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CHEBYSHEYV COEFFICIENTS FOR
L-=PREDUALS AND FOR SPACES
WITH THE EXTENSION PROPERTY

JosE M. BAYOD AND M. CONCEPCION Masa

Abstract

We apply the Chebyshev coefficients A; and A, recently introduced by
the authors, to obtain some results related to certain geometric properties
of Banach spaces. We prove that a real normed space E is an L!-predual
if and only if A {E) = 1/2, and that if a {real or complex) normed space
E is a Py space, then Ay(E) equals A, (K}, where I is the ground field of
E.

In this note, & will be the real or complex field, and E a normed space over
K: when we want to state a result only for the real case or the complex case,
we will indicate it specificaly. We will use the notations of |2, to which we
refer for all concepts of the theory of normed spaces which may appear without
defining them here.

If S is a non empty subset of E, the number
r(S) = jgfgigg llz — #ll

is called the Chebyshev radius of S, and &(5) denotes the diameter of S.

Definition. We will call the finite Chebyshev coefficient of F the real number

Af{EY = sup{r{5)/6{5): § C E, § finite, §{5) > 0},
and the bounded Chebyshev coefficient of E the real number
Ao(E) = sup{r(S)/86(5): S C E, 0 < 8{5} < o0}.
It is easy to prove that, in general,

1/2 < AE) € M(E) € 1.
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Moreover, when E is finite dimensional, we have A{E) = M(E).
Specifically, the Chebyshev coefficients associated to the scalar fields are

Af(R) = Ao(R) = 1/2
A(C) = W(C) = 1/V3.

Let us recall that a P,{K) space, where « is a real number greater than or
equal to 1, is a Banach space E for which any of following equivalent condition
holds:

{i) Given two Banach spaces, F and G, a linear isometry into, ¢ : F — G,
and a bounded linear operator, L : F' — E, there exists a bounded linear
operator L : G — E, which extends L, in the sense of Log¢ =1, and
such that ||L|| € ol L|| {(«-extension property).

(ii} Given a Banach space F, and a linear isometry, ¢ : E — F, there exists
a projection, P : F — ¢(E), such that [|P}j < a («-projection property).

It is said that a Banach space E is a N, space, where o is a real number
greater than or equal to 1, when there exists a collection (E,)yer of finite
dimensional subspaces of E, which is upwards directed, their union is dense in
E and every one of them is a P,{K) space. Note that a Banach space is an
L*-predual space if and only if it is a N, space for every « > 1 ([2, theorem 2,

pg. 232)).

Theorem 1. If the Banach space E s an L!-predual, then
Af(E) = As(K).

Proof: We fix an & > 1. Given that E is an L!-predual, it is a N, space,
and, so, there exists a collection { £, ),er of subspaces of E according to the
definition above. We put F = |J E,, which, because it is dense in E, satisfies

yel
As(EY = Xs(F).
Let § be a finite subset of F' with more than one point, There exists y € T
such that § C E., and, if we indicate with subindices the Chebyshev radii in
subspaces of F, we have

H(S) = ro(8) < 1s, (S) < 6(S)A7(By) < 8(S).ar1(K),
where the last inequality is due to B, € P,{K).
Therefore, Af(E) = A{F) € a.Ag{K}, for every a > 1, so Af{E) < Ag(K}.

On the other hand, by the Hanh-Banach theorem, there exists & projection
of norm 1 from E to K, so A;(K) < Ay{E). B

If *E is a non-standard enlargement of E, then, over the set fin’FE = {z ¢ -
*E:3y € E, ||z — yi| is a finite hyperreal number} of the finite elements of *E,
consider the equivalence relation “z is infinitely close to y”, denoted by z =y,
and defined by “||z — y|| is infinitesimal”. In the quotient set, denoted E, the
norm ||£]| = stfiz|l, £ € E, is defined, and the resulting normed space is called
an infinitesimal hull of E.
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Lemma 2. Ap(E) = Af(E).

Proof: Let S be a finite subset of E with more than one point. Then, Sis a
finite subset of fin"F without infinitely close points.

It is obvious that §(3) = 8(S) and r{§) < r(8). We suppose that r($) <
r(S), and take 2 real number ¢ such that #($) < t < r{$). Then, there exists
¢ € fin*E such that § C B[, 1], and so, ||z — ¢[| < r{8) for every z € §. Since
S is finite, S = §, and we have a ¢ € *F such that |z — ¢|} < r{S) for every
z € *5. Applying the Transfer Principle, there exists a standard element c € E
such that ||z — ¢|| < »(5) for every z € §, and again because S is finite, this
would imply S C B¢, p], with p = rilg.g][x —¢]| < r{S}. Therefore, it is true

#(8) = r(S) and we conclude AM(EYV £ )\f(}_:_,').

Let § be now a finite subset of fin"F with some points not infinitely close.
Then, 5 is a *-finite subset of *E with some points not infinitely close and § is
a finite subset of £ such that §{(5) =*6(S).

Since the relation #{T} < §{T).A;(E)} is true for every finite subset T of E,
by the Transfer Principle, we have *(T) <*§(T).A;(E} for every *-finite T,
and, in particular, ¥(5) <*6(S).A;(E) 2 §(5).) f(E).

Let t be a hiperreal number such that ¢ >*r(S), t = §(5),Af(E). There
exists a ¢ € *E such that § C Ble, ], and then,

& —éll =stllz~c|| 2 flz—clf St = 6(5).A((E), Yz € §.

Since the first and last members are standard, we have || —éf| < 6(S).AH{E),
for every 3 € §, sa that r{$) < 6(8).As(E), and we conclude M(EY<S AHE). ®

Theorem 3. If E is a real Banach space suck that Aj(E) = 1/2, then E is
an L'-predual.

Proof: We consider an infinitesimal hull £ of E. Then, E has the radial
intersection property (2,4), that is, given four closed balls in E with the same
radius, which intersect in pairs, the total intersection is non empty.

Indeed, let p be a positive real number, and let £, %o, #2, 34 € E, such
that |2 — ;]| < 2p, for ¢,7 = 1,2,3,4. We take § = {£,;,#3,24}, a finite
subset of E with §(S) < 2p, and, so, r{5} < p. For every natural number
p, there exists & € E such that 1Z: — &l < 2+ (1/2p), for ¢ = 1,2,3,4,
and, consequently, there exists ¢, € fin"E such that ||z; — ol < p+(1/p),
for 1 = 1,2,3,4. We consider now the sequence (c,)}pen in *E, which can be
enlarged to an internal sequence (¢, )pee in *E. The set of index p € *N such
that ||z, — 6]l < p+(1/p), for i = 1,2,3,4 is an internal subset of *N containing
all standard natural numbers, and, so, if we work in & suitably saturated model
(cf. [3]), it contains an infinite index, w € *N. Then, the element ¢, € *E is
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finite, because ||zi — cu|| £ p, so that we can take &, € E thus verifying that
13 — 6]l < p, for i =1,2,3,4.

Therefore, E is an L!-predual ([2, theorem 6, pg. 212]), that is, E' is an L
space. Pro_]ectmg E’ over E' by means of the function T € B! = T|g € E', we
have that E’ is also an L? space ([2 theorem 3, pg. 162]}, and then E is an
L'.-predual. B

Lemma 4. Ay{E) ts the infimum of the positive real numbers r such that for
every ¥ > 0, whenever (%o)aer C E is ¢ y-Couchy net (that is, given € > 0,
there exists ap € I such that ||z4 — zg]| £ ¥ + ¢, for every porr of subindices
a, B € I greater than or equel 1o ag), (zo)aci has some ry-limit 2 in E (that
is, given € > 0, there exists ag € I such thet |z, — z|| € ry + ¢, for every
subindex o € I greater then or egual to ao )

Proof: Let § be a bounded subset of F, with more than one point. For every
natural number n, we consider 5" = § x {n} and the bijection

§— 5

z+— 2 = (z,n),

We take now I = {J 5(7) with the order relation
negh

a<fe=a=fvia=:"=y"™ n<m)

which makes J a directed set. Over it, we build the net (z.)qer defined by
o = @ if & € [ is such that o = ™, for some n € N. Thus, (zo)acr 15 2
8(8)-Cauchy net in E, with range S, and such that for every y € S and every
a € I, there exists a ,3 € I, 8 > a, which satisfies zg = y, that is, for every
y € S there exists and infinite index 8 which satisfies zp = y.

We call M{E) the infimum of the positive real numbers r such that for every
4 > 0, every v-Cauchy net has an ry-limit in E, and let ¢ be greater than
XN{E). The previously builded net (z,}.¢s has a t8(5)-limit x € E, and, so,
(£a — 2|l 5 t8(8) for every infinite index &. Hence, we have ||y — z|| < t8(5)
for every y € S, and, because both members are standard, ||z — y|| < t8{S) for
every y € S, that is, § C B[s,t6{5)). Thus, r{5) < t&(5)} for every t > A (E),
and X{E) € N(E}.

Conversely, if {24 )aer is a v-Cauchy net in E for some v > 0, we put So =
{zg: B €1, 8> a)}, for every a € I. Thus, every set S, is bounded and we
can suppose that it has more than one point (otherwise the proof is trivial);
therefore, given € > 0, there exists @ € I such that §(S,) < v+¢e/M{E}. Then,

r(Sa) € 8(Sa)-A(E) < {7 + €/ 2 E))-As{ E) = 7. M(E) + &,

and, so, there exists, ¢, € E such that ||zg —c | € 7.0{E)+¢€ forevery 8 > a.
Hence, ¢, is a {7.5:(E) + £)-limit of {x4)qer and, since this is true for every
¢ > 0 and for every v-Cauchy net in E, it follows that A'(E} < A(E). 1
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Theorem 5. If E is a P {K} space, then A(E) = A(K).

Proof: f we embed K into F by means of 2 linear isometry, identifying it
with a onedimensional subspace of E, the Hahn-Banach theorem assures the
existence of a projection of norm 1, P : E — K, whence we deduce A (i} <
A E).

We will prove the reciprocal inequality in several stages:

{I) In the first place, we observe that if E € P;(K) and E is an infinitesi-
mal hull of E, then A(E) < Ay(E), because, considering the canonical linear
isometry B — E, there exists a contractive projection E—E.

(II} Let T’ be a non empty set. We denote by [™(T',K) the set of all bounded
functions from I' to &, with the uniform norm. Giving to I' the discrete to-
pology, we know that [°°(T',K} is linearly isometric to the space C(S,K) of
continuous functions with values in K defined over the Stone-Cech compactifi-
cation of T'; so, I°°(T, K} € P, (K) ({2]), and As{{>®°(T,K)} < As(I%°([,KK)), by
(I

(II1) We suppose that [ is a finite set. We will prove that, in this case,
A(I(T,K)) < A(K).

Because {°°(T", K} is a fintte dimensional, we know that its bounded and finite
Chebyshev coeflicients are equal, as are those of K.

Let p be a real number, p > A((K), and let § = {z1,...,z,} be a finite
subset of {®(F,K}. Fixed v € I', we consider the finite subset of K §, =
{22(V) -+ 2(M)]: then, 7(S,)/6(5,) € A(K) < p, and

r(Sy) < p.8(S4}) = p.  Jax lzi{v) — z5(%) < p  Jnax flzi — ;1| = p.6(S).

Then, there exists a centre ¢, € K such that §, C Ble,,p.8(5)) C K. We
define thus a function from T’ in i which asscciates ¢, to every v, and which
satisfies

lles — clf = sup|zu(7) — ¢ € p.8(S), i = 1,....m,
Tel

so that § C Ble, p.6(5)] C 1*°(",K). Therefore, 7{5} < p.6{5}, and we conclude
Ap(12(T,K)) < A p(K).

(IV) The inequality As({°°(I", i)} < As(KK) is valid alsc when I is an infinite
sef.

Indeed, let {z,)qes be a ¥-Cauchy net in I°°(0K), for v > ¢. We take
Xo =K UT U in order to build a superstructure X with base X and over
it a polysaturated nonstandard model satisfying the Ng-isomorphism property
(cf. [3, sec. 0.4.]). In this case, we can identify [°(I',K) to {®(w,K), for
every nfinite natural number w, since f‘”(w,l'() is isometrically isomorphic to
feo(N,K), and this is so to [°(T, K) ({4, theorem 2.11]).

Let p be a natural number. There exists an index a, € I such that
o — z5il < v + 1/(2p), when o,8 € *I, a,f > a,. We consider the set
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S ={z4:a € 'I,& > ap}, an internal *-bounded subset of {*(w,K), where
we can apply {III}, and so

n($)/6(S) < 3a(K)
(S) < MlK)B(S) < M(K)(7 + 1/(29)) < £,

where ¢ = A(KX7v + 1/p). Since *r(S) < ¢, there exists ¢, € [*{w,K) such
that § C Bley,t] and &, € [oo(w, K} = [, K) satisfies [|£a — & < t, for
a€l, a2 a,

Bearing in mind that {®(T',K) € P1(K), consider the natural embedding
1°(T, 1K) — {°°(T',K}; then, there exists a projection of norm 1, P : fo(T,K) -
1°°(I", K}, and z = P(&;) is an element of {*(I',K) which satisfies

lza — 2l = IP(£a) = P(EMN £ |lEa — &l €24 x € f, a2 ap.

Thus, for every p > M(K), taking a p € N greater than the real number
M)/ e — A{K)), we have

1
lze — zll < Ae{K){y+ };) <pvia€l,a>a,

that is, z is a py-limit of {z,)s in I°°(T,K). Since this is valid for every +-
Cauchy net in I®(T',K} and for any v > 0 we conclude by Lemma 4 that
A I7(T, K)) < Ae(K).

(V) Now, we can embed F linearly and isometrically into {**(E, ) by means
of the application .

¢ :E — I®(E.K)
x— ) E—0K
y —— #(z)(y) = fil<)

where f, is a continuous linear functional from E to K which satisfies ||fy]| = 1
and fy(y) = |lyll, the existence of which is guaranteed by the Hahn-Banach
theorem. So, there exists a projection of norm 1, [®(E,K) — E, which permits
us to deduce the inequality As{ F) < Ap{{®( E,K}), and, from the result in the
preceding paragraph, A{E) < A(K). B
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