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CONFORMAL AND RELATED CHANGES
OF METRIC ON THE PRODUCT OF TWO ALMOST

CONTACT METRIC MANIFOLDS

Abstract

D.E. BLAIR AND J.A . OUBIÑA

This paper studies conformal and related changes of the product metric
on the product of two almost contact metric manifolds. It is shown that if
one factor is Sasakian, the other is not, but that locally the second factor
is of the type studied by Kenmotsu . The results are more general and
given in terms of trans-Sasakian, o-Sasakian and p-Kenmotsu structures .

1. Introduction

The product of an almost contact manifold M and the real line R carries a
natural almost complex structure . When this structure is integrable the almost
contact structure is said to be normal. In the contact case, a normal contact
metric manifold is called a Sasakian manifold . Moreover the product of two
almost contact manifolds also carries a natural almost complex structure whose
integrability is equivalent to the normality of both almost contact structures
[8] . However if one takes M to be an almost contact metric manifold and
supposes that the product metric G on MxR is Kaehlerian, then the structure
on M is cosymplectic [4] and not Sasakian . On the other hand the second
author pointed out in [9] that if the conformally related metric e"G, t being
the coordinate on R, is Kaehlerian, then M is Sasakian and conversely. In [2]
Capursi showed that for the product of two almost contact metric manifolds,
the product metric is Kaehlerian if and only if both factors are cosymplectic .
This raises the still open question : What kind of change of the product metric
will make both factors Sasakian? Here we study conformal and related changes
of the product metric and show that if one factor is Sasakian the other is
not, but that locally the second factor is of the type studied by Kenmotsu [6] .
This structure will be described in section 3 and in section 4 we shall consider
trans-Sasakian structures [9], which will be used for our main results in section
5 .
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2. Almost contact manifolds

An almost contact manifold is an odd-dimensional C°° manifold whose struc-
tural group can be reduced to U(n) x 1 . This is equivalent to the existente
of a tensor field 0 of type (1,1), a vector field 1 and a 1-form 17 satisfying
02 = -I -I- rt ® 1 and rt(1) : = 1 . From these conditions one can deduce that
Y01 = 0 and 17 o0 = 0 . A Riemannian metric g is compatible with these structure
tensors if

g(0X, OY) = g(X, Y) - r7(X)r7(Y)

and we refer to an almost contact metric structure (0, 1, 17, g) . Note also that
i7(X) = g(X, j) . For a general referente to the ideas of this section see [1] .

LetM be an almost contact manifold and define an almost complex structure
J on Mx R by

(2.1)

	

J(X,fdt ) = (OX - f1,77(X)- ).

An almost contact structure is said to be normal if J is integrable . If in addition
to the conditions for an almost contact metric structure, we have dr7(X,Y) =
g(X, OY), the structure is a contact metric structure, in particular if dimM =
2n + 1, ?7n(di7)n =~ 0. Then a Sasakian manifold is a normal contact metric
manifold . It is well known that the Sasakian condition may be expressed as an
almost contact metric structure satisfying

(OxOY = g(X,YX - 17(Y)X,
again see e.g . [1] .
More generally one has the notion of an a-Sasakian structure [51 which may

be defined by the requirement

(OxO)Y = a(g(X,YX - r7(Y)X)

where a is a non-zero constant . Setting Y =

	

in this formula, one readily
obtains

3 . Kenmotsu manifolds

In [10] Tanno classified connected almost contact metric manifolds whose
automorphism groups have the maximum dimension . For such a manifold M,
the sectional curvature of plane sections containing 1 is a constant, say c. If
c > 0, M is a homogeneous Sasakian manifold of constant ~-sectional curvature .
If c = 0, M is the product of a line or circle with a Kaehler manifold of constant
holomorphic curvature . If c < 0,M is a warped product space R xf Cn . In
[6] Kenmotsu abstracted the differential geometric properties of the third case .
In particular the almost contact metric structure in this case satisfies

(OXO)Y = g(ox,YX - r7(Y)¢X

and an almost contact metric manifold satisfying this condition is called a
Kenmotsu manifold [5,6] . Kenmotsu proved in particular the following result .
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Theorem . (Kenmotsu [6]) Le¡ M be a Kenmotsu manifold. Then for any
pointp¿M, there is a neighborhood U ofp which is a warped product (-e, e) xfV
where f(t) = ce' on the interval (-e, e) and V is a Kaehler manifold .

Again one has the more general notion of a fl-Kenmotsu structure [5] which
may be defined by

(Ox0Y = a(g(ox,Y)1 - n(Y)OX)
where ,0 is a non-zero constant . From the condition one may readily deduce
that

vx1 = Q(X - r7(X)C-

4. Trans-Sasakian manifolds

In the classification of Gray and Hervella [3] of almost Hermitian manifolds
there appears a class, W4 , of Hermitian manifolds which are closely related
to locally conformally Kaehler manifolds . An almost contact metric structure
(0, ~, 77, g) on M is trans-Sasakian [9] if (lhl xR,J, G) belongs to the class W4 ,
where J is the almost complex structure on MxR .defined by (2.1) and G is
the product metric on MxR. This may be expressed by the condition

(OXO)Y = a(g(X, YX - r7(Y)X) + P(g(ox,YX - rl(Y)OX)
for functions a and ,0 on M, and we shall say that the trans-Sasakian structure
is of type (a, fl) ; in particular, it is normal and it generalizes both a-Sasakian
and fi-Kenmotsu structures . From the formula one easily obtains

Vx1 = -aOX +Q(X - 17(X)e),

(Oxrl)(Y) = -ag(ox, Y) + a(g(X,Y) - rl(X)rl(Y)),
(Ox,D)(Y, Z) = a(g(X, Z)r7(Y)-g(X, Y)r7(Z))-f(g(X, OZ)r7(Y)-g(X, 0Y)r7(Z))
where D is the fundamental 2-form of the structure, given by P(X, Y) _
g(X, OY) . Hence

(Ox<D)(X,1) = -a, (px0(X) = p
for X orthogonal to ¿, and g(X, X) = 1 . Then

ó1¿(j) = 2na, ór7 = -2nfl

where b is the codifferential of g and dimM = 2n + 1 . Moreover dr7 = a-P . If
a is a non-zero constant, 4P is closed and one has (cf . [1], p.53)

g((Ox0)Y, Z) =dr7(0Y,X)r7(Z) - dr7(0Z,X)r7(Y)
=ag(X,Y)r7(Z) - ag(X, Z)rl(Y)
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Then
(VXO)Y = a(9(X,YX -17(Y)X)

Thus Q = 0 and therefore a trans-Sasakian structure of type (a,#) with a a
non-zero constant is a-Sasakian .
Example. Let (x, y, z) be cartesian coordinates on R3 and put
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Then 6b(1) = --L, 197 = -1 and (¢, ¿, y, g) is a trans-Sasakian structure on R3
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(-m-1-,e'2)'
The relation between trans-Sasakian, a-Sasakian and ,Q-Kenmotsu structures

was recent1y discussed by Marrero [7] .

Proposition 4.1 . (Marrero [7]) Let M be a 3-dimensional Sasakian mani-
fold with structure tensors (0, 1, 11, g), f > 0 a non-constant function on M and

y = fg + (1 - f),7 ®,7 . Then . (0, ¿, r7, y) is a trans-Sasakian structure of type

(f,11(Qnf))

Proposition 4.2 . (Marrero [7]) A trans-Sasakian manifold of dimension

> 5 is either a-Sasakian, /3-Kenmotsu or cosymplectic .

Let M1 and M2 be almost contact metric manifo1ds with structure tensors
(o ¡ , Ji, ili,gi), i = 1,2 . Define an almost complex structure J on M1 x M2 by

where h is a function on M1 x M2 . That J 2 = -I is easily checked . Let g be
the Riemannian metric on MI x M2 defined by

where p and r are functions on M1 x M2 . Then g is Hermitian with respect to
J, Le .

if and on1y if

5 . A Study ofM1 x M2

J(X1,X2) = 01X1 - e-? 1`172(X2)G, 02X2 + e2,171(X1)12)

9((X1, X2), (Y1, Y2» = e2°91(X1, Y1) +
e2'92(X2,Y2)

9(J(X1, X2), J(Y1,Y2)) = 9((X1, X2), (YI, Y2))

1
ti - 2 (P

- T- ) .

a , y=dz-ydx
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Let

p1, v2 and p denote the Riemannian connections of 91, 92 and g respec-

tively.

Now taking X1 and Y1 as vector fields tangent to M1 and independent

of

M2 and similarly for X2 and Y2 we give the connection p explicitly

:

17(x,

,o)(Y1,0) _

(ox1Y1

+(XiP)Y, +(Y,P)X1 -91(X1,Y1)grad1p,-e2(P-T)91(XI,Y1)grad2P)

0(0,x,)(0,Y2)

=

(-e2(T-°)92(X2,

Y2)grad1r, Ox,Y2 + (X2T)Y2 + (Y2r)X2 - 92(X2, Y2)grad2r)

0(x1,0)(0,

Y2) = ((Y2P)X1, (X1'r)Y2)

0(o,xz)(Y1,

0) = ((X2P)Y1, (Y1r)X2)

Now

taking M = 2(p - r), we compute the covariant derivative of J

.

(0(x1,o)J)(Y1,0)

_ ((oxlo1)Y1 +(01Y,P)X1

-(Y1P)OiX1

-91(XI,~1Yi)gradlp

+

91(X1, Y1)O1grad1P + eP-T (12P)171(Y1)X1

(5.1)

	

-

eP-T(12P)91 (X1, Y1)j1,

eP-T(Vx,171)(Y1)S2
-

e"-'(Y1 P)111(XI)ez + eP-T(J1 p)9,(X 1, Yi )1z

-

e2(P--)91(X1, 01 Y1)brad2p + e2(P-T)91(X 1, Y1)02grad2P)

(0(o,xz)J)(0,

Y2) _	

x~1J2)(Yz)11

+ eT-P(Yzr)11z(Xz)11

-

er-P(6r)9z(X2,Yz)j1 - e2(r-P)9z(X2, O2Y2)gradlr

(5.2)

	

+e

2(--P)92(X2, Y2)02gradlr,

(Ozz02)Y2

+ (02y27-)X2

-

(Y2'r)02Xz - 92(X2, O2Y2)grad2T + 92(X2, Y2)02grad2T

-

eT-P(11T)112(Y2)X2 + eT-P(11T)92(X2,Y2)f2)

(17(X1,0)

J)(0, Y2) = (-eT-Pg2(Y2) 0x1 1- e--P(11P)712(Y2)X1

(5.3)

	

+eT-?r11(X1)172(Yz)grad1p+(02y2P)Xl

-(Y2P)01XI,

eP-T111(X1)1)2(Y2)grad2p

- eP-T(Y2P),l1(X1)lz)

(0(o,xz)J)(Y1,0)

= (-e'-P171(Y1)'I2(X2)gradlr

+

e--P(Y1'r)1J2(X2)j1,

(5.4)

	

eP-r111

x

(Yi)

O, 12 + eP--(S2'r)171(Y1)X2

-

eP-T171(Y1)112(X2)grad2T + (Olyi'r)X2 - (Y1T)02X2)
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We now suppose that (M1 x M2 , J, g) is Kaehlerian and study the question
of Ml being trans-Sasakian . If Ml is trans-Sasakian of type (a, ,Q), the first
component of (5.1) becomes

a(g1(X1,Y1)j1 - rl1(Y1)X1)+N91(O1X1 , YiX1 -7l1(Y1)OIX1)
+ (01Yip)X1 - (Y1P)01X1 - g1(X1, 01Y1)grad1 P
+ 91(X1, Y1)oIgrad 1p + eP`(12P)O1(Y1)X1
- eP-'(12P)91(X1, Y1)11 = 0

Setting X1 = Y1 and orthogonal to l1, the J1-component yields

(5.5)

	

12P = aeT-P

Setting Y,,= 11 and taking X1 orthogonal to 11 we then have

(5.6)

	

l1P = -0

Setting X1 = 11 and Y2 = 12 in the first component of (5.3) we obtain

(5 .7)

	

grad1 p = (j1P)j1

Conversely if grad1p = -fI1 and 12P = aeT-P, where a and f3 are func-
tions on M1 , it is easy to see that (px,01)Y1 = a(g1(X1,Y1)11 -771(Y1)X1) +
Q(g1(01X1, Y1X1-771(Y1)Y'1X1) . Note also from the second component of (5.3)
we have immediately that grad2p = (12P)12 . Thus we have the following propo-
sition.

Proposition 5.1 . Suppose that (M1 x M2 , J, j) is Kaehlerian . Then MI is
trans-Sasakian of type (a, f3) if and only if grad1 p = -f3I1 and 12P = aeT-P in
which case grad2 p = ae`P12 .

If /l = 0, ii follows from (5.6) and (5.7) that p is independent of M1 and we
have the following corollary .

Corollary . Suppose that (M1 x M2 , J, g) is Kaehlerian and a is a non-zero
constant . Then M1 is a-Sasakian if and only if grad1p = 0 and GP = aeT-P .

Remark. Suppose that M1 is a-Sasakian and let X1 be a local coordinate
field on M1 . Then 0 = XIGP = aeT-P(X1T) and hence T is also independent of
M1 . Thus we have that if (M1 x M2, J, g) is Kaehlerian and M1 is a-Sasakian,
M2 cannot be a-Sasakian for any constant ; for then p and r would also be
independent of M2 and hence constant on M1 x M2 . This would then give
a = 0 on M1 by (5.5), a contradiction .

Similarly to Proposition 5.1 we have the following .



CONFORMAL AND RELATED CHANGES OF METRIC

	

205

Proposition 5.2 . Suppose ¡ha¡ (Mi x M2 , J, g) is Kaehlerian ; then M2 is
trans-Sasakian of type (a, 0) if and only if Jlr = -aeP_T and grad2T = -012,

Corollary . Suppose ¡ha¡ (MlXM2, J, g) is Kaehlerian; then M2 is ,Q-Kenmot-
su if and only if 1,7- = 0 and grad2 T = -P12 "

Now, let us consider again the almost contact metric manifolds Ml and M2
and the almost Hermitian manifold (MI x M2, J, g) . Suppose that

grad e p = -/il J1 , gradep = aje'-P12

grad1T = -a2eP- 'j1, grad2T = -N2S2
where al, Nl are functions on Ml and a2, 02 are functions on M2. If Ml
and M2 are trans-Sasakian then it is seen directly that ale the components of
(5.1)-(5.4) vanish, giving the following result .

Proposition 5.3 . If one of the following three conditions is satisfied, the
other two are equivalent :

(a) (Ml x M2 , J, g) is Kaehlerian
(b) The structures on Ml and M2 are tran.s-Sasakian (of types (al, fl1) and

(a2, P2) respectively)

(c) grad1p = -011, grad2 p = al e'-P¿2, grad'T = -a2eP-rtbl, grad2 T = -2r52 "

We now turn to our main result .

Theorem. Let Ml and M2 be almost contact metric manifolds and U a
coordinate neighborhood on M2 such that 12 = át, Consider the change of
metric g` = e2Pg1 +e2T92 on Ml x U given by

a
p = Qn(k - -e-Rt), T = -/3t

where a :~ 0, 0 :~ 0 and k are constants such that p is defined on U.

	

Then
(Ml x U, J, g) is Kaehlerian if and only if the structure on Ml is a-Sasakian
and ¡he structure on U is a P-Kenmotsu .

Proof.. First note that 12p = aer_P and 127- = -/i. Now suppose that the
structure on Ml x U is Kaehlerian . Then from the first component of (5.1)
we see that Ml is a-Sasakian . Now in the first component of (5.3) choose Y2
orthogonal to 12 ; then (Y'2Y2P)X1 -(Y2p)01Xl = 0 from which we have Y2p = 0.
Therefore

ae_at
0 =

	

P

	

(Y2t)
e

giving Y2 t = 0 and hence Y2T = 0. Thus

grad2 T = -012-
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Now using the second component of (5.2) we have

Le . the structure on U is l-Kenmotsu .
Conversely since the structure on U is /-Kenmotsu, V'1z = 0(X2-r/z(X2)lz)2

from which drlz = 0 . Thus the subbundle rlz = 0 is integrable. Therefore

Yz t = 0 for any vector field Yz orthogonal to 12 and hence

and

(Vx 2 0z)Yz = fl(9z(02Xz,Yz)1z -rIz(Yz)0zXz),

grad2T = -f12

gradzp = aer-°1z .

Moreover grad e p = grade r = 0 . Now, by using Proposition 5.3 we see that

(Ml x U, J, g) is Kaehlerian.

Remarks . 1 . The conformal change p = T = tz gives MI Sasakian and

U (-1)-Kenmotsu which means that (¢z, -1z, -772,92) is a Kenmotsu struc-

ture . The choice p = 2n(k-e-t2 ), r = -tz gives MI Sasakian and U Kenmotsu
directly.

2 . The fact that the theorem is local in regard to the second manifold Mz

is not unnatural . Even for MI xR, the 1-dimensional case for Mz , note that

the Hopf manifold Szn+i x Sl is locally conformally Kaehler but not globally

conformally Kaehler .
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