 4. We take $S = \{\hat{x}_1, \hat{x}_2, \hat{x}_3, \hat{x}_4\}$, a finite subset of \hat{E} with $\delta(S) \leq 2\rho$, and, so, $r(S) \leq \rho$. For every natural number p, there exists $\hat{c}_p \in \hat{E}$ such that $\|\hat{x}_i - \hat{c}_p\| < \rho + (1/2p)$, for i = 1, 2, 3, 4, and, consequently, there exists $c_p \in \text{fin}^*E$ such that $\|x_i - c_p\| < \rho + (1/p)$, for i = 1, 2, 3, 4. We consider now the sequence $(c_p)_{p \in \mathbb{N}}$ in *E , which can be enlarged to an internal sequence $(c_p)_{p \in \mathbb{N}}$ in *E . The set of index $p \in ^*\mathbb{N}$ such that $\|x_i - c_p\| < \rho + (1/p)$, for i = 1, 2, 3, 4 is an internal subset of $^*\mathbb{N}$ containing all standard natural numbers, and, so, if we work in a suitably saturated model (cf. [3]), it contains an infinite index, $\omega \in ^*\mathbb{N}$. Then, the element $c_{\omega} \in ^*E$ is

finite, because $||x_i - c_{\omega}|| \le \rho$, so that we can take $\hat{c}_{\omega} \in \hat{E}$ thus verifying that $||\hat{x}_i - \hat{c}_{\omega}|| \le \rho$, for i = 1, 2, 3, 4.

Therefore, \hat{E} is an L^1 -predual ([2, theorem 6, pg. 212]), that is, \hat{E}' is an L^1 space. Projecting \hat{E}' over E' by means of the function $T \in \hat{E}' \to T|_E \in E'$, we have that E' is also an L^1 space ([2, theorem 3, pg. 162]), and then E is an L^1 -predual.

Lemma 4. $\lambda_b(E)$ is the infimum of the positive real numbers r such that for every $\gamma > 0$, whenever $(x_{\alpha})_{\alpha \in I} \subset E$ is a γ -Cauchy net (that is, given $\varepsilon > 0$, there exists $\alpha_0 \in I$ such that $||x_{\alpha} - x_{\beta}|| \leq \gamma + \varepsilon$, for every pair of subindices $\alpha, \beta \in I$ greater than or equal to α_0), $(x_{\alpha})_{\alpha \in I}$ has some $r\gamma$ -limit x in E (that is, given $\varepsilon > 0$, there exists $\alpha_0 \in I$ such that $||x_{\alpha} - x|| \leq r\gamma + \varepsilon$, for every subindex $\alpha \in I$ greater than or equal to α_0).

Proof: Let S be a bounded subset of E, with more than one point. For every natural number n, we consider $S^{(n)} = S \times \{n\}$ and the bijection

$$S \longrightarrow S^{(n)}$$
$$x \longmapsto x^{(n)} = (x, n).$$

We take now $I = \bigcup_{n \in \mathbb{N}} S^{(n)}$ with the order relation

$$\alpha \leq \beta \Longleftrightarrow \alpha = \beta \lor (\alpha = x^{(n)}, \beta = y^{(m)}, n < m),$$

which makes I a directed set. Over it, we build the net $(x_{\alpha})_{\alpha \in I}$ defined by $x_{\alpha} = x$ if $\alpha \in I$ is such that $\alpha = x^{(n)}$, for some $n \in \mathbb{N}$. Thus, $(x_{\alpha})_{\alpha \in I}$ is a $\delta(S)$ -Cauchy net in E, with range S, and such that for every $y \in S$ and every $\alpha \in I$, there exists a $\beta \in I$, $\beta \geq \alpha$, which satisfies $x_{\beta} = y$, that is, for every $y \in S$ there exists and infinite index β which satisfies $x_{\beta} = y$.

We call $\lambda'(E)$ the infimum of the positive real numbers r such that for every $\gamma > 0$, every γ -Cauchy net has an $r\gamma$ -limit in E, and let t be greater than $\lambda'(E)$. The previously builded net $(x_{\alpha})_{\alpha \in I}$ has a $t\delta(S)$ -limit $x \in E$, and, so, $||x_{\alpha} - x|| \leq t\delta(S)$ for every infinite index α . Hence, we have $||y - x|| \leq t\delta(S)$ for every $y \in S$, and, because both members are standard, $||x - y|| \leq t\delta(S)$ for every $y \in S$, that is, $S \subset B[s, t\delta(S)]$. Thus, $r(S) \leq t\delta(S)$ for every $t > \lambda'(E)$, and $\lambda_{\delta}(E) \leq \lambda'(E)$.

Conversely, if $(x_{\alpha})_{\alpha \in I}$ is a γ -Cauchy net in E for some $\gamma > 0$, we put $S_{\alpha} = \{x_{\beta} : \beta \in I, \beta \geq \alpha\}$, for every $\alpha \in I$. Thus, every set S_{α} is bounded and we can suppose that it has more than one point (otherwise the proof is trivial); therefore, given $\varepsilon > 0$, there exists $\alpha \in I$ such that $\delta(S_{\alpha}) < \gamma + \varepsilon/\lambda_b(E)$. Then,

$$r(S_{\alpha}) \leq \delta(S_{\alpha}) \cdot \lambda_{b}(E) < (\gamma + \varepsilon/\lambda_{b}(E)) \cdot \lambda_{b}(E) = \gamma \cdot \lambda_{b}(E) + \varepsilon_{c}$$

and, so, there exists, $c_{\epsilon} \in E$ such that $||x_{\beta} - c_{\epsilon}|| \leq \gamma \cdot \lambda_{b}(E) + \varepsilon$ for every $\beta \geq \alpha$. Hence, c_{ϵ} is a $(\gamma \cdot \lambda_{b}(E) + \varepsilon)$ -limit of $(x_{\alpha})_{\alpha \in I'}$ and, since this is true for every $\varepsilon > 0$ and for every γ -Cauchy net in E, it follows that $\lambda'(E) \leq \lambda_{b}(E)$. **Theorem 5.** If E is a $\mathcal{P}_1(\mathbb{K})$ space, then $\lambda_b(E) = \lambda_b(\mathbb{K})$.

Proof: If we embed K into E by means of a linear isometry, identifying it with a onedimensional subspace of E, the Hahn-Banach theorem assures the existence of a projection of norm 1, $P: E \to K$, whence we deduce $\lambda_{\delta}(K) \leq \lambda_{\delta}(E)$.

We will prove the reciprocal inequality in several stages:

(I) In the first place, we observe that if $E \in \mathcal{P}_1(\mathbb{K})$ and \hat{E} is an infinitesimal hull of E, then $\lambda_b(E) \leq \lambda_b(\hat{E})$, because, considering the canonical linear isometry $E \to \hat{E}$, there exists a contractive projection $\hat{E} \to E$.

(II) Let Γ be a non empty set. We denote by $l^{\infty}(\Gamma, \mathsf{K})$ the set of all bounded functions from Γ to K , with the uniform norm. Giving to Γ the discrete topology, we know that $l^{\infty}(\Gamma, \mathsf{K})$ is linearly isometric to the space $C(\beta\Gamma, \mathsf{K})$ of continuous functions with values in K defined over the Stone-Čech compactification of Γ ; so, $l^{\infty}(\Gamma, \mathsf{K}) \in \mathcal{P}_1(\mathsf{K})$ ([2]), and $\lambda_b(l^{\infty}(\Gamma, \mathsf{K})) \leq \lambda_b(\hat{l}^{\infty}(\Gamma, \mathsf{K}))$, by (I).

(III) We suppose that Γ is a finite set. We will prove that, in this case, $\lambda_b(l^{\infty}(\Gamma, \mathbb{K})) \leq \lambda_b(\mathbb{K})$.

Because $l^{\infty}(\Gamma, K)$ is a finite dimensional, we know that its bounded and finite Chebyshev coefficients are equal, as are those of K.

Let ρ be a real number, $\rho > \lambda_f(\mathbf{K})$, and let $S = \{x_1, \ldots, x_n\}$ be a finite subset of $l^{\infty}(\Gamma, \mathbf{K})$. Fixed $\gamma \in \Gamma$, we consider the finite subset of $\mathbf{K} S_{\gamma} = \{x_1(\gamma), \ldots, x_n(\gamma)\}$; then, $r(S_{\gamma})/\delta(S_{\gamma}) \leq \lambda_f(\mathbf{K}) < \rho$, and

$$r(S_{\gamma}) < \rho.\delta(S_{\gamma}) = \rho. \max_{1 \le i, j \le n} |x_i(\gamma) - x_j(\gamma)| \le \rho. \max_{1 \le i, j \le n} ||x_i - x_j|| = \rho.\delta(S).$$

Then, there exists a centre $c_{\gamma} \in \mathbb{K}$ such that $S_{\gamma} \subset B[c_{\gamma}, \rho.\delta(S)] \subset \mathbb{K}$. We define thus a function from Γ in \mathbb{K} which associates c_{γ} to every γ , and which satisfies

$$\|x_i - c\| = \sup_{\gamma \in \Gamma} |x_i(\gamma) - c| \le \rho.\delta(S), i = 1, \dots, n,$$

so that $S \subset B[c, \rho.\delta(S)] \subset l^{\infty}(\Gamma, \mathbb{K})$. Therefore, $\tau(S) \leq \rho.\delta(S)$, and we conclude $\lambda_f(l^{\infty}(\Gamma, \mathbb{K})) \leq \lambda_f(\mathbb{K})$.

(IV) The inequality $\lambda_b(l^{\infty}(\Gamma, \mathbb{K})) \leq \lambda_b(\mathbb{K})$ is valid also when Γ is an infinite set.

Indeed, let $(x_{\alpha})_{\alpha \in I}$ be a γ -Cauchy net in $l^{\infty}(\Gamma, \mathbb{K})$, for $\gamma > 0$. We take $X_0 = \mathbb{K} \cup \Gamma \cup I$ in order to build a superstructure \mathcal{X} with base X_0 and over it a polysaturated nonstandard model satisfying the \aleph_0 -isomorphism property (cf. [3, sec. 0.4.]). In this case, we can identify $\hat{l}^{\infty}(\Gamma, \mathbb{K})$ to $\hat{l}^{\infty}(\omega, \mathbb{K})$, for every infinite natural number ω , since $\hat{l}^{\infty}(\omega, \mathbb{K})$ is isometrically isomorphic to $\hat{l}^{\infty}(\mathbb{N}, \mathbb{K})$, and this is so to $\hat{l}^{\infty}(\Gamma, \mathbb{K})$ ([4, theorem 2.11]).

Let p be a natural number. There exists an index $\alpha_p \in I$ such that $||x_{\alpha} - x_{\beta}|| < \gamma + 1/(2p)$, when $\alpha, \beta \in {}^*I, \alpha, \beta \geq \alpha_p$. We consider the set

 $S = \{x_{\alpha} : \alpha \in {}^*I, \alpha \geq \alpha_p\}$, an internal *-bounded subset of $l^{\infty}(\omega, \mathbf{K})$, where we can apply (III), and so

where $t = \lambda_b(\mathbb{K})(\gamma + 1/p)$. Since r(S) < t, there exists $c_p \in l^{\infty}(\omega, \mathbb{K})$ such that $S \subset B[c_p, t]$ and $\hat{c}_p \in \hat{l}^{\infty}(\omega, \mathbb{K}) = \hat{l}^{\infty}(\Gamma, \mathbb{K})$ satisfies $||\hat{x}_{\alpha} - \hat{c}_p|| < t$, for $\alpha \in I, \alpha \geq \alpha_p$.

Bearing in mind that $l^{\infty}(\Gamma, \mathbb{K}) \in \mathcal{P}_1(\mathbb{K})$, consider the natural embedding $l^{\infty}(\Gamma, \mathbb{K}) \to \hat{l}^{\infty}(\Gamma, \mathbb{K})$; then, there exists a projection of norm 1, $P : \hat{l}^{\infty}(\Gamma, \mathbb{K}) \to l^{\infty}(\Gamma, \mathbb{K})$, and $x = P(\hat{c}_p)$ is an element of $l^{\infty}(\Gamma, \mathbb{K})$ which satisfies

$$||x_{\alpha} - x|| = ||P(\hat{x}_{\alpha}) - P(\hat{c}_p)|| \le ||\hat{x}_{\alpha} - \hat{c}_p|| \le t, \alpha \in I, \alpha \ge \alpha_p.$$

Thus, for every $\rho > \lambda_b(\mathbb{K})$, taking a $p \in \mathbb{N}$ greater than the real number $\lambda_b(\mathbb{K})/\gamma(\rho - \lambda_b(\mathbb{K}))$, we have

$$\|x_{\alpha} - x\| \leq \lambda_{b}(\mathbf{K})(\gamma + \frac{1}{p}) < \rho\gamma, \ \alpha \in I, \ \alpha \geq \alpha_{p},$$

that is, x is a $\rho\gamma$ -limit of $(x_n)_n$ in $l^{\infty}(\Gamma, \mathbb{K})$. Since this is valid for every γ -Cauchy net in $l^{\infty}(\Gamma, \mathbb{K})$ and for any $\gamma > 0$ we conclude by Lemma 4 that $\lambda_b(l^{\infty}(\Gamma, \mathbb{K})) \leq \lambda_b(\mathbb{K})$.

(V) Now, we can embed E linearly and isometrically into $l^{\infty}(E, \mathbb{K})$ by means of the application

$$\phi : E \longrightarrow l^{\infty}(E, \mathbb{K})$$

$$x \longrightarrow \phi(x) : E \longrightarrow \mathbb{K}$$

$$y \longrightarrow \phi(x)(y) = f_{y}(x)$$

where f_y is a continuous linear functional from E to K which satisfies $||f_y|| = 1$ and $f_y(y) = ||y||$, the existence of which is guaranteed by the Hahn-Banach theorem. So, there exists a projection of norm 1, $l^{\infty}(E, K) \to E$, which permits us to deduce the inequality $\lambda_b(E) \leq \lambda_b(l^{\infty}(E, K))$, and, from the result in the preceding paragraph, $\lambda_b(E) \leq \lambda_b(K)$.

References

- BAYOD, J.M., MASA, M.C., Coeficientes de Chebyshev en espacios de funciones continuas, to appear in the Actas de las XIV Jornadas Hispano-lusas de Matemáticas, La Laguna, Spain (1989).
- [2] LACEY. H.E., "The Isometric theory of classical Banach spaces," Springer-Verlag, Berlin, Heidelberg, New York, 1974.

- [3] STROYAN, K.D., BAYOD, J.M., "Foundations of infinitesimal stochastic analysis," North-Holland, Amsterdam, 1986.
- [4] WARD HENSON, C., The isomorfism property in nonstandard analysis and its use in the theory of Banach spaces, *The Journal of Symbolic Logic* 39, 4 (1974).

1980 Mathematics subject classifications: 46B20, 46B25

Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria 39071 - Santander SPAIN

Rebut el 18 de Desembre de 1989