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WEAK DIMENSION OF GROUP-GRADED RINGS

ANGEL DEL Rio

Abstract

We study the weak dimension of 2 gronp-graded ring using methods de-
veloped in [B1], [Q] and [R]. We prove that if B is a G-graded ring with
G locally finite and the order of every subgroup of & is invertible in R,
then the graded weak dimension of R is equal te the ungraded one.

One of the main problems in Group-Graded Ring Theory is to see when a
group-graded ring has a certain property if it has the similar graded property.
Several methods are available in the literature to study these problems. In
this paper we use and develop some of these methods to investigate the weak
dimension of group-graded rings.

If R is a (graded) ring, then w.dim(R) (resp, ¢r.w.dim({R)) will denote the
(graded) weak dimension of H. By [NV, A.1.2.19], gr.w.dim(R) < w.dim(R).
But the equality does not hold in general.

Let G be a group with identity ¢ and R = G e R, a G-graded ring.

A separability system [R] in R is a system {z9,¢ € G} of elements in the
center of K, satisfying the following axioms:

(S881) z¢ = 0 for almost all ¢ € G and EgGG 9 =1.

(852) For every g,k € G and every r € Ry, ra? = z™9r.

Note that if G is finite and the order of G is invertible in R,, then R has a
separabilily system.

M.D. Rafael has proved in [R] that if R has a separability system, then
graw.dim(R) = w.dim(R).

The main aim of this paper is to give conditions weaker than the existence
of a separability system in R which also imply the equality graw.dim(R) =
w.dim({R}. Explicity we prove that this holds when for every finitely generated
subgroup H of G the H-graded ring Ry = @yen Ry has a separability system
and one of the following conditions hold:

(1} R is gr-regular,
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(2) R is strongly graded.

{3) G is locally finite and the order of each finite subgroup of G is invertible
in R,.

When conditions (1} or (2) hold the conclusion follows with an easy argu-
iment. The third result needs more complicated methods which involves Cohen-
Montgomery Duality machinery {CM] as well as Rafael’s methods [R].

All rings considered in this paper are associative. By left R-module we will
mean left R-module with a spanning set, i.e. for every left R-module M we
assume RAM = M. :

We will write g M to emphasize that M is a left R-module.

For any (graded) ring R, R — mod (R — gr) will denote the category of
(graded) left R modules.

The (graded) weak dimension of a (graded) ring R is defined by R —mod,
{R—gr)ie. givenn >0, we will say that w.dim(R) < n (grw.dim(R) < n) if
for every M € R — maod, (R — gr) there exists (gr-) flat modules Fy,...  F, €
R —mod (R — gr) and an exact sequence

0= F, =+ Fo g —...—Fp—M—0

Recall that R is (graded) regular if and only if its {graded} weak dimension
is 0.

By [NV, Corollary A.I2.18} graw.dim{R) < wdim(R) for every
graded ring with unity R. But the equality does not hold in general. Indeed,
if R is a strongly graded ring with unity, then graw.dim(R) = w.dim(R,). In
particular, gr.aw.dim(R[G]) = w.dim(R), where R[G] is the group ring over G
with base ring R and the natural grading. However, the following well known
theorem due to contributions from M. Auslander {Au], O.E. Villamayor [V] and
1.G. Connell [C] characterizes the regular group rings.

Theorem 1 ([Au}, [V], [C]). The group ring R[G] is regular if and only
if R is regular, G is locally finite and the order of each finite subgroup of G 13
inverttble in R.

The following result due to M.D. Rafael [R] will be used in the sequel.

Theorem 2 [R)]. If the group-graded ring R has o separabibity system, then
graw.dim(R) = w.dim(R).
Proof: See [R; Theorem 3.5]., W

If R = ®,ecc Ry is a G-graded ring and H < G is a subgroup of G, then B m)
will denote the H-graded ring, R xy = @ren Ra-
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Proposition 3. Zet R = @,eoR, be a graded ring with unity. Assume that
for every finitely generated subgroup H < G, Ry has a separability system. If
one of the following conditions holds

{a) R is gr-reguler.
(b} R is strongly graded.
Then graw.dim(R) = w.dim(R).

Proof: (a) Let z € R. Then z € Ry for some finitely generated subgroup
Hof G. By Theorem 2, Ry is regular and hence there exists y € Ry such
that r = zyx.

(b) Since R is strongly graded, then gr.w.dim(R) = w.dim(R.) = grw.
dim(Rppy) = w.dim{Ry)) for every finitely generated subgroup H of G. Fi-
nally, note that R is isomorphic to the direct imit li_rp R(py where H ranges over

the finitely generated subgroups of G. Then, by [CE, VI Ex. 17], w.dim(R) <
sup{w.dim(Rimy) | H £ G 1. gen.} < gr.w.dim(R). &

Remarks. (1) Note that if R is strongly graded and for every finitely gener-
ated subgroup H of G, Ry has a separability system, then G is locally finite.
Indeed, let H be a finitely generated subgroup of G. Ry is also strongly
graded and, by [R, Lemma 3.2.1], it is also finitely graded. Therefore, H is
finite.

{2) The final argument of the proof of Proposition 3.b works whenever gr.w.
dim{Rgy) < gr.w.dim(R) for every finitely generated subgroup H of G. But,
unfortunately, this does not hold in general as the following example shows.

Example. Let & be 2 field and G = Z, the group with two elements. The
polynomial ring R = k{X1, X2,...,X,] on n commuting variables (n > 3) has
a G-grading associating to each variable degree 1. Then gr.w.dim(R) = n and
Ry = k[X;X;,1,5 = 1,2,... ,n] has infinite weak dimension.

The strong machinery of Cohen-Montgomery Duality Theorem [CM)] devel-
oped by D. Quinn [Q] and M. Beattie [B1] and [B2] will allow us to obtain a
more interesting resuit.

Let R = @46 R, be o G-graded ring with unity. Let Mg(R) denotes the set
of finite row and column matrices over R with rows and columns indexed by
elements of G.

If a € Mg(R) and z,y € G, then ofz,y) denotes the entry in the {(z,y)-
position of @. Mg(R) is a ring with the matrix ring product: If o, 8 € Mg(R)
and z,y € G, then

(aB)(z,y) =) a(z,2)B(z,y)

TEG

R can be embedded in Mg(R) by means of a ring homomorphism
R —+ Mg(R), that associates 7 to r € R, where #(z,y) = rpy-1 forallz,y € G.
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For every z € G, p, will denote the G x G-matrix that has 1 in the (z,z)-
position and zero elsewhere. For each finite subset X C G, px will denote the
idempotent px = Y _,ex Pz

The smash product R#G of R was defined by D. Quinn [Q] as the subring
of Mg(R) generated by R = {7 | v € R} and {ps | z € G}. M. Beattic [BI]
defined the generalized smash product as the subring {without unity)

R#G* = {a | a{z,y) =0 for almost all (z,y) € G x G}

of B#G. Note that if G is finite, R#G = R#G™ and if G is infinite, then
R#AG* is a left and right essential ideal of R#G.

We list without proof some properties of these rings.

{a) (Fp: }(8py) = (r82y-1 )Py, (s E R, T, ¥ € G

(b} Tgpz = Pyatg, (2,9 € G, 74 € Rg).

(c) {px | X finite subset of G} is a set of local units in R#G* (cf. [Ab]).
Thus R is a ring with local units both in the sense of [Ab] and [AM]. Therefore,
for every M € R#G* — mod and each m € M, there exists & finite subset
X C G such that pxm = m. Moreover, if pxm =m € Mand X CY CG,
then pym = m.

{d) There exists an equivalence of categories betweenr R—¢r and R#G* —mod
(see [B1, Theorem 2.6)). This equivalence associates the graded left R-module
®gecR(g) to RFG*. Therefore R#G" isa projective generator in R#G* —mod.

(&) There is a group homomorphism ~: G —s Mg{R) where g(z,y) = by 21y
for all g,z,y € G. Foranyr € R, g,z € G, FFg = f and szg = Pug.
Therefore G = {§ | ¢ € G} acts both on R#G and R#G* by conjugation.

Let us denote S = R#G*. For every subgroup H of G, SH is the subring of
Mg{R) generated by S and H = {h | h € H}. The property (e} implies that
SH is a skew group ring (without unit if G is infinite} of H over 3.

Since SH € § —mod, then {px } X C G finite} is also a set of Jocal units of
SH. Therefore, for any M € SH — mod and any m € M there exists XCG
finite such that pxm = m.

The following Lemma is a version of Maschke’s Theorem.

Lemma 4. Assume that G i3 locally finite and let H ke o fintte subgroup of
G such that |H|_1_€ R.. Then every M € SH —mod, is isomorphic to o direct
summand of s SH ®s M.

Proof: Let p: SH @s M — M be the epimorphism given by p{a ® m) =
am. We will construct a right inverse of p. Assume n = |H| and define
j: M — SH®s M asfollows: Let m € M and X a finite subset of G such
that pxm = m. Then

. 1 — -
Hmy=— 3 pxh ®pxa-thm
heH
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Let us note that j(m) does not depend on the choice of X. Indeed, let X' be
another finite subset of G such that px-m = m and consider ¥ the subgroup
of G generated by H U X UX'. For every he H

pyhT @ pyn-thm = pyh ' @ pyhpxm

= pyh 1 @ pypxp-1hm

=pyh~' @ pxj-1hm

= pyh Tpxs-1 @ pxa-1hm

=pypxh 1 @ pxp-1hm

= pxh 1 @pxs-1hm
and similarly py 21 @ pyp-1Am = px A1 ® pxa-thm. It is rather easy to
proof that j is an additive homomorphism. Let us prove that j is SH-linear.
Set 9,7 € G, 0 € H and r € R.. Assume that pym =m € M (X a finite

subset of (). Consider ¥ the subgroup of G gencrated by X U {g,}. We have
that pym = m and py(p,7am) = p,fém. Then

L 1 - o
I (pgFem) = = Z PrhTl ® pyy-1hp,Fom
" kel

1 — o
== Z PR~ @ pyp-1pgp-17hom
" heH

1 — . —
= - Z PYk"IPg.&-lT ® pyr-rhom
" heH

1 J— _
= — E Pyprh~ @ pyp-rhom
n
REH

_. 1 . _
= Pyro— Z py{ho) 1 @ pyj-1hom
n
heH
= pyFaj(m)

For m € M and pxm = m we have

(poi)m) == I pxF T @ pxamihm)

hEH
1 1
== Y pxh Tpxa-1km
hEH
1 —
= — pr “hm=m
heH

Thuspoj=1y. 0.
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Lemma 5. Assume that G is locally finite and for every finite subgroup H
of G, |H|"™! € Re. Let M € SG ~ mod such that oM is projective {resp, flat).
Then, gM is also projective (resp, flat).

Proof: Let M € §G — mod such that sM projective {resp, flat). By (e} g8
is projective and flat, thus for every subgroup H of G, sSH is also projec-
tive and hence ggSH ®s M is also projective (resp, flat). Now, by Lemma
4, sgM is projective (resp, flat) for every finite subgroup H of G. For every
left {resp, right) §G-module N we have Homge{M,NY o lim Homgg (M, N)
(resp, N ®sg M ~ limN Bsg M) where H ranges over the set of finite sub-
groups of G. Then Extl{M,N) ~ lim Extlg(M,N) {resp, Torga(N, M) =~
lim Tor (N, M}). Therefore, 56 M is projective (resp, flat). ®

Lemma 6. Let R and A be rings with local uniis and F : R —mod —
A — mod an equivalence of calegories. For every M € R —mod, M s flat if
and only if F(M) is flat.

Therefore, w.dim{ R} = w.dim{A)

Proof: It is easy to prove that every locally projective module (see [AM]
for the definition) over a ring with local units is flat. By [AM, Theorem 2.4],
F ~ P ®p — for some A-R-bimodule P and 4P is locally projective. Thus
AF(M) ~4 P ®p M is flat whenever M € R — mod is Bat. The rest of the
proof is obvicus, W

Theorem 7. Let G be a locally finite group and R = @gechly ¢ G-graded
ring. If the order of every finite subgroup of G is invertible in R,, then
gr.w.dim({ R) = w.dim(R).

Proof: Assume that gr.w.dim{ R} < n., The casen = { is contained in Propo-
sition 1{a) because R y) has a separablity system for every finite subgroup H
of G. So we can assume n > 0.

Consider § = R#G* and E: R—gr — 5 - mod the isomorphism of
categories given in {d). Since every graded flat left R-module is a direct
limit of graded projective left R-modules, E preserves the flatness and hence
w.dim{5) £ n.

Tet A =5G, M € A— mod and

d3 ds dy
P=...— P — P —M—=0

a projective resolution of 4 M. Since sA is projective, then P is also a projective
resolution of sM and hence K = Ker(d,) is S-flat. By Lemma 5, K is also
A-fiat, Therefore, w.dim{A} < n. :
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Finally, let us remarck that R — mod and A — mod are equivalent categories
(see [AM, Theorem 2.2] and [B2]). Thereforec w.dim(R) < n. i

Questions. (1} Let R be a graded ring. Assume that graw.dim{ R y))
= w.dim(Ryy) for every finitely generated subgroup H of G. Does
graw.dim(R) = w.dim(R)T.

If gr.w.dim( Ry} < gr.w.dim(R) for every finitely generated subgroup H of
G (in particular if R is either gr-regular or strongly graded) then the answer
is yes (see the proof of Proposition 3.b). Unfortunately the example after
Proposition 3 shows that gr.w.dim(R(g)) can be bigger than gr.w.dim(R).

(2) Is it possible to weaken the hypothesis in Theorern 7 that "the order of
every finite subgroup H of G is invertible in R.” to "Ry has a separability
system for every finitely generated subgroup H of G*?.
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