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FOURIER ANALYSIS OF A SPACE
OF HILBERT-SCHMIDT OPERATORS-
NEW HA-PLITZ TYPE OPERATORS

JAAK PEETRE

Abstract

If 2 group acts via unitary operators on z Hilbert space of functions then
this group action extends in an obvious way to the space of Hilbert-
Schmidt operators over the given Hilbert space. Even if the action on
functions is irreducible, the action on H.S, operators need not be irre-
dueible. It is often of considerable interest to find out what the irre-
ducible constituents are. Such an attitude has recenily been advocated
in the theory of "Ha-plits” {Hankel + Toeplitz} operators. In this paper
we solve this probiem the space of H.S. operators over the Hilbert space
L*A, pa) of square integrable functions over the uait disk A equipped
with the Dzhrbashyan measure dpp{2) = (o4 1)(1 - |¢|?)*dA{z}a > -1).
This complements the earlier results. In particular we discover many new
Ha-plitz type operators. The question of their smoothness properties {S,-
estimates etc.) is however only touched upon.

Intfoduction

If a group acts via unitary operators on a Hilbert space of functions then this
group action extends in an obvious way to the space of Hilbert-Schmidt (H.S.)
operators over the given Hilbert space. {More generally, one can consider H.S,
operators from one Hilbert space into another with a different group action on
each of these spaces.) Even if the action on functions is irreducible, the action
on H.S. operators need not be irreducible. It is often of considerable interest
to find out what the irreducible constituents are. Such an attitude has recently
been advocated in the theory of "Ha-plitz” (Hankel + Toeplitz} operators.

Example 1. Consider the spaces A = A%?(A) (definition in Sec. 1}, A+
= the orthogonal complement of A in L?(A, u,) (definition in Sec. 1), A =
the space consisting of all conjugates of the functions in 4. Operators from
A into A have been studied from this point of view in [JP1] ("small” Hankel
operators of higher weight). Similarly, operators from A4 into AL have been
studied in [BJP) ("big" dittos). In both cases the group is the projective group
of conformal selfmaps of the unit disk A in C or a double cover.
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Example 2. The study of the case when A is replaced by the unit ball in
C™ has been initiated in [P1].

Example 3. H.S. operators on L*(R") under the action of the "az+b"-group
(dilations + translations) are analyzed in [JP2], [P2] (so-called "paracommu-
tators”).

In this paper we want to decompose the space of H.S. operators over LA o).
This complements the results of [JP1], (BIP]. In particular, we discover many
new Ha-plitz type operators. The question of their smoothness properties (Sp-
estimates etc.) is however only touched upon.

There are good hopes that one could be able to play the same game with
other symmetric domains (in higher dimensions), in the first place the ball {cf.
(P1))

The organization of the paper is as follows.

Sec. 1 introduces the notation.

In Sec. 2 we consider various invariant measures on the space of H.S. oper-
ators over LA, pg). In particular, this allows to write the space in question
as a tensor product where one factor is the space Lz(é), G being the group
of all conformal selfmaps of A. The results of this Section are of independent
interest and we intend to return to them on a subsequent occasion.

In Sec. 3 we then apply Plancherel’s theorem in the latter space to produce -
the desired decomposition of L*{A, pa).

Sec. 4 is devoted to some examples showing how known type of {big) Hankel
operators [JP1], [BJP] (Example 1 ultre) fit into our new scheme.

In Sec. 5, returning to the general case, we write down the expression for
the B.S.-norm of our new Hankel operators.

Sec. & briefly touches upon the Sp-theory, still in its embryo.

In Sec. 7 we sketch an alternative infinitesimal approach to our problem. It
is not entirely successful, as we have not been able to carry out the spectral
analysis of the Casimir operator encountered. '

In Sec. 8 we specialize this to the case of operators from A™*(A) into itself
{generalized Toeplitz operators). :

Finaily, there is an appendix to which we have deferred some (duli?} calcula-
tions pertaining to Sec. 2. We intend to apply this result in a different context
in a subsequent publication.

Acknowledgment. I am greatful to the referee for his many comments, the
scholarly ones and also the humoristic ones. He also detected a missing factor
1/{16x?) in formula (6), Sec. 2. In addition, I am obliged to Richard Askey
and André Unterberger for precious information.

1. Mainly notation

Let us thus begin by fixing some notation:
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A - unit disk in the complex plane C.
T - its boundary {the unit circumference).

d dzdz

dA(z) = dzﬁ y=! ;:z - normalized Euclidean area measure on A.
d

dI(z) = (1__‘45[1_)2' - invarient (Poincaré) measure on A.

dpalz) = (o + 1)1 — (2)?)*dA(2) (a > —1) - Dzhrbashyan measure.

L*(A, pa) = the space of square integrable functions with respect to dyq.

A®*A) = Hol(A}N LA, p14 ) - Dzhrbashyan {or weighted Bergman) space,
the space of holomorphic functions in LA, 4 ). The corresponding norm and
the corresponding inner product will be written || - ||lo and (-, )« respectively.

The space of H.S. operators on L#{A, pq ) can be identified with L2(A, 124) ®
LA, pa) = LA x A, pg), that is, a H.S. operator T = Tr on L3(A, pg) is
given by a kernel F{z;, z3) such that '

ITe)l? = /ﬁ (P ) ol ol z) < oo.
x

G = 5U(1,1) - Mdbius group.
G = PSU(1,1) = SU(1,1)/ £ 1 - projective group; the elements z of G are
az+b
cz+d’

thus fractional linear functions of the type z(z}) = where (3 2) is in
G, uniquely determined by z up to sign.

& - universal covering group of G or G.

It will be necessary to distinguish carefully between these groups. An element
of G is an element z of G Qlus a choice of a determination of the square root VT
Similarly, an element of ¢ is an element of & plus a choice of a determination
of the logarithm log =’ (then we can define arbitrary powers of z'}.

dH(z} denotes the Haar measure on any of these groups.

The group G acts on elements f{2) of L2(A, uq} or A%2(A) according to the
rule

1) = FENE ) (= (e + ) e d)

That these group actions are unitary follows from the formula

(1) dpa(2(2)) = |'(2)|" " disa(2).

'In [JPR], p. 63 this space was called the Bargmann-Bergman-Besov-Dzhrbashyan-Fisher-
Fock-Segal space. As the referee suggests, one could as well havé inciuded the names Petersson
and Hecke too. The reason why we have given prefercnice to the name Dzhrbashyan here is
that we think that hithertc one has not in the literature payed sufficient tribute to the
achievements of the Armenian school of analysis.
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Similarly, a kernel F{z), z;) experiences the change
el — 2 ~
Flor,2) = Fa(m),a(a)(e (=) T @)™ (2€6).
Our main concern is thus to decompose the space Sp(L*(A, pa)) of H.S. oper-
ators under the last action.
Begin by writing®

F(z1,22) = Kal21, 22)Fo(22, 22)

where K {#z,22} =(1— 2152)_(0-1-2) is the reprodcing kernel in A%2{A). Then
Fy transforms as

Fo{z1,22) = Folz(21),2(22)) (= € Gsicl),
this in view of the well-known formula
@) Ka(a(z),2(z2)(@(@)F @@m)TF = Ko(n,2) (z€6).

We agree to refer to Fo as the "reduced” kernel. Thus we may work with Fy
instead of F. In terms of Fy the H.5. norm is given by

PN 2 —lz 2 a2
iTF? = ‘Lx& ((1 lea )0~ =2l )) |Fo(z1, 22)2dI( 21 )dI{z2).

I]. —_ 315‘2[2

its invariant character is thus apparent.

2. Invariant measures
Clearly
(3) dJ =dl @dI

is an invariant measure on A x A, But, as the group & does not act transitively
on this set, it is not unique. There are other interesting invariant measures on
A x A or rather on A x A\ (diagonal), the manifold of all ordered pairs of
elements of A {or oriented hyperbolic segments}.

20ne motivation for this construction comes from Berezin’s program for quantization {cf.
[P31). The referee comments that "the idea of factorization of automorphic forms goes back
to many, many people, probably much before Berezin {Poincaré, for example)”.
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Let thus an ordered pair (z1,2;), with 2, € A, z; € A, be given. Consider
the unique {oriented) geodesic through z; and 2, directed from z; to z,.

There is a unique transformation £ in G such that its preimage is the interval
{—1,1) and such that the preimages of z; and z; are two symmetrically situated
(about the origin 0) points p; and p; on (0,1) and {—1,0) respectively:

(4) 21 =&(p1), 22 ={(p2) (1>p1=—p2>0)
Let A denote the exponential of the hyperbolic distance between z; and z, (re.
P2 dz i 1+p1 1 1+p2 ]+p1 1—|—p1
logA—f — 5 =5 log = log = log or A= ——).
7 1—x 2 1—p 2 1—p2 1—p1 1-—p1
Thus the pair (21, 22) is uniquely determined by the pa:r (€, A}, and the manifold
of all ordered pairs gets identified with the product G x R,. Notice that G
acts on the first factor via multiplication from the left (see (4)) and trivially on
the second factor (the hyperbolic distance is preserved), i.e. to (z(z1),2(22)),
where z € &, there corresponds the pair (z£, A). It follows that an invariant
measure on the set A x A\ (diagonal) is given by

dA

(5) dJ' = dH(£) - ~+

We can further identify the group & itself with the manifold of geodesics
equipped with a base point. Let ¢; and (; be the endpoints of the geadesic on
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T and let m be the exponential of the hyperbolic distance from the base point
to the Euclidean midpoint 2" of the geodesic (= arc of a Euclidean orthogonal
circle}. We may regard ((1,(2,m) as coordinates for the corresponding group
element £. Then the Haar measure on @ can be written

_ |G| - 1| dm
HE =T GF m

Let further m; and ms measure the distance from z; and z; to z*. Then (5)
can be rewritten as '

_ Id(ll . |d<2! . dm; de

5 dl’ = .
&) |6 — &> P me

A computation, which I defer to an appendix, reveals that the Radon-Nikodym
derivative of the measure (3) with respect to the one in (5} or (5') is given by

dJ 1 mf—m% 1 1
®) A T A — (-s?“‘"‘ )

(A priori one can say that it must be a homogeneous function of degree 0 in my
and my.) If we put A = e”, where the quantity o thus has the interpretation of
hyperbolic distance, then we have in (8} essentially the hyperbolic sine, sinh e,
which perhaps looks more convincing.

3. Plancherel theorem

For the group (7 this theorem tells us that under left multiplication by group
clements {left regular representation) the Hilbert space L*(G) decomposes into
an orthogonal sum

LYG) = i@Dme i%m@cac"

m=1 m=1

(the case of G is in [L] from which the present case G easily follows). It
consists thus of a "discrete” part and a "continuous” part. Here I will focus
on the discrete part only, taking each summand separately. As D, and D
are each others conjugates it suffices to consider Dy It is known that D, is
isometrically isomorphic to A#2{A) @ A2 A) where § = 2m — 2. Notice that
(in contrast to G) for the group G only even degrees occur! Thus Dy, is not
irreducible but contains A#?(A) with infinite multiplicity.

In the following discussion it is useful to bear in ones mind the following
purely algebraic fact - essentially a consequence of Schur’s lemma (cf. [JPWY).
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Lemma. Lei V be any simple module {over any C-algebra} and consider an
irreducible submodule W of the direct sum V@V @V @ ... (with elements
Ty @B z2$... ). Then the elements of W are of the form piz Pp2x®... where
x € V runs through this module and p1,ps,... are fized complez numbers.

The general form of an element of D,, is

£(6) = A B(E(L), DE () dus(t),

where @ thus is analytic in the first argument and anti-analytic in the second
argument, In particular, D, contains any function of the form

(&) = L EONPENE )™ dpzs(2)

with ¢, € ABZ(A) (cf. [L), p. 181). If we fix 9 # 0 and let ¢ vary we get a
submodule of Dy, isomorphic to 4% 'Q(A). Choosing an orthonormal basis {;}
in A#2(A) (e.g. the standard basis obtained by normalizing the monomials
{27}) we decompose D,, into a direct sum of irreducible submodules. Next
pick an orthonormal basis {B;} also in the space L%{(1,00),A.), where

(at2)
2 (2N _an @A
167 dAa(A)_(A2+1 (-ahS

(Notice that

(I=jaaPX1=fe2l®) _ 7 20 \?
II—ZIEQP - (/\2+1) ’)

Then for every H.S. operator Tr the corresponding reduced kernel Fg {see Sec.
1) admits the decomposition

Folzy,22) = Z AL{EYBi(N).

Let us restrict our attention to the case when all the A; belong to Dy, that is,
they are of the form

AGEE) = [ 3 8ule)TTE @) duatt
7
with (1) € 4%%(A). We then obtain

Rz ) = [ 3 bueOMFTIE O dus()BO)
125
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Tnvoking the lemma (or rather the general philosophy behind 1) we see that the
most general irreducible submodule is gotten by taking all the ¢; proportional
to one and the same function ¢ in AF2(A), that is, ¢;; = pij¢ for suitable
scalar p;;. Such an irreducible submodule is thus spanned by reduced kernels
of the form

Fo(er,a2) = [ et E ) )
with -
a(t, A} = Y pij i (DBX).
i
~ By change of variable (see (1)) this formula can be written

Fo(zlaZz)ZL¢(f)a(€_l(f)»)\)((E")’(t))mduﬁ(t),

that is,

Fo(an, ) = [ (t)Ao{z1, 2, )
where '
(7) Aﬂ(zhzzrt) = a(‘f'_l(t)i)‘)((g_l)f(t))m'

Reintroducing the reproducing kernel we can finally write the kernel itself as

Flosym) = [ ()G, 22, )us()
A
with :
A(z; ) Zz,t) = Kc,(zl , 22)A0(21 322, t).
Notice that the kernel A obeys the transformation law {<f. {2))
@) |Ale(s1), 5(22), 5(1)) = Almr, 2, (=" (21) F (T @) F D)™
similarly for Ag:
{89 Ao{z(z1), 2(22), 2()) = Ao{z1, 22, )" (1)) ™" |-
Direct check that such a kernel defines an invariant submodule:

Fo(a(z1), 2(2)) = L 8(t)Ao(2(21), (22, DYdpa(t)

- A B((1)) Ao(2(22), 2(22), #(8))dpa((t))
- L SO (D)™ Aol21, 72, Ol (D) " dpp((8)
- L ())& ()™ Aolza, 72, )dpa(t),

where we in the last step once again involved (1}. B

Remark. In hindsight we could perhaps have written down this formula
right at the beginning, but we find it more instructive to follow the path of
discovery, :
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4. Examples

Example 1. m = 1. Conventional big Hankel operators [A], [AFP] corre-
spond to the kernel

F(on,2) = Kaer,oa) [ 9O

(If we introduce the primitive b of ¢ (i.e. ¥ = ¢} we get the usual expression
Flz1,23) = Ka(21, 22)(8(21) — ¥(22)).)

Check of the covariance:

1(21)
Fo(a(a1), 2(2)) = /

z(z2)

B(t)dt = / " e dt. m

But this is not of the form (7). It is however easy to rewrite the formula in the
form (7). Indeed, one has to take

*y d< _ 1 i
Az, 22, t) = o (1007 [t—(l - (E)J

L3

_ 1 1 1 _ Zy = 29
- E 1—2’1{ 1—22{ - (1—2’1{)(1-22&)l
Example 2. m = 2. We have the (big} "Legrange-Hankel” operator [BJP],
[P1] corresponding to

Files,22) = B(a1) + ¥(za) — 22220 Z 0],

2 — 22

To get the transition to our present form of notation we invoke the third erder
derivative b"' = ¢ of the given b. {This is in accordance with the requirement
of "Bol’s lemma” [GP].) Then we find

: {n} _ _
R, = [0

As in Example 1 one can write down the corresponding kernel Ag,

21— 22

(1= z:)2(1 — z8)*

The method in [P1] is however preferable, and applicable also for m > 2.

Aa(zi,zz) =
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5. H.S.-norm

In the preceding discussion we have lost track of the H.S.-norm. It is however
easy to remedy this.

We first observe that {if Haar measure is coveniently normalized)

jc PUE)E O T ENETmAH(E) = Kplt, s)(é1, d2)s

It follows that

L L e (E(OE ) BrDdua(t) A o E()E (BB ()H ()

= (¢1, $2)p(%1,¥2)g-

If we apply the above to our case we find that
/. \Folz1, 22)PdH (€)dAa(N) = ) ] |AE)PdH €)=Y Ipii"Hiel5
Gr{l,00) i 46 i}
However, in view of the definition of a,

thl,m} |G(t' A)Izdpp(t)dAa(A) = Z Ip,J!‘Z

14

Therefore, we conclude that formula {8} produces H.3. operators iff the last
integral is finite. We have not investigated if it is possible to write this condition
directly on A.

6. Sp-norm

What about the S,-theory? Let us restruct the domain of definition of our
operators to the smaller spaces A*%(A). An approach & la [A], [AFP], [BJP]|
then starts with two things: 1° a direct computation of the s-numbers for a
specially chosen symbol {viz. b= 2" with a suitable ) and 2° a direct treatment
of the bounded operators. The rest is then more or less standard (duality,
interpolation etc.). As for 1°, to make this approach work one has essentially
to assume that A(z;, z2,1) is homogeneous in its arguments. Then the operator
(TeY*Tr for ¢ = 1 is diagonal so everything blows down to computing an
integral. We have not yet considered this question.
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7. An infinitesimal approach, not entirely successful®

Consider the group G = SU{1,1) = SO(2,1). The corresponding Lie algebra
g =su(l, 1) =~ so(2,1) is generated by the three matrices

i ¢ g 1 g i
63= 0 ‘)’el:( 2),62=( : 2)
.(0 -3 $ 0 -5 0

corresponding to the one parameter semigroups

(7 5)-(2 2. (2 =)

Structure equations:
[e1,€2] = —ea, [e2, 23] = €1, [es,€2] = €3

The complexified Lie algebra g. = sl(2, C) ~ so(3, C) has generators

h:—2i83:(é _2),6261—5822(8 é),f=61+2'62=(? g)

Structure equations:
le, 1 = &, [k, ] = 2e, [k, f} = —2f.

Casimir element:
c=efte;—ef= —(2("3f+f9)+h2)

Let, as before, the group & act on the Hilbert space LE(A, it ) via the unitary
maps '

Ue: f(6) - Fs(eler 4 (2= (2 1) o)

where we now have put ‘ Let also linear operators on LA, uy) be
given by kernels F = F(z,w}. On such functions, accordingly, G operates via

F(z,w}— Fz(z},z{w))(cz + d) " (cw +d) 7

Let Ey, E,, Ey be the infinitesimal operators corresponding to €1, €3, e3. Con-
sidering the corresponding one parameter subgroups, one finds easily:
af 5 af _of

Brf itrg, —7g +usl —ogh)

Eif= ((1_22)—+<1—?>—_+(1—w2)6 1=tk vaf-vor) )

Ezf:% ((1 +22)6 —(1+ '2)—+(1+ )afw—(lJr@?)%sz—”@f)-

¥ As most calculations of this Section have been checked on A athematica, we allow us to omit
many details.
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I, similarly, E, F, H correspond to e, f, k, this shows that

8 L,8.,0 .0
E-—EI—EEQ-—E—ZE—_'}‘%—?.U@@"‘VW}

2 0 a a a
F E]-i-IE‘z—-— a +5—w2%+%—uz,

H =21F; —2(—' 4 + aa w%-i-@‘a‘-u_-)

In order to decompose the action of G on the kernels F(z,w) into its irreducible
constituents, we must solve the eigenvalue problem for the Casimir operator

c= %(EF+FE)+ %H?.

Write, for convenience,

a . a 4 L 2
D=— = - —_ thoni ” Tl fT ivative™ ).
% VD GE’T é‘w’T G (T for Esthonian "tuletis” ("derivative”))

Then the above formulae can be written

E =D+ 7T — (2D 4+ %°T + vv),
F=D+T (2D + T + vz},
H=—2D+4:D—wT+waT.

It follows that
C= (1—[312).2DD+(1—|w|2)2TT+(1—zﬁ;)zDT—F(l—Ew)ZDT—(z—w)QDT—

(2—®)2 DT —v|(1—28)e D+{1—zw)oT +(w— |2)2 2} D +{|ro|*w—2)T + 1)+ 2.

We have not carried out the complete spectral analysis for this operator, but
let us at lcast consider here some examples.

Example. (corresponding to big Hankel operators with non-analytic sym-
bols; of. Example 1 in Sec. 4). As before (Sec. 1) let Koz, w) = (1 —zw)™"
denote the reproducing kernel in A™?(A), Take F of the form

F(z,w) = (b(z) — b(w)) Kol z,0).

Then, after some miraculous simplifications, one obtains

= ((1 ~ e DDbz) — (1 — [w])DTTHw) ) Kol 2, w).

We recognize therein the usual G-invariant Laplace operator (cf. e.g. [AFP]).
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The above calculations become somewhat less miraculous if one first, quite
generally, makes the substitution (cf. Sec. 2}

Fz,w) = Ko{z,w}Fs(z,w).

Then one sees that to the previous Casimir operator C there corresponds the

operator
Co=(1-2*)*DD + (1 - Jw|®)*TT+

s o2 2
2 — i — — —w -
1-z0) (D - D)T ~ 2By | T — D.
+(1 — zw) ( (1 - 2@) ) + (1~ 2@} (T (1 — zu‘;) T)
In the next example we have in mind we restrict our attention to operators
mapping the space A®?(A) into itself {operators of Toeplitz type}, that is,
we take F'(z,w) analytic in the first argument and anti-analytic in the second

argument. Then sorme more interesting conclusions can be made so we relegate
the resulting discussion to a separate division.

8. Generalized Toeplitz operators

If the kernel F(2,w) is analytic in 2z and conjugate-analytic in w (analytic in
w) then the action of the Casimir operator C on such functions reduces to

C=(1-206Y¥DT — v[(1 — 20)2D + (1 — 2@)dT — 1] + v% 2.

To obtain the desired spectral decomposition it suffices to look at eigenfunctions
F which are rotation invariant, i.e. F = f(2w). Then

%g = wf'(2w) :*,-z%g = 2DF = zwf'(zw),
2
F ~
aiam = DTF = z0f"(2®) + f'(2).

Thus we get the eigenvalue equation {f = zw)

(1= 0K + ) = 201~ 00f' 4 0] = A1

d
Introducing the notation D = ta, the operator ocurring here can also be
written
(7 +t—=2)D% - 2(1 - )D + 0¥t
or again

tTID? + 4D+ ) - DD +u).
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Thus, the eigenfunctions are of the form

oo

Flz,wy= Y pa(Wt" (¢ = 20),

n=0

where the p,(A) are certain orthogonal polynomials determined by the recursion
{(n+ 1)2p,,+1 +{n+v-—- 1)2 — 2n{n + ¥)pn = Apa.

These orthogonal polynomials are mentioned in [P4], but they are special cases
of polynomials considered by Askey and Wilson (see e.g. [W]).* (It would be
interesting to find out what the the corresponding orthogonal functions are in
the case of, say, the ball, ¢f. Introduction.) It follows from their formulae that
the spectral measure is concentrated on the interval ($,00). From this and
known facts (sce e.g. [AFP]) about the decomposition of the group action in
LY(A, I) (I = Poincaré measure), one can draw an interesting conclusion: The
Hilbert space of Hilbert-Schmidi operators or A®I{A) and the Hilbert space
L*{ A, I, both considered as unitary G-modules, are tsomorphic. (In itself, such
as result is not new, see e.g. [R)° .) That is, there exists an "operator calculus”,
a unitary map L2(A,I) — S*(A®*(A)) : h — W(h) which intertwines with G:

U WU, =W(hoz) (z€G,he L} A1)

It would be of interest to compare this "abstract” calculus with the "concrete”

caleuli described in [UU].

Appendix. Comparison of two invariant measures

Consider any geodesic line in A {= arc of an orthogonal circle). Let (3 and
{2 be its endpoints on the unit circumference T. The general point z on it can

be written .
_ G — (ethm
1—thkm ’
where k% = C—l, Imk > 0 and m is the logarithmic distance from z to the

2
Euclidean midpoint z* of the circular arc.® Then

_ d<1 - dCQSkm (Cl - Cz}id(km) _
de = L2 T = Ad(; + Bd¢, + Cdm,

41 was told about this by R. Askey.

51 owe this piece of information, and the reference to A. Unterberger (personal communcation}.
S Alternatively, z* is the intersection with the geodesic through the crigin which cuts the
given one perpendicularly?
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where {use that 2% = %1- — %)
_1—imRek
T (1 —ikm)®
g _(fbm)(1 + im~'Rek)
T (I—dkmE
(Cl Cg}zk
¢= 1 —ikm)p? tkm)?’

Modulo terms of degree 2 in d{; and d(; we have
dzdz = (Ad(; + Bd(a)Cdm — (Ad{; + Bd(3)Cdm + O(2)

= ((ACd(; — ACdL) + (BCd(, — BCdG)) dm + O(2)
= (Md(y + NdGy)dm + 0(2)

d
#dc=—<—§)

where {as (=

FaY e

I

If 2y and z; are two variable points on the geodesic then
dzldfleQdig = —-(M] dCI + N]d{g)(Mgdgl + Ngd(g)dmldmg + 0(3)

= —(MI N, — MQN])dcldf:zdmldmg + 0(3)

We have .
M = (g {1~ ImReTT=G)(i) - (4 imRok)(G: = WK~
_ 2K = G)
(1 —tkm}4(?’
N = 11— z'lkml“ {(ékmf(l + imHIHﬁk)(Ci — () —ik)~
Thus
M\N; — MoN, = Hk) (G = Go)(m] — mi) et 4l¢; = G (m} — mi)

1= ikmy A1 — tkmg 3¢ |1 = ikmy |5)1 — ikme[3CiCs
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On the other hand

Jof? = G = Gikm]® _ 14 (k[P — 2Reikm(1(a
Tl —km|? 1+ k2m? — 2Retkm '

2Re(ikm((1{s — 1))‘

1 —Izl2 =

1L ikm]?

But (ask:% |
N PN LSSV S 30 5 _ 2ik(G = 1)
(G 1) -G 1 =ik )+ o = TR

i 4)¢1 = (o*m?

PV 1 —=L2"m
A== s
and

16]¢1 — (ﬂ“mfm%
|1 — ikm, |1 —ikmy|t’

(1| Py = |22))* =

It follows that

( : ) x dzyd?;dz,dz, _ 1 m} — m} [d(1] - |[dG| dmi dmy
2T (1 — |21 |2)‘2(1 - |Z-2 |2)2 - 161‘?2 LeS L) |<1 b (2*2 Ty Mg

as previously claimed (Sec. 2, formula (6)).
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