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CONFORMAL AND RELATED CHANGES
OF METRIC ON THE PRODUCT OF TWO ALMOST
CONTACT METRIC MANIFOLDS

D.E. BLAIR AND J.A. QUBINA

Absgtract

This paper studies conformal and related changes of the product metric
on the product of two almost contact metric manifolds. It is shown that if
one factor is Sasakian, the other is not, but that locally the second factor
is of the type studied by Kenmotsu, The results are more general and
given in terms of trans-Sasakian, e-Sasakian and @-Kenmotsu structures.

1. Introduction

The product of an almost contact manifold Af and the real line R carries a
natural almost complex structure. When this structure is integrable the almost
contact structure is said to be normal In the contact case, a normal contact
metric manifold is called a Sasekian manifold. Moreover the product of twa
almost contact manifolds also carries a natural almost complex structure whose
integrability is equivalent to the normality of both almost contact structures
[8]. However if one takes M to be an almost contact metric manifold and
supposes that the product metric G on M xR is Kaehlerian, then the structure
on M is cosymplectic [4] and not Sasakian. On the other hand the second
author pointed out in [9] that if the conformally related metric £2'G, ¢ being
the coordinate on R, is Kaehlerian, then M is Sasakian and conversely. In 2]
Capurst showed that for the product of two almost contact metric manifolds,
the product metric is Kaehlerian if and only if both factors are cosymplectic.
This raises the still open question: What kind of change of the product metric
will make both factors Sasakian? Here we study conformal and related changes
of the product metric and show that if one factor is Sasakian the other is
not, but that locally the second factor is of the type studied by Kenmotsu [6].
This structure will be described in section 3 and in section 4 we shall consider
trans-Sasakian structures [9], which will be used for our main results in section

3.
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2. Almost contact manifolds

An elmost contaet manifold is an odd-dimensional ' manifold whose struc-
tural group can be reduced to U{n) x 1. This is equivalent to the existence
of a tensor field ¢ of type (1,1), a vector fleld £ and a 1-form 7 satisfying
$? = —T +p® £ and (€)= 1. From these conditions one can deduce that
$¢ =0 and no = 0. A Riemannian metric g is competible with these structure
tensors if

g(¢X,8Y) = (X, Y} — n{X)n(Y)
and we refer t0 an almost coniect medric structure {¢,£,7,9). Note also that
7(X) = g(X,£). For a general reference to the ideas of this section see {1].

Let M be an almost contact manifeld and define an almost complex structure
Jon Mx R by

1) Ty = 0x - ) 3

An almost contact structure is said to be normalif J is integrable. If in addition
to the conditions for an almost contact metric structure, we have dy(X,Y) =
g( X, $Y), the structure is a contact metric structure, in particular if dimM =
2n + 1,  Aldp)" #£ 0. Then a Sasakian manifold is a normal contact metric
manifold. It is well known that the Sasakian condition may be expressed as an
almost contact metric structure satisfying

(V)Y = g(X,Y)¢ —n(Y)X,
again see e.g. [1].
More generally one has the notion of an a-Sasakian structure [5] which may
be defined by the requirement

(Vx9)Y = a{g(X, Y} —n(Y)X)
where ¢ is & non-zero constant. Setting ¥ = £ in this formula, one readily
obtains

Vx§ = —agX

3. Kenmotsu manifolds

In {10] Tanno clessified connected almost contact metric manifolds whose
autornorphism groups have the maximum dimension. For such a manifold 3,
the sectional curvature of plane sections coniaining £ Is a constant, say ¢ If
¢ > 0, M is a homogeneous Sasakian manifold of constant ¢-sectional curvature.
If ¢ = 0, M is the product of a line or circle with a Kaehler manifold of constant
holomorphic curvature. If ¢ < 0, M is a warped produet space B xy C*. In
(6] Kenmotsu abstracted the differential geometric properties of the third case.
In particular the almost contact metric structure in this case satisfies

(Vx$)Y = g(¢X,Y )¢ — n(Y)dX
and an almost contact metric manifold satisfying this condition is called a
Kenmotsu manifold [5,6]. Kenmotsu proved in particular the following result.
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Theorem. {Kenmotsu [6]) Let M be a Kenmotsu manifold. Then for any
point peM , there s a neighborkood U of p whickh is a warped product (—e,e)x sV
where f(t) = ce' on the interval (—¢,€) end V is a Kaehler manzfold.

Again one has the more general notion of a 8- Kenmotsu structure [5) which
may be defined by

(Vx$)Y = B(g(¢X.Y)E - n(YIX)

where # is a non-zere constant. From the condition one may readily deduce
that
Vx&=B(X —n(X)E).

4, Trans-Sasakian manifolds

In the classification of Gray and Hervella [3] of almost Hermitian manifolds
there appears a class, Wy, of Hermitian manifolds which are closely related
to locally conformally Kaehler manifolds. An almost contact metric structure
(6,€,m,9) on M is trans-Sesakian [9] if (M xR,J,G) belongs to the class Wy,
where J is the almost complex structure on M xR defined by (2.1) and G is
the product metric on M xR. This may be expressed by the condition

(Vx$)Y = a(g(X,Y)§ —o(Y)X) + Blg(#X, Y )¢ — n(Y)¢X)

for functions a and § on M, and we shall say that the trans-Sasakian structure
is of #ype (&, 8); in particular, it is normal and it generalizes both a-Sasakian
and @-Kenmatsu structures. From the formula one easily obtains

Vx€ = —o¢X + B(X — n(X)E),

(Vxmi{¥) = —ag(¢X,Y) + B(g(X,Y) — (X )n(Y)),
(Vx )Y, Z) = o{g(X, Z){Y)—g(X, Y i 2))-B(g( X, 82 (Y )—g( X, $Y 1n( 2))

where & is the fundamental 2-form of the structure, given by X,Y) =
g9(X,4Y). Hence

(Tx )X, £) = ~a, (Vxn}X) =8
for X orthogonal to £, and g{X,X) = 1. Then
$B(£) =2na, by = —-2ng

where § is the codifferential of g and dim M = 2n 4+ 1. Moreover dn=ad If
@ 15 a non-zero constant, ® is closed and one has {cf. [1], p.53)

H(Vx )Y, 2) =dn(¢Y, X )n(Z} - dn($Z, X }n(Y)
=ag(X,Ym(Z) - ag(X, Z)n(Y)
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Then
(Tx$)Y = o(gl X, Y ) —5(Y)X)

Thus # = 0 and therefore a trans-Sasakian structure of type {&,f) with @ a
non-zero constant is a-Sasakian.

Example. Let {(z,y, z} be cartesian coordinates on R? and put
8

=9 p=ds-
£ 5. 1= ydz

¢ -1 0 ef+yt 0 —y
¢=11 0 0),¢= 0 e 0
0 -y O —¥ 0 1

Then §&(£) = — %, én = —1 and {¢,{,7,9) is 2 trans-Sasakian structure on R3
of type ("‘%’;‘ %)

The relation between trans-Sasakian, o-Sasakian and 3-Kenmotsu structures
was recently discussed by Marrero [7].

Proposition 4.1. {Marrero (7]} Let M be ¢ 3-dimensional Sasakion mani-
fold with structure tensors {$,€,m,9), f > 0 a non-constani function on M and
§=fg+(1—fin®n. Then ($,£,1,§) is ¢ trans-Sasckian siructure aof type
(3> 3@ 5)).

Proposition 4.2, (Marzero [7]) A trans-Sesekian manifold of dimension
> 5 i3 either a-Sasakian, B-Kenmotsu or cosymplectic.

5. A Study of My x M

Let M, and My be almost contact metric manifolds with structure tensors
{$i, i, i, 9i), § = 1,2, Define an almost complex structure J on M; x M; by

J(X1,X2) = ($1X1 — e (X261, 2. X2 + e n(X1)a)

where g is a function on M; x M,. That J? = —T is easily checked. Let § be
the Riemannian metric on M) x M2 defined by

F((X1, X2), (Y1, Y2)) = e qi{ X1, V1) + €27 g2( X2, Y2)

where p and 7 are functions on M; X M3. Then § is Hermitian with respect to
J,ie.
FJI( X1, X2), J(N1, Y2)) = §((X1, X2), (Y1, Y2))

if and only if
= E( 7-)
p=3lp .
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Let !, ¢? and 6 denote the Riemannian connections of g, ¢y and § respec-
tively. Now taking X; and Y] as vector fields tangent to M; and independent
of M; and similarly for X, and ¥, we give the connection 7 explicitly:

6(.‘; ,0) (},1 ' 0) =

(Vi Y1 + (X1p)Yh + (Y19) X1 — g1(X, Yy)grad' p, —e2P~ g (X1, Y1 )grad®p)
Vie.x(0, Y2} =

(=" Pg,(Xp, Ya)grad', V%, Y + (X27)Y + (Yar)X; — g2( Xz, Ya)grad®r)

Vo, 00, Y2) = (Y20)X1,(X17)¥y)
V0,5 (¥1,0) = (X2p)V1, (YiT)X2)

Now taking u = 3{p — 7), we compute the covariant derivative of J.

(Vx0T 0) = (T, 61073 + (h:Y10) s
- (Y1p)$1 X1 — 1{ X1, 61 Y1 )grad'p
+ 91(X1, i) pagradlp + €77 (£20)m (Y1) Xy
(5.1) =TT (&2p)0n (X1, 1),
(T, m)N)E
— "I (Npm(X1}ee + e T (L1p)n (X1, Y1)Ea
— ¢*e=Ng Xy, 6111 )grad®p + €20~ g, (X1, Y )¢ograd?p)

(6(0,){;)'})(0: Y;) = (—e’_"(vi,nz)(lfn)& + e (Yo7 (X2 )6
— 7P (62792 X2, Y2 )E1 — 2P gy (X5, $, Y )grad' T
(5.2) + 2P g (X3, Y2 Yhograd'r,
(Vg(,ﬂﬁz)Yz + (Yo7} X,
— (Ya7)¢2 X2 — g2( X2, $2Y2)grad’t + g2( X2, Y2 )baograd®s
= e TP ne(Y2) Xz + e T P(617)g2( Xz, Y2 )6q)

(Vix,0IN0, Y2) = (" Pm(Y2) Tk, € — € *(E1p)ma(¥a) X
(5.3} + e" 7 (X1 )2 (Y2 )grad' p + ($:Y20) X1 — (Yap)1 X,
e~ Tm{ X1 )m(Ya)grad®p — e? "7 (Yap)m(X1)é2)

(V(0,x2)7)(11,0) = (—€" P (V)2 (X2 )grad’ 7
+ " TP (Y17)n2( X)L,
(5.4) e Tm(N1) vk, o + €T (Lrm (Y1) Xz
= e#"Tm(Yi)ne(Xa)grad®r + ($:1Y17) X, — (Yi7)¢2X2)
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We now suppose that {M; x Mz, J,§) is Kaehlerian and study the guestion
of M) being trans-Sasakian. If M is trans-Sasakian of type (a, ), the first
component of (5.1) becomes

o{g1{ X1, Y1)61 — m(Y)X1) + Blgr( 41 X1, Y1) — m(Y1)a1 X1)
+ {1 V1p)X1 — (Yip)d: X1 — g1(Xn, 1Yy )grad’p
+ g1{ X1, Y1 )brgrad’p + e# (L2 p)m (Y1) Xn
—e? {&pa (X, Y =0

Setting X; = ¥; and orthogonal to £;, the £;-component yields
{5.5) fap=ae™*

Setting Y7 = £; and taking X orthogonal to §; we then have
(5.6 bip=—F

Setting X; = £; and ¥z = & in the first component of {6.3) we obtain

(5.7) _grad‘p = (£1p)6n

Conversely if gradlp = —fB€; and &p = ae™ ?, where o and 8 are func-
tions on M, it is easy to see that {V}Kx 131 = a1 { X3, 161 — m{Y1) X)) +
Blg1{p1 X1, Y1)é: —m(Y1)$1X1). Note also from the second component of (5.3)
we have immediately that grad®p = {£ap}f2. Thus we have the following propo-
sition.

Proposition 5.1. Suppose that (M) x M, J,§) is Keehierian. Then M, is
trans-Sasakian of type (&, B) if and only if gradlp = —f3&; and &p = ae” P in
whick case gradip = ae” P&z.

If B =0, it follows from (5.6) and (5.7) that p is independent of My and we

have the following corellary.

Corollary. Suppose that (M; x My, J,§) 18 Kaeklerian and a 13 ¢ non-zero
constant. Then M; is a-Sasikian if and only if grad’p = 0 and £2p = ae” 7.

Remark. Suppose that M; is o-Sasakian and let X; be a local coordinate
field on Af;. Then 0 = X1&2p = ae™ #{X;7) and hence 7 is also independent of
M;. Thus we have that if (M) x My, J,7) is Kaehlerian and M) is a-Sasakian,
M, cannot be o-Sasakian for any constant; for then p and 7 would also be
independent of M, and hence constant on M; X M. This would then give
a =0 on M; by (5.5), a contradiction.

Similarly to Proposition 5.1 we have the following.
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Proposition 5.2, Suppose that (M; x M,, J, §) s Kaehlerian, then M, is
trans-Susakian of type (o, B) if end only if 17 = —aef™" and gredir = —f6,.

Corollary. Suppose that (M, x M,, J, §) is Kaehlerian; then M, 13 3-Kenmot-
su if end only if {7 = 0 and gred®r = —8¢,.

Now, let us consider again the almost contact metric manifolds M, and M,
and the almost Hermitian manifold (M, x M, J, ¢). Suppose that

grad'p = — i, grad®p = aye” %%,
gradlr = —age?"TE, gradir = — By,
where o, f; are functiens on M; and az, 2 are functions on M,. If Af,

and M, are trans-Sasakian then it is seen directly that all the components of
(5.1)-(5.4) vanish, giving the following result,

Proposition 5.3. If one of the following three conditions is salisfied, the
other two are equivalent:

(a) (My x My, ], §) is Kaehlerian

(b) The structures on M, and M, are trans-Sasakian (of types (a1, ) and
(az,B2) respectively)

(c) gradtp = — 1€, grad®p = aye™ Py, grad'r = —apef 7y, gradit = —B,6,.

We now turn to our main result.

Theorem. Let M; and M, be almost contacl metric manifolds end U 4
coordinate neighborhood on M, such that £, — %. Conaider the change of
metric § = e2Pg, + eX gy on My x U given by

p =tk ~ %e_’m), r=—pt

where & # 0,8 #£ 0 and k are constants such that p 18 defined on V. Then
(My x U, J,3) is Kachlerian if and only if the siruecture on M, is a-Sasakian
and the structure on U is o 8-Kenmotsu.

Proof: First note that {30 = ae™* and &7 = — 4. Now suppose that the
structure on M) x U is Kaehlerian. Then frorm the first component of (5.1)
we see that M is a-Sasakian. Now in the first component of (5.3) choose ¥;
orthogonal to &2; then (4, Y20) X1 —(Yap)91 X1 = 0 from which we have Yzp = 0.

Therefore
e Bt

0= (¥z¢)

el

giving Yst = 0 and hence Yo7 = 0. Thus

grad’r = —36,.
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Now using the second component of (5.2) we have

(Vk, 82)V2 = Blg2($2X2, Yo )bz — ma(Ya)d2 X2)s

i.e. the structure on U is §-Kenmotsu.

Conversely since the structure on U is §-Kenmotsu, V4,62 = B(X2—m(X2)ée) -
from which dn, = 0. Thus the subbundle 7, = 0 is integrable. Therefore
Y,t = 0 for any vector field ¥, orthogonal to £, and hence

grad’r = — 86

and
grad’p = ae” Pby.

Moreover grad'p = grad!t = 0. Now, by using Proposition 5.3 we see that
(M; x U, J,§) is Kaehlerian. B

Remarks. 1. The conformal change p = 7 = t; gives M) Sasakian and
U (—1)—Kenmotsu which means that {¢s, —f2,—12,42) is 2 Kenmotsu struc-
ture. The choice g = En(k—e*" YT =1 gives M) Sasakian and U Kenmotsu
directly.

9 The fact that the theorem is local in regard to the second manifold M,
is not unnatural. Even for Mj xR, the 1-dimensional case for Ms, note that
the Hopf manifold S?7*! x §1 is locally conformally Kaehler but not globally
conformally Kaehler. :
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