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Summary  
 

  
 

The progress and the improvements made in the industrial field have pushed the 

researchers to look for refined tools to model these processes with a higher degree of 

accuracy. Thermophysical properties are needed and have to be known in a precise way, 

because an inaccurate prediction may affect the design of a unit property, with a result of a 

loss in yield and money. 

Experimental work has always been the basis for having a database of properties of 

pure fluids and mixtures. However, nowadays the theoretical models have progressed as 

modern tools that can provide a huge amount of information of a fluid in a rapid, clean and 

cheap manner. In any case, there is still a long way to find a powerful tool able to calculate 

the thermodynamic behavior of any compound at any condition. 

This work uses a robust equation of state called soft-SAFT. The original name 

comes from the Statistical Associating Fluid Theory (SAFT), which is an equation based on 

xv 
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statistical mechanics principles. It has a very strong molecular basis, proposing a “physical” 

model to describe the compound. Soft-SAFT is a variant of the original SAFT that uses a 

reference term based on a Lennard-Jones type interaction among the molecules. 

Although the previous equation had already been successfully tested in many 

different works, it still failed in a very important region of the phase diagram: the critical 

region. In that region, the properties suffer strong fluctuations and change drastically due to 

the long-correlations established among the molecules. The original soft-SAFT version of 

the equation can not take into account these long-range fluctuations because it is based in a 

mean-field theory. However, this lack of the theory can be now overcome introducing a 

specific crossover treatment that considers these inherent fluctuations. The procedure is 

based in the renormalization group treatment of Wilson (1971) and it was developed by 

White (1992). It is written as a set of recursive relations where the correlations among the 

molecules are considered in several iterations. 

 The objective of this thesis work was to improve the molecular-based equation of 

state named soft-SAFT adding the specific crossover treatment before mentioned. The 

general aim was to develop a powerful predictive tool applicable under different conditions 

for thermodynamic calculations. Once the equation was improved, its application to 

experimental systems has covered a wide range of families of compounds like n-alkanes, 1-

alkanols and n-perfluoroalkanes, as well as mixtures among them and with carbon dioxide 

and chlorhydric acid. Several different properties including vapor-liquid equilibrium, 

critical lines and second order derivative properties have been calculated with this tool, 

proving its validity in most of the cases. 

The extended equation, called crossover soft-SAFT, is first compared here to 

molecular simulations of the vapor-liquid equilibria of Lennard-Jones chains. Excellent 

agreement is obtained for different chain lengths. Then, the equation is employed to study 

three different families of hydrocarbons: the n-alkanes, the 1-alkanols and the n-

perfluoroalkanes. The molecular parameters are optimized using liquid density and vapor 

pressure data for the first eight members of each family. A correlation with molecular 

weight is then proposed, and the parameters are extrapolated to predict the phase behavior 
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of heavier members of the same family, with the same degree of accuracy as that one 

obtained for the lighter members of the series. 

Another important test for the extended equation undertaken in this thesis work has 

been the evaluation of second order thermodynamic derivative properties. Heat capacities, 

isothermal and isentropic compressibility and the speed of sound have been calculated for 

these families obtaining very good agreement with experimental data in most of the cases. 

Results for these properties are very encouraging since calculations were performed in a 

pure predictive manner, with molecular parameters obtained to fitted vapor-liquid 

equilibrium data. The different singularities experimentally observed in the vicinity of the 

critical point have been reproduced and the universal critical exponents have also been 

found in agreement with the experimental measurements. 

Finally the extension of the calculations to the critical region of binary and ternary 

mixtures is also presented and discussed here. Several groups of mixtures among n-alkanes, 

n-alkanes/1-alkanols, CO2/n-alkanes, CO2/1-alkanols and HCl/n-alkanes have been studied, 

paying special attention to the different critical transitions observed when increasing the 

chain length of the hydrocarbon. The crossover soft-SAFT equation is able to describe all 

these transitions from the parameters fitted from the pure compounds, although the 

adjustment of binary parameters is needed in some cases. Some preliminary results for the 

predictions of miscibility loops observed in ternary mixtures with supercritical CO2 / n-

alkane / 1-alkanol further support the strength of this tool for predictive purposes. 

This work intends to be a step forward in the improvement of the molecular 

modeling tools for engineering applications. Although nature is always surprising and 

difficult to reproduce, the effort devoted to this task is encouraging enough to continue 

looking for new formulas that give us the possibility of getting closer to the real world.  
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The last thing one discovers in composing a work is 
what to put first  
 

(Blaise Pascal)(1621-1663) 
French mathematician, physicist, and religious philosopher 

 
 

 



 

 



 

  

Introduction  
 
 
 

 Nowadays, the industry has become the economic motor that makes the world to 

move. All the countries look at the industry to improve their economy, trying to refine their 

production. Moreover, the “globalization” is a current phenomena that has helped to 

transfer the knowledge through the countries but, at the same time, has increased their 

3 
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competitive spirit to gain a place in the world market. It is clear that the optimization of 

resources is the key for the survival of any firm. 

 The needing for optimizing all the resources implies an accurate knowledge of the 

behavior of the prime materials employed. Some years ago, over sizing was the solution to 

any question when designing a new equipment. Now, although over sizing has to be taken 

into account for security reasons, the study of materials permits to refine the design, 

resulting in a save of money.  

The behavior of a compound is always a world to discover. Thermodynamics is 

the key to enter in this world. It is absolutely necessary to know at which conditions a 

compound will be solid, liquid or gas, or will remain in a supercritical state; and also under 

which conditions these changes will occur. This need has resulted in the search for 

powerful tools able to give the answer to this question. 

 From the early times, experimental work has become the main solution. 

Researchers have been studying all kind of compounds in the laboratory. This work is 

difficult and sometimes risky because of the toxicity of some compounds. However, thanks 

to the amount of precise measurements done already, very important advancements have 

occurred.  

 At the same time, the possibility of modeling these measurements using a 

theoretical equation was considered. During the last century, hundreds of equations have 

been proposed, looking for the global one, able to reproduce the behavior of all the 

thermodynamic properties of all compounds. Sometimes, there have been some discussions 

between the experimental work and the modeling development. Experimental data always 

reports the reality, showing what happens at certain conditions, while modeling saves 

money and time and can be used to determine a set of experiments. This is, of course, 

assuming that both of them are done in a proper manner. As a conclusion, it can be said that 

both, the experimental work and the modeling part are equally necessary for a precise 

description of a fluid. 
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 Great efforts have been done in the last decades in the modeling field. The 

development of theoretical equations based on statistical mechanics concepts opened a new 

window. It seemed that they would be able to describe the physics of the fluid and, as a 

consequence, they would become a powerful tool to study a fluid with a computer. In fact, 

their strong physical basis has acted in favor of these equations but it is also true that, due 

to some of the hypothesis employed when they are formulated, they are not describing the 

reality in a so perfect manner.  

One of these limitations is centered in the critical region of the compounds. The 

particular behavior that fluids exhibit there makes them difficult to model.  This is a real 

handicap, especially in the last years, because this region has become more important in 

many industrial processes.  Near-critical and supercritical conditions are commonly found 

in several kind of extraction processes, for example. 

Following this direction, the present work intends to go one step further in the 

searching of a global equation using a strong-molecular-based equation like soft-SAFT and 

coupling a specific treatment to improve their abilities in the critical region without 

prejudicing its predictions outside this region.  

 

1.1. Scope and Objectives of the present work 
 

As it has been mentioned, this work concerns the improvement of the molecular-

based equation of state soft-SAFT (Blas and Vega, 1997), in order to look for a global 

equation able to predict all kind of thermodynamic properties in an accurate manner. 

Particularly, this thesis is focused in solving the problem of describing fluid properties near 

the critical region. The inherent fluctuations associated to this region make all the mean-

field theories unable to capture the behavior of the compounds. It is necessary to couple a 

theory that considers these fluctuations to develop a physical realistic model for a fluid. The 

implementation of a crossover theory based on the renormalization group theory of Wilson 
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(1971, 1972) is done using a numerical approach proposed by White (1992) and applied 

into the soft-SAFT equation of state (Llovell et al., 2004).  The extended equation has been 

tested for a wide range of temperatures and pressures of pure fluids, binary and ternary 

mixtures. Phase equilibria properties have been reproduced with accuracy, close to and far 

from the critical point. Single-phase calculations have also been performed and second 

derivative properties have been predicted as a further test. Some specific objectives are 

provided in the following list: 

 

• Comparison with simulation results of Lennard-Jones chains of different 

molecular size. 

• Calculation of phase equilibria properties for the n-alkanes, 1-alkanols 

and n-perfluoroalkanes family. 

• Obtention of reliable and transferable parameters to calculate heavier 

compounds. 

• Performance of single-phase calculations and evaluation of critical 

exponents for pure fluids.  

• Comparison with a classical equation of state with the same crossover 

approach. 

• Analysis of critical behavior of binary mixtures of n-alkanes, 1-alkanol/n-

alkane, CO2/n-alkane, CO2/1-alkanol and HCl/n-alkane. Study of critical 

transitions from Type I to Type V and from Type II to Type III passing 

through Type IV. 

• Description of the thermodynamic behavior of near-critical CO2/n-

alkane/1-alkanol ternary mixtures. Calculation of miscibility windows 

and two-phase holes.  
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• Calculation of heat capacities, compressibilities and speed of sound for 

pure fluids and binary mixtures. Study of the singularities observed in the 

vicinity of the critical point. 

 

 

 

1.2. Organization of this thesis 
 
 Following this general introduction, the next chapter presents an overview about 

the main features of the critical region. The chapter illustrates why this region is important 

and, at the same time, why it is difficult to model.  

Chapter 3 enters into the different tools for modeling presenting a historical review 

of the equations of state, from the first empirical relations established some centuries ago 

till the most modern theories based on statistical mechanics. The reader is invited to travel 

through the history and to see, briefly, the main achievements in this field with the pass of 

the years.  

Chapter 4 is devoted to an explanation of the physical background of Wertheim’s 

association fluid theory and the SAFT equation. The last section of this chapter describes 

the main versions of SAFT and the most recent improvements implemented in these 

versions. Chapter 5 is entirely dedicated to the soft-SAFT equation of state. The 

particularities of the equation are described in more detail, and a review of its capabilities is 

shown with a summary of the most relevant works published since its appearance in 1997. 

Then, the different known approaches to describe the critical region are presented and 

evaluated. Finally, the mathematical model for the chosen approach is shown in detail and 

its application is described, summarizing the main hypothesis done through the model. 

Results from the implementation of the theory are given in next chapter. 
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 Chapter 6 is devoted to show the application of the equation to several kind of 

thermodynamic properties of pure compounds. In the first section, the equation is compared 

with molecular simulations to test their validity and robustness. In the second section, a 

systematic study for several families of compounds is done using the equation. Vapor-

liquid equilibrium and derivative properties are evaluated close and far from the critical 

region, and the different singularities in the vicinity of the critical point are modeled for the 

n-alkanes, 1-alkanols and n-perfluoroalkanes families. Other selected compounds like 

carbon dioxide or chlorhidric acid are also described. A comparison with a van der Waals 

type equation of state with the same implemented crossover treatment is also done.  

Chapter 7 is entirely dedicated to the study of binary and ternary mixtures of 

compounds. Following the procedure employed when evaluating pure compounds, the 

study is repeated for different families of binary mixtures of industrial interest, with 

particular attention to the critical behavior. The different transitions from one type of 

critical behavior to another one are predicted with the equation for mixtures of n-alkanes, n-

alkane/1-alkanol, CO2/n-alkane, CO2/1-alkanol and HCl/n-alkane. In the last section, some 

ternary systems are also calculated trying to reproduce several miscibility loops 

experimentally observed. 

 Finally, chapter 8 summarizes the concluding remarks of this thesis and outlines 

future work and recommendations to do in this research.  

  

  



 

 
B. Methodology 
 
 
 
 
 
 
 
 
 
 
 
 

 
A theory is the more impressive the greater is the 
simplicity of its premises, the more different are the kinds 
of things it relates and the more extended the range of its 
applicability.  

 

                         (Albert Einsten) (1879-1955)  
          German-Swiss-U.S. scientist 

 
 
 



 

 



Critical Region 
 

 

 

 

This chapter is intended to give a general overview about the critical region. In 

fact, it is an introductory explanation about the interest of this region in the 

thermodynamic map of any compound. The first section is devoted to explain the 

basic concepts of the physics behind the critical area, with a brief description of 

the behavior of the main thermodynamic properties. The chapter continues 

showing the importance of these particularities in an industrial process, 

summarizing some of the most important ones where near-critical and supercritical 

conditions are encountered. Finally, last section classifies the different kinds of 

possible critical behavior when dealing with binary mixtures, following the 

classification of Scott and van Konynenburg (1970, 1980).  

11 
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2.1. The “physics”  in the critical region 1

 

 The transition between the vapor and liquid phases of a pure fluid is one of the 

most fundamental in nature. The reference point, from which all of the transition properties 

of such a fluid can be derived, is called the ‘critical point’. This is the point, characterized 

by a fixed temperature, pressure and density, at which the distinction between the gas and 

the liquid phase simply disappears. It was the French baron Charles Cagniard de La Tour, 

in 1821, who first discovered this critical point, observing the disappearance of the 

gas/liquid interface of carbon dioxide in a sealed gun. He could not know at that time that 

this new ‘state’ of matter would lead later on to so many important discoveries for both 

fundamental science and technology, some of them thanks to exploiting the microgravity 

environment. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Phase diagram of a pure substance in the temperature/pressure plane. The 
supercritical ‘state’ corresponds to a compressed gas that exhibits the density of a liquid 
(Image extracted from the book “A world without gravity”, 2001). 

                                                 
1 This section is inspired in section 2.3.5 of the book  “A world without gravity” from the 

European Space Agency (2001) 
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 In a wide domain around the critical point, important parameters such as 

isothermal compressibility, the density of the gas and liquid phases, and the surface tension, 

obey universal power laws. These parameters can easily be varied by using small changes 

in temperature or pressure. The highly variable properties of near-critical fluids make them 

very appealing for studying many interesting phenomena that, because of the universality 

of the power laws, are valid for all fluids. Above the critical temperature and pressure, such 

fluids are called ‘supercritical’. In this region, they exhibit a number of specific properties 

(high density, low viscosity, large diffusivity), which make them intermediate between 

liquids and gases. While their density approaches the liquid values, other properties like the 

diffusivity are closer to the gas characteristics. In addition, the isothermal compressibility 

becomes extremely large as one approaches the critical region, diverging at the critical 

point. Near the critical point of the solvent, its properties, like density and, with it, the 

ability for dissolving selectively non-volatile substances, change rapidly with only slight 

variations of temperature/pressure. For a better understanding of the phenomena, Figure 2.2 

is presented and split in four parts. The figure shows the phase equilibrium of carbon 

dioxide. In the first image the separated phases (liquid and vapor) of carbon dioxide are 

easily observed. With an increase in temperature, the meniscus (the line between the two 

phases) begins to diminish (Fig. 2.2b). Increasing the temperature further causes the gas 

and liquid densities to become more similar. The meniscus is less easily observed but still 

evident (Fig. 2.2c). Once the critical temperature and pressure have been reached the two 

distinct phases of liquid and gas are no longer visible. The meniscus can not longer be seen. 

One homogenous phase called the "supercritical fluid" phase occurs which shows 

properties of both liquids and gases (Fig. 2.2d). 

 Fluids in their near-critical or supercritical state are affected by gravity. 

Consequently, gravity compresses the fluid under its own weight and the fluid stratifies. 

This prevents a very close approach to the critical point. Any measurements made on a cell 

of finite height will actually measure an averaged property of the fluid at differing densities, 

rather than the precise property approaching the critical point. 
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Figure 2.2. Images of the carbon dioxide transition from a vapor-liquid equilibrium till a 
supercritical state (Image extracted from the University of Leeds (England) webpage 
http://www.chem.leeds.ac.uk/People/CMR/criticalpics.html.) 

 

 An important aspect of the critical region is that most of the anomalies in the 

thermodynamic and transport properties can be set in the form of scaled, universal 

functions (power laws) with respect to the critical-point parameters. This has the very 

important consequence that any results obtained with one fluid can be immediately re-

scaled to describe any member of a whole class of systems, called a ‘universality class’. 

This class is defined by the space dimensionality d (=3 in normal space) and the 

http://www.chem.leeds.ac.uk/People/CMR/criticalpics.html
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dimensionality n, of the fluctuating quantity, the ‘order parameter’. This is the parameter 

(M) that describes the change in the symmetry of the system at the transition. In fluid 

systems, the order parameter M is usually the density but, in some cases, like in liquid-

liquid equilibrium, it may be the concentration of each species. 

 Density is homogeneous above the critical point (the fluid is supercritical) and 

inhomogeneous below it, because the two phases (gas and liquid) coexist with different 

densities. All systems with the same ‘d’ and same ‘n’ show the same asymptotic, universal, 

scaled behavior. They all belong to the same ‘universality class’. Fluids belong to the class 

defined by d=3, n=1 (density is a scalar). In addition to pure fluids (order parameter: 

density), another member of this same class are the partially miscible liquid mixtures (order 

parameter: concentration). This includes the polymer melts, polymer solutions, micro-

emulsions, molten salts, and monotectic liquid metals. This universality and scaling is 

fundamental in nature. It stems from the universal behavior that the free energy must 

asymptotically obey at the critical point in order to fulfill the conditions of a second-order 

phase transition. (In such a transition, a specific property changes continuously, rather than 

discontinuously, on going through the transition). In this sense, universality and scaling are 

generic to all critical-point phenomena. 

 By permitting measurements extremely close to the critical point, space 

experiments have made possible the precise measurements of important, weak power law 

divergence, such as that of the specific heat at constant volume Cv. For example, from space 

experiments (Haupt and Straub, 1999), the temperature divergence of the specific heat has 

been determined with a very high precision, giving the universal critical α exponent. Its 

precise calculation was a key test of the “Renormalization Group Theory” (Wilson, 1971, 

1972), which was developed to try to improve on the classical macroscopic description of 

the fluid behavior close to the critical point. 

 As the critical point is approached, the fluids become extremely compressible, 

much more than ideal gases. Excited by the thermal fluctuations and enhanced by the large 

compressibility of the fluid, the density fluctuates more and more strongly as the critical 
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point is approached. The vicinity of the critical point is thus characterized by the presence 

of very-large-scale density fluctuations (or more generally, order parameter fluctuations), 

which develop throughout the fluid. The density fluctuations give rise to unusually strong 

light scattering, called ‘critical opalescence’. These order parameter fluctuations are 

correlated with the correlations having a spatial extent that can be characterized by a 

correlation length L. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3  Huge density fluctuations observed under Og in sulphur hexafluoride (SF6) 
(Mir, 1996). Fluctuations in density diverge at the critical point and their typical size, the 
correlation length L, determines the length scale of all critical-point phenomena. (Image 
extracted from the book “A world without gravity”, 2001). 

 

 The specific nature of the critical region therefore involves the appearance of this 

new characteristic distance, which can become much larger than the inter-particle distance. 

The correlation length then becomes the natural length scale of critical-point phenomena. 
At that point where the correlation length becomes much larger than the range of the 

intermolecular forces, the specifics of the microscopic interactions cease to be relevant in 

the description of the critical behavior.  
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2.2. Summary of important industrial applications 
 

 The previous section has shown the basic features of the physics behind the critical 

region. It has been remarked that all the fluids approach the critical point following 

universal laws. However, it does not mean that they achieve the critical point at the same 

thermodynamic conditions. The critical point of each compound is reached at a different 

temperature and pressure for each compound and, sometimes, it implies a high energy cost.  

 Table 2.1 shows a list of the critical properties of some common fluids. Among 

them, carbon dioxide and water have been the most studied for supercritical applications, 

although both present strong differences. While supercritical water has a high critical 

temperature and pressure (Tc=647.3K, Pc=22.1MPa) that requires a considerable energetic 

effort, the CO2 is considered the “ideal” supercritical fluid. Their critical conditions are 

easily achievable (Tc=304.1K, Pc=7.38MPa), and it is a non-toxic, cheap and easy-to-get 

gas. It is the most widely used compound in the supercritical processes. 

 

Table 2.1. Critical properties of various industrial solvents (Reid et al, 1987) 

Solvent Mw (g/mol) Temp. (K) Press. (MPa) Dens. (g/L) 

Carbon dioxide 44.01 304.1 7.38 469 

Water 18.02 647.3 22.12 348 

Methane 16.04 190.4 4.60 162 

Ethane 30.07 305.3 4.87 203 

Propane 44.09 369.8 4.25 217 

Ethylene 28.05 282.4 5.04 215 

Propylene 42.08 364.9 4.60 232 

Methanol 32.04 512.6 8.09 272 

Ethanol 46.07 513.9 6.14 276 

Acetone 58.08 508.1 4.70 278 

http://en.wikipedia.org/wiki/Water_%28molecule%29
http://en.wikipedia.org/wiki/Methane
http://en.wikipedia.org/wiki/Ethane
http://en.wikipedia.org/wiki/Propane
http://en.wikipedia.org/wiki/Ethylene
http://en.wikipedia.org/wiki/Propylene
http://en.wikipedia.org/wiki/Methanol
http://en.wikipedia.org/wiki/Ethanol
http://en.wikipedia.org/wiki/Acetone
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 Due to its characteristics, supercritical fluids become the ideal solvents because its 

enormous diffusivity lets them to go into the porous media. Taking advantage of these 

properties, new industrial technologies use a wide variety of fluid separation processes 

where critical conditions are encountered. There are different fields where the supercritical 

conditions are employed (for a complete review, see Bright and McNally, 1992; Perrut, 

2000; Cooper, 2002): 

 

 Natural products extraction processes are one of the most important industrial 

applications for the supercritical technology: the extraction of caffeine from green 

coffee beans with supercritical carbon dioxide (CO2), the decaffeination of tea and 

the extraction of spices, aromas, hops, oils and fats from natural products are some 

good examples.  

 Oxidation in a supercritical water reactor is done for transforming complex and 

dangerous organic compound wastes into their simple constituent components. 

These reactors operate at temperatures around 700K and pressures about 500 bar 

in a process that is harmless to the environment. The yields of these oxidation 

processes are extremely high.  

 Fractionation in oil processes: The Residum Oil Supercritical Extraction (ROSE 

process), the separation and isomer purification, etc. 

 Impregnation processes like wood treatment, textile dyeing, etc. 

 Materials: precipitation and crystallization of medicines, pigments, catalyzers, etc. 

 Microelectronics (dry lithography): photoresist stripping, supercritical spinning, 

metal deposition, silylation,etc. 

 Production of finely divided materials based on the use of compressed CO2 as 

cosolvent in CO2-expanded organic solutions (DELOS process) (Ventosa et al., 

2001). 
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Consequently, their current use without such knowledge inevitably raises fundamental 

questions concerning fluid dynamics, heat transfer, interfacial phenomena and chemical 

processes. It is evident that an accurate modeling for pure fluids and multicomponent 

mixtures involving critical conditions is needed. However, this task is difficult due to the 

particular nature of the critical region and the various phenomena observed, not only for 

pure fluids, but also when describing the binary mixtures. A systematic study of the 

fundamental behavior is necessary for the understanding of the possible phenomena. The 

classification of Scott and van Konynenburg (1970, 1980) offers a way to classify the 

binary mixtures describing possible types of critical phase behavior. As a main part of this 

thesis work is involved with the evolution from one type of critical behavior to another one, 

the last section of this chapter proceeds to briefly describe each one of the different possible 

behaviors according to this classification. 

 

2.3. The classification of Scott and Van Konynenburg  
 

The graphical representation of two thermodynamic properties in a plane of two or 

more phases and their mutual coexistence is called a phase diagram. The ability to 

determine phase diagrams for fluid mixtures is important, from both a theoretical as well as 

a practical point of view. For binary fluid mixtures, the classification of van Konynenburg 

and Scott (1970, 1980), based on the shape and location of the mixture critical curves, 

identifies six possible classes of fluids (see Figure 2.4):  

 

 Type I phase behavior is characterized by having a continuous vapor-

liquid critical curve without any liquid-liquid miscibility. This behavior 

occurs with two substances that are chemically similar and/or have 

critical properties that are comparable (e.g. ethane + 2-methylpropane).  
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 Type II phase behavior has, in addition to the continuous vapor-liquid 

critical curve that connects both pure critical points, a three-phase line 

liquid-liquid-vapor, ending at an upper critical endpoint (UCEP). From 

this point, a second critical curve of liquid-liquid nature goes to infinite 

pressures where the fluid mixture approaches closest packing. An 

example of a type II system is carbon dioxide + n-octane. 
 

 Type III phase behavior has two different critical curves: one starts at the 

critical point of the heavier compound and goes to infinite pressures, and 

the other curve starts at the critical point of the component with the lower 

critical temperature and meets a three-phase line liquid-liquid-vapor 

(LLV) at an UCEP. This behavior is found in many mixtures with carbon 

dioxide and heavy hydrocarbons, like, for instance, CO2 + n-hexadecane. 
 

 Type IV phase behavior is a transition state between type II and type III 

behavior. In type IV, three different critical curves exist: One of them is a 

liquid-liquid critical curve that starts at the UCEP of a three-phase line 

liquid-liquid-vapor and goes to infinite pressures. The second one starts at 

the critical point of the component with the lower critical temperature and 

ends in another UCEP of a second three-phase line liquid-liquid-vapor. 

Finally, the third critical line starts at the critical point of the component 

with the higher temperature and ends at a Lower Critical End Point 

(LCEP) of the second three-phase line liquid-liquid-vapor. This last 

critical line changes its nature near the LCEP, passing from a vapor-liquid 

equilibrium to a liquid-liquid equilibrium. This is the particular behavior 

observed for the mixture CO2 + n-tridecane.  
 

 Type V phase behavior is characterized by two distinct critical curves: 

one going from the heavier compound till a LCEP and a second one going 
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from an UCEP till the lighter pure compound. Between the LCEP and the 

UCEP, a three-phase LLV line is found. The critical line diagram is 

identical to type IV, excepting for the liquid-liquid critical line. This is 

the typical behavior observed in mixtures between two asymmetric 

compounds of the same family, like the system methane + n-hexane. 

 

 Type VI phase behavior have a continuous vapor-liquid critical curve 

between the critical points of the pure compounds. Moreover, the main 

characteristic is a closed liquid-liquid critical curve that starts at a LCEP 

of a three-phase line liquid-liquid-vapor and ends at an UCEP on the 

same three-phase line. Type VI phase behavior is found in mixtures with 

strong intermolecular bonding, like, for instance, the system water + 2-

butoxyethanol. 

 

All the types are connected among them and a slight modification in a mixture 

may involve passing from one type of critical behavior to another one. Some series of 

mixtures may pass through several phase behaviors as a function of the chain length of the 

hydrocarbon. For example, mixtures of n-alkanes with carbon dioxide begin with the 

simple type I phase behavior (CO2 + ethane), go through Type II when the n-alkane 

increases the chain length (i.e. both compounds become more dissimilar and liquid-liquid 

immiscibility appears), like the mixture CO2 + n-heptane, pass through Type IV (CO2 + n-

tridecane) to arrive to a Type III phase behavior (CO2 + n-tetradecane). Some of these 

evolutions are studied with soft-SAFT and presented in chapter 7. 
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Figure 2.4 Schematic Pressure-Temperature projections of types of binary fluid phase 
behavior according to the classification of Scott and van Konynenburg  (1970, 1980).  

 

In the same manner, an accurate modeling will be required to avoid predicting a 

wrong behavior in a particular mixture. The inclusion of binary parameters in the equation 

of state will determine the type of critical behavior in a mixture. In fact, the various types of 

phase behavior can be located on a map depending on these parameters. This map is called 

the “global phase diagram” (Furman et al., 1977) and it is very useful to facilitate the 

discussion of binary fluid phase behavior from a theoretical point of view. 

 In the following chapters (3, 4 and 5), a description of the different tools for 

modeling the thermodynamic behavior of a substance and, in particular, its critical region is 

presented. 



Equations  
 

 

In this chapter, a review in the development of equations of state for the calculation 

of thermodynamic properties in pure fluids and mixtures is presented. From the 

first modeling before 1800, the reader is invited to a follow a brief summary of 

some different approaches through the history. The chapter explains some basic 

features about the main cubic equations of state, the empirical methods and the 

molecular equations, finishing in the Wertheim’s theory of association, which 

provided the mathematical basis and structure to the Statistical Associating Fluid 

Theory (SAFT).  

23 
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3.1. Chronology of classical equations of state1

An equation of state (EoS) is a constitutive equation describing the state of matter 

under a given set of physical conditions. It provides a mathematical relationship between 

two or more state functions associated with the matter, such as its temperature (T), pressure 

(P), volume (V), or internal energy (U). The term “state” is also used to designate the 

physical phase of the system, i.e., solid, liquid, or gas. In some cases, it is necessary to give 

the phase of a substance, in addition to values of such properties as P, T, V, and number of 

moles (n), in order to completely and unequivocally designate its state. Equations of state 

are useful in describing the properties of fluids, mixtures of fluids, solids, and even the 

interior of stars.  

Hundreds of equations have been developed through history and this research  

field keeps active because, at present, there is no single equation of state that accurately 

predicts the properties of ALL substances under ALL conditions. 

Based on experimental measurements, Robert Boyle (1662) developed an equation 

in which there is a reciprocal relationship between the pressure and the volume of gases, 

when the temperature and the amount of gas are kept constant. The work of Jacques 

Charles in 1787 and of Joseph-Louis Gay-Lussac in 1808 demonstrated that the volume of 

a given amount of gas is directly proportional to the temperature, when its pressure remains 

constant. 

Amedeo Avogadro proposed in 1811 that equal volumes of all gases, at the same 

pressure and temperature, contain the same number of molecules. In other words, an equal 

number of moles of all gases occupy the same volume at constant temperature and pressure. 

                                                 
1 This section is inspired in the work of Valderrama (2003) and the information that can be 

found in the video The World of Chemistry, produced by the University of Maryland and the 
Educational Film Center (1990).  

 

http://en.wikipedia.org/wiki/Constitutive_equation
http://en.wikipedia.org/wiki/State_function
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Volume
http://en.wikipedia.org/wiki/Internal_energy
http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Solid
http://en.wikipedia.org/wiki/Star
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This proposal, combined with the relationships discovered by Boyle, Charles, and Gay-

Lussac led to an equation of state for gases:  

mV
RTP =  (3.1)  

where P is the pressure, Vm  is the molar volume, T is the absolute temperature and R is the 

universal gas constant. The equation is written for one mol of molecules of a compound. 

This equation is known as the equation of state for ideal gases or the ideal gas law. 

Although the behavior of real gases closely follows the ideal gas equation under 

circumstances of low pressure and reasonably high temperature, it becomes increasingly 

inaccurate at higher pressures and lower temperatures, and fails to predict condensation 

from a gas to a liquid. Therefore, a number of much more accurate equations of state have 

been developed for gases and liquids as well as others for predicting the volume of solids, 

including the transition of solids from one crystalline state to another. Although it is 

impossible to mention all the equations developed up-to-date, in this section it is intended 

to briefly review the most important advancements through the last century. 

The most widely used equation of state for real gases is that of Johannes van der 

Waals (1873). The van der Waals equation (vdW) was one of the first to perform markedly 

better than the ideal gas law and the first one in successfully describing both the liquid and 

the vapor phase simultaneously. Instead of using the measured value of pressure in the 

equation of state for ideal gases, he substituted a term which takes into consideration the 

reduced pressure on the walls of a container due to the attractive forces. This magnitude of 

the pressure term increases with the density of molecules: when they are closer together, the 

molecules are more constrained by their mutual attraction. The van der Waals equation also 

corrects the volume term in the ideal gas equation by subtracting the space that is taken up 

by the molecules themselves. The equation looks like this: 

 

http://en.wikipedia.org/wiki/Solid
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 In this landmark equation, a is called the attraction parameter and b the repulsion 

parameter or the effective molecular volume. a and b were first calculated using PVT data 

but were later related to critical properties by applying the condition of continuity of the 

critical isotherm (inflexion point) at the critical point: 
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 The study of real gases in relationship to the van der Waals equation yields 

valuable information about intermolecular forces and the volume of molecules. The 

concepts developed by van der Waals on the separation of repulsive forces caused by 

molecular size from cohesive forces caused by molecular attraction still remain as the basis 

of several theories concerning the prediction of fluid properties and of computer 

simulations based on statistical mechanics. Unfortunately, although the equation is 

definitely superior to the ideal gas law and does predict the formation of a liquid phase, the 

agreement with experimental data is limited for conditions where the liquid forms.  In spite 

of this limitation, the vdW equation still remains as the basis for more refined cubic 

equations of state for engineering purposes 

A very old and appreciated effort is the virial expansion suggested by Heike 

Kammerlingh-Onnes (1901). Following the idea of modifying the ideal gas equation of 

state adding new terms to account the interaction among the molecules, the virial 

expansion, also called the virial equation of state, is the most interesting and versatile of the 

equations of state for gases. The virial expansion is a power series in powers of the 

variable, Vm, and has the form, 
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It adds correction terms to the ideal gas equation by multiplying the right side of 

the equation (RT) by the mathematical progression (1 + B/V + C/ V2 + D/V3 + E/V4 +...) 

where the constants A, B, C, etc. are temperature dependent. The coefficient, B(T), is a 

function of temperature and is called the "second virial coefficient”. C(T) is called the 

“third virial coefficient”, and so on. The expansion is, in principle, an infinite series, and as 

such should be valid for all isotropic substances. In practice, however, terms above the third 

virial coefficient are rarely used in chemical thermodynamics. Although it is only 

applicable to the gas phase, the virial equation is important because it can be derived 

directly from statistical mechanics. If appropriate assumptions are made about the 

mathematical form of the intermolecular forces, theoretical expressions can be developed 

for each of the coefficients. In this case B corresponds to interactions between pairs of 

molecules, C to triplets, and so on. Accuracy can be increased by considering higher order 

terms. 

In 1940, Benedict, Webb and Rubin developed an empirical equation with several 

parameters to correlate and predict the thermodynamic properties of light hydrocarbons and 

their mixtures. Later on, Starling (1973) modified the original equation and published a 

book with the parameters for a total of fifteen substances.  
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where ρ is the density of the compound and A0, B0, C0, D0, E0, a, b, c, d, α and γ are 

coefficients. 

In a similar way, other nonanalytic empirical equations were developed (Lee and 

Kesler, 1975). This type of equations offer improved thermodynamic property correlations 

http://en.wikipedia.org/wiki/Statistical_mechanics
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but does not offer any better results for the correlation of mixture phase behavior due to the 

large number of coefficients and the lack of theoretical guidelines. Another drawback of 

this type of equations is the large amount of volume roots that can be obtained from them.   

With the pass of the years, several cubic equations were developed from 

modifications of the basis of the van der Waals equation looking for improvement in vapor-

liquid equilibria calculations.  The differences were established by modifying the way of 

calculating the parameters a and b.  

The Redlich-Kwong equation of state (1949) was a considerable improvement 

over other equations of the time.  It has the following form: 
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where Tr is the reduced temperature. By the time of this proposal, there were about 200 

equations of state (Vukalovich and Novikov, 1948). Redlich and Kwong looked for correct 

representations at low and high density for gases, adding temperature dependence in the 

attractive parameter. Their equation, while superior to the van der Waals equation of state, 

performs poorly with respect to the liquid phase and thus cannot be used for accurately 

calculating vapor-liquid equilibria. However, it can be used in conjunction with separate 

liquid-phase correlations for this purpose. The Redlich-Kwong equation is adequate for 

calculation of gas phase properties when the ratio of the pressure to the critical pressure 

(reduced pressure) is less than about one-half of the ratio of the temperature to the critical 

temperature (reduced temperature). 

http://en.wikipedia.org/wiki/Critical_properties
http://en.wikipedia.org/wiki/Critical_properties
http://en.wikipedia.org/wiki/Critical_properties
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During fifteen years, the Redlich-Kwong proposal became extremely popular and 

several RK-type equations were proposed. Wilson (1964) made one of the major 

contributions when he introduced Pitzer’s acentric factor ω  into the attractive term to 

consider the variations in behavior of different fluids at the same reduced temperature and 

pressure, depending on their shape. 

In 1972, Soave, following Wilson’s idea, replaced the aT1/2 term of the Redlich-

Kwong equation with a function α(T,ω) involving the temperature and the acentric factor: 
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 The m parameter is a specific function of the acentric factor ω:  

32 025.01925.0576.147979.0 ωωωm +++=  (3.11) 

 The α function was devised to fit the vapor pressure data of hydrocarbons and the 

equation does fairly well for these materials. The Soave-Redlich-Kwong (SRK) equation 

has become one of the most common equations and it is still widely employed for phase 

equilibria calculations. 

The Peng-Robinson equation was developed in 1976 in order to satisfy the 

following goals: 

1. The parameters should be expressed in terms of the critical properties and the 

acentric factor.  

2. The model should provide reasonable accuracy near the critical point, particularly 

for calculations of the compressibility factor and liquid density.  

3. The mixing rules should not employ more than a single binary interaction 

parameter, which should be independent of temperature, pressure and 

composition.  

http://en.wikipedia.org/wiki/Acentric_factor
http://en.wikipedia.org/wiki/Critical_properties
http://en.wikipedia.org/wiki/Acentric_factor
http://en.wikipedia.org/wiki/Compressibility_factor
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4. The equation should be applicable to all calculations of all fluid properties in 

natural gas processes.  

The Peng-Robinson equation looks like this: 
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The Peng-Robinson equation exhibits performance similar to the SRK equation, 

although it is generally superior in predicting the liquid densities of many materials, 

especially nonpolar ones. 

If one rewrites equations 3.2-3.4 in a more general form, it is observed how the 

Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) equations 

are obtained from the original van der Waals equation of state: 
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Table 3.1 summarizes the parameters of these cubic equations of state.  
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Table 3.1. Summary of the parameters value for the most common cubic type equations of 
state 

Model Ωa Ωb c1 c2 α(Tr) 

vdW 27/64 1/8 0 0 1 

RK 0.42748 0.08664 0 1 [Tr]-1/2

SRK 0.42748 0.08664 0 1 [1 + m (1- rT )]2

PR 0.45724 0.07780 1- 2  1+ 2  [1 + m (1- rT )]2

 

Several other equations of state could be mentioned in this section (there is a total 

of 400 cubic EoSs proposed to date in the literature) but SRK and PR have remained as the 

most used for engineering calculations. The newest contributions have tried to modify the 

expression of α(TR) (Stryjek and Vera, 1986), the volume dependence of the attractive 

pressure term or to use a third-substance dependence parameter (Patel and Teja, 1982). 

Some other equations were developed to treat fluids at a very certain specific conditions 

(high pressure in liquid phases, Bose gases, etc.), but they are not the aim of this summary. 

More information about the different equations of state can be found in the reviews 

of Valderrama (2003) and Prausnitz and Tavares (2004). 

 

3.2. Molecular-based equations of state 

 
The phenomenological basis of a traditional EoS of the van der Waals form is 

based on molecules that are quasi-spherical. This is not appropriate for fluids with chain-

like molecules, especially polymers, not only because molecules are not spherically 
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symmetric in shape, but also because such molecules exercise rotations and vibrations that 

depend on density and should be taken into account. 

The advancement in the field of statistical mechanics permitted to develop a series 

of new equations based on a deeper study of the molecular behavior of the fluid. These 

equations are able to take into account the different shapes of the molecules and they relate 

the microscopic functions that describe the molecular nature of the compound to the 

obtention of macroscopical properties through the calculation of the Helmholtz free energy. 

In some way, all the van der Waals equations are also molecular equations, taking into 

account the volume of the molecules and the attraction among them in the a and b 

parameters, although they are categorized into another class because their “molecular” 

considerations are oversimplified. It is also interesting to notice that even the virial equation 

of state can be derived from statistical mechanics. 

The first published molecular-based equations of state started with a hard body 

equation plus some terms to account the effect of molecular attraction. Different hard-body 

terms have been proposed through the years. The most significant are the Wertheim-Thiele 

equation (Wertheim, 1963; Thiele, 1963), the Carnahan-Starling equation for hard spheres 

(1969, 1970), and the equation of Gibbons (1969), the one from Boublik (1970) and the one 

from Nezbeda and Leland (1979) for non-spherical rigid molecules. The most well-known 

equation for chains are the Perturbed Hard Chain Theory (Beret and Prausnitz, 1975) (and 

its versions) and the Flory-Huggins Theory for polymers (1953). 

The Perturbed Hard Chain Theory (PHCT) is a phenomenological EoS for chain-

like molecules proposed by Beret and Prausnitz (1975) based on Prigogine’s theory for 

liquid polymers (Prigogine, 1957). The PHCT is similar to the van der Waals model but it 

allows for contributions from so-called external degrees of freedom (density-dependent 

rotational and vibrational motions) in addition to translations to the EoS.  

The PHCT is a successful equation but mathematically complex. Some versions 

have simplified the original equation. The most important are the Truncated Perturbed Hard 
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Chain Theory (TPCHT) of Gmehling et al. (1979) and the Simplified Perturbed Hard Chain 

Theory (SPCHT) of Kim et al. (1986). In the TPCHT, the perturbation expansion in the 

attractive term is truncated after the second term. In the SPCHT, the attractive term is 

replaced by a theoretical but simple expression based on the local composition model of 

Lee et al. (1985).  

The PHCT has also been modified in terms of the selected intermolecular 

potential. The substitution of the square-well potential by a soft-core Lennard-Jones 

potential energy function by Morris et al. (1987) has created the Perturbed Soft Chain 

Theory (PSCT), with accurate results for non-polar mixtures.  

Vimalchand and Donohue (1986) developed the Perturbed Anisotropic Chain 

Theory (PACT) combining the PHCT with an additional perturbation expansion where 

multipolar interactions were explicitly considered. 

Another EoS similar to PHCT is the chain-of rotators (COR) (Chien et al., 1983). 

In this equation of state, a chain of molecules is not composed of spherical segments but is 

seen as a dumbbell-shaped molecule. Chien et al. (1983) obtained an accurate correlation 

for pure fluid properties using this theory. Unfortunately, calculations for mixtures required 

large values of binary interaction parameters. 

The Deiters equation (1981) is also similar to the PHCT and the COR. This 

equation of state contains corrections for non-spherical molecular shape, softness of the 

repulsive potential and three-body effects.  

When paying more attention to the liquid phase, several attempts have been 

proposed extending the original Flory-Huggins lattice theory for polymer solutions (1953). 

Among them, the Sanchez-Lacombe equation of state (1976, 1978) has become quite 

popular because of its relative simplicity. The essential contribution of this equation is the 

inclusion of holes (empty sites) into the lattice. 
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Although this kind of equations involve more complexity, they become a 

promising route to the calculation of phase equilibria in different kind of systems because 

their molecular nature contributes to extrapolate the parameters within the same family. 

Moreover, the expressions are usually written as a sum of contributions where the different 

effects can be separated and quantified. This is the key for a continuous improvement, 

because there exists the possibility of adding a new term in order to consider a particular 

interaction (multipolar effects, associating sites, etc.) 

In some cases, the existence of strong and highly directional attractive forces leads 

to the formation of long-lived molecular clusters. Electrolytes, hydrogen-bonded fluids, 

polymers, liquid crystals or plasmas fall into this category. The new intermolecular forces 

present in these compounds (Coulombic forces, strong polar forces, complexing forces, 

etc.) produce large deviations from ideality (for instance, the closed loop phase behavior 

[Jackson, 1991]) and should be specifically taken into account in any modeling for an 

accurate description. This group of compounds constitutes the so-called associating fluids. 

However it is important to remark that the distinction between an associating and a non-

associating fluid is completely arbitrary, because there is a continuous transition between 

the two types. For instance, the hydrogen sulfide molecule has a bond strength of 

approximately 6 KJ/mol that could be considered in the border of both types, either a 

compound with a stronger van der Waals interaction, or a compound with a small 

association effect (around 10 kJ/mol and above). 

Several approaches have been developed to model associating fluids, being 

categorized among chemical, quasi-chemical and physical theories. The oldest known 

method is the chemical theory proposed by Dolezalek (1908), which considered the 

different anisotropic physical interactions to be treated as a chemical reaction. The 

association phenomena would be a chemical reaction where two substances A and B are in 

equilibrium with a dimer AB. It can be assumed that the different species form an ideal 

mixture or take into account the non-ideality trying to evaluate the different activity 

coefficients through an empirical equation. Although this theory has been quite successful 
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in describing solution properties for some compounds (like alcohols), it presents serious 

limitations because of the arbitrary way in which the number of species and chemical 

reactions are determined. Moreover, the evaluation of the different equilibrium constants as 

adjustable parameters and the estimation of the activity coefficients makes the theory quite 

inefficient and with little predictive power. 

Heidemann and Prausnitz (1976) combined a classical EoS for non-associating 

systems with a chemical theory, supposing consecutive “chainlike” association reactions 

forming dimers, trimers, etc., where all the equilibrium constants had the same value. 

Although this treatment is not straightforwardly extended to mixtures and the arbitrary 

separations of the physical and the chemical part can be thermodynamically inconsistent, it 

has become a basis for more refined approaches like the associating perturbed anisotropic 

chain theory (APACT) of Ikonomou and Donohue (1986), which comes from the Perturbed 

Anisotropic Chain Theory (PACT). Although the APACT equation gives good fits for 

hydrogen bonding systems, it is lenghtly and cumbersome. Another essay of Ikonomou and 

Donohue was the COMPACT equation (1987), a derivation from the SPHCT for hydrogen 

systems. Although it was simpler than the APACT, the equation was not able to model 

properly high complex phase behavior. The particular form of the combining rules for the 

associated species and the number and type of reactions considered continued posing a 

problem for an efficient and accurate application.  

The quasi-chemical approach was originally formulated by Guggenheim (1944, 

1948) and it supposed a nonrandom mixing at the molecular level to explain the 

nonidealities observed in fluids. The concept of several associating species disappears and 

the association effect is treated as a stronger van der Waals type interaction assigning large 

energy parameters to the associating interactions. Many important methods were developed 

from this theory, using several excess Gibbs energy models, especially for the estimation of 

liquid mixtures, like the Wilson’s equation (Wilson, 1964), the nonrandom two-liquid 

model (NRTL) of Renon and Prausnitz (1968) or the group contribution methods.  
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Group contribution methods, also known as Group Additivity relationships, are 

useful for correlating a material property with the chemical composition and state of matter 

of a substance. Useful methods have arisen for correlating properties of gases and liquids 

with small molecules, crystals, and polymeric materials. The underlying idea of any Group 

Contribution method is as follows: whereas there are thousands of chemical compounds of 

interest to science and technology, the number of structural and functional groups which 

constitute all these compounds is much smaller. The basic assumption is made that the 

physical property of a material (gas, liquid or solid) is a sum of contributions from each of 

the material's component parts. The fundamental assumption is additivity of these 

contributions. 

The development and use of Group Contribution methods proceeds in two stages: 

1. The properties of known materials are correlated with their chemical structure, 

in order to identify the basic groups and their Additive Molar Quantities (AMQ's). 

2. The properties of unknown materials are estimated through direct addition of 

AMQ's from constituent chemical groups, or through the use of additive quantities to 

estimate parameters in more accurate correlations. 

The most important models in use are the universal quasi-chemical approach 

(UNIQUAC) of Abrams and Prausnitz (1975); the universal functional activity coefficient 

model (UNIFAC) of Fredenslund et al. (1977) and the analytical solution of groups 

(ASOG) of Kojima and Tochigi (1979).  

Among the above mentioned models, UNIFAC has been the most commonly used 

model because of its simplicity: its parameters are independent of temperature and it does 

not require any experimental mixture data. The equation was modified by several authors to 

improve their capabilities. Oishi and Prausnitz (1978) extended the equation to polymer 

solutions. Some efforts were made to the calculation of solutions with electrolytes and 

charged particles, as well as for supercritical components. However, such extensions were 
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quite limited because the data is confined to aqueous systems and lattice models are not 

able to reproduce highly mobile gaseous solute.   

Another related method was developed from Panayiotou and Sanchez (1991), 

separating the partition function into a physical part, treated using a lattice-fluid equation, 

and a chemical part, using the quasi-chemical approach. All this second group of 

methodologies presents again serious drawbacks concerning the evaluation of the 

equilibrium constant. Moreover, lattice theories assume that the fluid structure can be 

approximated by a solid-like structure and accurate results will only be obtained for very 

well structured fluids. 

Later on, the physical theories for describing the behavior of associating fluids 

provided a framework in which the interaction effects could be separated and quantified 

using recipes for establishing the structure and thermodynamics, given its intermolecular 

potential function.  

One of the first statistical mechanical theories was the one developed by Andersen 

(1973, 1974), who introduced the geometry of the interaction in an early stage of the 

theory. He considered an only short-ranged, highly directional attraction site embedded in a 

repulsive core. Andersen wrote a cluster expansion in terms of two densities: the overall 

density and a density weighted by the strength of the hydrogen bond. The idea was that the 

repulsive core would only allow dimers and no higher s-mers and, due to this fact, many 

diagrams in the cluster expansion were negligible. Although no calculations of 

thermodynamic properties were achieved with this method, Andersen’s work inspired 

several theories for associating fluids that used similar expansions with respect to fugacity, 

for convergence reasons. Chandler and Pratt (1976), for instance, developed a theory to 

describe the intramolecular structure of molecules based on intermolecular and external 

forces modeling the atom-atom bond with a spherically symmetric attraction. Hoye and 

Olaussen (1980) presented a renormalized perturbation expansion that introduced the 

multidensity formalism. Finally, from that point and Andersen’s work, Wertheim (1984a,b, 

1986a,b) developed an elegant theory that improved the previous essays. This solid theory 
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has become the basis of the Statistical Associating Fluid Theory (SAFT).  In the next 

chapter, the main features of Wertheim’s theory of association and the derivation towards 

the SAFT equation of state are described. 

 



SAFT  
In the previous chapter, we have traveled through the history of the equations of 

state, from the first modeling 200 years ago, till the recent and modern equations 

based on the microscopic behavior of the fluid. This chapter presents the 

background of the Statistical Associating Fluid Theory (SAFT), which is the basis 

of the work implemented and presented in this thesis work. A brief summary of the 

Wertheim’s theory of association and the assumptions underlying the theory is 

done in the first section.  Later, a detailed description of the different contributions 

calculated in SAFT is given, remarking the approximations made from the original 

theory. Finally, a brief note about different SAFT versions is done. 

 

39 
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4.1. Wertheim’s theory of association 

  As it was stated in the previous chapter, Wertheim (1984a,b, 1986a,b), inspired 

from Andersen’s work (1973, 1974), developed a solid theory for associating fluids. The 

molecules are treated as different species according to the number of bonded associated 

sites. He showed that graph cancellation due to steric effects is simpler and more effective 

using the fugacity expansion in terms of two densities: the equilibrium monomer density 

and the overall number density. He also considered that the repulsive core restrict the 

formation to a single bond at each attraction site. The key result of Wertheim’s cluster 

expansion is written as a first-order perturbation theory (TPT1) that establishes a direct 

relation between the change in the residual Helmholtz energy due to association and the 

monomer density. This monomer is, in turn, related to a function characterizing the 

“association strength”.   

 Wertheim presented an initial work for pure hard-core molecules with one 

attractive site (1984a,b), and he extended the theory to compounds with multiple bonding 

sites per molecule (1986a,b). Later, Chapman et al. (1986, 1987) extended Wertheim’s 

theory to the treatment of binary mixtures of components A and B that interact with off-

center point charge dipoles of equal magnitude and opposite sign, where only AB dimers 

could be formed. 

 Although Wertheim’s theory considers that the potential has a short-range highly 

directional component that is the cause of the formation of associated species, it does not 

specify any particular intermolecular potential for the reference fluid. It is necessary to 

select one in order to implement the theory. In a first stage, the known hard-sphere model 

was used in order to study the influence of the molecular association on the phase 

coexistence properties of hard-sphere molecules with one or two bonding sites (Wertheim, 

1987, Jackson et al., 1988). Wertheim (1987) and Chapman et al. (1988a) deduced that in 

the limit of infinite association (in an infinitesimal small volume), the system becomes a 

polymer. The hard-sphere model has accurate analytical expressions for its equation of state 

and pair distribution. Results obtained showed excellent agreement compared to Monte 
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Carlo simulations. Chapman et al (1988a) obtained an equation of state for hard-sphere 

chains by imposing the condition of total bonding (i.e. zero nonbonded segments condition 

is imposed) and establishing the correct stoichiometry of segments with bonding sites (i.e. a 

stoichiometric ratio of m segments with either one or two associating sites). This work can 

be considered as the birth of the Statistical Associating Fluid theory. 

 The obtention of an equation of state through the derivation of Werheim’s TPT1 

involves some approximations that have to be considered in order to see the limitations 

when applying the theory. The main approximations are: 

 Only three-like structures are permitted in theory, neglecting more complex 

structures like the ring bonding. 

 Only one single bond is allowed at each associating site.  It implies that: 

o Two bonded associating sites (each one from a different molecule) 

prevent a third core of another molecule to bond to any of the occupied 

sites. 

o Two associating sites of the same molecule cannot bond at the same time 

to another site of  a different molecule. 

o Double bonding between two molecules is not allowed. 

Figure 4.1. shows in several graphics all the hypothesis mentioned in the list. 

 

a)    b)    c) 

 

 

 

 

 

 

Figure 4.1. Approximations in first-order Wertheim’s theory; a) two bonded associating 
sites cannot bond to a third one; b) one site on molecule i cannot bond simultaneously to 
two sites on molecules j; c) double bonding is forbidden. Fig.  from Chapman et al. (1990). 
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 The activity in each site is not affected by the activity in other sites of the same 

molecule. It means that the possible repulsion interactions of two molecules trying 

to join at two sites of a third molecule are neglected. 

 The first order approximation does not make any difference among the actual 

positions of the sites. As a consequence, the angles among the bonding sites are 

not specified and the properties are evaluated independently of the angle between 

the sites. 

In spite of all these simplifications, the resulting SAFT equation has shown to be a 

powerful tool to calculate and predict phase equilibria of different kind of pure fluids and 

mixtures and, excepting in special cases (Chapman, 1988b; Blas and Vega, 2001), no more 

structural information will be needed to obtain accurate results. 
 

4.2. The SAFT EoS and related approaches 
 As it was mentioned in the last section, the work of Chapman et al. (1988) 

constituted the first stone in the SAFT history. However, the pure formalism of the SAFT 

equation was presented in the papers of Chapman et al. (1989, 1990) and Huang and 

Radosz (1990, 1991). SAFT has been especially successful in some engineering 

applications for which other classical EoSs failed. In addition, the microscopic components 

of the equation make it a very challenging approach from the fundamental point of view, 

since extensions and modifications of the equation can be systematically performed and 

compared to simulation data for the same underlying model. The success of the equation in 

its different versions is proved by the amount of published works since its development. 

Figure 4.2 shows the number of published papers per year related to SAFT modeling. The 

growth of the equation in the last 10 years demonstrates its applicability in a wide range of 

different fields.  
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Figure 4.2 Number of papers related to SAFT published  per year in Journals ranked in the 
ISI Web of Knowledge  from 1989 till today. 
 

 The key of the success of SAFT-based equations is its solid statistical-

mechanics basis, which lets a physical interpretation of the system. It provides a framework 

in which the effects of molecular shape and interactions on the thermodynamic properties 

can be separated and quantified. Besides, its parameters are few in number, with physical 

meaning and transferable, which makes SAFT a powerful tool for thermodynamic 

predictions.  

 SAFT equations are usually written in terms of the residual Helmholtz free 

energy, where each term in the equation represents different microscopic contributions to 

the total free energy of the fluid. The general equation is written as: 

 
assocchainrefidres aaaaaa ++=−=  (4.1) 

 



The SAFT equation of state  44 

where  and  represent the residual and ideal Helmholtz free energy  of the system. 

The superscripts ref, chain and assoc refer to the contributions from the interaction among 

segments, the formation of the chain from identical segments and the association bonds 

between two segments or chains, respectively. 

resa ida

 The different contributions depend on several molecular parameters that will 

define a physical model for the molecule. In the original SAFT, the reference and the chain 

contribution have a total of three parameters to define the compound: m, which is the 

number of spherical segments forming a chain molecules;  σ, which is the diameter of the 

segments and ε,  which is their dispersive energy. The association contribution adds two 

more parameters that define the strength of the association bond between a site α on specie 

i and a site β on specie j: kαi
β

j and εαi
β

j which are the volume and the energy of association 

respectively. 

 

4.2.1. The reference term 
 Aref considers the residual Helmholtz free energy of nonassociated spherical 

segments, and it is not specified within SAFT. It can refer to atoms, functional groups or 

even a full molecule (methane, argon). Most SAFT equations differ in the reference term, 

keeping formally identical the chain and the association term, both obtained from 

Wertheim’s theory. The original SAFT of Chapman et al. (1988, 1990) and Huang and 

Radosz (1990, 1991) use a perturbation expansion using a hard-sphere fluid as a reference 

term and a dispersion term as a perturbation. The hard-sphere term is represented in both 

cases by the Carnahan-Starling expression while the dispersion term changes depending on 

the authors. Chapman et al. (1988, 1990) used an expression originally proposed by 

Cotterman et al. (1986), whereas Huang and Radosz (1990, 1991), used an expression 

based on molecular dynamics simulation data for the square-well fluid (Alder et al. 1972). 

Some other different intermolecular potentials have been proposed to try to improve the 

capabilities of SAFT. Among the most important proposals, we remark the following ones: 
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• The square-well potential (SW), employed by several authors (Banaszak et al., 

1993; Tavares et al., 1997). Using the square-well potential, Gil-Villegas et al. 

(1997) developed a generalized potential function with an attractive part of 

variable range. The SAFT equation with an intermolecular potential of variable 

range is known as SAFT-VR. More recently, SAFT-VR has been slightly modified 

extending the potential range λ to higher values (Patel et al., 2005). 

• The Lennard-Jones (LJ) potential, which accounts for both the repulsive and 

attractive interactions of the monomers in the same term. This potential has been 

used to develop different SAFT versions like the LJ-SAFT (Müller and Gubbins, 

1995), a modified SAFT of Kraska and Gubbins (1996) and the soft-SAFT 

equation of state (Blas and Vega, 1997).  

• The Yukawa potential (Davies et al., 1999), which has also been used with 

variable range in SAFT-VR. 

• A hard-chain potential, which also considers the chain attraction (Sadowski, 

1998). This model is known as the perturbed-chain SAFT (PC-SAFT) (Gross and 

Sadowski, 2000, 2001). 

 

 Since the Hemholtz free energy density is calculated by adding different 

contributions, each of them should be expressed in terms of composition for mixture 

studies. It is important to remark that the reference term is written and established for a pure 

compound (in contrast with the chain and association term, which are directly applicable to 

mixtures). Multicomponent mixtures, with different numbers of segments, different size 

and/or different dispersive energy, have to be averaged to “create” a pseudo-compound 

with the same thermodynamic properties as the mixture. Several mixing rules exist on this 

purpose (Economou and Tsonopoulos, 1997) and some studies about them have been done 

using SAFT-type equations (Galindo et al., 1998). Among all of them, the van der Waals’ 

one fluid theory is the most popular due to its simplicity. Very good agreement has been 

obtained when comparing some results to simulation data for spheres of similar size 

(Rowlinson and Swinton, 1982) and different sizes and/or energies (Tang et al., 1995). The 
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corresponding expressions for the three molecular parameters involved in the reference 

term are:  
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 The above expressions involve the mole fraction xi and the chain length mi of 

each of the components of the mixture of chains. The crossed interaction parameters σij and 

εij are calculated using the generalized Lorentz-Berthelot combining rules: 

 

2
ijii

ijij
σσ

ησ
+

=  (4.5) 

jjiiijij εεξε =  (4.6) 

 

where the factors ηij and ξij modify the arithmetic and geometric averages between 

components i and j, being the adjustable binary parameters of this equation. With the 

expressions (4.2)-(4.6), the reference term is expressed as a function of the chain molar 

fractions. More information about advantages and disadvantages of several combination 

rules can be found in a works of  Diaz Peña et al. (1982), Halgren (1992) and Al-Matar and 

Rockstraw (2004). 
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4.2.2. The chain term 
 The chain contribution comes from an analytical expression obtained from 

Wertheim’s work. It is derived from the energetic contribution given for the association of 

the segments in the limit of an infinite strong bonding on a small association site placed at 

the edge of a given molecule.  The resulting equation for tangent spherical segments looks 

like this:  

 

∑ −=
i

ref
iiB

chain ymxTkρa ln)1(  (4.7) 

 

where ρ is the molecular density of the fluid, T is the temperature, m is the chain length, kB 

the Boltzmann constant and yseg is the pair correlation function of the selected reference 

fluid at density , evaluated at the segment contact σ. This function is given by: ρmρm =

 

( ) refrefref gkTΦy /exp=  (4.8) 

 

 For most of the potentials, expression 4.8 can be reduced to simply: 

, being g, the radial distribution function of the reference fluid. refref gy =

 One of the limitations of the first order theory is that the bond angles are not 

considered inside the molecule. It means that, while the theory is able to give a very good 

result for linear chains (Muller and Gubbins, 1993), it may fail in the limit where the 

bonding site angles are so small that cannot avoid a simultaneous bonding at the same site. 

Branched and linear isomers are conformal from the modeling point of view. It would be 

necessary to take into account higher order terms of the perturbation expansion (Wertheim, 

1987, Muller and Gubbins, 1993) to consider this simultaneous bonding. Going to a 

second-order level, this situation can be overcome. However, n-order expressions imply a 

more complex calculation, involving m-body correlation functions (being m=n+1) of the 

reference fluid that would depend on the bond angles. Müller and Gubbins (1993) 
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suggested that, for hard-sphere chain fluids, there was not a significant improvement to 

justify the effort unless the chains have rigid bond angles less than 110º. Blas and Vega 

(2001) established a comparison using the first and second-order perturbation approach for 

modeling branched Lennard-Jones chains, modeling the branches as rigid bonds of 120º. 

They tested the new equation, called SAFT-B, and obtained lower pressures at high 

densities and higher pressures at low densities, compared to the results for linear chains, in 

qualitative agreement with the experimental data. 

 Wertheim’s theory does not specify a particular reference fluid. Generally, most 

SAFT equations refer to a spherical segment with diameter σ  equal to the distance at which 

the intermolecular potential vanishes. However, additional information into the reference 

fluid can improve the predictions for TPT. Chang and Sandler (1994) and Ghonasgi and 

Chapman (1994) developed a dimer reference TPT1 for hard chains, where the pair 

correlation function gDseg corresponds to the pair correlation function of dimers. Blas and 

Vega (2001) also studied the effect of a dime version for the Lennard-Jones potential. In the 

same direction, the PC-SAFT (Gross and Sadoswski, 2000, 2001) uses a hard-chain 

reference (instead of the monomer reference) and adds a Barker-Henderson type 

perturbation term (Barker and Henderson, 1967a,b) to consider the chain attraction. PC-

SAFT has been successfully applied to polymer systems in the last five years. 

 Finally, it is interesting to remark that the theory does not consider the 

intramolecular attraction beyond the formation of bonds when taking into account only the 

first term of Wertheim’s Perturbation Theory (TPT1). As a result, low densities are not 

properly calculated (Johnson et al., 1994) because at that level, intramolecular interactions 

become more significant compared to the intermolecular forces, and SAFT does not 

account for coil up of the chains, predicting higher energies than those observed from 

simulations. It is necessary a second-order term to overcome this limitation. 
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4.2.3. The association term 
 The basis of Wertheim’s perturbation theory is the fact that it considers the 

possibility of association. A molecule can have one or more associating sites. The theory 

allows an infinite number of sites, although in practice, more than four seems quite 

unrealistic for a molecule. An association site is characterized by a noncentral potential 

placed near the perimeter of a molecule. 

  As already stated, the association term, within the first-order Wertheim’s 

perturbation theory for associating fluids, assumes that the activity in one site is 

independent of a possible bonding in another site of the same molecule. This hypothesis 

lets estimate the fraction of molecules present in a cluster of size N as: 

 
12 )1()( −−=− NXNXmerNX  (4.9) 

being X the mole fraction of molecules of one specie not bonded at one site. It is important 

to remark the difference between x (component composition) and X. The cluster average 

size would be: 

 

X
N 1_
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 Equation 4.10 is the “most probable distribution” of Flory (1953) and it is in 

agreement with experimental results for polymer polydispersity.  

 The association contribution to the Helmholtz energy is expressed as the sum of 

contributions of all associating sites of component i: 
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being Mi the number of associating sites of component i, and Xi
α the mole fraction of 

molecules of component i non bonded at site α, which accounts for the contributions of all 

the associating sites in each species. From the solution of mass balances: 
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 The double summation refers to a sum over all possible association sites on all 

the species involved, considering the possibility of self-association and cross-association 

among the species. The term Δα
i
β

j is related to the strength of the association bond between 

site α in molecule i and site β in molecule j. It is formally given by: 

∫= )12()12()12( dfgΔ ij
refβα ii  (4.13) 

 

where gseg is again the reference fluid pair correlation function, f is the Mayer function of 

the association potential, given by: 1
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; φij is the potential function that 

is used to define the association, and d(12) represents an unweighted average over all 

orientations and an integration over all separations of molecules 1 and 2. In order to 

simplify the integration, it is assumed (Chapman et al., 1988) that the segment pair 

correlation function is equivalent to that of the segment as part of a chain. This 

approximation has been proved to be valid if the bonding site is located diametrically 

opposed to the backbone of the chain (Müller et al. 1994). Several models have been 

proposed for the evaluation of φij , like the realistic fractional point charge model (Walsh, 

1993). However, a more simplified model based in a square-well potential has become the 

standard for most of the applications. 

 The geometry of the association sites is normally chosen to be spherical for 

both, simplicity and reality, compared to other models (Walsh, 1993). When the reference 
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fluid is made of hard-spheres, the association sites are situated with its centre lying on the 

surface of the reference spherical core. Expression 4.13 cannot be analytically obtained and, 

for that reason, another reasonable approximation is made. It is supposed that r2gHS(12)  is 

equal to the value at contact σ2gHS(σ) (Jackson et al., 1988). 

 With all the assumptions considered, the simplified expression for a square-well 

bonding potential with a spherical geometry of the association sites is: 

 

( ) ji
ji

ii βα
βα

ref
βα k

T
εσgπΔ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= 1exp4  (4.14) 

 

where is the association energy and represents the association volume for each 

association site and compound.  Equation 4.14 may be more simplified when a particular 

kind of bonding potential is selected.  

jiβαε jik βα

 

4.2.4. SAFT Versions 

 As it has been said, different versions of SAFT have appeared through the last 

years that, although formally identical, they differ in the form of the reference term. Among 

them, the most commonly used are (apart of the original SAFT of Chapman et al. 

[1989,1990] and Huang and Radosz [1990,1991]) the SAFT-VR (Gil-Villegas et al., 1997), 

the soft-SAFT (Blas and Vega, 1997) and the PC-SAFT (Gross and Sadowski, 2001), 

although there are other successful versions: the copolymer SAFT (Banaszak, 1996), the 

SAFT-BACK of Pfhol and Brunner (1998), the SAFT1 of Adidharma and Radosz (1998), 

etc. 

 SAFT-VR (Gil-Villegas et al. 1997) has shown that it could be used to deal with 

homonuclear chains of hard spheres segments of equal diameter σ, which interact via 

different intermolecular potentials such as the square-well, the Sutherland, or the Yukawa 
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potentials (Davies et al. 1999). Generally, most of the works are performed with the 

variable square-well fluid, showing its applicability in a large number of works. The 

equation correlated accurately the pure n-alkane and n-perfluoroalkane phase equilibrium 

over a wide temperature range. The equation has also shown good predictions for binary 

(McCabe et al., 1998) and ternary mixtures (Colina et al., 2004). Galindo et al. (1998) 

extended SAFT-VR to aqueous electrolyte systems. Long-range Coulombic ion-ion 

interactions are calculated with the restricted primitive model using the mean-spherical 

approximation. With one transferable fitted parameter per ion, the vapor pressure and liquid 

density for a number of single-salt aqueous solutions and one mixed-salt system of strong 

electrolytes were correlated. Several relevant works have been published in this field (Patel 

et al., 2003; Behzadi et al. 2005). 

 The perturbed chain SAFT (PC-SAFT) (Gross and Sadowski, 2001) uses a hard-

chain reference fluid by applying the Barker-Henderson perturbation theory truncated at the 

second-order term. The integral expressions for the first and second-order terms were 

refitted to appropriate Taylor series expansions in density using pure n-alkane data. PC-

SAFT has also shown good accuracy when modeling pure fluids and binary mixtures 

(Gross and Sadowski, 2002; Tumakaka et al., 2005), with good applications for polymers 

(von Solms et al., 2005; Arce et al., 2006; Pedrosa et al., 2006) and polar compounds 

(Karakatsani et al., 2005; Karakatsani and Economou, 2006). 

 This thesis work has been devoted to the improvement of a particular version of 

SAFT, the soft-SAFT equation of state. More details about this equation are given in the 

next chapter. 



soft-SAFT  
 

This chapter is devoted to the soft-SAFT equation. The differences between soft-

SAFT and the original SAFT are described in the first section. Afterwards, a 

description of the different extensions and applications made to the equation since 

its creation is exposed. Then, the chapter is concerned to the methodology for 

implementing a specific treatment for critical region calculations into the equation. 

Several approaches are mentioned and discussed. The mathematical model for the 

chosen approach is shown in detail. Finally, some details about phase equilibria, 

critical lines and derivative properties calculations are described. 

 

53 
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5.1. The soft-SAFT equation of state 

Soft-SAFT is a variant of the original SAFT which is based on a reference 

Lennard Jones (LJ) intermolecular potential. Following the ideas of Müller and Gubbins 

(1995) and Kraska and Gubbins (1996), soft-SAFT was presented by Blas and Vega (1997) 

and, in the last ten years, has been applied with success to several types of mixtures over a 

broad range of thermodynamic conditions, and it has proved to be very strong for phase 

equilibria conditions. The main differences between soft-SAFT and the original SAFT from 

Chapman et al. (1990) are: 

• Soft-SAFT uses a Lennard-Jones intermolecular potential to describe the 
interactions among the molecules in the reference term. There exist two accurate 
LJ equations of state that are temperature and density dependent functions: the 
Benedict-Webb-Rubin EoS from Johnson et al. (1994), fitted to computer 
simulation data for the LJ fluid, and a perturbed virial expansion with a reference 
hard sphere term from Kolafa and Nezbeda (1998). Although the second one is 
theoretically more robust, the first one is slightly more accurate in the vapor phase 
and close to the critical region (Pàmies and Vega, 2002). This is logical 
considering that the hard sphere term proposes a model which is very realistic in 
the liquid phase but deviates from real in the gaseous systems (where the 
molecules move faster) and the critical region (where the long fluctuations among 
the molecules are very significant). The EoS from Johnson is employed for all the 
calculations shown in this work. 

 

• Soft-SAFT uses a radial distribution function ( ) of a LJ fluid of nonbonded 

spheres. A fitted expression for LJ chains, as a function of the reduced temperature 
and density, from Johnson et al. (1993) is employed.  

LJg

 

• Soft-SAFT also uses a Lennard-Jones fluid in the association term. It means that 
association sites are allowed to be embedded in the referent core, tangent to the 
surface. This location is forcing the bonded molecules to have some degree of 
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overlapping, as it would be expected in real fluids. With this bonding potential and 
the spherical geometry for the associating sites, expression 4.14 is simplified to: 
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 This integral can be evaluated numerically using accurate values for gref obtained 
from molecular simulations, and the results can be converted into an analytical-fitted 
function of the temperature and density (Müller and Gubbins, 1995).   

 

• Soft-SAFT places association sites tangent to the reference core using this 
geometry:  b=0.4σ and σa=0.2σ. This geometry has been previously tested in 
other works (Johnson and Gubbins, 1992; Walsh and Gubbins, 1993, Müller and 
Gubbins, 1995) obtaining accurate results. 

 

 The different terms of the soft-SAFT equation for calculating the total Helmholtz 
energy, the pressure and the chemical potential can be found in the PhD work of Pàmies 
(2003). 
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5.2. Soft-SAFT extensions and improvements  

  

 A main advantage in the use of SAFT-type equations versus classical ones is that 
they are accurate for complex fluids with different molecular architectures and 
intermolecular forces in a straightforward manner. The soft-SAFT equation is a powerful 
tool that has been applied to calculate the phase behavior of several pure components and 
mixtures in a broad range of thermodynamic conditions.  

 In addition, as any other SAFT-type equation of state, soft-SAFT is written as a 
sum of contributions where the different effects are separated and quantified. This 
formulation offers the possibility of improving the equation by adding a specific treatment 
or just extending it to the calculation of other properties.  It is convenient to establish the 
difference between the addition of a new term to take into account a new molecular effect 
(like multipolar terms, charges, etc.), which can be considered as an extension of the 
equation, and the implementation of a treatment for a specific region of the phase space 
(like the crossover treatment for the critical region or the density gradient theory for the 
interfacial space), which is an improvement. 

 One of these contributions concerns the accounting for multipolar interactions. 
The quadrupole was already introduced following the work of Twu and Gubbins (1978) 
and employed in the calculation of quadrupolar substances like CO2 (Pedrosa et al., 2005; 
Dias et al., 2006), achieving excellent improvements in the performances of mixtures. 

 Another relevant extension concerns the calculation of derivative properties 
because they constitute a strong test for any equation of state. These properties are second-
order properties of a primary thermodynamic function and, as a consequence, are more 
sensitive to errors. The evaluation of derivative properties of pure fluids (Llovell and Vega, 
2006) and binary mixtures (Llovell et al., 2006) has shown the robustness of the soft-SAFT 
equation of state. 

 The evaluation of interfacial properties using soft-SAFT was also performed by 
adding an extra term to take into account the density inhomogeneities that are found in a 
liquid-vapor interface. The van der Waals gradient theory (1894) provided a general 
expression for the Helmholtz energy density of an inhomogeneous system. Cahn and 
Hilliard (1958) rediscovered this expression relating an equation of state to interfacial 
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properties of a classical fluid system. The density gradient theory was coupled to the soft-
SAFT in the PhD Pàmies thesis work (2003) and presented in the works of Duque et al. 
(2004), Mejia et al. (2005) and Mejia and Vega (2006). The equation showed excellent 
agreement in the calculation of interfacial tensions and density profiles of Lennard-Jones 
chains when it was compared to molecular simulations. Then, it was applied to the n-
alkanes and 1-alkanols family, reproducing vapor-liquid interfacial tensions with a high 
degree of accuracy. Results for binary mixture of n-alkanes were also in good agreement 
with experimental information.  

 Finally, it was also necessary a specific treatment for the evaluation of critical 
properties of pure compounds and mixtures. This PhD work has been devoted to this 
improvement of the equation: the implementation of a crossover treatment to reproduce the 
physics of the critical region. Soft-SAFT is a mean-field theory that does not take into 
account the long-range fluctuations near the critical region. Following the approach 
proposed by White (1992), based in the renormalization-group theory (Wilson, 1971), an 
additional term to take into account these fluctuations has been added into soft-SAFT. As a 
result, the equation has provided quantitative agreement with experimental data for vapor-
liquid equilibria calculations far from and close to the critical region for pure fluids (Llovell 
et al., 2004) and mixtures (Llovell and Vega, 2006).   

 Table 5.1 is presented in next page and gives a summary to the reader of some of 
the most relevant modeling works performed with the soft-SAFT equation of state till now. 
The table is organized in terms of families of compounds that have been studied. 

 The following sections are entirely dedicated to the critical region, describing the 
different approaches for considering the fluctuations and the implementation of the 
mathematical treatment for the model chosen into the soft-SAFT EoS. 
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Table 5.1. Summary of some of the most relevant works published using soft-SAFT. 

Applied to Study Reference 

VLE of homonuclear and heteronuclear LJ 
molecules 

Blas and Vega (1997) 

VLE using a dimer reference fluid Blas and Vega (2001a) 

VLE of branched LJ chains Blas and Vega (2001b) 

Critical Region of LJ chains Llovell et al. (2004) 

Interfacial properties of LJ chains Duque et al. (2004) 

Phase and Interfacial properties of Type I and 
Type V LJ mixtures 

Mejia et al. (2005) 

LJ chains 

Three phase equilibrium and interfacial 
properties in Type II LJ mixtures 

Mejia and Vega (2006) 

n-alkanes VLE  for C1-C8 alkanes and prediction of 
heavier compounds (C16, C24, C48) 

Blas and Vega (1997) 

Pàmies and Vega (2001) 

 Critical region of the n-alkanes family Llovell et al. (2004) 

 Derivative properties of some light n-alkanes.  Llovell and Vega (2006) 

 Binary and ternary phase diagrams of n-alkanes Blas and Vega (1998a) 

Pàmies and Vega (2001) 

 VLE and critical behavior of n-alkane mixtures Blas and Vega (1998b) 

Llovell and Vega (2006c) 

 Tricritical phenomena  Vega and Blas (2000) 

 Inversion curves of n-alkanes and CO2 Colina et al. (2002) 

 Solubility of hydrogen in heavy n-alkanes. Florusse et al. (2003) 

 Excess thermodynamic properties in alkane 
binary mixtures. 

Blas (2000); dos Ramos 
and Blas (2005) 

 VLE and critical transitions in CO2/alkanes Llovell and Vega (2006a) 

 Solubility of polyethylene in different solvents Pedrosa et al. (2006) 

 Derivative properties of alkane mixtures Llovell et al. (2006) 
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 Solubility of hydrogen chloride and critical 
transitions in some n-alkanes 

Llovell et al. (2006) 

n-alkenes VLE for C2-C5 alkenes Blas and Vega (1998a) 

VLE for C1-C8 1-alkanols Blas and Vega (1998a) 

Pàmies (2003) 

Derivative properties of some light 1-alkanols.  Llovell and Vega (2006b) 

Excess properties in self-associating systems Blas (2002) 

VLE and critical transitions in CO2/1-alkanols Llovell and Vega (2006a) 

VLE and critical lines of alkane/1-alkanol 
mixtures 

Llovell and Vega (2006c) 

1-alkanols 

Derivative properties of alkane/1-alkanol 
mixtures 

Llovell et al. (2006) 

VLE for C1-C9 perfluoroalkanes Dias et al. (2004) 

Solubility of gases  in perfluoroalkanes Dias et al. (2004) 

VLE of various fluorinated compounds Dias et al. (2005) 

LLE of alkanes and perfluoroalkanes, de Melo et al. (2006) 

VLE of CO2/perfluoroalkane mixtures Dias et al. (2006) 

Perfluoro- 

alkanes 

Derivative properties of perfluoro-propane This work 

VLE of homopolymers Pàmies and Vega (2002) 

VLE and aggregate formation characteristics of 
surfactant-like molecules. 

Herdes et al. (2004) 

VLE of Ethylene glycol oligomers and mixtures 
with CO2, benzene and N2. 

Pedrosa et al. (2005) 

Solubility of polyethylene in different solvents Pedrosa et al. (2006) 

Polymers, 
surfactants 

VLE and LLE of polystyrene systems Pedrosa et al. (2006) 
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5.3. The different approaches to the critical region 

 As it has been stated before, the particular behavior of the critical region implies 
that slight variations in one property can increase or decrease thee density and the solubility 
in a process very rapidly. From a microscopic point of view, the classical theory of critical 
points corresponds to a mean-field approximation, which neglects local inhomogeneities 
(fluctuations) in density. It is well-known that the nonclassical critical behavior of the 
thermodynamic properties is a consequence of the long-range fluctuations of an order 
parameter, the density for the case of pure fluids. The spatial extend of the density 
fluctuations diverges at the critical point and becomes larger than any molecular scale in the 
critical region. Only theories which account for these density fluctuations can provide the 
correct approach to the critical region.  

 The classical formulation of SAFT (and all the available equations of state) makes 
the theory unable to correctly describe the scaling of thermodynamic properties as the 
critical point is approached, unless an specific treatment is considered. Two are the 
alternatives used up to now to overcome this problem in SAFT-type equations: a rescaling 
of molecular parameters so that the experimental critical point of the pure compound is 
matched and a rigorous treatment based on renormalization-group (RG) arguments, in 
which the approach to the critical point is explicitly considered. There are several 
advantages and inconveniences in each one of them. The simple rescaling of molecular 
parameters has been used by several authors (Blas and Vega, 1998; McCabe and Jackson, 
1999; Pàmies and Vega, 2001). Although it improves predictions of the critical behavior of 
several mixtures, a new set of different molecular parameters for each family of 
components is required for the near-critical region. Also, note that in this case, the 
fluctuations inherent to the critical region are ignored. The result is that there is no 
possibility to describe the near-critical region and the rest of the phase envelope with the 
same set of parameters and the same equation, a real drawback of the methodology. It is 
therefore clear that, for practical applications, an accurate theory valid both close to and far 
from the critical point with a unique set of parameters is required. In the second case, the 
asymptotic behavior near the critical point is coupled with a classical equation, which 
works well far from the critical region. This rigorous crossover treatment should give exact 
results far from and close to the critical region, provided that both terms are accurate 
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enough. Nevertheless, there are some additional adjustable parameters in this case and care 
must be exercised in the way they are fitted, and the possible transferability of them. 

 Renormalization-group methods have been very successful in describing the 
properties of systems near their critical point (Wilson, 1971; Wilson and Fischer, 1972). 
However, to obtain a realistic representation of the thermodynamic properties of fluids 
close to and far from the critical region, it is necessary to develop an equation that not only 
incorporates the fluctuation-induced scaled thermodynamic behavior of fluids 
asymptotically close to the critical point, but that also accounts for a crossover to classical 
behavior of the thermodynamic properties sufficiently far away from the critical point, 
where the effect of fluctuations becomes negligible (Wyczalkowska et al., 2004). There are 
different approaches in which the long-wavelength density fluctuations can be taken into 
account in the near critical region, searching for a global equation for real fluids. An 
excellent review on the subject was provided by Anisimov and Senger (2000). Following 
these authors the efforts on this direction can be summarized in three different approaches: 
a renormalized Landau expansion, followed by Senger and co-authors (Anisimov and 
Senger, 2000; Wyczalkowska et al., 2004); numerical approaches based on the hierarchical 
theory (Parola et al., 1989a,b; Meroni et al., 1990) and the phase-space cell approximation 
method of White and collaborators (White, 1992; Salvino and White, 1993; White and 
Zhang, 1993,1995).  

 Chen et al. (1990a,b) were among the first who used a renormalized Landau 
expansion. They formulated a procedure for transforming a series expansion of the classical 
Helmholtz free energy density into an equation that incorporates the fluctuation-induced 
singular scaling laws near the critical point, and reduces to the classical expansion far away 
from the critical point. Their procedure was based on an attempt to solve the nonlinear RG 
equations by matching the solution of the renormalization transformation to the classical 
equation at an appropriate matching point. More recently, Wyczalkowska et al.(2004) have 
used the same transformation to develop a crossover van der Waals equation of state, 
incorporating the near-critical scaling-law behavior of the thermodynamic properties.  

 Based on the renormalized Landau expansion, Kiselev (1998) and collaborators 
(Kiselev et al, 1991; Kiselev and Ely, 1999) have developed a phenomenological 
parametric crossover EOS. In this approach, one starts from a revised and extended 
parametric equation for the Helmholtz free energy and modifies each term so that all 
become analytic far away from the critical point. The approach is quite useful for 
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engineering purposes, and it has been successfully applied to several classical EoS’s, 
including the original SAFT of Huang and Radosz (Kiselev et al., 2001, 2006) and SAFT-
VR (McCabe and Kiselev, 2004a,b; Sun et al., 2005) equations. A main drawback of this 
methodology is that the crossover equation has several empirical system-dependent 
coefficients. It is difficult then to transfer these parameters for other compounds, even 
within the same chemical family. 

 Parola, Reatto and Meroni presented the Hierarchical Reference Theory (HRT), in 
which they reformulated the liquid-state theory to take into account density fluctuations in 
successively larger length scales, without grouping them into packets. The theory was 
successfully applied to Lennard-Jones fluids and mixtures (Parola et al., 1989a,b; Meroni et 
al., 1990). However, the intensive computing time required makes this methodology not 
suitable, yet, for engineering applications.  

 The procedure followed in this thesis work is the third one, which is based on 
Wilson’s RG theory. Wilson developed a very successful RG method (Wilson, 1971, 1972) 
to incorporate density fluctuations in the critical region using the phase-space cell 
approximation. The theory was developed just for the critical region and it needed to be 
extended to the rest of the phase space (White, 1992; Salvino and White, 1993; White and 
Zhang, 1993,1995). White and co-workers extended the range of applicability of this 
method, developing a global RG theory. They proposed a set of recursive equations based 
on a phase-space cell approximation for the semiquantitative analysis of the behavior of 
systems near the critical point. That includes a renormalization of all the variables giving 
the correct non-analytical asymptotic behavior of real fluids inside the critical region, and 
reducing to the ideal gas law at low density. Based on White’s work, Tang (1998) proposed 
a new theory, combining White’s RG transformation, the density functional theory, and the 
superposition approximation. The new theory was implemented within the mean spherical 
approximation (MSA), providing a global theory for the LJ fluid, that has been applied 
successfully to pure fluids (Mi et al., 2004, 2005) and mixtures (Mi et al., 2006) . Lue and 
Prausnitz (1998a,b) extended the accuracy and range of White’s equations through an 
improved Hamiltonian. They also stated the approximations made in the theory. The theory 
was applied to square-well fluids and results compared to simulation and experimental 
results, using the square-well model. The approach was then used by Jiang and Prausnitz 
(1999, 2000) to describe the pure n-alkanes family and some of their mixtures. Jiang and 
Prausnitz were the first who applied the theory to chain molecules, modeled as square-well 
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chains. An advantage of this method versus Kiselev’s is that it is an easy-computing 
numerical method based on recursive equations, and the two additional parameters can be 
transferred within the same series. Moreover, in spite of its numerical character, versus the 
analytical nature of Kiselev’s method, the resolution of the involved recursive equations is 
very fast in nowadays’ available computers. 

 White’s global RG theory consists of a set of recursion relations where the 
contribution of longer and longer wavelength density fluctuations up to the correlation 
length is successively taken into account in the free energy density. In this way, properties 
approach the asymptotic behavior in the critical region, and they exhibit a crossover 
between the classical and the universal scaling behavior in the near-critical region. 
 

5.4. The phase-space cell approximation 

 This section is devoted to give a more detailed explanation about the phase-cell 
approximation to calculate long-range fluctuations in a similar way of Salvino and White 
(1992).  

 An intuitive phenomenological explanation for the cell space approximation may 
be described as it follows: it is supposed that our fluid is divided into many small cells each 
containing only a few number of molecules (Figure 5.1a). The total volume of the cell is 
considered to be the sum over all density distributions in each cell. If the cells are small 
enough, it can be assumed that the average potential of all molecules can be approximated 
using a mean-field theory, because there is not space for long-range correlations. Then, a 
mean-field model (the few molecules in the building block cell interact with all particles in 
the mean field way) is applied (Figure 5.1b) for each cell, having thousands of Helmholtz 
energy contributions in our fluid. The first iteration of the free energy only includes the 
lowest order short wavelength fluctuation correction term. Next, the neighbour cells are 
considered and each cell is treated as a whole molecule with a calculated energy (Figure 
5.1c). The “intercell” potential is estimated again with the mean field theory but, in some 
way, the fluctuations among further molecules are taken into account. The procedure is 
repeated several times till the whole physical space of the compound is covered (Figure 
5.1d). Following this approach, the estimated energy value obtained considers the longer 
wavelength contributions needed to introduce the long range correlations that are crucial in 
the critical region.   
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Figure 5.1 A cartoon description of the phase space cell approximation. a) Model of a fluid 
with several molecules. A small cell of length L is selected. b) The properties of the small 
cell are calculated using a mean field theory. c) Each cell is considered as a single 
molecule that interacts with its neighbors using again a mean-field theory. d) The 
procedures is repeated till the whole amount of molecules is considered. 
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5.5. Mathematical model 

 

 The implementation of White’s global RG method is done in the same way as Lue 
and Prausnitz (1998a,b) and Jiang and Prausnitz (1999, 2000).  In order to include the long-
wavelength fluctuations into the free energy, the grand canonical partition function for 
simple fluids is transformed into a functional integral. The interaction potential is then 
divided into a reference contribution, due mainly to the repulsive interactions, and a 
perturbative contribution, due mainly to the attractive interactions ( )(')()( rururu ref += ). 

The RG theory is only applied to the attractive part, since it is considered that the other 
term contributes mainly with density fluctuations of very short wavelengths. The effect of 
the density fluctuations due to the attractive part of the potential is then divided into short-
wavelength and long-wavelength contributions, with the assumption that contributions from 
fluctuations of wavelengths less than a certain cutoff length L can be accurately evaluated 
by a mean-field theory. 

 

 The effect of short-wavelength contributions is taken into account by the 
functional 

 

∫= )()( ρradρA sDs  (5.3) 

 

where as is the Helmholtz free energy density of a homogeneous system with density ρ. 
This can be calculated using the soft-SAFT equation, or any other mean-field theory. The 
choice of the mean-field theory is of relevance for the overall behavior of the crossover 
equation, as will be discussed later. This is why different crossover equations have been 
developed and continue under development nowadays.  It is important to note that because 
as should include only short-wavelength density fluctuations, it is necessary to subtract the 
long-wavelength fluctuations. As a first approximation this can be done by adding 

. 2)( ρmα−
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2)( ρmαaa EOSclassicals +=  (5.4) 

 

where α is given by 

)(
2
1 ' rrudα D∫−=  (5.5) 

 

 Using the saddle-point approximation (Negele and Orland, 1988), the zero order 
solution of the grand partition function gives 

 
2

0 )( ρmαaa s −= . (5.6) 

 

 Substitution of equation (5.4) into equation (5.6) gives that the zero order 
contribution to the Helmholtz free energy density is just the Helmholtz free energy density 
provided by the classical equation (soft-SAFT in our case) at molecular density ρ. Note that 
the saddle-point approximation used neglects the contribution of density fluctuations of all 
wavelengths that are not already accounted for by the reference fluid. 

 

 The contribution of the long-wavelength density fluctuations is taken into account 
through the phase-space cell approximation (Wilson, 1971, 1972; Salvino and White, 
1992). In a recursive manner, the Helmholtz free energy per volume of a system at density 
ρ can be described as,  

 

)()()( 1 ρdaρaρa nnn += −  (5.7) 

 

where a is the Hemholtz free energy density and dan the term where long wavelength 
fluctuations are accounted for in the following way: 

 



Soft-SAFT  67 

)(Ω
)(Ω

ln)(
ρ
ρ

Kρda l
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nn ⋅−=  (5.8) 

  

where Ωs and Ωl represent the density fluctuations for the short-range and the long-range 
attraction respectively, and Kn is a coefficient: 
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T is the temperature and L the cutoff length. 
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 The superindex β refers to both long (l) and short (s) range attraction, respectively, 
and Gβ is a function that depends on the evaluation of the function a , calculated as:  
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where m is the LJ segment parameter, φ an adjustable parameter, α is the interaction 
volume with units of energy-volume, and w refers to the range of the attractive potential. 
For the LJ fluid, α and w are given by: 

 

drrπuα
σ LJ∫
∞−

= 24
2
1  = 

9
16 3σεπ  (5.14) 
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drrπur
α
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σ
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= 222 4
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1 =

7
9 2σ  (5.15) 

 

ρmax is the maximum possible molecular density and it depends on the selected model. The 
maximum value of the density accounted for in the reference equation employed (Johnson, 
1993) depends on the temperature considered, but it is at least 1 in terms of monomer 
density and non-dimensional units, for the lowest temperature reported. The maximum 
density is set as: 

 

3max
1
σNm

ρ
A ⋅⋅

=  (5.16) 

 

 The chemical potential and the pressure can be obtained by standard 
thermodynamic relationships. A detailed derivation of the recursive equations is shown in 
the appendix B of this thesis work.  

 

 The above procedure can be interpreted as the ratio of non-mean field 
contributions to mean-field contributions as the wavelength is increased. In practice, it has 
been observed, as some other authors did (Salvino and White, 1992; Tang, 1998; Lue and 
Prausnitz, 1998; Jiang and Prausnitz, 1999), that after five iterations (n=5), there is not 
further change in the Helmholtz free energy. However, as will be discussed later, more 
iterations are needed to obtain accurate values for the critical exponents.  

 

 The integral in equation 5.8 is evaluated numerically, by the trapezoid rule. The 
superior limit of the integral depends on how close we are from the maximum package 
density. This condition is given to assure that all calculations will be in the range of 
application of the selected intermolecular potential. The density step has been set to obtain 
good accuracy, without compromising the speed of the calculations. A density step ρ/500 
gives accurate results for the critical region.  
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 To extend White’s theory to mixtures, the isomorphism assumption (Fisher, 1968) 
is used. Following the RG theory, it is assumed that the order parameter plays a crucial role 
in the Hamiltonian. Since the density is the order parameter in this case, according to the 
isomorphism assumption, the order parameter to describe vapor-liquid equilibria in 
mixtures is the total density of the system. Therefore, the one-component density must be 
replaced by the total density of the components.  However, according to the isomorphism 
assumption, the chemical potentials must be chosen as independent variables when the 
integration in equation (5.10) is calculated, i.e. the integration should be performed at fixed 
chemical potential. This requirement makes computation extremely difficult. Therefore, 
following other authors (Cai and Prausnitz, 2004; Sun et al, 2005; Cai et al., 2006), Kiselev 
and Friend’s approximation (1999) is used, replacing constant chemical potentials by 
constant mole fractions in performing the integral. It is important to remark that the choice 
of an order parameter or another will make the equation suitable for a particular kind of 
mixture equilibria. For instance, the approximations made here make the equation suitable 
for vapor-liquid equilibria; a different order parameter will be required in the case of liquid-
liquid equilibria.  

 In addition to Kiselev and Friend’s approximation (1999), the extension of the 
equation to mixtures also requires to introduce the mixing rules to determine the crossover 
parameters L and φ. Due to the fact that the cut off length L is the diameter of the three-
dimensional space for characterizing density fluctuations, we have chosen the simplest 
possible expression for the mixture: 

∑=
=

n

1i

3
ii

3 LxL  (5.17)

  

 The crossover parameter φ is calculated in the same way as the chain length: 

∑
=

=
n

i
iix

1

φφ  (5.18) 

  

 In addition to these crossover parameters, the soft-SAFT parameters for mixtures 
presented in equations 4.2-4.6 are used, instead of the pure component parameters mi, σi, εi. 
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5.6. Phase equilibria, critical lines and derivative 
properties calculations 

For phase-equilibria calculations, the commonly used fugacity method is 

employed (Fotouh and Shukla, 1996). Chemical, thermal and mechanical stability are 

satisfied by imposing the equality of chemical potentials of each component in the 

coexisting phases at fixed temperature and pressure. Because SAFT is formulated as an 

explicit function of temperature, density and phase compositions, the fugacity method is 

applied by equating chemical potentials and the pressure at a fixed temperature:  

),ρ,(),ρ,( IIIIIIIII xTPxTP =  (5.19) 

  (5.20) ),ρ,(μ),ρ,(μ IIIIII
i

III
i xTxT =

The calculation of critical properties of pure fluids and mixtures is done by 

numerically solving the necessary conditions (Sadus, 1992), which involves second and 

third derivatives of the Gibbs free energy with respect to the molar volume (pure systems) 

or the composition (in mixtures): 
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In addition to these equations, classical stability for critical points is required 

through the extra condition: 
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Since the soft-SAFT EoS is given in terms of the Helmholtz energy, its natural 

thermodynamic variables are temperature, volume, and composition. Hence, it is more 

convenient to express the critical conditions in terms of derivatives of the Helmholtz free 

energy with respect to volume and composition, at constant temperature: 
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where the notation AnVmx = ( δn+mA/ δVn δxm) is used for the derivatives of the Helmholtz 

free energy. 

As a further test, derivative properties have been also calculated because, besides 

their technological importance, there is also a scientific interest in accurately obtaining 

these properties. As their name specifies, derivative properties are second derivatives of a 

thermodynamic potential function. They can be obtained by derivation respect to the 

temperature and density, and all of them are connected by straightforward mathematical 

relationships. It has been shown that second derivatives are more sensitive to errors than the 

first derivatives of the thermodynamic function from which they proceed, i.e, while first 

derivatives may provide accurate results (such as phase equilibria calculations), second 

derivatives of the same thermodynamic function lead to inaccurate results (heat capacities, 

speed of sound, etc.) for the same compound.  In fact, as pointed out by Gregorowicz and 

co-authors (1996), the precise description of the features second derivative show is a 

challenge for any EoS model. For instance, cubic EoS, which have proved to be an accurate 

method for phase equilibria calculations, are unable to describe some of the singularities 

observed in the derivative properties, (Gregorowicz et al., 1996) such as the density 

extrema in isothermal variations of the isochoric heat capacity, isothermal compressibility 

and speed of sound. Some of these limitations may come from the way in which these 

classical equations were developed, ignoring some of the microscopic contributions to the 

macroscopic properties. This physical information may be of relevance when testing the 

equations for other applications than phase equilibria calculations. For this reason, the use 

of a crossover molecular equation of state overcomes some of these limitations. The new 

equation was tested to reproduce the singularities observed in the vicinity of the critical 

point.  
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Second-order derivative properties were obtained from the Helmholtz energy and 

the pressure, which are direct calculations from the soft-SAFT equation. Hence, the 

expressions for the main derivative properties calculated in this thesis work are: 
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being Cv the isochoric heat capacity, kT the reduced bulk modulus, α the thermal expansion 

coefficient, μ the Joule-Thomson coefficient, Cp the isobaric heat capacity and ω the speed 

of sound. All these properties were developed for each soft-SAFT contribution, quantifying 

the different microscopic contributions to the total derivative properties. Regarding the 

ideal term, note that it contains the de Broglie wavelength, which includes temperature 

dependence. This directly affects the Cv and Cp calculations, and indirectly the speed of 

sound. For practical reasons we have used the ideal heat capacity correlations obtained 

from a database library (Perry and Green, 1999) to complete the calculations. 

The two following chapters are devoted to the performance of the new equation for 

the whole ensemble of thermodynamic properties for pure fluids and mixtures.  



 

 
 

C. Results 
 

 
 
 
 
 
 

The essence of knowledge is, having it, to apply it; not 
having it, to confess your ignorance.  
 

Confucius (BC 551-BC 479) 
Chinese philosopher. 

 
 



 

 



   
Pure fluids 

 
 

 

In this chapter, the results of this thesis work concerning pure compounds are 

presented. The chapter is split in three main sections. First of all, the results of the 

soft-SAFT equation are tested against molecular simulations using the same 

underlying molecular model. The influence of the crossover parameters is also 

analyzed. Once the equation has been tested, it is applied to the calculation of 

several pure fluids of industrial interest. This second section presents results for 

three different families of hydrocarbons. The molecular model for each family is 

described, the molecular parameters are fitted to experimental data for the lighter 

compound and a correlation is calculated to predict the behavior of heavier 

compounds. The third section is devoted to the implementation of the critical 

region treatment to a van der Waals type equation of state in order to check the 

accuracy of the methodology when it is implemented into a cubic equation of state. 

75 
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6.1. Comparison with molecular simulations1

 
 A main advantage of using a molecular-based equation is that it can be directly 

compared to simulation results for the same molecular model. In this case, there are two 

adjustable parameters, those related to the crossover approach, φ and L; while m, σ and є 

are the same in both cases. Several studies have been devoted to the influence of both 

values (φ and L) in predicting the phase envelope when compared to simulation data, and 

the main results are presented here.   

 Figure 6.1 shows the vapor-liquid coexistence curves for several LJ chains. Circles 

are computer simulation results, (Lofti et al., 1992; Escobedo and de Pablo, 1996; Vega et 

al., 2003) dashed lines are predictions with the original soft-SAFT equation (Pàmies and 

Vega, 2001) and solid lines are those obtained from the crossover soft-SAFT equation. As 

expected, the improvement is significant in the near critical region. 

Figure 6.1: Temperature-
density diagram of LJ chains 
of length m=1, 2, 4, 8 and 
16. Circles are simulation 
data from Lofti et al., 1992; 
Escobedo and de Pablo, 
1996; and Vega et al., 2003. 
Dotted lines correspond to 
the original soft-SAFT, and 
solid lines the soft-SAFT + 
crossover. 

 

 
 The optimized crossover parameters for the LJ chains are given in table 6.1. 

                                                 
1 The results of this section have been published in the J. Chem. Phys. (Llovell et al., 2004) 
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Table 6.1 Crossover parameters for flexible LJ chains, optimized using simulation data for 

chain lengths m = 1, 2, 4, 8 and 16 

 φ L/σ 
m=1 10.0 1.26 
m=2 10.5 1.35 
m=4 10.6 1.48 
m=8 13.0 1.80 
m=16 15.0 2.33 

 

 Original soft-SAFT clearly overestimates the critical point for all length chains, 

except for m = 1. This is due to the fact that the LJ equation used for the reference term in 

the soft-SAFT equation is a fit to simulation data, including the critical point. The crossover 

soft-SAFT equation is able to predict the critical region with higher accuracy. Saturated 

liquid density values are in good agreement with simulation results. Note that vapor 

densities predictions are also improved compared to the original soft-SAFT equation, 

although some deviations from the simulation data are still observed. In fact, the crossover 

treatment takes into account the long-wavelength fluctuations in order to correct the 

behavior in the near critical region, where these fluctuations are important, but it does not 

correct any other limitation the original equation may have. This means that if soft-SAFT 

underestimates the vapor densities for long chains away from the critical point, the 

crossover soft-SAFT equation will also underestimate this density, as it happens for longer 

chains (m = 8, 16). As pointed out by other authors (Johnson et al., 1994), the original soft-

SAFT equation does not consider the intramolecular interactions of chains. This is not a 

defect of the theory, but a consequence of the first-order perturbation approach used in 

describing the formation of the chains. 

 Additional structural information can be introduced into the equation to overcome 

this problem. The dimer version of the soft-SAFT equation (Blas and Vega, 2001; Pàmies 

and Vega, 2002) includes more structural information in the Helmholtz free energy, 

building the chains through LJ dimers, as the reference fluid, instead of monomers. This 
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improves predictions of LJ chains for vapor densities and in the near critical region (Blas 

and Vega, 2001). Figure 6.2 shows a comparison with simulation results of m = 8 for the 

monomer and dimer soft-SAFT versions, with and without the crossover treatment. Here 

the best fit is shown, with different values of φ and L, optimized for each equation. As 

expected, predictions of vapor densities near the critical region are improved with the dimer 

version, in both cases (with and without crossover); and the critical point is captured when 

the crossover treatment is included. However, liquid densities deviate from the simulation 

results more that those from the soft-SAFT monomer equation. 

Figure 6.2: Temperature-density 
diagram of LJ chains of length m = 8. 
Circles are simulation data, dotted 
lines represent monomer and dimer 
versions of soft-SAFT, and solid and 
dashed lines represent monomer and 
dimer versions of the crossover soft-
SAFT equation, respectively. For the 
monomer version, φ=13.0 and 
L=1.80σ, and for the dimer version, 
φ=13.8 and L = 1.56σ.  

  

 The influence of both adjustable parameters L and φ has also been investigated on 

the phase envelope. As it has been already mentioned, φ is used to adjust the critical 

temperature. Figure 6.3a shows different coexistence curves for several values of φ for LJ 

chains with m = 4, at a constant value of L (= 1.48σ). From bottom to top φ = 10, 10.67, 12, 

13 and 14. The top curve corresponds to the original soft-SAFT equation, clearly 

overestimating the critical temperature. As the value of φ decreases, the crossover 

correction becomes more and more important, improving the final result until an optimized 

value of φ = 10.67 is found. Further decreases of its value underestimate the critical point, 

as observed at the bottom coexistence curve. 
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 The influence of L for a given value of φ is shown in figure 6.3b, for the particular 

case of m = 4, when φ = 10.67. The particular values chosen have been L = 1.40, 1.45, 1.48, 

1.60, 1.65 and 1.70σ. Again, as it happens when holding L constant while changing φ, an 

optimum value of L is found, 1.48σ, in this case. Shorter values of L are unable to capture 

the range of the correlations among molecules, even far from the critical point, while larger 

values of L lead to a mean-field like behavior. 

  Hence, for the particular case of LJ chains with four segments, the optimum 

crossover parameters are φ = 10.67 and L = 1.48σ. Excellent agreement with simulation 

results are found in this case, far from and near to the critical point. A compromise should 

be found regarding the optimization of both parameters for each molecule. Note that since 

these two parameters are somehow coupled, several combinations of them can provide 

accurate results.  

            a)                                                                       b)  

 

 

  

 

 

 
 
 
Figure 6.3 Temperature-density diagram of LJ chains of length m=4. a)  Influence of 
parameter φ when L = 1.48σ. Circles are experimental data, the solid line represents the 
optimized value φ=10.6, and the dotted line is the original soft-SAFT. Long-dashed lines 
are crossover soft-SAFT calculations with φ = 10, 12, 13 and 14. b) Influence of cut off 
length L in the temperature-density diagram of LJ chains of length m = 4, when φ = 10.6. L 
= 1.40, 1.45, 1.48, 1.60, 1.65 and 1.70. Symbols and lines as in 6.3a. 
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6.2. Families of pure fluids 

 Once the accuracy of the equation has been tested with the aid of molecular 

simulations, it is applied to real fluids, where some additional parameters need to be 

adjusted. The aim of the generalization of the soft-SAFT equation in this context is to 

propose a reliable equation for real fluids, accurate enough near to and far from the critical 

point, and with transferable parameters, able to calculate different kind of properties in a 

wide range of thermodynamic conditions.  

6.2.1. The n-alkanes family2

 The n-alkanes family is selected, due to its relative simplicity, from the modeling 

point of view, and to its practical importance. Several works have been published 

concerning its study. A systematic analysis has been done using soft-SAFT (Blas and Vega, 

1997; Pàmies and Vega, 2001) and SAFT-VR (McCabe and Jackson, 1999) without any 

specific crossover treatment. Other works already included a renormalization group 

treatment, like Jiang and Prausnitz (1999), who implemented White’s approach into an 

equation of state for chain fluids (EOSCF, developed by Hu et al. [1996]). Following a 

different crossover theory (Kiselev, 1998), McCabe and Kiselev (2004a,b) also included the 

treatment into the SAFT-VR equation, extending the capabilities of the equation and 

applying them to the study of this family. Now, the extended soft-SAFT is applied to 

describe the main thermal behavior of the n-alkanes. 

 n-Alkanes are described as homonuclear chainlike molecules, modeled as m 

Lennard-Jones segments of equal diameter σ, and the same dispersive energy ε, bonded 

tangentially to form the chain. According to this model, the three molecular parameters plus 

the crossover parameters φ and L, are enough to describe all thermodynamic properties. 

                                                 
2 The results of this section have been published in the J. Chem. Phys. (Llovell et al., 2004) and in the 
J. Phys. Chem. B (Llovell and Vega, 2006b). 
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Since it is known that the three molecular parameters m, mσ3 and mε increase linearly with 

molecular weight (Pàmies and Vega, 2001) and mφ has shown a similar behaviour (Jiang 

and Prausnitz, 1999), a new set of transferable parameters is proposed as a function of the 

molecular weight of the compounds, including mL/σ. The correlation comes from 

optimized parameters for the eight first members of the alkanes series, obtained by fitting 

experimental saturated liquid densities and vapor pressures, in a similar manner as done by 

Pàmies and Vega (2001). The values of these parameters are presented in table 6.2.  
 

Table 6.2. Molecular parameters for the light members of the n-alkanes family (C1-C8). 

 m σ (Å) ε/k (K) φ L/σ 
methane 1.000 3.741 151.1 5.50 1.04 
ethane 1.392 3.770 207.5 6.20 1.10 
propane 1.776 3.831 225.8 6.75 1.16 
n-butane 2.134 3.866 240.3 7.25 1.22 
n-pentane 2.497 3.887 250.2 7.57 1.27 
n-hexane 2.832 3.920 259.8 7.84 1.33 
n-heptane 3.169 3.937 266.0 8.15 1.38 
n-octane 3.522 3.949 271.0 8.30 1.43 

 

 As stated, the molecular parameters can be easily correlated respect to the 

molecular weight. The new proposed correlation is given by: 

628.00255.0 += wMm    (6.1a) 

4.2568.13 += wMmσ   (6.1b) 

9.3808.8/ += wB Mkmε   (6.1c) 

32.1244.0 += wMmφ   (6.1d) 

981.01099.3/ 3 +×= −
wMmL σ   (6.1e) 

 Units of σ and ε/kB are Å and K respectively. Mw is the n-alkane molecular weight 

expressed in g/mol. It is important to stress that this new set of parameters is able to 
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describe equally well the vapor-liquid equilibria diagram and critical region of these fluids, 

in contrast to previous correlations, accurate for only one of the two regions. 

 The experimental critical temperature, pressure and density and those predicted 

from the original soft-SAFT and the crossover soft-SAFT equation for the first eight 

members of the n-alkanes series are presented in table 6.3.  
 

Table 6.3 Critical constants for n-alkanes (C1-C8). Experimental data from NIST Webbook. 

 Tc (K) Pc (MPa) 

n-alkane Exp. 
Crossover 
soft-SAFT 

soft-
SAFT 

Exp. 
Crossover 
soft-SAFT 

soft-
SAFT 

methane 190.6 190.4 193.3 4.60 4.59 5.10 
ethane 305.3 305.0 311.0 4.87 5.07 5.70 
propane 369.8 370.2 378.6 4.25 4.43 5.14 
n-butane 425.1 425.2 445.2 3.80 3.94 4.70 
n-pentane 469.7 469.0 493.7 3.37 3.41 4.29 
n-hexane 507.8 507.8 535.5 3.03 2.98 3.88 
n-heptane 540.1 539.6 572.7 2.74 2.66 3.57 
n-octane 568.9 567.2 603.9 2.49 2.31 3.26 

 

 Dc (mol/L) 

n-alkane Exp. 
Crossover 
soft-SAFT 

Soft-SAFT 

methane 10.14 10.79 9.93 
ethane 6.87 7.25 6.86 
propane 4.96 5.18 4.89 
n-butane 3.92 4.06 3.69 
n-pentane 3.22 3.37 2.95 
n-hexane 2.71 2.87 2.45 
n-heptane 2.32 2.47 2.07 
n-octane 2.03 1.76 1.79 
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 While soft-SAFT overestimates the critical temperature and pressure, as expected, 

crossover soft-SAFT is able to predict both critical properties with high accuracy. However, 

as already observed by other authors using a similar approach, the critical density is slightly 

overestimated. This is the price paid by fitting the crossover parameters to the critical 

temperature in the temperature-density diagram.  

 Figure 6.4a shows the coexistence curve for n-pentane, chosen as a member 

example of the n-alkanes series. The purpose of this figure is twofold: to study the 

influence of the crossover treatment in the phase envelope, with the molecular parameters 

obtained by fitting with the original soft-SAFT, and to optimize predictions from the 

equation by fitting new parameters with the crossover treatment included in the equation. 

Circles are experimental data (NIST), the dotted line represents original soft-SAFT 

calculations, the dashed line comes from the crossover soft-SAFT equation with the 

original parameters, and the solid line is from the crossover soft-SAFT equation with the 

new fitted parameters.  

 

               a)                                                                        b) 

 

  

 

 

 

 

 

 

Figure 6.4 a): Temperature-density diagram for n-pentane. b) Pressure-density diagram 

for n-pentane. See text for details. 
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 As it can be observed, original soft-SAFT overestimates the critical region, while 

with the crossover treatment this region is well-described, even with the “old” parameters. 

The parameters have been readjusted (except the chain length) and excellent agreement has 

been obtained with the experimental data, also far away from the critical point, where long 

wavelength fluctuations are unimportant. Figure 6.4b shows the vapor pressure plot of n-

pentane. It is clearly shown how the original soft-SAFT equation overestimates the critical 

pressure and how results are improved with the new equation. 

 Figure 6.5a shows the coexistence curve for the eight first members of the n-

alkanes series from experimental data and soft-SAFT predictions, with and without the 

crossover treatment. Agreement is excellent in all cases, correcting the behavior in the 

critical region due to the incorporation of density fluctuations into the equation. It can 

hardly be appreciated a slight deviation in the vapor density in n-heptane and n-octane, the 

heaviest members represented here. As already discussed in the previous section when 

compared to simulation data, this is due to the lack of intramolecular chain interactions in 

the soft-SAFT equation, which becomes more important as the chain length is increased.  

Figure 6.5b shows vapor pressures for the same members of the series. Again, excellent 

agreement is obtained in all cases. 

 Since SAFT is a molecular equation, its molecular parameters can be transferred 

within the same family, if there are physically sound. A test of the accuracy of the 

correlations proposed in equations (6.1a-e) is to compare predictions from soft-SAFT with 

experimental or simulation data for heavier members of the family. Note that these 

correlations have been obtained just from the eight first members of the series. Phase 

equilibria predictions for n-hexadecane (n-C16H34), n-tetracosane (n-C24H50), n-

octatetracontane (n-C48H98) are shown in figure 6.6. Symbols represent simulation vapor-

liquid equilibrium data taken from Nath et al. (1998), while the critical points are from 

Errington and Panagiotopoulos (1999). 
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Figure 6.5 The light members of the n-alkanes series, from methane to n-octane. a): 
Temperature-density diagram b) Pressure-density diagram. Symbols represent the 
experimental data taken from NIST Chemistry Webbook. Dashed lines correspond to soft-
SAFT predictions, and the solid line to soft-SAFT + crossover predictions. 
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Figure 6.6: Phase equilibria 
predictions for n-hexadecane 
(C16H34), n-tetracosane 
(C24H50) and n-
octatetracontane (C48H98). 
Circles represent simulation 
data from Nath et al. (1998). 
Simulation critical points are 
from Errington and 
Panagiotopoulos (1999). 
Dashed lines correspond to 
predictions of the original 
soft-SAFT and solid lines to 
crossover soft-SAFT. 

 

 Two comments are in order here: soft-SAFT gives excellent predictions for the 

VLE data, as already shown by Pàmies and Vega (2001), and the new set of parameters is 

able to capture the whole phase envelope, including the critical region. It is remarkable to 

see how the crossover parameters adjusted to fit the critical temperature of the light 

members of the series predict the critical point of the heavier members of the series with the 

same degree of accuracy. 

 The accuracy of the equation near to, but above, the critical point has also been 

tested. It is clear that the modification of the shape of the phase envelope in the critical 

region will affect the prediction of thermodynamic properties at near-critical conditions. 

Figure 6.7a presents n-butane data for reduced temperatures cr TTT =  = 1.05, 1.10 and 

1.15. The symbols represent the experimental data taken from the NIST Chemistry 

Webbook, the dashed lines are predictions from the original soft-SAFT equation, while the 

solid lines represent the crossover soft-SAFT predictions. 

 As expected, the original equation is unable to capture the singular behavior of the 

fluid in the near-critical region; on the contrary, the crossover equation is able to give the 
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correct shape of the isotherms in this region. In fact, the agreement between the predicted 

isotherms with the crossover treatment and the experimental data is excellent in all cases, 

including the high density region. As expected the crossover equation reduces to the 

original equation as the one leaves the critical region. Three selected supercritical isobars of 

n-butane are presented in figure 6.7b, corresponding to reduced pressures cr PPP = = 1.05, 

1.10 and 1.15. As for the case of the supercritical isotherms, soft-SAFT with 

renormalization group corrections gives quantitative agreement with the experimental data, 

while the original equation overestimates the temperature and pressure in the near critical 

region, giving an incorrect shape to the curve. The curves shown in figures 6.7 represent 

pure predictions, since the molecular parameters used in both cases (with and without 

crossover) were fitted from vapor-liquid equilibrium data (from table 6.2 and the work of 

Pàmies and Vega [2001], respectively). 
 

             a)                                                                   b) 

 

 

 

 

 
 
 

 
Figure 6.7: a) Pressure-density diagrams for three temperatures above the critical point, 
Tr=1.05, 1.10 and 1.15 for n-butane. b) Temperature-density diagrams for three pressures 
above the critical point, Pr=1.05, 1.10 and 1.15 for n-butane. The predicted coexistence 
curve is also shown. Circles are experimental data from NIST Chemistry Webbook, dashed 
lines are original soft-SAFT predictions, and solid lines are crossover soft-SAFT 
predictions. 
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 A further test of the equation has been performed by calculating the critical 

exponents. The β and δ exponents have been obtained by the following equations (Salvino 

and White, 1992): 
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where ρl,v are the coexistence densities values and μ is the chemical potential.  

 Since the procedure is the same in all cases, propane has been selected as an 

example for calculations; results for the rest of the n-alkanes studied are very similar and 

are omitted here. The critical exponent values obtained for propane 009.0331.0 ±=β  and 

04.082.4 ±=δ . These values are in accordance to the universal critical values provided by 

modern critical phenomena theory (Wyczalkowska et al., 2004), within the error bars, 

implying that the equation and the molecular parameters used in the model reproduce the 

correct asymptotic behavior close to the critical point. Furthermore, by using the scaling 

law relation )1( −= δβγ , a value of γ=1.264 is obtained, within the range of the 

experimental universal critical exponent values. The β exponent was calculated for 

temperatures between 0.2% and 1.5% below the critical point. The log-log plot of  

cρρΔ versus cTTΔ  is shown in figure 6.8a, for the range of temperatures considered. 

The value of β was obtained from the slope of the linear regression to this data. A value of 

five iterations was enough to obtain accurate results for β.  The δ exponent was calculated 

in a similar manner, by plotting cμμΔ  versus  cρρΔ in a log-log graph.  As in previous 

works (Salvino and White, 1992), higher values of n were needed in order to obtain 

accurate results; a value of n = 7 iterations was enough to accurately obtain the chemical 

potential isotherm in our case. The value of δ was found by averaging the two slopes of the 

regression lines, representing the two sets of data, one from densities below the critical 

point and the second one from densities above the critical point.  The log-log plot is shown 
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in figure 6.8b, for the range of densities considered. The points used for the regressions 

were in the range 0.1 < |Δρ/ρc|< 0.3 and 0.005 < |Δμ/μc|< 0.1. 

 

 a)     b) 

 

 

 

 

 

 

 
Figure 6.8: Determination of the critical exponents for propane a) β critical exponent    b) 
δ critical exponent. Circles are obtained from the crossover soft-SAFT EoS, and the solid 
line is the regression of these points. The value of δ is found by averaging the slope of the 
two fitted solid lines (see text for details). 

 
 The thermodynamic behavior of a fluid also includes the prediction of other 

properties outside the phase diagram. As it has been said, derivative properties are crucial 

in order to understand the behavior of a compound. Till now, the number of published 

works related to the application of molecular-based EoS to derivative properties is very 

scarce. Colina et al. (2002) have shown the validity of soft-SAFT to predict the inversion 

curves of pure heavy n-alkanes, impossible to obtain with accuracy with classical EoSs 

(Segura, 2003); however, no systematic study on the behavior of the equation for other 

derivative properties was performed at that time.  

 In a very recent paper, Laffite at al. (2006) have published the application of 

different versions of SAFT (PC-SAFT [Gross and Sadowski, 2001] , SAFT-VR [Gil-

Villegas et al, 1997], SAFT-VR LJC [Davies et al., 1998] and a modified SAFT-VR EoS, 

named SAFT-VR Mie [Lafitte et al., 2006]) to the calculation of derivative properties of n-
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alkanes. They first checked the performance of the PC-SAFT, SAFT-VR and SAFT-VR 

LJC EoS’s to obtain derivative properties with molecular parameters obtained by fitting 

vapor-liquid equilibrium data. They focused on the derivative properties of condensed 

liquid phases at selected temperatures and plotted them as a function of pressure; no 

calculations near the critical region were considered in this study. Results obtained with the 

different equations and the original parameters provided poor agreement as compared to 

experimental data. Hence, assuming the problem in accurately describing the derivative 

properties was the description of the repulsive interactions between the monomers forming 

the chain, they modified this term in the SAFT-VR equation, proposing the SAFT-VR Mie 

equation. This implies the addition of an extra parameter related to the shape of the 

repulsive part of the potential between monomers forming the chains. In addition, they used 

a fitting procedure in which two types of properties were included, vapor-liquid equilibrium 

data and the speed of sound in the condensed liquid phase. The new SAFT-VR Mie 

equation and the extended fitting procedure showed better agreement with experimental 

vapor-liquid equilibria and speed of sound data than the other SAFT equations (with the 

original parameters); notice that both type of properties were included in the fitting 

procedure. However, the new parameters provided poor agreement when compared to 

experimental isobaric heat capacities (nothing was mentioned above the isochoric heat 

capacities). The authors attributed these deviations to the need of further refinements of the 

Mie potential model, including higher order perturbation terms. Although they did not 

mention it, the fact is that this property was not included, directly or indirectly, into the 

fitting procedure. The deviations with respect to experimental data can also be due to this 

fact, showing, in this case, the lack of transferability of the parameters for predicting 

properties not included in the fitting set. This work is a clear step forward on testing the 

accuracy of SAFT-type equations for describing derivative properties. A point raised by 

Laffite et al. (2006) is the need of an accurate description of the reference potential for 

precisely describing derivative properties; the investigation of the performance of the soft-

SAFT equation, which includes an accurate Lennard-Jones equation as the monomer 

reference term, is of great relevance in this context. 
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 This work evaluates next the singular behavior of derivative properties in the 

vicinity of the critical point of the members of the n-alkane family. In this calculation, there 

is not any additional molecular parameter fitting. As derivative properties were not included 

in the fitting, results obtained are pure predictions of the equation. The compounds are 

selected depending on the available experimental data of systems near to and above the 

critical point of the compounds, for comparative purposes.  

 Results for propane are shown as an illustrative example in Figure 6.9. The data 

used for comparison were taken from the correlated data provided in the NIST Chemistry 

Webbook. Figure 6.9a depicts the vapor-liquid equilibria as obtained by two versions of 

soft-SAFT (with and without a crossover treatment) versus a correlation to the experimental 

data of propane (NIST Chemistry Webbook) from which the molecular parameters were 

obtained. As already shown in Figures 6.4 and 6.5., the addition of long-range density 

fluctuations in the vicinity of the critical point improves the critical region, while keeping 

the accuracy of the original equation far from the critical point. Figures 6.9b-6.9e show the 

residual isochoric heat capacity, residual isobaric heat capacity, isothermal compressibility, 

the Joule-Thomson coefficient and speed of sound of propane. The chosen reduced 

temperatures for comparison where  = 1.1, 1.25 and 1.5. TcTTT /* = c is the critical 

temperature of the fluid (three different values are used in this case, the experimental, that 

obtained from the original soft-SAFT and the equivalent one with crossover soft-SAFT). 

The overall agreement is very good in all cases. The largest deviations are obtained for the 

residual heat capacities very close to the critical point. Soft-SAFT with the original 

parameters is able to capture the extrema (maxima and minima) in very good agreement 

with the experimental data, except very close to the critical region.  
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Figure 6.9:  The behavior of n-propane. a) temperature-density diagram. b) residual 
isochoric heat capacity. c) residual isobaric heat capacity. d) isothermal compressibility. e) 
the Joule-Thomson coefficient. f) speed of sound.  
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Symbols represent correlation data obtained from NIST Chemistry Webbook, while the 
solid line stands for calculations performed with the crossover soft-SAFT equation and the 
dashed line with the original soft-SAFT equation. Derivative properties were calculated at 
three different reduced temperatures 1.1, 1.25 and 1.5 and all of them are represented 
versus reduced density.  

 The crossover treatment improves estimations for heat capacities (see Table 6.4, 

where the absolute average deviation of the soft-SAFT and crossover soft-SAFT 

calculations respect to the correlated data is shown for the compounds exposed in this 

section). However, no appreciable changes were observed for the rest of the derivative 

properties, and hence the results for these properties are presented with the original 

equation (it is unnecessary to use a technique that implies a greater computational effort to 

obtain the same result). It is striking to observe the excellent agreement predicted for the 

speed of sound; in fact, and due to way in which this property is obtained (see equation 

5.30), the speed of sound is the derivative property most sensitive to deviations. The 

excellent agreement obtained here acts in favor of the reliability of the soft-SAFT equation 

for predicting this property. 

 

Table 6.4: Absolute average percentage deviation (AAD%) of isochoric and isobaric heat 
capacities for n-propane, n-heptane. Results were obtained at temperatures above the 
critical point, using the original soft-SAFT and crossover soft-SAFT equations.  

Compound Property T / Tc AAD % Res. Value 

soft-SAFT 

AAD % Res Value  

crossover-soft-SAFT 

1.10 32.7 10.9 

1.25 27.9 18.6 

Cv

1.50 25.9 19.0 

1.10 13.6 12.2 

1.25 10.9 9.7 

n-propane 

Cp

1.50 9.20 7.2 

Cv 1.10 55.9 38.2 n-heptane 

Cp 1.10 24.0 13.5 
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 It has been observed that although the equation is able to capture the behavior of 

these properties in all cases, the agreement with correlated experimental data deteriorates as 

the chain length increases. Results for n-heptane are shown as an example in Figure 6.10. 

As in the previous case, the molecular parameters of the equation were taken from table 6.2 

(crossover soft-SAFT) and the work of Pàmies and Vega (2001) (original soft-SAFT). The 

total and residual isochoric heat capacities are shown in Figures 6.10a and 6.10b, while 

Figures 6.10c and 6.10d depict the isobaric residual heat capacity and the speed of sound, 

respectively. Comparisons with correlated data are presented just for a reduced temperature 

of 1.1 because this is the only available data. Note that, as shown in Figure 6.9, this is 

precisely the reduced temperature at which greater deviations were found for propane. The 

best results obtained from the original equation are those related to the speed of sound, 

while significant deviations are observed for the residual heat capacities close to the critical 

point (see Table 6.4). The crossover term clearly improves the isobaric heat capacity and 

the speed of sound descriptions, providing almost quantitative agreement, except very close 

to the critical density, in both cases. Although the isochoric heat capacities improve with 

respect to the soft-SAFT Eos without the crossover correction, results are still far from 

being accurate with either version of the equation.  

 Soft-SAFT has also been used in the same manner for the rest of the light 

members of the n-alkanes series, showing similar trends. A summary of the main results 

obtained with the original equation is provided in Table 6.5, where the absolute average 

percentage deviations (AAD%) in heat capacities and speed of sound for selected members 

of the series (methane, n-propane, n-hexane and n-heptane) are presented. The reduced 

temperatures studied were  = 1.1, in all cases, and 1.25 and 1.5 when available.  cTTT /* =

 The AAD% of the total values are always very small (less than 5% in most of the 

cases), even close to the critical point. This is a direct consequence of the absolute value the 

ideal contribution has for these properties. On the contrary, the residual properties show 

greater AAD%. It should be kept in mind that these properties are obtained with the 

original equation using parameters from vapor-liquid equilibrium data. It is also important 
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to emphasize that these results for residual heat capacities are of the same order than those 

obtained from Laffite et al. (2006) with parameters fitted to vapor-liquid equilibria and the 

speed of sound simultaneously. 
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Figure 6.10:  The behavior of n-heptane. a) total isochoric heat capacity. b) residual 
isochoric heat capacity. c) residual isobaric heat capacity. d) speed of sound. Calculations 
are done at a reduced temperature of 1.1. Notation as in Figure 6.9. 
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Table 6.5: AAD% for residual and total isochoric and isobaric heat capacities, and speed 
of sound, for several n-alkanes at temperatures above the critical point, as obtained with 
the soft-SAFT equation. 

Compound Property T / Tc AAD %  
Res Value 

AAD %  
Total Value 

1.10 25.3 4.21 
1.25 19.8 2.49 

Cv

1.50 14.9 0.806 
1.10 9.72 5.48 
1.25 6.38 3.80 

Cp

1.50 3.19 1.46 
1.10 --- 3.11 
1.25 --- 2.54 

methane 

ω 

1.50 --- 1.82 
1.10 32.7 4.26 
1.25 27.9 1.07 

Cv

1.50 25.9 0.821 
1.10 13.6 4.61 
1.25 10.9 1.62 

Cp

1.50 9.20 1.17 
1.10 --- 5.91 
1.25 --- 3.48 
1.50 --- 2.88 

n-propane 

ω 

1.25 --- 5.19 
Cv 1.10 50.0 1.02 
Cp 1.10 27.7 4.87 

n-hexane 

ω 1.10 --- 20.2 
Cv 1.10 55.9 1.46 
Cp 1.10 24.0 3.44 

n-heptane 

ω 1.10 --- 20.7 
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 Regarding Table 6.5, it can be noticed that the greater deviations are obtained for 

the speed of sound of n-hexane and n-heptane, a direct consequence of the inaccuracy of 

the equation in providing the isochoric heat capacity of these compounds (see Figure 6.10a 

and Figure 6.10b). 

 Till now, the interest has been centered in the performance of the equation near the 

critical region. However, it is also interesting to see the behavior of the derivative 

properties far away of this region. As an example, Figure 6.11 shows speed of sound 

predictions for n-heptane at three different pressures, ranging from 0.1 MPa to 101.3 MPa. 

The AADs% for n-heptane range between 6.2% for 0.1MPa and 5.5% for 101.3MPa.  

 Although the equation is able to capture the correct trend, an underestimation of 

this property compared to the experimental data (Dzida and Ernst, 2003) is obtained in all 

cases.  The deviations become more pronounced as the pressure increases. It can be 

established that as far as the n-alkanes series is concerned, the deviations obtained for the 

speed of sound with the soft-SAFT equation do not strongly depend on pressure, being 

always of the same order. 

 

Figure 6.11: Speed of sound-
temperature diagram of 
heptane at 0.1 MPa, 30.4 
MPa and 101.3 MPa. 
Symbols represent the 
experimental data taken from 
Dzida and Ernst (2003). Solid 
lines correspond to soft-SAFT 
predictions. 
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 A main advantage of having a molecular-based equation to perform the 

calculations is that the different microscopic contributions to the total derivative properties 

can be separated and quantified. Taking advantage of the way in which soft-SAFT is 

written, the reference term (segments forming the chain) and the chain term (way in which 

these different segments are jointed) into the derivative properties have been separated for 

analysis. This methodology helps to identify the leading contributions in each compound 

and acts in favor of a better understanding of the physics of the fluid. Moreover, the 

knowledge of the dominance of a particular term can be used for further modifications in 

the equation in order to improve the prediction of different thermodynamic properties.    

 Results for the residual isochoric heat capacity and the isothermal compressibility 

at a constant temperature of 1.1 times their critical value are shown as representative of an 

energetic and a volumetric property, respectively. They have been chosen because these 

two properties do not depend on the other derivative properties (see equations 5.25 and 

5.26). Figures 6.12a-d depict results for ethane and n-heptane. All properties are calculated 

without the crossover term. Figures 6.12a and 6.12b represent the isochoric heat capacity as 

a function of the temperature for ethane and n-heptane respectively. The ideal term has 

been omitted for clarity (it is just a straight line at constant temperature). Results for the 

isothermal compressibility for the same two compounds are shown in Figures 6.12c and 

6.12d. 

 The representation of the isochoric heat capacity looks quite similar because the 

increasing value of the chain length (reference term) in n-heptane is balanced by an 

increasing negative contribution of the chain term. It results in a similar soft-SAFT 

prediction for the isochoric heat capacity for both, a short and a longer alkane.  

 When analyzing the figures of the isothermal compressibility, it can be observed 

that, although both curves also present the same qualitative trend, the number of segments 

becomes the dominant term as the chain length increases. This is a result to be expected 

intuitively, since this property depends on the volume occupied by the molecules (see 

equatrion 5.26). 
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Figure 6.12: Analysis of the different microscopic contributions to some derivative 
properties as obtained by the soft-SAFT equation. a) isochoric heat capacity of ethane. b) 
isochoric heat capacity of n-heptane. c) isothermal compressibility of ethane d) isothermal 
compressibility of n-heptane Solid line: total residual value; dashed line: segment term 
contribution; dashed-double dotted: chain term contribution. 
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6.2.2. The 1-alkanols family3

 The 1-alkanols family constitutes another hydrocarbon series of great interest from 

both the industry and the academic point of view. Alcohols are in wide use in industry and 

science as reagents, solvents, and fuels. Ethanol and methanol can burn more cleanly than 

gasoline or diesel. Because of its low toxicity and ability to dissolve non-polar substances, 

ethanol is often used as a solvent in medical drugs, perfumes, and vegetable essences such 

as vanilla. In organic synthesis, alcohols frequently serve as versatile intermediates. In the 

kitchen, alcoholic beverages are added to dishes not only for their inherent flavors, but also 

because the alcohol dissolves flavor compounds that water cannot. 

 From a theoretical point of view, they are strong associating molecules due to the 

presence of a hydroxyl group. For this reason, they tend to have higher boiling points than 

the corresponding n-alkanes. Moreover, the polarity due to the hydroxyl group makes the 

shortest member in the series (methanol, ethanol and 1-propanol) soluble in water. 

Following the work done by Blas and Vega (1997) and Pàmies (2003), 1-alkanols 

can be modeled as homonuclear chainlike molecules of equal diameter σ and the same 

dispersive energy ε. The hydroxil group in alkanols is mimicked by two square-well sites 

embedded off-centre in one of the LJ segments, with volume kHB and association energy 

εHB. According to the model, these five molecular parameters (plus the crossover 

parameters φ and L), are enough to describe all thermodynamic properties. As it was done 

for the n-alkanes, all the parameters have been calculated fitting experimental saturated 

liquid densities and vapor pressures for each compound. Since the length of the chain 

should not affect the strength of the association bonds, except for very short molecules, the 

parameters of the association sites are set at constant values, except for methanol and 

ethanol. 

  The values of the fitted molecular parameters are presented in Table 6.6. All the 

parameters show physical trends (i.e. they increase as the molecular weight of the 
                                                 
3 The results of this section have been published in the J. Phys. Chem. B (Llovell and Vega, 2006a/b). 
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compound increases, until they reach an asymptotic value for relatively long chains, as it 

should happens, since this is a united atom approach). The exception is methanol, which is 

already known for its anomalous behavior.  
 

Table 6.6. Molecular parameters for the 1-alkanols (C1-C8). 

 m σ (Å) ε/k (K) φ L/σ εHB/kB (K) B
kHB (Ǻ3) 

methanol 1.481 3.390 227.4 7.70 1.390 3193 4907 

ethanol 1.710 3.659 240.0 7.00 1.300 3470 2300 

1-propanol 1.941 3.815 249.8 7.30 1.320 3600 2300 

1-butanol 2.210 3.934 266.5 7.65 1.350 3600 2300 

1-pentanol 2.470 4.020 279.5 7.83 1.370 3600 2300 

1-hexanol 2.686 4.110 291.0 8.00 1.380 3600 2300 

1-heptanol 2.920 4.170 299.5 8.10 1.390 3600 2300 

1-octanol 3.148 4.212 306.0 8.25 1.395 3600 2300 

 

 As done in previous works with soft-SAFT (Blas and Vega, 1998; Pàmies and 

Vega, 2001; Llovell et al., 2004), a correlation from optimized parameters for the eight first 

members (excepting methanol) of the 1-alkanols series is obtained: 
 

921.00173.0 += wMm    (6.3a) 

725.083.13 −= wMmσ   (6.3b) 

1.9373.6/ += wB Mkmε   (6.3c) 

31.4168.0 += wMmφ   (6.3d) 

03.10262.0/ += wMmL σ   (6.3e)

  

 Units of σ and ε/kB are Å and K respectively. Mw is the 1-alkanol molecular weight 

expressed in g/mol. The advantage of having a correlation is the ability to describe heavier 
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1-alkanols with the same degree of accuracy through the parameters extrapolation from 

these correlations. Moreover, this new set of parameters is able to describe equally well the 

vapor-liquid equilibria diagram and critical region of these fluids, in contrast to previous 

correlations, accurate for only one of the two regions. 

 As done before, the experimental critical temperature, pressure and density and 

those predicted from the original soft-SAFT and crossover soft-SAFT for the first eight 

members of the 1-alkanols series are presented in table 6.7 for comparison. 

 The values obtained show the same tendencies observed in the n-alkanes series. 

Good accuracy is obtained for the critical temperature and pressure values with the 

crossover treatment, while the critical density is overestimated. A correct evaluation of the 

density poses an interesting feature. The fact of correcting the long-range fluctuations of the 

critical region derives in a change of the shape of the curve, which is becoming almost 

planar in the critical point. It means that a extremely small change in temperature will 

modify the density in a significant way. This is the main reason for the inaccuracies 

observed in the critical density. 

  

Table 6.7 Critical constants for 1-alkanols (C1-C8).Experimental data from Smith and 
Srivastava (1986) 

 Tc (K) Pc (MPa) 

1-alkanol Exp. 
Crossover 
soft-SAFT 

soft-
SAFT 

Exp. 
Crossover 
soft-SAFT 

soft-
SAFT 

methanol 512.6 513.0 541.7 8.10 8.13 10.92 
ethanol 513.9 514.6 540.5 6.15 6.30 8.47 
1-propanol 536.8 537.4 561.0 5.17 5.24 7.06 
1-butanol 563.1 563.5 588.1 4.42 4.69 5.96 
1-pentanol 588.1 588.2 616.5 3.90 4.06 5.18 
1-hexanol 611.4 611.9 642.3 3.51 3.65 4.53 
1-heptanol 633.0 633.4 668.4 3.06 3.18 4.06 
1-octanol 655.0 653.9 695.3 2.78 2.82 3.70 
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 Dc (mol/L) 

1-alkanol Exp. 
Crossover 
soft-SAFT 

Soft-SAFT 

methanol 8.48 7.61 7.96 
ethanol 5.99 5.64 5.60 
1-propanol 4.55 4.25 4.31 
1-butanol 3.85 3.84 3.42 
1-pentanol 3.06 3.14 2.81 
1-hexanol 2.63 2.87 2.35 
1-heptanol 2.30 2.50 2.02 
1-octanol 2.01 2.19 1.76 

 

 Figure 6.13a shows the coexistence curve for the eight first members of the n-

alkanols series. Circles are experimental data (Smith and Srivastava, 1986) while the solid 

line is from the crossover soft-SAFT equation. Agreement is excellent in all cases, 

correcting the behavior in the critical region due to the incorporation of density fluctuations 

into the equation. Figure 6.13b shows vapor pressures for the same members of the series. 

Again, excellent results are achieved. 

 Following the same procedure used for the n-alkanes, the evaluation of other 

properties outside the phase diagram remains an interesting test for the equation of state. 

Concerning the 1-alkanols derivative properties it is necessary to mention the work of 

Kiselev and coworkers (2000), who published the application of a crossover version of the 

original SAFT equation to obtain the thermodynamic properties of propan-1-ol. They 

calculated isochoric and isobaric specific heats, speed of sound, PVT, and VLE data far 

from and close to the critical region. They obtained excellent agreement with available 

experimental data. It seems to be the first published work on the application of a SAFT-

type equation to the calculation of main derivative properties of a compound; unfortunately, 



Pure fluids (1-alkanols)                                              104 

the extensive study was performed just for one compound and no systematic studies for 

other families of compounds was done.  

 The present work evaluates several compounds of the 1-alkanols family to give a 

general overview of the performance of the crossover equation for these properties. As it 

was done before, the optimized molecular parameters are used without any further 

adjustment to check the accuracy of the predictions. 
 

Figure 6.13 Phase equilibrium 
diagram for the light members of 
the 1-alkanols series, from 
methanol to 1-octanol.  
a) Temperature-density diagram  
b) Pressure-density diagram. 
Symbols represent the experimental 
data taken from Smith and 
Srivastava (1986) and the critical 
points are from reference NIST 
Chemistry Webbook. Lines 
represent crossover soft-SAFT  
predictions. 
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 Figure 6.14 shows some selected results for methanol. Figure 6.14a represents the 

phase equilibrium envelope for this compound while Figures 6.14b, 6.14c and 6.14d show 

the residual isochoric heat capacity, the residual isobaric heat capacity and the speed of 

sound, respectively, all of them at two reduced temperatures of 1.1 and 1.2. As in the 

previous figures the soft-SAFT calculations with and without the crossover term are 

compared with correlated data taken from NIST Chemistry Webbook.  

  

           a)  b)   

 

 

 

 

 

 

 

           c)                                                                        d) 

 

          

 

 

 

 
 
Figure 6.14:  The behavior of methanol. a) temperature-density diagram. b) residual 
isochoric heat capacity. c) residual isobaric heat capacity. d) speed of sound. Figures b), c) 
and d) were obtained at two reduced temperatures of 1.1 and 1.2. Notation as in 6.9. 
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 Figure 6.14a shows how accurate the optimized parameters are for the evaluation 

of the phase envelope. Looking at the heat capacities and the speed of sound, it is seen that, 

although the soft-SAFT equation is also able to capture the singular behavior of isothermal 

derivative properties of methanol versus density, important deviations with respect to the 

correlated experimental (NIST Chemistry Webbook) data are obtained, especially for the 

residual heat capacities.  

 Note that, as for the case of n-alkanes, the crossover term greatly improves the 

description of the isobaric heat capacity (see Table 6.8, where the absolute average 

deviation for Cv and Cp with and without crossover for methanol is provided at the two 

selected temperatures) and the speed of sound, except very close to the critical density and 

in the high density region. It has not been possible to find a clear explanation of the 

deviations obtained for the isochoric heat capacities and further research in this line should 

be performed. Probably, a global fitting including this property would improve their results. 

  

Table 6.8: Absolute average percentage deviation (AAD%) of isochoric and isobaric heat 
capacities for methanol. Results were obtained at two reduced temperatures above the 
critical point, using the original soft-SAFT and crossover soft-SAFT equations.  

Compound Property T / Tc AAD % Res. Value 

soft-SAFT 

AAD % Res Value  

crossover-soft-SAFT 

Cv 1.10 50.3 40.1 

 1.20 50.1 41.6 

Cp 1.10 34.4 18.4 

methanol 

 1.20 30.5 10.0 

 

 Although the description of the isobaric heat capacity versus density in the 

proximities of the critical point is not well reproduced, the soft-SAFT equation is able to 

capture the behavior of this property versus pressure in almost quantitative agreement with 

experimental data. Figure 6.15 depicts the total isobaric heat capacity of methanol as 
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obtained by the original soft-SAFT equation versus pressure as compared to experimental 

data (Vargaftik et al., 1996) at three temperatures: 533, 553 and 573K.   

 

 

Figure 6.15: Total isobaric 
heat capacity of methanol at 
three near critical isotherms, 
T= 533.15, 553.15 and 
573.15 K. Symbols represent 
the experimental data 
obtained from Vargaftik et al. 
(1996) while the lines 
represent soft-SAFT 
calculations without a 
crossover term. 

 

 

 Table 6.9 provides results obtained from the original soft-SAFT equation for other 

members of the 1-alkanol series. The obtained AAD% of the residual and total derivative 

properties versus available experimental data is presented. Results for methanol (Varkaftik 

et al., 1996) are given at constant temperature, while results for 1-propanol (Peleteiro et al., 

2001; Dzida and Ernst, 2003), 1-hexanol (Fulem et al., 2002) and 1-heptanol (Fulem et al., 

2002) are specified at different pressure values, in accordance to the experimental data.  

 Again, soft-SAFT provides small AAD% for the total values, while the AAD% are 

greater for the residual values. It should be noted that, in fact, the greatest deviations are 

obtained for methanol; unfortunately, there is not available data to perform an exhaustive 

comparison of all properties at different conditions, as it happens for the n-alkanes series. 
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Table 6.9: AAD% for residual and total isobaric heat capacities and speed of sound for 
some selected 1-alkanols at constant temperature or pressure. 

Compound Propert
y 

T (K) P (MPa) AAD %  
Res Value 

AAD %  
Total Value 

533.15 --- 30.0 18.1 
553.15 --- 23.9 13.0 

methanol Cp

573.15 --- 19.6 8.34 
Cp --- 0.1013 10.6 4.37 

--- 0.10 --- 6.29 
--- 15.2 --- 4.11 
--- 30.4 --- 3.04 
--- 60.8 --- 1.48 

1-propanol 
ω 

--- 101.3 --- 0.215 
--- 10 15.6 4.68 1-hexanol Cp

--- 30 13.3 3.84 
--- 10 13.9 6.20 1-heptanol Cp

--- 30 13.6 9.59 

 

 The effect of the temperature on some of these properties has also been 

investigated in subcritical conditions. Figures 6.16a and 6.16b show the evolution of the 

isobaric heat capacity and the speed of sound of ethanol at 1MPa as a function of 

temperature. Experimental results were taken from Dillon and Penoncello (2004). Soft-

SAFT is able to capture the correct trend for the two properties considered, in both, the 

liquid and vapor phases. Very good predictions are obtained for the isobaric heat capacity 

(Figure 6.16a) in the liquid phase, while there is an overestimation of this property in the 

gas phase as it approaches the critical temperature. The speed of sound (see Figure 6.16b) is 

predicted in quantitative agreement in the vapor phase, while the liquid phase is slightly 

overestimated. 
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 a)                                                                   b) 

 

 

 

 

 

 

 

Figure 6.16: Selected derivative properties of ethanol as a function of temperature, at 
1MPa a) Isobaric heat capacity - temperature diagram. b) Speed of sound - temperature 
diagram of ethanol. Symbols are experimental data (Dillon and Penoncello, 2004) and 
solid lines the soft-SAFT predictions. 

 

 The influence of the pressure in a selected property like the speed of sound has 

also been checked. Figure 6.17 depicts speed of sound predictions for 1-propanol at five 

different pressures, in the range from 0.1MPa to 101.3 MPa. The AADs% remains in a 

range between 6.3% for 0.1MPa and 0.22% for 101.3MPa. Contrary to what happens to 

non-associating chains (n-alkanes), there is an overestimation of this property at low 

pressures that is corrected when the pressure increases. The overestimation may be due to 

the association contribution, which has a very strong effect in the calculations of the 

derivative properties. However, as the pressure increases, as already observed for n-alkanes, 

the underestimation of the other terms of the equation become more important and, as a 

result, there is a fortuitous error cancellation which provides quantitative predictions at high 

pressures. 
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Figure 6.17: Speed of 
sound-temperature diagram 
of 1-propanol at 0.1 MPa, 
15.2 MPa, 30.4 MPa, 60.8 
MPa and 101.3 MPa. 
Symbols represent the 
experimental data taken 
from Dzida and Ernst 
(2003). Solid lines 
correspond to soft-SAFT 
predictions. 

 

 

 To complete the thermodynamic study of the 1-alkanols family, the same 

contribution analysis made for the n-alkanes family has been performed for the 1-alkanols. 

Again, the isochoric heat capacity and the isothermal compressibility are evaluated. The 

chosen compounds have been ethanol and 1-heptanol, in order to establish a comparison 

with their two corresponding n-alkanes ethane and n-heptane, previously discussed. For a 

visual understanding, figure 6.12 (Cv and kt contribution analysis for ethane and n-heptane) 

has been recovered and shown here with the corresponding diagrams of ethanol and 1-

heptanol. 

 Figures 6.18a-6.18d depict the different microscopic contributions to the second-

order derivative properties as obtained from soft-SAFT for ethane, heptane, ethanol and 

heptanol at 1.1 times the critical temperature, respectively. The clear conclusion to be 

extracted from these figures is that the main contribution to the residual isochoric heat 

capacity comes from the association term (order of magnitude and shape of the curve). Note 

that the total residual isochoric heat capacity curves of ethanol and heptanol are similar, and 

very different from the ethane and heptane ones. In the case of ethanol, the association 

contribution accounts for almost the total residual value. In the case of heptanol, the shape 
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of the curve at high densities is a consequence of both, the chain length and the association 

contribution. These results show that for the case of energetic properties, such as heat 

capacities, the dominant role is played by the energetic intermolecular interactions. 

 

 a) b) 

 

 

  

 

 

 

 

 

 c) d) 

 

 

 

 

 

 

 
Figure 6.18: Analysis of the different microscopic contributions to the residual isochoric 
heat capacity as obtained by the soft-SAFT equation. a) ethane. b) n-heptane. c) ethanol. d) 
1-heptanol. Solid line: total residual value; dashed line: segment term contribution; dotted 
line: association term contribution; dashed-double dotted: chain term contribution.  
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 Results for the isothermal compressibility for the same four compounds (ethane, 

heptane, ethanol and heptanol) are shown in Figures 6.19a-6.19d.  

 

 a) b) 
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Figure 6.19: Analysis of the different microscopic contributions to the isothermal 
compressibility as obtained by the soft-SAFT equation. a) ethane. b) n-heptane. c) ethanol. 
d) 1-heptanol. Thin solid line: ideal term contribution. Rest of notation as in Figure 6.18. 
 
 In this case, all curves present the same qualitative trend, being the number of 

segments the dominant term as the chain length increases. The association does not play an 

important role since the isothermal compressibility is a volumetric property.  
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6.2.3. The perfluoroalkanes family 

 The perfluoroalkanes family constitutes another challenging series to evaluate. 

They are synthetic fluorinated hydrocarbons formulated by substituting the fluorine to 

replace hydrogen atoms on common organic compounds. These compounds are used in 

different fields like medicine, environment and industry and their number of applications 

increases every year. They can be used as substitutes for chlorinated solvents, as 

cosolovents in supercritical extraction, as medium in two-phase reaction mixture and as 

refrigerants, among other applications. 

 From a chemical point of view, fluorine’s high ionization potential and relatively 

low polarizability lead to weak intermolecular forces (Fielding, 1979) which, together with 

the strong intermolecular forces give the perfluoroalkanes interesting properties, like the 

highest solubility known among organic liquids (Dias, 2006), an exceptional chemical and 

biological inertness, and excellent spreading characteristics. 

 From a molecular point of view, they can be modeled in the same way as the n-

alkanes family: homonuclear chainlike molecules, modeled as m Lennard-Jones segments 

of equal diameter σ, and the same dispersive energy ε, bonded tangentially to form the 

chain, plus the crossover parameters L and φ to include the long-range fluctuations in the 

critical region. In order to minimize the number of adjusted calculations, and considering 

the analogy with the n-alkane series, the parameter L was fixed to the same value as the one 

previously adjusted for the respective n-alkane. The parameters are optimized, as done 

before, to the saturated liquid densities and vapor pressures for the eight first members of 

the series. The optimized parameters are presented in Table 6.10. 

 It can be noted that the parameters are quite similar to the ones for the n-alkanes 

family, excepting the value of the diameter σ, which is higher because of the presence of 

the fluorine atom instead of the smaller hydrogen.  
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Table 6.10. Molecular parameters for the light members of the n-perfluoroalkanes family 

(C1-C8). 

 m σ (Å) ε/k (K) φ L/σ 
perfluoromethane 1.025 4.152 182.0 5.00 1.04 
perfluoroethane 1.392 4.335 203.8 5.50 1.10 
perfluoropropane 1.750 4.400 216.0 6.12 1.16 
perfluorobutane 2.134 4.430 222.5 6.63 1.22 
perfluoropentane 2.471 4.460 229.0 7.10 1.27 
perfluorohexane 2.752 4.475 234.0 7.45 1.33 
perfluoroheptane 3.160 4.485 236.5 7.72 1.38 
perfluorooctane 3.512 4.500 239.0 8.10 1.43 

 

 The correlations obtained from these parameters are shown below. 

689.00352.0 += CNm    (6.4a) 

05.4365.343 += CNmσ   (6.4b) 

29.9855.92/ += CNkm Bε   (6.4c) 

08.133.3 += CNmφ   (6.4d) 

11.012.0/ += CNmL σ   (6.4e) 

 

 In table 6.11, the values obtained for the critical constants for the light 

perfluroalkanes with the equation are compared with the experimental ones. While the 

critical temperature and pressure show good agreement with the experimental values, the 

critical density remains slightly overestimated, as stated in the previous cases. 

 Figure 6.20 shows the vapor-liquid equilibria for the first eight members of the n-

perfluoroalkanes. The temperature-density and the pressure-temperature diagram are shown 

in 6.20a and 6.20b respectively.  
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Table 6.11 Critical constants for n-perfluoroalkanes (C1-C8).Experimental data from 
various authors (see text for details). 

 Tc (K) Pc (MPa) 

n-perfluoroalkane Exp. 
Crossover 
soft-SAFT 

soft-
SAFT 

Exp. 
Crossover 
soft-SAFT 

soft-
SAFT 

perfluoromethane 227.6 226.6 249.6 3.74 3.70 4.55 
perfluoroethane 293.0 292.9 314.0 3.04 3.01 5.70 
perfluoropropane 345.1 345.2 370.1 2.67 2.60 5.14 
perfluorobutane 386.5 386.4 417.5 2.31 2.21 4.70 
perfluoropentane 421.4 422.0 460.7 2.04 1.96 4.29 
perfluorohexane 450.6 448.8 498.4 1.88 1.81 3.88 
perfluoroheptane 475.3 474.8 533.3 1.62 1.53 3.57 
perfluorooctane 498.2 498.4 559.7 1.55 1.37 3.26 

 

 Dc (mol/L)  

n-perfluoroalkane Exp. 
Crossover 
soft-SAFT 

Soft-
SAFT 

Reference 

perfluoromethane 7.17 8.76 6.86 Smith and Srivastava (1986) 
perfluoroethane 4.49 5.61 4.44 Smith and Srivastava (1986) 
perfluoropropane 3.34 3.68 3.18 Smith and Srivastava (1986) 
perfluorobutane 2.65 2.86 2.46 Brown and Mears (1958) 
perfluoropentane 2.16 2.50 1.99 Barber and Cady (1956) 

Burguer and Cady (1951) 
perfluorohexane 1.84 2.20 1.65 Dias (2006); Dunlap et al. 

(1958); Crowder et al. 
(1967); Mousa (1978) 

perfluoroheptane 1.60 1.88 1.40 Oliver et al. (1951); Steele 
et al. (1997); Oliver and 

Grisard (1951); Milton and 
Oliver (1952) 

perfluorooctane 1.39 0.97 1.21 Dias (2006);  
Kreglewski (1962) 
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Figure 6.20 Phase equilibrium diagram for the light members of the n-perfluoroalkanes 
series, from perfluoromethane to perfluorooctane. a) Temperature-density diagram b) 
Pressure-density. Symbols represent the experimental data taken from various authors (see 
table 6.11). Lines represent crossover soft-SAFT predictions. 
 
 As in the other series, excellent agreement is obtained in all cases, although the 

multiple experimental sources employed does not help to obtain a clean fitting.  
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Following the same procedure done for the n-alkane and 1-alkanol series, some of 

the most important derivative properties are calculated for a selected perfluoroalkane. The 

number of published works dealing with the evaluation of these properties in 

perfluoroalkanes is very scarce. In this sense, it is worthwhile mentioning the experimental 

evaluation of the isobaric heat capacity for the perfluoroalkanes family and the study of the 

transition of state for heavier perfluoroalkanes done by Jin et al. (1994).  Perfluoropropane 

has been the chosen compound in order to establish a comparison with the results obtained 

for n-propane. Figure 6.21 shows the behavior of perfluoropropane for two isotherms close 

but above the critical point, at 1.1 and 1.25 times the critical temperature. Figure 6.21a 

represents the phase equilibrium diagram optimized and the following figures are 

predictions for the isochoric and isobaric heat capacity and the speed of sound respectively. 

Similar results are achieved compared to the n-propane study and the same conclusions can 

be extracted. The crossover treatment improves estimations for heat capacities and it also 

results in an improvement of the speed of sound prediction (see Table 6.12). However, 

there are still some significant deviations in the critical point, especially for the isochoric 

heat capacity, which is less accurate than in the case of n-propane. In spite of the important 

differences in the critical point, it is important to remark that the crossover treatment shows 

better qualitative agreement with the phenomena observed in the critical point.  

Table 6.12: AAD% for residual and total isochoric and isobaric heat capacities, and speed 
of sound, for perfluoropropane at temperatures above the critical point, as obtained with 
the soft-SAFT equation with and without crossover. 

Compound Property T / Tc AAD %  
Without crossover 

AAD %  
With crossover 

1.10 63.2 52.5 Cv

1.25 29.8 20.2 
1.10 24.0 15.6 Cp

1.25 18.4 9.8 
1.10 19.2 2.1 

Perfluoro- 
propane 

ω 
1.25 16.8 4.9 
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c)     d) 

 

 

 

 

Figure 6.21:  The behavior of perfluoropropane. a) temperature-density diagram. b) 
residual isochoric heat capacity. c) residual isobaric heat capacity. d) speed of sound. 
Figures b), c) and d) were obtained at two reduced temperatures of 1.1 and 1.25. Notation 
as in Figure 6.9. 

 

Nevertheless, the predictions for derivative properties are comparable to the results 

obtained for the n-alkanes and 1-alkanols family, in terms of qualitative agreement and 

percentage of deviation, and similar conclusions can be extracted.  
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6.2.4. Other selected compounds 
 As with any other EoS, there is a considerable amount of compounds whose 

parameters can be optimized using soft-SAFT. The purpose of this work is not to develop a 

library of parameters, but to show the capability of the crossover soft-SAFT equation of 

state to accurately predict an ensemble of properties using a unique set of parameters for 

some of them.  

 Several fluids have been studied because of its important industrial interest or its 

common use in binary and multicomponent mixtures. Their calculation always implies a 

previous study of the pure compound, in order to avoid unphysical values for the 

parameters. A realistic model of the molecular structure is the key for an accurate 

prediction of all properties. For example, it is possible to employ a high value of m for a 

small molecule, but it does not really represent the molecular structure and, probably, it will 

affect the calculation of mixtures. Moreover, the consideration about the quadrupolar 

moment or a possible association of the molecule is also crucial. In the following lines, 

some of these compounds are mentioned and its parameters summarized in Table 6.13. 
 

Table 6.13 Optimized molecular parameters for some selected compounds 

 m σ (Å) ε/k (K) φ L/σ ε/kB (K) B
k (Ǻ3) 

Acetic Acid 1.553 3.735 290.7 8.17 1.22 7701 95.0 

CO2* 1.606 3.158 159.9 5.79 1.18 --- --- 

Ethylenglycol 1.741 3.682 326.1 7.58 1.30 4484 4195 

HCl 1.000 3.566 257.2 4.73 1.00 1321 1137 

NO2 1.300 3.200 249.8 7.70 1.39 6681 10.2 

MTBE 2.725 3.837 251.0 8.70 1.32 --- --- 

SF6 1.654 3.918 201.4 6.20 1.10 --- --- 

*Quadrupole value: 4.4·10-40 Cm2  

 Among them, carbon dioxide and hydrogen chloride are described with more 

detail because they will be used in the performance of binary and ternary mixtures.  
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6.2.4.1. Carbon dioxide 

Carbon dioxide is one of the most important compounds in the planet. It is present 

in the Earth's atmosphere at a low concentration and acts as a greenhouse gas. In its solid 

state, it is called dry ice. It is a major component of the carbon cycle.  

Carbon dioxide is present in a huge amount of industrial processes. However, as 

stated in the second chapter of this work, the main interest remains in the fact that it is 

widely used as a near-critical solvent. Supercritical carbon dioxide is now well established 

as a solvent for use in extractions. It is used for the decaffeination of coffee and tea and the 

extraction of hops, natural products, high value pharmaceutical precursors, essential oils, 

and environmental pollutants. Other important commercial technologies are also emerging 

involving supercritical carbon dioxide, such as dry cleaning and paint spraying. 

 From the modeling point of view, the main feature of this simple molecule stays in 

the quadrupolar interactions present in CO2.  These interactions are taken into account by 

an additional term into the equation (Gubbins and Twu, 1978). This term involves a new 

molecular parameter Q that represents the quadrupolar moment of the molecule. For the 

case of carbon dioxide, the experimental value measured by Vrabec et al., (2001) is 

explicitly introduced in the equation, as well as the fraction of segments in the chain that 

contain the quadrupole (one third for carbon dioxide). As a result, Q is fixed and the other 

parameters m,σ, ε, φ and L are fitted to experimental vapor pressure and saturated liquid 

density. 

 Figure 6.22 shows the phase equilibrium diagram for carbon dioxide. 6.22a is the 

temperature-density diagram while 6.22b is the pressure-temperature diagram. The critical 

region is well reproduced due to crossover treatment.  

 The action of the quadrupole will improve the ability for mixtures prediction. In 

that sense, the molecular parameters obtained with the quadrupole contribution added are 

more realistic from a physical point of view. In the next chapter, the performance of the 

equation in mixtures involving CO2 with alkanes and 1-alkanols will be described in detail. 
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Figure 6.22. Phase equilibria for carbon dioxide. a) Temperature-density diagram b) 
Pressure-temperature diagram. Circles are experimental data from NIST Chemistry 
Webbook, dashed lines are the original soft-SAFT and solid lines are the crossover soft-
SAFT equation. 

6.2.4.2. Hydrogen chloride 
 

Hydrogen chloride (HCl) is a very common compound used in several different 

industrial processes, like the regeneration of ion exchangers, the pH control, the pickling of 

steel and the production of organic and inorganic compounds. In many cases, it appears as 

one of the major constituents of a mixture and, for this reason, accurate basic 

thermodynamic data of the compound is needed. However, the corrosive nature of HCl 

makes it not easy to handle in experimental facilities and, as a result, thermodynamic 

information about hydrogen chloride is quite limited.  

From a modeling point of view, HCl is considered as a single Lennard-Jones 

segment of diameter σ and dispersive energy ε with two square-well sites with volume kHB 

and association energy εHB, representing its dipole moment. This approximation is done in a 

similar manner in a previous work of Galindo et al. (1999) using a different version of 

SAFT, SAFT-VR (Gil-Villegas et al., 1997). In that work, the authors modeled three 
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mixtures of hydrogen chloride with n-alkanes using two different approaches, a perturbed 

anisotropic chain theory (PACT) (Vimalchand and Donohue, 1985) and the already 

mentioned SAFT-VR. They obtained very good results using SAFT-VR although they had 

to rescale the parameters to the critical region due to the lack of a specific crossover 

treatment to take into account the fluctuations produced in that region.  

Fig. 6.23 shows the vapor-liquid equilibrium for pure hydrogen chloride. Excellent 

agreement is obtained in the temperature-density and in the pressure-temperature diagrams 

between the experimental data and soft-SAFT.  

 

a)     b) 

 

 

 

 

 

Figure 6.23  Temperature-Density and Pressure-Temperature diagrams for hydrogen 
chloride. Symbols represent the experimental data (Galindo et al., 1999)  and the solid line 
is the soft-SAFT calculation. 

The critical region is well described by the equation and the critical point is 

perfectly captured due to the crossover treatment included into the equation. The 

approximation made when modeling the dipole as an association contributions seems to be 

quite good, although it is necessary to test its influence when dealing with mixtures. This 

will be done in the study proposed in section 7.1.5 of this thesis work, where the 

performance of HCl with alkanes will be treated. 



Pure fluids (vdW_equation)                                              123 

6.3. Comparison with a van der Waals type equation 

 As this PhD work is devoted to the improvement of a molecular-based equation 

for the description of the critical region, it has been considered and interesting test to study 

the performance of the selected crossover approach when it is implemented into a cubic 

equation of state. In fact, it is expected that the treatment has to be able to correct the 

behavior of the critical region in the same way as it was done for the soft-SAFT, although 

the capabilities of the original equation will affect the whole phase envelope calculations. 

 A refined van der Waals type equation has been selected for this purpose. The 

equation follows the general cubic form (Segura et al, 2006):  

 

( )( )bcVbcV
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mmm 21)( ++
−

−
=   (6.5) 

  

 Parameters a, b,c1 and c2 are calculated for each compound using the experimental 

critical point data and a reference saturation point (usually the boiling point), following a 

mathematical procedure described in the work of Segura et al. (2006). The features of this 

parametrization approach are: 

• The critical predicted compressibility is equivalent to the experimental one. 

• The EoS describes almost exactly the reference boiling  point. 

• The EoS describes almost exactly the liquid volume at the reference boiling point. 

• Only a reference experimental point, beside the critical temperature and pressure, 

is required for calculating the parameters. Possible reference saturation points 

could be the normal boiling point, the triple point or an arbitrary subatmospheric 

boiling point. 
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 White’s approach is implemented in the same way as it was done before with soft-

SAFT. An additional term is added to the cubic Helmholtz energy obtained from equation 

6.5. The equations are almost the same that those described in section 5.5 of this work with 

a slight simplification proposed by Cai and Prausnitz (2004) for their implementation in a 

cubic equation of state.  

 It has to be considered that the renormalization-group treatment is only applied to 

the attractive term of the equation. It means that the attractive part of the equation (initially 

evaluated as a mean-field theory) has to be sustracted and recalculated using the following 

numerical recursive procedure: 
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where the first iteration a0 will correspond to the repulsive part of the equation of state 

before applying the renormalization group treatment.  
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where Ωs and Ωl represent the density fluctuations for the short-range and the long-range 

attraction respectively. Kn is a coefficient that depends on the temperature T, the cutoff 

length L and the Boltzmann constant kB. The superindex β refers to both long (l) and short 

(s) range attraction, respectively, and Gβ is a function that depends on the evaluation of the 

function a . The term αρ2 corresponds to the theoretical mean-field attractive Helmholtz 

energy. The evaluation of this term depends on the intermolecular potential selected for 

each equation. Due to the fact that van der Waals type equations of state are mainly 

phenomenological, it would be too rough to assume that the attractive part of the equation 

is just the right term of equation 6.5 (the term where the attractive parameter is involved). 

As it is done in other published works (Cai and Prausnitz, 2004; Cai et al., 2006) 

renormalization group calculations are fitted to experimental data showing that the 

attractive part of the free energy is done by: 

22

2
1 ραρ typevdWa −≈   (6.14) 

 It is important to notice that equation 6.13 lacks of the term (w/L)2 if it is 

compared to equation 5.13. In fact, φ is more or less a function of the initial shortest 

wavelength of density fluctuations but, for practical calculations the whole term φ (w/L)2  is 

considered an adjustable parameter with a constant value for a family of compounds. ρmax is 

the maximum possible molecular density and it depends on the selected model. For a vdW-

type equation, the maximum package density corresponds to the inverse of the covolume 

parameter b: 

b
1

max =ρ   (6.15) 
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 The integral in equation 6.10 is evaluated numerically, by the trapezoid rule. As 

done before, the density step is fixed to 500 and  the number of iterations to 5. 

 The basis of the equation of state proposed includes the critical point properties as 

input information to calculate the different parameters of the equation. In some way, the 

EoS is forced to capture the critical point. However, due to the fact that the asymptotic 

behavior observed near the critical point is not achieved, the consequence is a remarkable 

deviation in the liquid density predictions. With the implementation of the crossover 

treatment, it is necessary to introduce “virtual” values for the critical properties that fit 

properly both phase densities far from the critical region. The renormalization group 

treatment will correct the critical point when approaching the critical region, obtaining a 

whole accurate description of the phase envelope. The critical pressure has been shown as 

the variable that most affect the calculations and has been used as an adjustable parameter, 

keeping the true critical temperature. As a result, the application of the renormalization 

group treatment introduces two new parameters into the equation, the cut-off length L and 

the virtual critical pressure Pc
’, while φ will be fixed to a constant value for a whole family 

of compounds. 

 Figure 6.24 represents the phase diagram for propane as a selected n-alkane. 

Temperature-density diagram is described and compared to experimental data from NIST 

Chemistry Webbook. Calculations have been done with the cubic equation of state 

(equation 6.5) with (solid line) and without (dotted line) the crossover treatment. Moreover, 

the propane calculation using crossover soft-SAFT has been added in order to establish a 

comparison of both equations. 

 It can be observed how the addition of a renormalization group term modifies the 

shape of the liquid phase curve giving very good agreement with experimental data. In this 

case, the critical region is not corrected because the original equation had included this 

correction in their implementation when optimizing the parameters. However, the price 

paid for that fitting (an inaccurate prediction of the liquid phase) can be improved with the 

crossover methodology. When compared to crossover soft-SAFT, this one captures better 
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the curve of the whole phase envelope, although there is not a remarkable difference 

between both performances. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.24 Phase equilibrium diagram of n-propane. Temperature-density diagram. 
Circles are experimental data (NIST Chemistry Webbook). The solid and dotted lines are 
calculations done with and without crossover respectively, while the dashed line is the 
result obtained using crossover soft-SAFT.. 

 

 The crossover-vdW type equation has been applied to perform the n-alkane series 

in the same way as done by soft-SAFT in section 6.2.1. The original equation parameters 

have been previously parametrized following the procedure described in Segura et al. 

(2006). The new crossover parameters (the difference between the virtual critical pressure 

Pc’ and the real critical pressure Pc and the cut off length parameter L) can be correlated 

with the molecular size into the same family of compounds. The correlation comes from 

optimized parameters for the seven first members of the alkanes series, obtained by fitting 
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experimental saturated liquid densities and vapor pressures. For all the compounds of this 

work, φ has been fixed to 1.40.  

 Figure 6.25 shows the vapor-liquid phase equilibrium diagram for the first seven 

members of the n-alkanes family. Figure 6.25a shows the temperature-density diagram 

while figure 6.25b is devoted to the pressure-temperature diagram. Symbols represent 

experimental data taken from the NIST Chemistry Webbook, while the full lines are 

calculations using the crossover-vdW-type equation. As it has been already said, the 

original vdW-type equation calculations use real critical point properties, which results in 

an accurate description of the critical point. However, due to the fact that the inherent 

density fluctuations are not taken into account, the asymptotic behavior when approaching 

the critical region is not reproduced. The consequence is an inaccurate calculation of the 

liquid volumes (see dashed line in Figure 6.24). When the renormalization group treatment 

is added, there is an automatic correction of the liquid volume because the shape of the 

curve changes to reproduce the asymptotic behavior.  

 In this case, the renormalization-group method is introducing two new parameters: 

a virtual critical pressure and a cut off length. Both, the cut-off length and the difference 

between the virtual critical pressure and the experimental critical pressure present a linear 

relationship respect to the molecular weight and can be directly correlated. However, in the 

case of the critical pressure, when a certain chain length is achieved, a constant difference 

between pressures is enough to obtain accurate results.  

 For the n-alkanes family, the following correlations for the crossover parameters 

are presented here: 
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Figure 6.25 a) Temperature-density diagram for the light members of the n-alkanes series, 
from methane to n-heptane. b) Pressure-density diagram for light members of the n-alkanes 
series, from methane to n-heptane. Symbols represent the experimental data taken from 
NIST Chemistry Webbook. Dashed lines correspond to vdW-type equation calculations, and 
the solid line to the crossover-vdW-type calculations. 
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 The advantage of a correlation is that the parameters can be extrapolated and 

heavier compounds can be predicted with accuracy. Figure 6.26 shows predictions for 

heavier alkanes like decane, dodecane, hexadecane and tetracosane.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.26: Phase equilibria predictions for n-decane, n-dodecane, n-hexadecane and n-
tetracosane. Circles for n-decane represent experimental correlated data from NIST 
Chemistry Webbook, while the rest of symbols are simulation data Nath et al. (1998). 
Simulation critical points are from Errington and Panagiotopoulos (1999). Solid Lines are 
crossover cubic equation predictions while dashed lines are crossover soft-SAFT 
predictions. 

 

 The agreement between the experimental and simulation data and the crossover-

vdW predictions is quite good, although some deviations are observed at low temperatures. 

These deviations increase with the chain length. The main reason for these deviations 

comes from the fact of having a set of vdW-type equation parameters calculated using the 
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experimental values for the critical pressure and now using a “virtual” critical pressure 

value different from the experimental one.  

 It is important to remark that this is not a problem of the crossover approach but 

the basis of the original equation. The crossover treatment takes into account the inherent 

fluctuations, correcting the calculation when the equation is able to give an approximate 

result but it will not modify completely the behavior observed without the treatment. The 

optimization procedure for parameters a, b, c1 and c2 gives a too steep decrease of the 

liquid density with the temperature which does not agree with the experimental and 

simulation data. Here, the goodness of a robust molecular-based equation of state like soft-

SAFT is appreciated. In that sense, if predictions with crossover soft-SAFT (dashed lines) 

are compared to the results obtained with the cubic equation, it is easily observed how 

liquid density predictions are far better using the molecular equation. 

 The equation has also used to model the 1-alkanols family. However, the same 

tendencies have been found: very good agreement for short 1-alkanols and some deviations 

in the liquid volume predictions for the heavier compounds. Since results are very similar 

to the ones presented for n-alkanes and the conclusions are also very similar, they are 

omitted here for conciseness. 

  

 



 

 

 

 

 

 

 

 

 

 



Mixtures 
 

 

In this chapter, a compilation of results obtained for binary and ternary mixtures is 

presented. The chapter is split in several sections depending on the family of 

mixtures studied. First of all, mixtures between similar and dissimilar n-alkanes are 

treated. The critical transitions from Type I to type V are reproduced for the 

methane and ethane series. Secondly, some n-alkane/1-alkanol mixtures are tested, 

from vapor-liquid equilibria to derivative properties and critical behavior. The 

third and four sections study the transitions from Type II to Type III passing 

through Type IV for the CO2/n-alkanes and CO2/1-alkanols families, respectively. 

Section five presents several calculations for the not very well known HCl/n-

alkanes family, giving some new information about the critical transitions. Finally, 

the last section presents some preliminary results for ternary mixtures of CO2/n-

alkane/1-alkanol mixtures.  

 

133 
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7.1. Binary mixtures 

The first part of this chapter is devoted to the study of several binary mixtures, 

paying special attention to the critical region. The mixtures are grouped by families and the 

goal is to test the ability of the crossover soft-SAFT equation of state for describing the 

different transitions observed when increasing the chain length of the second compound. 

Moreover, vapor-liquid, liquid-liquid and vapor-liquid-liquid equilibria for subcritical and 

supercritical states are evaluated, as well as the performance in the estimation of the heat 

capacities, compressibilities and the speed of sound.   

7.1.1 n-Alkanes mixtures1

 Mixtures among n-alkanes are commonly found in several industrial processes, 

including those of the petrochemical industry. Their study is also of interest from the 

fundamental point of view: when their chain length is similar, they exhibit an ideal 

behavior, showing a continuous critical line that joins both critical points (Type I, 

according to the classification of van Konynenburg and Scott [1980] for binary mixtures). 

However, although all the compounds are of the same nature, the dissimilarity between 

compounds as the chain of the second compound increases produces liquid-liquid and 

liquid-liquid-vapor equilibrium, leading to a transition from type I to type V in the critical 

behavior.  

 All the molecular parameters of the n-alkanes considered have been taken from the 

correlation proposed in section 6.2.1. When necessary, the binary parameters η and ξ are 

used take into account deviations between the size and energy of the segments forming the 

different compounds, allowing a quantitative description of the mixture. When needed, they 

have been obtained by fitting to one mixture at an intermediate temperature (pressure). 

Once this Pxy (Txy) diagram is optimized, the parameters are used to predict the phase 

                                                 
1 This work has been published in Llovell and Vega (2006a) and Llovell et al. (2006a) and Llovell 
and Vega (2006c). 



Mixtures (n-alkanes)                                             135 

equilibria of the mixture at different temperatures as well as the critical lines in a purely 

predictive manner. Binary parameters for all the n-alkane mixtures studied here are 

presented in Table 7.1.  

 

Table 7.1. Binary parameters employed for different binary mixtures between n-alkanes (a 
value of 1.000 means predictions from pure compounds). 

Mixture η ξ 
n-butane/n-pentane 1.000 1.000 
n-butane/n-hexane 1.000 0.990 
n-butane/n-heptane 1.010 0.980 
n-butane/n-octane 1.030 0.960 
methane/n-pentane 1.030 1.000 
methane/n-hexane 1.030 1.000 
ethane/n-decane 1.030 0.970 
ethane/n-eicosane 1.030 0.970 

 

 The first four mixtures correspond to the n-butane series. As n-butane and n-

pentane are very similar compounds no binary parameters are needed for this mixture. The 

binary parameters of the other n-butane mixtures are also very close to unity and they have 

been fitted just to obtain quantitative agreement with the experimental data, although a 

good description of the mixtures could be achieved when fixing them to unity. Some 

examples of the performance of the crossover soft-SAFT equation are shown in Figure 7.1a 

and 7.1b. They show Txy projections at two different pressures for the mixtures n-butane/n-

hexane and n-butane/n-octane. Symbols represent experimental data extracted from the 

works of Kay et al. (1974, 1975), while the lines correspond to the crossover soft-SAFT 

predictions. Quantitative agreement is obtained in all cases. It is impossible to distinguish 

which one was the pressure used to fit the binary parameters and which one is the predicted 

one.  
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a)                                                                    b) 

 

 

 

 

 

 

 

 

 
Figure 7.1: Temperature-composition diagram of the binary mixtures a) n-butane/n-hexane 
at 2.58 and 3.10 MPa b) mixture n-butane/n-octane at 2.07 and 2.76 MPa.  Symbols are 
experimental data from references Kay et al (1974, 1975). Solid lines are  crossover soft-
SAFT predictions.  

 

 Once the vapor-liquid equilibria was calculated, the same binary parameters were 

used to predict the critical lines of the mixtures. Figure 7.2 shows the PT projections of the 

PTxy surfaces for the n-butane series, with mixtures between n-butane and n-pentane, n-

hexane, n-heptane and n-octane. As it was expected, crossover soft-SAFT predicts Type I 

critical behavior with quantitative agreement for all the mixtures. 

 It is important to notice that if the parameters of the original soft-SAFT equation 

are rescaled to the critical point of the pure compounds, excellent predictions are also 

obtained (Blas and Vega, 1998). However, with the rescaling method, the behavior in the 

subcritical region is not accurately reproduced, and a different set of parameters is needed 

to predict the phase equilibria of the binary mixture far from the critical point. As a result, 

two sets of parameters are needed to describe the entire phase envelope of a fluid. The 

advantage of the crossover soft-SAFT equation is the ability to have a unique set of 

parameters for the whole range of a fluid. 
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Figure 7.2: PT projections of the binary mixtures of the n-butane series: n-butane/n-
pentane, n-butane/n-hexane, n-butane/n-heptane and n-butane/n-octane. Symbols are 
experimental data from Kay et al. (1975). The solid lines are the predictions from the 
crossover soft-SAFT equation. 

 

 The analysis of more dissimilar mixtures of n-alkanes has been performed in order 

to model the transition from one type of critical behavior to another one. This is the case for 

the last four mixtures presented next, corresponding to the methane and ethane series. Both 

series have been studied in the same manner and the binary parameters have been adjusted, 

in this case, to the critical line of one of these mixtures: the ethane-eicosane mixture, in 

order to assure Type V behavior. 

 It is well known that methane/n-pentane mixture exhibits type I behavior while the 

methane/n-hexane mixture shows a type V behavior, with a three phase region found near 

the critical point of methane. These two mixtures have been investigated with several 
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approaches. In particular, the critical behavior evolution was studied by Blas and Vega 

(1998) with the soft-SAFT equation. Since no crossover term was included in the version of 

the equation these authors used, they employed the rescaling alternative approach. Without 

any further adjustment, they were able to correctly predict the transitions from type I to 

type V in these mixtures. However, as it has been mentioned, this approach leads to two 

different sets of molecular parameters. The same rescaling approach was used by McCabe 

et al. (1998), focused on the particular system methane/n-hexane in order to describe the 

type V behavior with the SAFT-VR EoS. In 1999, Polishuk et al. studied the whole 

methane series up to n-octane using six different cubic equations of state. Their deep study 

showed that almost all the equations were predicting an incorrect liquid-liquid-vapor 

equilibrium in the methane/n-pentane mixture. Later on, the same authors (Polishuk et al., 

2003) studied the series with three semipredictive approaches (Global Phase Diagram 

Semipredictive Approach GPDA, the predictive Soave-Redlich-Kwong PSRK and a linear 

combination of the Vidal and Michelsen mixing rules LCVM). The only one which was 

able to predict type I (i.e. no liquid-liquid phase) behavior was the GPDA, although it 

underestimated the dew point data at high temperatures and overestimated the buble point 

data at low temperatures. The present work is an improvement over these previous 

approaches, since the crossover term incorporated into the soft-SAFT equations allows the 

prediction of the subcritical and critical behavior with the same set of parameters in an 

accurate manner.   

 The phase behavior of the mixture methane/n-pentane is shown in Figure 7.3. Fig. 

7.3a depicts the pressure-temperature projection of the phase diagram of this mixture 

predicted by both versions of the soft-SAFT equation, with and without the crossover term, 

as compared to available experimental data (Sage et al., 1942; Berry and Sage, 1970; Chen 

et al., 1974; Chu et al.; 1976).  
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Figure 7.3: Critical line of the methane/n-pentane mixture. a) PT diagram as predicted by 
the original soft-SAFT and crossover soft-SAFT using just pure component parameters 
(η=1.000). b) PT diagram of the original soft-SAFT and crossover soft-SAFT with 
η=1.030. c) Px critical diagram as described by the crossover soft-SAFT with 
η=1.030.Circles (Berry and Sage, 1970), triangles (Sage et al., 1942) and diamonds (Chen 
et al, 1974; Chu et al., 1976) represent experimental data; squares (experimental data) and 
crosses (equation calculations) are the critical points of the pure compounds. Solid lines 
stand for the pure compound vapor pressures; the dashed-double-dotted line represents 
predictions from original soft-SAFT while the dashed line stands from crossover soft-SAFT.  

 



Mixtures (n-alkanes)                                             140 

 As expected the equation predicts type I behavior for the methane/n-pentane 

mixture, with the critical line joining the critical points of both components in a continuous 

manner. However, as it can be observed in the figure, the classical version of the equation 

overestimates both, the critical points of the pure compounds and the critical points of the 

mixtures, over the whole range of compositions. The crossover soft-SAFT EoS is able to 

quantitatively predict the critical point of the pure compounds and the critical points of the 

mixture near the critical point of the pure compounds. Nevertheless, deviations are 

observed as the critical temperature and pressure of the mixture deviate from those of either 

pure compound. This behavior has been previously observed in mixtures where there is a 

dissymmetry in size/energy of the two compounds, as it happens for the methane/n-pentane 

case (see, for instance, Blas and Vega [1998] and McCabe et al. [1999], and references 

therein). The description of asymmetric mixtures is clearly improved when one or two 

binary parameters, independent of the thermodynamic conditions, are fitted to experimental 

data of the mixture at particular conditions and then used in a transferable manner for the 

rest of the mixtures. Fig. 7.3b shows the performance of the original and the crossover soft-

SAFT equation when a binary parameter value η=1.030 is used in both cases, as compared 

to the same experimental data shown in Fig. 7.3a. The particular value of this parameter 

was chosen to assure the type V behavior of the ethane/eicosane mixture (i.e. it was not 

optimized for the methane/n-alkane mixtures). The agreement between crossover soft-

SAFT EoS with this parameter and the experimental data is excellent for the whole range of 

compositions. The critical pressure-composition diagram of this mixture is depicted in Fig. 

7.3c, using the same value of the binary parameter η=1.030. As it can be observed the 

predictions of the crossover equation are in excellent agreement with the experimental data.   

 The behavior of the methane/n-hexane binary mixture is shown in Fig. 7.4. Fig. 

7.4a shows predictions with pure component parameters while Fig. 7.4b depicts 

calculations performed using the size binary parameter (η=1.030). 
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Figure 7.4: PT diagram showing the critical line of the methane/n-hexane mixture. 
Diamonds are experimental data from Hicks and Young (1975), while circles correspond to 
data obtained from Lin et al. (1977). Crosses (experimental data) and squares (equation 
calculations) represent the critical points of the pure compounds. The insets show an 
enlargement of the region near the critical point of methane. The solid lines represent the 
vapor pressures of the pure compounds, the dashed lines stand for the critical line of the 
mixtures with crossover and the dotted lines represent the liquid-liquid-vapor equilibria. a) 
crossover soft-SAFT predictions from pure component parameters. b) crossover soft-SAFT 
with η=1.030. See text for details. 

 

 As observed in Fig. 7.3, the binary parameter allows to better describe the critical 

region of the mixture far from the pure components critical points. A small three phase 

region in the vicinity of the more volatile compound (methane) is predicted with the two 

versions of the equation. An enlargement of this region (presented in the inset of the 

figures) shows the three-phase-line, a critical line arriving to a lower critical end point 

(LCEP) and another critical line going from pure methane till an upper critical end point 

(UCEP). It is important to remark how small this region is, making difficult accurate 

calculations with any EoS. A Pxy projection of the phase diagram at T=190K is shown in 
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Fig. 7.5, where the narrowness of the three phase region is clearly observed. A small three 

phase region in the vicinity of the pure methane compound is predicted in both cases.  
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Figure 7.5: Pxy projection of the phase diagram of the mixture methane/n-hexane at 
T=190K using the crossover soft-SAFT EoS. 

 

 The values of the UCEP and LCEP calculated with the crossover soft-SAFT EoSs 

(with and without the binary parameter) are compared to the experimental values (Lin et al., 

1977) in Table 7.2.  Note that calculations performed with pure component parameters are 

in closer agreement with experimental data than those obtained with the binary parameter. 

In this later case the LCEP is clearly underestimated. It should be emphasized that the value 

of η was optimized for obtaining quantitative agreement in the liquid-vapor critical line, 

keeping the transition from Type I to Type V in the mixtures methane/n-pentane and 

methane/n-hexane. In any case, it is striking to see the predictive power of the crossover 

soft-SAFT equation with just pure component parameters, in excellent agreement with 

experimental data. 
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Table 7.2: Critical end point (CEP) temperature and pressure for the methane/n-hexane 
mixture 

crossover soft-SAFT crossover soft-SAFT Mixture Exp. 
Data η=1.00 η=1.03 

Exp. 
Data η=1.00 η=1.03 

methane/ 
n-hexane 

Texp 

(K) 
TSAFT 

(K) 
TSAFT 

(K) 
PP

exp 

(MPa) 
PP

SAFT 

(MPa) 
PP

SAFT 

(MPa) 
UCEP 195.91 194.0 194.0 5.206 5.124 4.814 
LCEP 182.46 182.50 164.0 3.415 3.399 1.697 

 

 The same procedure has been used to investigate the behavior of the ethane/n-

alkane homologous series. The ethane/n-alkane homologous series is also of great interest. 

It seems that there is not a systematic study available of the application of SAFT-type 

equations to describe the critical behavior of this homologous series, although some other 

modeling approaches have been used. In particular, Polishuk et al. (2005) have used three 

semipredictive equations of state (the Global Phase Diagram Semipredictive Approach 

[GPDA], the predictive Soave-Redlich-Kwong [PSRK] and a linear combination of the 

Vidal and Michelsen mixing rules [LCVM]) to describe several mixtures of this family. 

They were able to reproduce with good accuracy several isotherms of the ethane/n-pentane, 

ethane/n-heptane, ethane/n-decane, ethane/n-hexadecane and ethane/n-tetracosane 

mixtures.  

 Results for the ethane/n-decane and ethane/n-eicosane mixtures are presented next. 

The ethane/decane system has been widely revised for his academic interest. Among 

several modeling approaches, two recent works have been implemented using a 

renormalization-group theory. Mi et al. (2005) performed several binary mixtures including 

ethane/decane. They used the original SAFT plus the same White’s crossover approach 

with two binary parameters to accurately describe vapor-liquid equilibria and the critical 

line of the mixture. Using the same crossover approach, Mi et al. (2006) obtained excellent 

predictions for this mixture with the use of the first-order mean spherical approximation 

(Tang and Lue, 1993, 1995) applied to the SAFT equation. Unfortunately, these two 

excellent works did not perform other ethane/alkane mixtures to complete the information 
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about this family. The ethane/eicosane mixture has not been yet studied using a crossover 

technique, although there are some previous works, like the one from Voutsas et al. (2004), 

who used different classical and molecular equations of state to describe vapor-liquid 

equilibria of ethane/decane and ethane/eicosane mixtures. It is also necessary to mention 

the molecular simulations made by Errington and Panagiotopoulos (1999) and Nath et al. 

(1998b) for both systems, achieving very good agreement respect to the available 

experimental information. 

 Ethane/decane and ethane/eicosane are very asymmetric mixtures since the chain 

length of the second compound is much greater than that of the first compound. In order to 

accurately describe the behavior of the mixtures two binary parameters, independent of the 

thermodynamic conditions, are needed. They correct the difference in size and energy of 

interaction between the segments belonging to the two compounds. The size binary 

parameter value previously used for the methane/n-alkane mixtures (η=1.030) is also used 

now, while a value of ξ=0.970 is used for the energy binary parameter. This second 

parameter is fitted to the subcritical data of the mixture ethane/decane at T=410.9K, and 

used in a transferable manner for the rest of the ethane/decane and ethane/eicosane mixtures 

investigated here. Although values are very close to unity (the ideal value), there is a 

significant difference in the phase diagrams obtained with these two parameters and the one 

obtained with no binary parameters.  

 The performance of the crossover soft-SAFT EoS for the ethane/decane mixtures 

is shown in Fig. 7.6. Fig. 7.6a depicts the Pxy projections of the phase diagram at the 

subcritical temperatures T = 310.9, 344.3, 377.6 and 410.9 K. Note that the second binary 

parameter was fitted to the highest temperature, the rest of the isotherms are pure 

predictions. The agreement with available experimental data from Bufkin et al. (2006) is 

excellent in all cases. Mixtures with asymmetric compounds are also characterized for 

having curved critical lines. Using the same set of parameters, some calculations at constant 

high pressure have also been performed to complete vapor-liquid equilibria calculations.  
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Figure 7.6: The ethane/n-decane binary mixture. Lines represent the crossover soft-SAFT 
calculations. a) Pxy diagram of the mixture ethane/n-decane at several temperatures, from 
bottom to top: T = 310.9, 344.3, 377.6 and 410.9 K. Symbols represent experimental data 
from Bufkin et al. (1986) b) Txy diagram of the same mixture from outside to inside at P = 
8.27 (squares); 9.65 (circles) and 10.34 (diamonds) MPa; crosses indicate the critical line 
experimental data; all symbols are from Reamer and Sage (1962). The dashed line is the 
critical line of the mixture c) PT diagram showing the critical line of the mixture. Symbols 
represent the experimental data from Reamer and sage (1962), while squares 
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(experimental) and crosses (calculations) represent the critical point of the pure 
compounds. 

 

 Fig. 7.6b shows a Txy diagram of the ethane/decane mixture at three different 

constant pressures of 8.27, 9.65 and 10.34MPa. The overall agreement between predictions 

from the equation and experimental data is very good, including the critical points. 

However, some inaccuracies are observed in the ethane rich phase at high temperatures; the 

upper part of the phase behavior predicted by the crossover soft-SAFT equation is too flat, 

as compared to the experimental data (Reamer and Sage, 1962). A similar behavior of the 

equation has been observed when studying the phase diagram of pure systems, as the chain 

length increases (see figure 6.2.3), and it may be due to the some approximations made 

when developing the crossover term. Nevertheless, the equation is able to provide the two 

critical points, one at a high temperature and a second one at a lower temperature (see the 

dashed line in the figure), as it happens experimentally. 

 Finally, Fig. 7.6c shows the PT diagram of the mixture, with the calculated critical 

line in excellent agreement with available experimental data (Reamer and Sage, 1962). As 

expected, a classical type I behavior is obtained. 

 As it was done with the methane/n-pentane mixture, the interest remains in 

obtaining the transition of the mixture from type I to type V, as the length of the second 

compound increases, with the same set of parameters. Contrary to what happens with the 

methane/n-alkane homologous series, there are some discrepancies concerning where this 

transition takes place for the ethane/n-alkane homologous series. Gregorowicz (2003) stated 

that it appears in the ethane/octadecane mixture, while Rowlinson and Swinton (1982) 

declared that it occurs in the ethane/nonodecane mixture. In any case, it is absolutely sure 

that ethane/eicosane mixture exhibits type V behavior, with a very narrow range of 

temperature and pressure in which the liquid-liquid-vapor equilibrium region exists. The 

subcritical phase diagrams and critical line of this mixture have been obtained using the 

same binary parameters employed to describe the ethane/decane mixture; moreover, two 
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Pxy and one Txy equilibrium diagrams are shown to ensure a global accurate description of 

the fluid. All these results are presented in 7.7.  

 Figure 7.7a shows a Pxy diagram at two constant temperatures of 340 and 450K, 

while figure 7.7b presents the Txy diagram at a constant pressure of 9.65MPa. In both 

cases, the same set of binary parameters employed in the ethane/decane mixture is able to 

correctly describe the thermodynamic behavior at these conditions. Figure 7.7c depicts the 

critical line of the mixture. The inset shows an enlargement of the region near the critical 

point of ethane, where a type V behavior is clearly observed.  

 

 a)                                                                       b) 

 

  

  

 

 

 

    

 c)  Figure 7.7: The ethane/n-eicosane 
binary mixture. a) Pxy diagram of the 
mixture ethane/n-eicosane at T = 
340K and T = 450K. b) Txy diagram 
of the same mixture ethane/n-eicosane 
at P = 9.65 MPa. c) Critical line of 
the mixture. Circles represent the 
experimental data from Peters et al. 
(1986), squares are the experimental 
critical points of the pure compounds 
and the lines represent the crossover 
soft-SAFT calculations. 
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 The predicted values for the UCEP and LCEP are compared with the experimental 

data (Specovius, 1981) in Table 7.3. As it happens for the methane/n-hexane mixture the 

LCEP is underestimated, while there is an excellent agreement between the predicted and 

the experimental UCEP. 

 

Table 7.3: Critical end point (CEP) temperature and pressure for the ethane/eicosane 
mixture 

Mixture Exp.Data Crossover 
soft-SAFT 

Exp. Data Crossover 
soft-SAFT 

ethane/eicosane T(K) η=1.03 P(MPa) η=1.03 
UCEP 309.62 309.80 5.260 5.056 
LCEP 307.69 300.20 4.927 4.089 

 

 Next step concerns the application of the soft-SAFT equation to the calculation of 

second order thermodynamic derivative properties of some n-alkane mixtures. The mixtures 

are selected and the tests are performed according to the available experimental 

information. Firstly, a mixture between propane and isobutene is selected. Propane has 

been deeply treated before as a pure fluid in section 6.2.1. The molecular parameters of 

isobutane (m=1.942, σ=4.032Å, ε/kB=240.3K, φ=6.95, L/σ=1.20) are obtained by fitting 

vapor-liquid equilibrium data (NIST Chemistry Webbook). Once both pure fluids are well 

described, the performance to calculate derivative properties of a mixture is shown. Figure 

7.8 is split in two graphics. Figure 7.8a depicts several P-xy diagrams of the mixture 

propane/isobutane at different temperatures ranging from 260 to 320K. Circles represent 

the experimental data extracted from Kayukawa et al. (2005). The agreement between 

calculated results and experimental data is excellent, as expected, given the ideal behavior 

of the mixture. Figure 7.8b shows the isochoric heat capacity as a function of temperature at 

two different isopleths, at a propane composition equal to 0.7006 (diamonds) and 0.2979 

(circles).  
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 Again, the soft-SAFT calculations (full lines) are in good agreement with the 

experimental data from Duarte-Garza and Magee (1999), with an absolute average 

deviation (AAD%) of 3% in both cases. 

 

 a) b) 

 

  

 

 

 

 
 
 
Figure 7.8: The propane / isobutane mixture. a) Vapor-liquid equilibrium at T=260K, 
T=280K, T=300K and T=320K b) Isochoric heat capacity-temperature diagram of a 
mixture propane (1) / isobutane (2) at two constant compositions of x1=0.7006 (Diamonds) 
and x1=0.2979 (Circles). Symbols represent experimental data from Kayukawa et al. 
(2005) and Duarte-Garza and Magee (1999) and the solid lines are the soft-SAFT 
predictions. 

 

 Finally, one of the most sensitive derivative properties has also been evaluated. 

Fig. 7.9 depicts the speed of sound of the mixture methane/n-butane as a function of the 

pressure, at the critical temperature (311K) and at a methane composition of 0.894, as 

compared to available experimental data (Plantier et al., 2005). The line represents the 

crossover soft-SAFT calculations with molecular parameters of the pure compounds taken 

from table 6.1, and the same value of the size binary parameter used in the rest of the 

calculations for the methane series. Note that the speed of sound is a challenging property 

to be accurately described with any EoS, especially close to the critical point. The crossover 
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soft-SAFT equation is able to quantitatively reproduce the experimental behavior, including 

the minimum observed near the critical pressure. 

 

 

 

 

 

Figure 7.9: Speed of sound versus pressure of the methane/n-butane binary mixture, at 
311K and a methane composition of 0.894. Symbols represent the experimental data taken 
from Plantier et al. (2005)  while the solid lines represent crossover soft-SAFT predictions. 

7.1.2. Mixtures of n-alkanes / 1-alkanols2

 The behavior of n-alkane/1-alkanol mixtures is also of interest due to the non-ideal 

behavior found in these mixtures, because of the presence of the hydroxyl group in the 1-

alkanol molecules. The performance of the crossover soft-SAFT EoS to predict the critical 

and subcritical behavior of the n-alkane/1-alkanol mixture is checked with two model 

mixtures, the 1-propanol/n-hexane and ethanol/n-butane mixtures. They have been chosen 

for two reasons, because there is experimental data available for comparison and also for 

the particular phase behavior they show, with an azeotropic line. These two mixtures are 

dissimilar regarding not only the hydrogen bonding interactions (which are accounted for in 

                                                 
2 This work has been published in the Journal of Supercritical Fluids (Llovell and Vega, 2006c) 
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the two molecular parameters of the alkanols) but also because one of the compounds is 

slightly larger than the other one. This dissymmetry has been taken into account by the use 

of one size binary parameter, the same one used for the n-alkane asymmetric mixtures, in a 

transferable manner (η=1.030). 

 The mixture 1-propanol/n-hexane shows an interesting type I behavior, in which 

the critical line presents a minimum in temperature at an intermediate composition. This is 

a challenging behavior to be predicted with any EoS. Fig. 7.10a, shows the Pxy diagram of 

this mixture at different temperatures: 483.15, 493.15, 503.15 and 513.15 K; this figure also 

includes the critical line of the mixture (dashed line). Fig. 7.10b shows the critical line of 

the mixture 1-propanol/n-hexane in a pressure-temperature diagram. The calculated 

diagrams are compared with experimental data taken from Oh et al. (2004).  

 

        a)                                                                       b)  

  

 

 

 

 

  

 

 

Figure 7.10: The 1-propanol/n-hexane binary mixture. a) Pxy diagram of the mixture at 
483.15, 493.15, 503.15 and 513.15K. Solid lines, phase equilibria crossover soft-SAFT 
predictions; dashed line, crossover soft-SAFT prediction of the critical line; symbols, 
experimental data from Oh et al. (2004). b) PT diagram showing the critical line of the 
mixture. Symbols represent the experimental data from Oh et a. (2004). Solid lines stand 
for the pure compounds vapor pressures; the dashed line represents the critical line of the 
mixture and the dotted line the predicted liquid-liquid-vapor equilibrium. 
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 It is striking to see the excellent agreement found between soft-SAFT predictions 

and experimental data in all cases. Soft-SAFT is able to capture both the subcritical and 

critical behavior in excellent agreement with experimental data in the whole composition 

range. Note that these are pure predictions since the parameters used were obtained from 

pure component parameters and one binary parameter from the n-alkanes mixtures.  

 Results for the ethanol/n-butane mixture are shown in Fig. 7.11. The lines 

correspond to soft-SAFT predictions with pure component parameters and the same value 

of the size binary parameter as in the previous cases. Again, no experimental data about the 

mixture was used in the equation calculations. Fig. 7.11a shows Pxy diagram at three 

different subcritical temperatures, far from the critical point: 273.15, 293.15 and 313.15 K. 

The behavior of the mixture, also at subcritical conditions, but close to the critical region is 

shown in Fig. 7.11b, in which different isotherms at T= 423.25, 443.25 and 463.25K are 

presented; in this case the critical line of the mixture is also shown. The study is completed 

with the prediction of the pressure-temperature critical line of the mixture, shown in Fig. 

7.11c. In all graphics, symbols represent experimental data from the works of Goral et al. 

(2002) and Deak et al. (1995).  

 Again, crossover soft-SAFT is able to quantitatively predict the behavior of the 

mixture at subcritical and critical conditions, in excellent agreement with experimental data. 

This acts in favor of the transferability of the parameters used in the equation to describe 

the different binary mixtures. 
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 a)  b) 

  

 

 

  

 

 

 

 

c) Figure 7.11: The ethanol/n-butane 
binary mixture. a) Pxy diagram at 
273.15, 293.15 and 313.15K b) Pxy 
diagram at temperatures close to the 
critical temperature, T = 423.25, 
443.25 and 463.25K; the critical line 
of the mixture is shown as a dashed 
line c) PT diagram showing the 
critical line of the mixture. The lines 
represent the crossover soft-SAFT 
predictions. 

       

 The performance of the equation for capturing the behavior of derivative 

properties in this kind of mixtures between associating and non-asocciating compounds is 

also checked. Two mixtures between 1-propanol and n-alkanes have been selected for this 

purpose. Figure 7.12 shows the isobaric heat capacity – composition diagram of two 

mixtures between 1-propanol/n-decane and 1-propanol/n-tridecane at two given 

temperatures (280K and 318K). Circles (280K) and diamonds (318K) represent 
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experimental data obtained from Peleteiro et al. (2001, 2002) while the lines are the soft-

SAFT predictions at 280K (solid line) and 318K (dashed line). These calculations were 

performed with the same binary parameter (η=1.030) used for vapor-liquid equilibria of 1-

propanol + n-hexane, in a transferable manner.  

 

 

Figure 7.12: Isobaric heat capacity-
composition diagram of two binary 
mixtures of 1-propanol with n-decane 
(non-filled symbols) and n-tridecane 
(filled symbols) at 280 K (circles) and 
318K (diamonds). Open and filled 
symbols stand for experimental data 
from Peleteiro et al. (2001, 2002), 
while the solid lines correspond to the 
soft-SAFT prediction.  

 

 

 

 

 Excellent agreement between the experimental and the predicted values are 

observed in all cases, with 3% of AAD% at 280K and 5% at 318K for both mixtures.. The 

shape of the curve is perfectly reproduced. In the case of 1-propanol/decane mixture, the 

maximum of the Cp value is reached at the same composition as the experimental value, 

while the maximum disappears for the 1-propanol/tridecane, as it happens experimentally. 

It is also noticeable that the agreement slightly deteriorates as the temperature increases.  

 The same approach has been used to calculate other second order derivative 

properties, and, unfortunately, not all of them show the same accuracy as the previous 

results. In fact, it is known that the derivatives performed to calculate the isothermal and 
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isentropic compressibility are more sensitive to deviations, since a small error in the density 

is multiplied in the prediction of these properties due to their formulation (see equation 5.26 

and C.21 in appendix). The accuracy of the calculation in these properties for the same 

mixture 1-propanol/n-decane has been checked. Predictions of the isentropic 

compressibility for this mixture at 280K and 318K are depicted in Figure 7.13.  

 

 

Figure 7.13: Isentropic 
compressibility-composition 
diagram of a mixture 1-
propanol n-decane at 280 K 
(circles) and 318K 
(diamonds). Experimental 
source from Peleteiro et 
al.(2002). Dashed lines are 
the soft-SAFT predictions.  

 

 

  

 It is observed that the value of ks was underestimated from soft-SAFT for the 

associating fluid (1-propanol) while this property was overestimated for the non-associating 

fluid (n-decane) with respect to the experimental data. The combination of these 

inaccuracies in the pure compounds is shown in the estimation of the mixture behavior.  

 A further way to check if the deviations come from inaccuracies in the pure 

components description and/or from the non-ideal behavior of the mixtures is to evaluate 

the excess properties. The excess properties reflect the deviations from ideality due to 

several factors: the self-association of 1-alkanols in solution which produces a strong 

departure from random mixing, the change in the non-specific interactions during mixing, 

the packing effects, etc. In fact, a good prediction of the excess properties reflects the 
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accuracy of the method in capturing the non-ideality of the mixing (dos Ramos and Blas, 

2005). Hence, it is decided to calculate some excess properties of the non-ideal mixtures 

under investigation. Figure 7.14a shows the excess Cp for the mixture 1-propanol / n-decane 

at 280 and 318K (the same temperatures provided in Figures 7.12 and 7.13). Quantitative 

agreement with experimental data at 280K is predicted with the soft-SAFT equation, while 

the agreement deteriorates at 318 K. Figure 7.14b shows the excess ks for the same mixture 

at the same fixed temperatures 280K and 318K. The trend of the calculated points is exactly 

the same in the experimental data and the soft-SAFT predictions. Although there is not 

quantitative agreement at the intermediate compositions, the behavior of the mixture (self-

association, non specific interaction, etc.) is well captured by the theory. In that way, it can 

be assumed that if one is able to better estimate the pure fluid property, the mixture will be 

automatically corrected. 

 

 a) b) 

  

 

 

 

 

 

 

Figure 7.14: Some excess properties of the mixture 1-propanol/n-decane at 280K (circles) 
and 318K (diamonds). a) Excess isobaric heat capacity. b) Excess isentropic 
compressibility. Legend as in Figure 7.13. 
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 Finally, some estimations of the speed of sound for the mixture 1-propanol / n-

heptane are presented. The modeling is compared with experimental data from Dzida and 

Ernst (2003).  

 The speed of sound is, in fact, a stringent test to any EoS since it involves the 

combination of several second-order derivative properties, in which the inaccuracies can be 

magnified. In the section devoted to pure fluids, some inaccuracies for estimating the speed 

of sound of alkanes and 1-alkanols had been observed. Soft-SAFT underestimated the 

speed of sound of n-heptane, while it overestimated the speed of sound of pure 1-propanol 

at low pressures. As a result, the prediction of the mixture is affected by these 

discrepancies, as it is observed in Figure 7.15. 

Figure 7.15:  Speed of sound 
– density diagram at 0.1 
(circles) and 101.3 MPa 
(diamonds) for the 1-
propanol / n-heptane mixture. 
Symbols represent 
experimental data from Dzida 
and Ernst (2003) and the 
lines stand for the soft-SAFT 
predictions. 

   

  

 However, it should be emphasized that the AADs% obtained for the mixture is 

only 3.5% and 3.3% for 0.1MPa and 101.3 MPa, respectively, which can be considered as a 

good approximation for a pure prediction.  
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7.1.3. The CO2 / n-alkanes mixtures3  

 The next step in the applicability of the crossover soft-SAFT is to test the accuracy 

of the equation when dealing with mixtures that involve a compound of different nature 

mixed with a hydrocarbon. Among many possibilities, CO2 remains like one of the most 

used compounds in the industry, especially as a supercritical fluid. Moreover, as it has been 

described in Chapter 2, CO2 is the best constituent for supercritical applications. As a 

consequence, a good modeling for CO2 mixtures is crucial and necessary for engineering 

applications. 

 The CO2/n-alkanes series has been selected to check the capabilities of the 

equation. It is especially interesting to revise if the equation is able to reproduce the 

continuous change of behavior observed in these mixtures when the chain length of the 

second compound is increased. For this purpose, four different systems have been selected 

with increasing chain length: CO2/ethane, to see the effect of carbon dioxide in a short 

alkane, and then the three mixtures CO2/n-decane, CO2/tridecane and CO2/hexadecane, as 

representative of the three different types of behavior experimentally observed in these 

mixtures. It has been shown that the CO2/decane mixture shows type II behavior. When the 

chain length of the second compound increases and evolves till tridecane, the type IV 

behavior appears and the critical line is splitted in two parts, with a liquid-liquid-vapor 

region joining both. Finally, the CO2/hexadecane mixture has already evolved to type III, 

with a continuous critical line ending at infinite pressures.  

Figure 7.16a shows the vapor-liquid equilibria of the mixture CO2/ethane at 

different temperatures. Symbols represent experimental data (Fredenslund and Mollerup, 

1974) and solid lines are the equation predictions. Although pure predictions without binary 

parameters were in good agreement with experimental data, the energy binary parameter ξ 

has been slightly adjusted to experimental data to an intermediate subcritical temperature of 

                                                 
3 This work has been published in J. Phys. Chem. B (Llovell and Vega, 2006a) 
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283K (ξ=0.990). Very good agreement is observed between the modeling and the 

experimental values at all temperatures. The azeotropes are predicted at the correct pressure 

and mole fraction. Figure 7.16b depicts the predicted critical line of this mixture.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.16 a) Pxy projections of the CO2/ethane mixtures at 263.15, 283.15 and 293.15 K. 
b) PT projection of the PTxy surface for the CO2/ethane mixtures. Symbols represent 
experimental data (Fredenslund and Mollerup, 1974) and solid lines are the soft-SAFT 
predictions. The dashed line corresponds to the critical line of the mixture. 

 

The trend of the curve is perfectly captured by the equation, providing an excellent 

description of the behavior of this mixture, including the azeotropic line. It is important to 

notice that, although this mixture correspond to the type I behavior, the shape of the critical 

line, with a temperature minima between the two compounds, is not straightforward to 

obtain with an EoS. It is assumed that the particular behavior of this mixture is due to the 

quadrupolar interactions of the CO2 molecule as well as the short length of the n-alkane. 

For instance, in some other works (Galindo and Blas, 2002) it was necessary to use some 

binary parameters far away from unity, since quadrupolar interactions were not explicitly 

considered in that case. In our case, just one binary parameter, very close to unity, is 

enough to obtain an excellent representation of this mixture. 
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Figures 7.17a, 7.17b and 7.17c show the PT projections for the mixtures 

CO2/decane, CO2/tridecane and CO2/hexadecane as obtained from the crossover soft-SAFT 

equation. As it has been said, the goal is to study the evolution of the critical behavior. In 

this case, and due to the lack of experimental vapor-liquid equilibria data, the parameters 

η= 1.025 and ξ=0.950 have been fitted to the critical points data of the CO2/tridecane 

mixture and used to predict the behavior of the homologous series. In general, very good 

agreement is achieved in all cases. CO2/decane shows type II behavior, with the critical line 

joining the critical point of both pure compounds. CO2/tridecane, belonging to type IV 

behavior, becomes the most difficult mixture to predict because it is in the intermediate 

changing behavior with a very narrow range before the series evolves to type III as the 

chain length of the second compound increases. However, crossover soft-SAFT is able to 

reproduce this shape, with the appropriate binary parameters. The three-phase-line is found 

and the UCEP and the LCEP are compared to experimental values in Table 7.4.  

 

Table 7.4: Critical end point (CEP) temperature and pressure for the type IV binary 
mixture CO2/n-tridecane. Experimental data obtained from Ziegler and Chester (1995). 
 

CO2/tridecane mixture Texp TSAFT PP

exp PP

SAFT

UCEP 279.0 289.0 3.933 4.408 
LCEP 310.8 305.6 8.114 5.751 
UCEP 314.0 315.2 8.716 7.625 

 

Finally, CO2/hexadecane exhibits a clear type III behavior. The critical line goes to 

infinite pressures and very good agreement is obtained with experimental data, although the 

border between the gas-liquid and the liquid-liquid could be better predicted. Note that this 

could be achieved if binary parameters were optimized for this particular mixture, but in 

this case the binary parameters were taken from the CO2/tridecane mixture. The purpose of 

this study is to use the same binary parameters to predict the evolution in the CO2/n-alkanes 

homologous series; the results indicate this achievement, and the capability of the crossover 



Mixtures (CO2 / n-alkanes)                                        161 

soft-SAFT equation to predict critical behavior of this type of mixtures in excellent 

agreement with experimental data. 

 

 

 

 

 

 

 

  

 

 
Figure 7.17. PT projections of the PTx 
surface for several CO /n-alkane 
mixtures. a)  CO /n-decane mixture. b) 
CO /tridecane  c) CO /hexadecane. 
Gas-liquid and liquid-liquid critical 
point data are obtained from Reamer 
and Sage (1963), Schneider et al. 
(1967) and Miller and Luks (1989). The 
lines are crossover soft-SAFT 
prediction.
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7.1.4. Mixtures of CO / 1- alkanols   2 
4

In a similar manner as done in the last section, mixtures of CO2 with 1-alkanols are 

studied because of both, its industrial and academic interest. In order to check the 

continuous change of behavior in this homologous series the mixtures from 1-propanol till 

1-hexanol have been selected to examine the critical region. According to the literature 

(Raeissi et al., 1998; Polishuk et al., 2001), CO2/alkanol mixtures evolve from type II to 

type III behavior. CO2/1-propanol and CO2/1-butanol have been confirmed to show type II 

behavior, while the mixture with 1-hexanol is already a type III. Some discussion has been 

reported about CO2/1-pentanol binary mixture: Raeissi et al. (1998) have identified it as a 

type IV, finding that this particular mixture exhibits a very narrow part of the limited 

liquid-liquid inmiscibility, which has been missed by other authors (Lan et al., 1990.; 

Gurdial et al., 1993). Due to the narrow range in which this behavior appears this is a very 

challenging mixture for any theoretical approach. The performance of the crossover soft-

SAFT equation is investigated with these mixtures, trying to find a global modeling for the 

homologous series, as it was done for the CO2/n-alkanes homologous series.   

Figure 7.18 show the critical lines for the CO2/1-propanol, CO2/1-butanol, CO2/1-

pentanol and CO2/1-hexanol binary mixtures. Symbols represent the experimental data 

taken from Sang-Do et al. (2000), Ziegler and Chester (1995) and Scheidgen (1997). As 

previously done for the n-alkane binary mixtures, binary parameters could be fitted to 

experimental data from a single subcritical isotherm for each mixture and used to predict 

the behavior of the same mixture at other thermodynamic conditions, including the critical 

lines. Alternatively, as it was done with the CO2/n-alkanes mixtures with heavy 

compounds, binary parameters can also be fitted to one selected mixture and used to predict 

the evolution of the critical line of the homologous series and the subcritical behavior of 

these mixtures. As the interest mainly remains in describing the critical line evolution in the 

                                                 
4 This work has been published in the J. Phys. Chem. B (Llovell and Vega, 2006a) 
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homologous series as the length of the second compound increases, this second approach is 

followed in order to check the capability of the equation to predict this behavior with a 

unique set of binary parameters for the whole series (although in some cases, this may not 

be the best fit to the available data). Using a value of η= 0.970 and  ξ = 1.010 an accurate 

description of the overall critical behavior is achieved.  

 

           a)         b) 
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Figure 7.18: PT projection of the PTx surface for some CO2/1-alkanol binary mixtures. a) 
CO2/1-propanol b) CO2/1-butanol c) CO2/1-pentanol d) CO2/1-hexanol.  Symbols represent 
experimental data (Sang-Do et al., 2000) and solid lines are the crossover soft-SAFT 
predictions. 
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CO2/1-propanol and CO2/1-butanol show type II behavior, with the critical line of 

the mixture ending at the critical point of the pure compounds. Excellent agreement 

between the soft-SAFT description and the experimental data is achieved for the two 

mixtures. The CO2/1-pentanol mixture falls into type IV behavior, as experimentally 

measured by Raeissi et al. (1998), and theoretically obtained by Polishuk et al. (2001). A 

short three phase line is found and an UCEP and a LCEP could be determined with the 

equation. However, it is important to remark that a slight variation of the binary parameters 

makes this region to disappear, becoming a type II or type III mixture. A comparison 

between the calculated critical end points and the experimental values is presented in Table 

7.5. 

 

Table 7.5: Critical end point (CEP) temperature and pressure for type IV binary mixture 
CO2/1-pentanol. Experimental data obtained from Ziegler and Chester (1995). 

CO2/1-pentanol mixture Texp TSAFT PP

exp PP

SAFT

UCEP 273.5 283.4 3.413 3.981 
LCEP 317.0 294.7 8.752 4.689 
UCEP 317.0 301.8 8.950 7.325 

 

As expected, this mixture is particularly difficult to model, being extremely 

sensitive to the selected parameters. Finally, the CO2/1-hexanol mixture shows type III 

behavior. Note that, although the binary parameters chosen for the whole homologous 

series are not the best to quantitatively describe this last data, they are still good enough to 

capture the overall behavior of the mixture. In particular, the gas-liquid critical line of the 

CO2/1-hexanol mixture is overpredicted, as compared to experimental data (Scheidgen, 

1997).  

Moreover, the capability of the two selected binary parameters (η = 0.970 and ξ = 

1.010), fitted to describe the critical behavior of the mixtures, has to be checked  predicting 

the subcritical behavior of them. The four mixtures of this homologous series studied 

above, representing type II, type III and type IV behavior, are also investigated here. Pxy 
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projections of the CO2/1-propanol, CO2/1-butanol, CO2/1-pentanol and CO2/1-hexanol 

mixtures as obtained by crossover soft-SAFT are compared to available experimental data 

in figure 7.19.  
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Figure 7.19: Pxy projections of the a) CO2/1-propanol mixtures at four different 
temperatures: 313.4 ( ), 322.36 ( ), 333.4 ( ) and 352.83 K ( ). Symbols are 
experimental data: T = 322 and 352K taken from Mendoza de la Cruz and Galicia-Luna 
(1999), while data for T = 313 and 333K was taken from Suzuki and Sue (1990). b) CO2/1-
butanol mixtures at five different temperatures 324.16 ( ), 333.58 ( ), 355.38 ( ), 392.72 
( ) and 427.95K ( ). Symbols are experimental data from Silva-Oliver and Galicia-Luna 
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(2001). c) CO2/1-pentanol mixtures at five different temperatures 333.08 ( ), 343.69 ( ), 
374.93 ( ), 414.23 ( ) and 427.86K ( ). Symbols are experimental data from Silva-
Oliver et al. (2002). d) CO2/1-hexanol mixtures at four different temperatures 353.93 ( ), 
397.78 ( ), 403.39 ( ) and 432.45K ( ). Symbols are experimental data from Elizalde-
Solis et al. (2003). In all cases, solid lines represent soft-SAFT predictions. 
 

It is remarkable to see the excellent agreement obtained for the CO2/1-propanol 

and CO2/1-butanol mixtures, in quantitative agreement with experimental data. The 

agreement is also very good for the CO2/1-pentanol and CO2/1-hexanol mixtures far from 

the critical point, although, as expected from the Px projections (figures 7.19a and 7.19b), it 

deteriorates as the mixtures approach their critical point, overestimating them. It should be 

emphasized that a better description of each mixture could be achieved if the parameters 

were fitted to their particular data. However, it has been decided to use a unique set of 

parameters to describe the behavior of the homologous series, in a transferable manner.  

A final remark should be made regarding the quadrupolar interactions found in the 

two homologous series: since in the case of CO2/1-alkanol there are strong associating 

forces, this effect screens the quadrupolar interactions, which are more relevant in the 

CO2/n-alkane mixtures where no association is present. 
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7.1.5. Mixtures of HCl / n-alkanes5

 Mixtures of HCl / n-alkanes can be found in several industrial processes. The most 

important application is the production of organic compounds, although they are also found 

in the industry of leather processing, household cleaning, and building construction. Their 

accurate modeling poses a solution to avoid the difficult experimental measurements due to 

the corrosive nature of the hydrogen chloride. From an academic point of view, these 

mixtures remain quite unexplored and their critical behavior has not been studied yet. 

 The modeling of hydrogen chloride has been already treated in section 6.2.4. Once 

the pure fluids have been studied, next step concerns the modeling of the binary mixtures 

between hydrogen chloride/n-alkanes. The only available experimental data has been found 

for the mixtures with ethane, n-propane and n-dodecane (Galindo et al. 1999). Hence, the 

efforts have been devoted to the modeling of vapor-liquid equilibria of two of these three 

mixtures: hydrogen chloride/n-propane and hydrogen chloride/n-dodecane.  

 Pure component parameters were obtained by fitting to vapor-liquid equilibrium 

data. The mixtures have been calculated using the parameters for the pure fluids. However, 

it has been observed that the energy parameter ξ was needed to be adjusted in mixtures to 

obtain quantitative agreement in the modeling. The procedure was done adjusting the 

energy parameter to one single Pxy diagram to experimental data just at an intermediate 

temperature. Once the adjusted value for ξ  is obtained, it is used to calculate all the other 

equilibriums and the critical line. Moreover, due to the transferability power of the 

equation, it is expected that the same binary parameter will be good enough to model any 

other mixture of HCl / n-alkanes. The diagram selected was for the mixture HCl / n-

propane at a constant temperature of 313K, and a value of ξ=0.920 was obtained. 

                                                 
5 The experimental data was measured at Delft University of Technology by L.J. Florusse. The new 

experimental data and the modeling work have been submitted to J. Phys. Chem. B. (2006). 
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 Fig. 7.20a shows some Pxy diagrams at constant temperatures in the range from 

273 to 353K. Circles, squares, diamonds, triangles and crosses represent experimental data 

of this work at 273, 293, 313, 333 and 353K, and the solid lines are the results from soft-

SAFT. As it is observed, quantitative agreement is obtained for all the temperatures using 

the same binary parameter ξ in all cases. The vapor-liquid critical line is also shown in this 

graphic and the agreement between the theory and the experimental measurements is very 

good. In Fig. 7.20b, a pressure-temperature projection of the mixture is presented. Symbols 

are experimental data measured in Delft (Llovell et al, 2006b), while the dashed line is the 

soft-SAFT prediction.  

 

 

 

 

 

 

 

 

 
Figure 7.20 a) Pxy projections of the hydrogen chloride(1) /  n-propane(2) mixture at five 
different temperatures of 273 ( ), 293 ( ), 313 ( ), 333 ( ) and 353K ( ) plus critical 
line. Symbols are the experimental data, the filled squares represent the critical line points, 
the solid lines are the soft-SAFT predictions for each isotherm and the dashed line is the 
equation prediction for the critical line.  b) Pressure-Temperature diagram of the same 
mixture showing the critical line. Symbols represent the experimental data from Llovell et 
al. (2006), solid lines are the pure fluid soft-SAFT calculations while the dashed line is the 
critical line predicted by the equation.  
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 Soft-SAFT is able to reproduce the nature of the critical line showing quantitative 

agreement for the whole critical composition, with slight deviations close to the critical 

point of hydrogen chloride. The theory has confirmed that HCl / n-propane exhibits a Type 

I behavior, with a continuous vapor-liquid critical line connecting both critical points. 

 Following the same procedure, HCl / n-dodecane mixture has been studied. In Fig. 

7.21a, several Px diagrams are depicted in a range from 283 to 363K.  Circles, squares, 

diamonds, triangles and crosses are experimental data at 283, 303, 323, 343 and 363K 

respectively. The solid lines correspond to soft-SAFT predictions. As it has already been 

stated, the same value for the binary energy parameter ξ is used here. Quantitative 

agreement is obtained at higher concentrations of hydrogen chloride while some deviations 

are shown when increasing the mole fraction of n-dodecane. The global agreement is very 

good at all temperatures. Although the results could be still improved changing the value of 

the binary parameter, it would result in a loss of predictive power from the soft-SAFT 

equation. As the actual prediction seems accurate enough, it is preferable remaining with 

the same value and to use it to study other mixtures of chlorhydric acid and n-alkanes. Fig. 

7.21b shows a pressure-temperature projection with the calculation of the critical line for 

this mixture. As far as we know, no experimental data is available to compare with the soft-

SAFT prediction. A type II critical behavior has been found. The effect of the presence of a 

longer n-alkane has produced the creation of a second critical line that shows that there is a 

liquid-liquid equilibrium at low temperatures. 
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 a) b) 

 

 

  

 

 

 

 

 

Figure 7.21 a) Pxy projections of the hydrogen chloride(1) / n-dodecane(2) mixture at five 
different temperatures of 283 ( ), 303 ( ), 323 ( ), 343 ( ) and 363K ( ). b) Pressure-
Temperature diagram of the mixture showing the critical line. Symbols and lines as in 
Figure 7.20. 

 

 A further step in this research is to investigate the behavior of the mixture as the 

chain length of the n-alkane is increased. This is the first time that this transition is studied. 

It is expected that both, the gas-liquid and the liquid-liquid critical line, will be joined 

forming a Type III behavior, but it is difficult to precisely define where this transition will 

take place. Moreover, the formation of a Type IV (a transition between Type II and III) 

could also be achieved in a particular n-alkane length. Using the same binary parameter ξ, it 

has been determined that the transition to Type III is clear for the n-heneicosane. Fig. 7.22 

shows a PT projection where the critical line of the mixture hydrogen chloride / n-

heneicosane (C21H44) exhibits a Type III behavior. The influence of the binary parameter 

selected is very strong and a small modification of this value can produce the formation of 

this critical behavior at lower or higher chain lengths. It is not clear at this point if the 

mixture between hydrogen chloride and n-eicosane exhibits Type II, IV or III behavior. 

Some experimental work would be really useful in order to check this transition.  
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Figure 7.22 Pressure-
Temperature diagram of a 
mixture hydrogen chloride / 
n-heneicosane. Lines as in 
Figure 7.20b. 
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7.2. Ternary mixtures 
 

 Ternary mixtures can be used as model systems for some important applications in 

supercritical and near-critical fluid technology. However, when working at supercritical 

conditions, complex multiphase equilibria can occur in these mixtures, especially close to 

the critical point of the solvent. For small changes in temperature, pressure or composition, 

a variety of unexpected phenomena can be encountered and not directly be anticipated 

regarding only the binary subsystems. This makes clear that a need for systematic research 

on the fluid phase behavior of multicomponent mixtures is in order, especially since 

experimental information in literature on systems with three or more components is very 

limited. 
 The last part of the results of this work concerns the study of some ternary 

mixtures of particular interest. Based on the discovery of Patton et al. (1993), founding 

two-phase holes enclosed in three-phase surfaces liquid-liquid-vapor  (LLV) for some 

mixtures of CO2/alkane/1-alkanol,  some preliminary results for modeling this particular 

thermodynamic behavior in ternary systems containing near-critical CO2 and two heavier 

solutes is carried out.  

 

7.2.1. Closed miscibility loops 

 In 1993, Patton et al. conducted phase equilibrium experiments in ternary mixtures 

of carbon dioxide / n-tetradecane / 1-decanol.  Much attention was given to determine 

critical endpoints of the three phase equilibrium liquid-liquid-vapor in mixtures with about 

95 mol% of carbon dioxide and various ratios of both solutes with total concentration of the 

two solutes of about 5 mol%. Their measurements showed an unexpected two-phase hole 

liquid-vapor (associated to Type IV critical behavior) in the three phase surface LLV for a 
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certain mole fraction of tetradecane. In fact, this result could not be predicted from the 

binary mixtures CO2 / tetradecane and CO2 / 1-decanol , which exhibit Type III behavior. 

 Patton et al. (1993) explained the occurrence of a two-phase hole in the three-

phase surface by assuming the formation of aggregates of decanol molecules due to 

hydrogen bonding.  Starting from a binary mixture between CO2 and tetradecane, a 

continuous replacing of tetradecane by decanol in the mixture would result in a decrease of 

the average carbon number of the solute mixture tetradecane/decanol. In a certain moment, 

the mixture would tend to change its fluid phase behavior into that exhibited by a mixture 

CO2 / tridecane (type IV). However, if the amount of decanol continues increasing, the 

aggregation of the decanol molecules due to its increasing concentration would play a 

significant role. The consequence would be an increasing of the average carbon number due 

to this aggregation phenomena, changing the phase behavior again into Type III. Some 

spectroscopic studies of Fulton et al. (1993) confirmed that at the study conditions alkanols 

aggregates of four molecules are formed, giving to the theory a higher credibility. 

 Later on, Scheidgen (1997) argued that this behavior was a consequence of a 

cosolvency effect. Cosolvency is defined as the effect whereby a mixture of two solutes A 

and B is better solvable in a solvent than any of the solutes A and B individually. In this 

case, the cosolvency effect would decrease the value of the pressure minimum of the liquid-

liquid critical locus. Once that minimum crosses the liquid-liquid-vapor surface, Type IV 

behavior would appear. At a certain decanol concentration, the solubility of the mixture 

would begin to decrease returning to the original Type III behavior. 

 Both concepts seem quite reasonable for explaining these phenomena. It is clear 

that these “physical” effects will only be modeled with accuracy using a tool that takes into 

account the physics of each compound involved.  
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7.2.2. Mathematical approaches to modeling miscibility loops 

 There are only few published papers in the literature devoted to the modeling of 

these ternary mixtures. Gauter and Peters (1999) modeled several mixtures of CO2 / 

tetradecane / 1-alkanols using the Soave-Redlich-Kwong equation of state.  

 Two different approaches can be used for modeling closed miscibility loops of 

ternary mixtures: a quasi-binary mixture approach and a strict calculation of the critical 

endpoints for ternary mixtures. 

 The quasi-binary approach is a methodology based on the principle of congruence. 

This principle was firstly described by Brønsted and Koefoed (1946) and proposed that for 

a mixture of components belonging to a homologous series, an index ν can be found 

characterizing the mixture. Other mixtures, having the same ν are supposed to have the 

same values for some of their thermodynamic properties. These mixtures are called 

congruent to each other. For this particular case, there would be an index ν supposing that 

the average chain length is equal to the carbon number of the alkane belonging to the 

corresponding mixture of the homologous series CO2 / n-alkanes.  

 The average solute chain length (CLav) for a ternary CO2 / 1-alkanol / n-alkane 

system can be obtained as (Brønsted and Koefoed, 1946; Smits et al., 1998): 

 

)()1( )1( avCOHCHav CLzzCLCL −+=   (7.1) 

 

where z is the mole fraction of the alkane in the mixture, CLCH(l) represents the chain length 

of a single alkane molecule (equal to the carbon number) and CLCOH(av) is the average chain 

length of the alkanol aggregates. This value is calculated assuming a monodisperse 

aggregate distribution of aggregate sizes. It means that the average size of the aggregates is 

a constant value independent of the total alkanol mole fraction for a given temperature. 

With this assumption, the value of CLCOH(av) can be obtained from: 
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)1()1()()1()( )1()1( COHCOHaggCOHCOHavCOH CLβyyCLCLyyCLCL −+=−+=  (7.2) 

 

being y the fraction of alkanol molecules present as single molecules, CLOH(l)  the chain 

length of a single alkanol molecule and β the aggregation number.  

 The formation of mono-disperse aggregates is given by the equation: 

 

( βNNNN OHHCOHHCβ 1212 ++ )↔   (7.3) 

 

 The method assumes that the equilibrium constant K of this reaction can be 

calculated considering a first order approximation of an ideal solution. 
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 Using the approximation: 

βmonototal xβxx +=   (7.5) 

( ) ( ) ( )Kβxβxx monomonototal lnlnln +=−   (7.6) 

 An expression for the fraction of alkanol molecules present as single molecules y 

can be found as a function of the average aggregation number β. 

βxβx
x

y
totalmono

mono

/)/11( +−
=   (7.7) 

 In the same manner, an expression for the mole fraction of the alkane in the 

mixture z is developed. 
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βxβxx
x

z
totalmonoCH

CH

/)/11( +−+
=   (7.8) 

 

 Combining equations 7.1, 7.2, 7.7 and 7.8, there is a system of equations that is 

solved for a given composition of tetradecane over a constant mole free basis of CO2, 

having three degrees of freedom: the chain length of the alkanol molecules present as single 

molecules CLOH(l) , the equilibrium constant K and the aggregation number β.  

 The value of CLOH(l)  depends on the consideration of the hydroxyl group. Some 

works consider that the effect of the group can be neglected (Vimalchand et al., 1988; 

Peters, 1994). Other authors consider that the hydroxyl group can be assimilated to a full 

carbon group (Stamoulis, 1994). Gauter (1999) had considered an intermediate solution, 

adding 0.5 to the number of carbons of the alkanol molecule. As a first approach, this work 

has followed Gauter’s idea.  

 The values of K and β can be determined in a certain range from measuring the 

monomer concentration of a mixture by infrared (IR) spectroscopy. Fulton et al. (1993) 

reported aggregation numbers for several alkanols in supercritical CO2 at 313K and 20 MPa 

(from 4.3 ± 1 for dodecanol to 4.9 ± 1 for butanol). Aveyard et al. (1973) showed a value of 

4 for dodecanol in liquid octane at 303.15K and Pacynko et al. (1989) found an aggregation 

value of  5 ± 1 for dodecanol in liquid heptane at 303.15K. The introduction of CO2 in the 

system should not modify strongly these values, because aggregates of about the same size 

are formed in CO2 and in alkanes in a similar manner (Gauter, 1999). Although this value is 

taken in an effective way, the decision has been based in the comparison of the m value 

between methane and methanol, where the difference in the chain length parameter m 

approaches 0.5. In any case, as the difference changes when the chain length increases, this 

assumption must be taken with care. It is crucial to remark that this is done as a first 

approximation to see the performance of the crossover soft-SAFT equation in the same 

conditions as other equations of state. In fact, crossover soft-SAFT can directly calculate 

the fraction of aggregates in a mixture (Blas and Vega, 2000; Herdes et al. 2004), which 
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would save an adjustable parameter like β. At present, a comparison between the adjusted 

value (by fitting procedure) and the calculated value of β is being done, although the results 

were not at time to be included in the present work. 

 Concerning the equilibrium constant K, Fulton et al. (1993) also reported values 

for the systems CO2/1-dodecanol and CO2/1-butanol at 313.15K and 20MPa. He estimated 

a value of 37000 and 15000 respectively. These values can be taken as a range for their 

optimization, because the temperature at which they were measured is close to the used in 

this work. Moreover, although the pressure value is higher than the values obtained in this 

study, it is assumed that the aggregates are mostly present in the liquid phase, where the 

pressure influence can be neglected. 

 With this approach, ternary interactions among the molecules are neglected. 

Moreover, the interactions alkane/alkane, CO2/alkane, CO2/CO2 and alkane/alkanol are not 

taken into account in the calculation of the average chain length because they are 

considered to be weaker compared to those of alkanol/alkanol and alkanol/CO2 molecules. 

 As it has been mentioned, it is also possible to strictly calculate the critical end 

points where the three compounds are considered independently.  For that purpose, the 

general calculation method for the evaluation of critical points proposed by Heidemann and 

Khalil (1980) is followed. However, it is necessary an extra condition to find a CEP, which 

is related to the occurrence of an additional phase in equilibrium with the critical point. 

Following the work of Gauter (1999) the Gibbs tangent plane criterion in the formulation of 

Michelsen (1982) is added to find this extra phase. 

  The mathematical model proposes the resolution of the critical conditions for a 

mixture (Heidemann and Khalil, 1980), that have to satisfy: 
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 Then, once a critical point is obtained, the Gibbs tangent criterion plane is applied, 

looking for the minimum tangent plane distance D: 

)ln()ln( crit
i i

ffD −=   (7.11) 

 When the value of D is zero, it means that an additional phase in equilibrium with 

the critical phase has been found. 

 Gauter (1999) applied this methodology to the Peng-Robinson equation of state 

and reproduced several miscibility loops of CO2 / tetradecane / 1-alkanols with qualitative 

agreement with experimental data in most of the cases. 

 This second approach is more realistic than the quasibinary approach, although it 

requires more computational time and a careful evaluation of the derivatives.  

 The purpose of this work is to check the capabilities of the crossover soft-SAFT 

equation for modeling these miscibility loops. The quasibinary approach has been chosen 

for a first modeling approximation. In a second step, the rigorous calculation of the critical 

points will be done and the results will be compared with the first approach. Preliminary 

results for the quasibinary approach are presented here, while the rigorous treatment is a 

matter of future work.  

 

7.2.3. Preliminary results for CO2 / tetradecane / 1-alkanols  

 The quasi-binary approach was used for calculating the miscibility loop in the CO2 

/ n-tetradecane / 1-decanol mixture. The molecular parameters transferability capacity of 

the crossover soft-SAFT equation was used to define the ternary mixture.  

 The molecular parameters for CO2 were taken from table 6.13. Tetradecane and 

decanol parameters are calculated from correlations 6.1 and 6.3 respectively. Binary 

parameters between CO2 and tetradecane were the same that the used for CO2/n-tridecane. 

Binary parameters between CO2 and 1-decanol were the same used for studying the critical 

transitions in the CO2/1-alkanols family. Finally, only one binary parameter was employed 
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for the interaction tetradecane/1-decanol, the same one employed for the alkane/alkanol 

mixtures evaluated in section 7.1.2.   

 The parameters β and K were optimized looking for the best agreement with the 

experimental data to reproduce the closed miscibility loop. The range for the aggregation 

number β was taken between 3 and 6, while K has been optimized in a range from 10000 to 

50000. Figure 7.23 shows the modeling of a closed miscibility loop of the mixture. Figure 

7.23a represents a temperature-composition diagram while figure 7.23b shows the pressure-

composition diagram. The n-tetradecane composition is calculated respect to the solute 

mole fraction (alkane + alkanol), without considering the CO2 (which is 95% of the total 

mole fraction). A composition of zero means that there is only a CO2/1-alkanol mixture 

while a composition of one means that there is a CO2/alkane mixture. Symbols represent 

experimental data (Gauter, 1999) while the solid line correspond to the crossover soft-

SAFT calculations.  

  

 

 

 

 

 

 

 

 

Figure 7.23. Closed solubility loop for the mixture CO  / n-tetradecane / 1-decanol. Circles 
are experimental data (Gauter, 1999) and the solid line represents crossover soft-SAFT 
calculations. Aggregation number β = 3.94; Equilibrium constant  K= 39500

2

. 
 

 Qualitative agreement has been found using the equilibrium constant value of 

K=39500 and an aggregation number β = 3.94. Both values are inside the range where 
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experimental measurements for similar systems were performed. The closed miscibility 

loop is reproduced although it is smaller than it should be. In some way, the equation is 

considering that either the tetradecane or the 1-decanol molecules are longer than they are 

and they for a miscibility gap in a smaller region of the phase space. Nevertheless, the 

prediction of the lower critical end points (LCEP) is accurate in temperature, while the 

upper critical end points (UCEP) have better pressure predictions. In any case, several 

options should be studied, like the possibility of not considering the hydroxyl group as 0.5 

carbon numbers.  

 It is interesting to check the performance of the methodology when the chain 

length of the alkanol decreases. Experimental measurements show that 1-hexanol seems to 

be the last alkanol which exhibits a miscibility loop. This loop is open and connected to the 

two-phase critical line. Its modeling is also very challenging because we are in the limit of 

appearance of this phenomena.  

 The calculations were done using the same binary parameters than before. 

Unfortunately, no miscibility loops were predicted for the selected ranges of  β and K. As it 

happened in Gauter’s work (1999), the only way to achieve qualitative agreement is for 

extremely high values of K (more than 10 ). Figure 7.24, shows the best calculation 

obtained. The model would be acceptable (with quantitative agreement at low compositions 

of alkane) for a reasonable value of K. However, the value of this parameter was increased 

to 3.000.000 to observe this behavior. The value of β remains in the reasonable range 

(β=5.57).  It seems clear that for a better representation the model has to be improved. 

6
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Figure 7.24. Critical end point modeling for the mixture CO /n-tetradecane/1-hexanol. 
Circles are experimental data (Gauter, 1999) and the solid line represents crossover soft-
SAFT calculations. Aggregation number β = 5.57; Equilibrium constant K= 3000000

2

. 

 

 As it has been said there are several crude assumptions that could be improved: the 

monodispersity of the alkanol aggregates, the linear shape of the alkanol agglomerates, the 

ideality of the solution and the size of the oxygen atom of 0.5 carbon atom.  

 In any case, the results obtained are preliminary and further research has to be 

done in this field, but the simplicity of the method offers several options to improve the 

results. 

 

 



 

 

 



 
 

D. Conclusions 
 
 

 
 
I think and think for months and years. Ninety-nine times, 
the conclusion is false. The hundredth time I am right. 
 

           (Albert Einsten) (1879-1955)  
         German-Swiss-U.S. scientist 

 
 



 

 



Conclusions  
 

  
This thesis work has been devoted to the improvement of a versatile molecular 

equation of state, in order to develop a powerful tool applicable under several conditions  

for thermodynamic calculations.  The robust Statistical Associating Fluid Theory has been 

coupled with a renormalization group theory that account for the contributions of long-

wavelength fluctuations. The new equation has been tested against molecular simulations 

and has been used to evaluate several compounds and their mixtures, in a systematic 

manner.  

First of all, the equation was evaluated for several phase envelopes of Lennard-

Jones chains of different chain lengths from m=1 till m=16. In all cases, very good 

agreement was obtained respect to the molecular simulations with the same underlying 

model. A good representation of the critical region was found without a prejudice far away 

from this region. In these calculations, the only adjustable parameters were the crossover 

parameters L and φ.  
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Crossover soft-SAFT was then used to obtain optimized molecular parameters for 

the first eight members of the n-alkanes, 1-alkanols and n-perfluoroalkanes families. All 

molecular parameters followed physical trends and were linearly correlated respect to their 

molecular weight. Predictions of heavier compounds for the n-alkanes family demonstrated 

the parameters transferability. In all cases, a single set of parameters accurately describes 

the whole phase envelope, close to and far from the critical region.  The evaluation of the 

universal critical exponents was calculated to show that the correct asymptotic approach to 

the critical point was reproduced with the equation. 

The same crossover approach was also implemented into a vdW type equation of 

state to check its validity in a different equation of state. Good results were achieved for the 

n-alkanes and 1-alkanols, although soft-SAFT performed better far from the critical region. 

This is not a limitation of the crossover treatment, but the basis of the equation of state. 

Different families of binary mixtures were treated with crossover soft-SAFT, 

paying special attention to the transitions from one type of critical behavior to another one:  

 

• Dissimilar mixtures of n-alkanes were described using the same binary 

parameters. The transitions from Type I to type V in the methane and 

ethane series were reproduced with accuracy.  

• Mixtures among n-alkanes and 1-alkanols were also treated. Vapor-liquid 

equilbria and the critical line showed the same degree of accuracy. 

• The transition from Type II to Type III passing through Type IV 

behavior was performed for the CO2/alkanes family. Using the same 

binary parameters adjusted to the CO2/tridecane mixture, several phase 

diagrams and critical lines were reproduced with qualitative and 

quantitative agreement with experimental data.   

• The same transition (Type II – IV – III) was studied for the CO2/1-

alkanols. Phase equilibrium diagrams and critical lines reproduced 

mixtures of CO2/1-propanol, CO2/1-butanol, CO2/1-pentanol and CO2/1-

hexanol. Type IV was  found for the CO2/1-pentanol mixture. 
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• The unknown critical behavior series of the HCl/n-alkanes was also 

evaluated. It was the first time that the critical behavior of these mixtures 

was described for alkanes higher than n-dodecane. The equation 

predicted an expected Type III behavior for the mixture HCl/n-

heneicosane, although some experimental measurements would be 

necessary to evaluate this prediction 

 

A preliminary work for multicomponent mixtures was started in this thesis work. 

The study of the thermodynamic behavior of near critical CO2/n-alkanes/1-alkanol mixtures 

was performed with a preliminary study of the mixture CO2/tetradecane/1-decanol and 

CO2/tetradecane/1-hexanol. Two-phase holes of these mixtures were calculated with the 

equation, obtaining qualitative agreement with experimental data. 

Finally, a complete evaluation of several derivative properties, like heat capacities, 

compressibilities and the speed of sound, was performed for pure fluids and binary 

mixtures. They were calculated using the same parameters optimized for phase equilibria 

properties. Good agreement was found for most of the properties, reproducing some 

extrema observed in the vicinity of the critical point. Excess properties were also evaluated 

in mixtures to study the inaccuracies observed in some predictions. Derivative properties 

have constituted a powerful test to demonstrate that the underlying model behind crossover 

soft-SAFT is able to capture the physics of the behavior shown by these compounds.  

Of course, this is not the end in the searching for a general equation of state. 

Although the examples shown in this thesis work indicate that crossover soft-SAFT is a 

strong tool for thermodynamic calculations, there is still room for some improvements to be 

made in order to increase its capabilities. 

 

• A specific modification in the crossover theory has to be made for liquid-

liquid calculations. In vapor-liquid equilibria, the order parameter 

selected to take into account the fluctuations is the density. However, in a 

liquid-liquid equilibria, the mole fraction is a better choice, because it is 
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the property that suffers the stronger fluctuations in the vicinity of the 

critical point. 

• Dipole and other multipolar expansion terms should be implemented into 

the code to model the effects of electrostatic interactions among 

molecules. 

• An appropriate term should be introduced for solid-liquid equilibria. This 

field remains quite unexplored for almost all equations of state. 

• A deeper work in multicomponent mixtures has to be performed. The 

intrinsic behavior of some ternary mixtures should be studied. 

• The study of interfacial properties in the critical region is another 

important test to do. The coupling of the density gradient theory and the 

crossover theory in the soft-SAFT equation has to be used to study 

surface tensions and density profile in the near critical region. 

• New ways of fitting the molecular parameters should be studied. The fact 

that derivative properties are more sensitive to errors than first order-

thermodynamic properties opens the possibility of using them to get the 

molecular parameters of the equation, in order to check their 

performance for phase equilibria calculations (as a complementary 

approach to the one usually done with soft-SAFT). 
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Appendix  
 

  

A. Dimensionless variables 
Although the user can choose if they want to work with or without units in the 

interface, the mathematical code is all written in a dimensionless form. A reference 

component is needed. In multicomponent systems, each component has its own σi 

parameter, and σ corresponds to the “averaged” value computed from mixing and 

combination rules. 

 
Dimensionless parameters: 
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Dimensionless variables
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B. Crossover terms for phase equilibria properties 
 

The following mathematical relationships constitute de expressions for the 

calculation of the crossover contribution of the three thermodynamic variables needed to 

evaluate phase equilibrium. 
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Combining equations A.4-A.9 a general expression for the Helmholtz free energy density is 

obtained. 
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The fully developed expression would be: 
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The calculation of the crossover term for the pressure requires the evaluation of 
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The combination of equations B12-B15 gives a global expression for crossP  
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The combination of equations B16-B24 gives the total contribution of crossμ  

 

C. Crossover terms for derivative properties 
 

In this part of the appendix, the details for the derivation of the crossover terms for 

the main derivative properties are shown. Derivative properties are second-order derivatives 

from a primary thermodynamic function (the Helmholtz energy in this case). It means that 

they will be obtained derivating the free energy respect to temperature and density twice. 

The first derivative from the Helmholtz energy permits to calculate de internal 

energy of the system. As it will be necessary for the calculation of the heat capacity, we 

also show the crossover term for its calculation. 

The internal energy U of a system has the following expression: 
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Combination of equation C1-C4 gives an expression for the internal energy crossover 

contribution. 

 
The second derivative of the Helmholtz energy respect to the temperature is 

needed to obtain the isochoric heat capacity Cv. 
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 The following expressions show the evaluation of the second derivative of the free 

Helmholtz energy density for the crossover term
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The combination of equations C3-C8 gives a global expression for the evaluation 

of the crossover contribution to the isochoric heat capacity. 
 Next property is the isothermal compressibility. The general form has been given 

in equation 5.26: 
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The pressure is obtained deriving the Helmholtz energy respect to the density. In 

fact, as all derivative properties, we have to perform a derivative of second order. In this 

case, both are respect to the density. If equations B.12 and B.15 are combined and 

introduced into equation C.9, the following expression is obtained: 
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Next equations show the expressions to solve 
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 Again, the combination of equations C.10-C.15, joined with those for the pressure 

contribution (B.12-B-15), give a global expression for the isothermal compressibility. 

 Another relevant property is the thermal expansion coefficient which is expressed 

in equation 5.28, and needed for the calculation of Cp. 
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 The evaluation of the thermal expansion coefficient requires the previous 

calculation of kT. As it was already done, the efforts are concentrated in the evaluation of  
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Combination of equations C.15-C.18 gives a global expression for the thermal 

expansion coefficient. The rest of derivative properties can be obtained from the three 

described: 

 

TTρ k
Tα

ρ
Pρ

T
PTμ 1−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=  (C.19) 

ρk
αTCC
T

vp

2
+=

 (C.20) 

p

v
TS C

C
kk =

 (C.21) 

ρkC
C

ρ
P

C
C

ω
Tv

p

Tv

p =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

 (C.22) 



Appendix 221 

 The Joule-Thomson coefficient, the isobaric heat capacity, the isentropic 

compressibility and the speed of sound are calculated using equations C.19-C.22 

respectively. The values inside the equation include already the crossover contribution. 



 

 



 Resum  
 

  
El progrés i les millores assolides en el camp industrial han empès els investigadors 

a buscar eines més refinades per tal de modelar aquests processos amb un major grau de 

precisió. Les propietats termofísiques són necessàries i el seu coneixement ha de ser molt 

precís, ja que una predicció poc acurada pot afectar el disseny d’una operació unitària, amb 

una consegüent pèrdua de rendiment i diners. 

El treball experimental ha constituït sempre el pilar per disposar d’una base de 

dades de fluids purs i mescles. Tanmateix, actualment els models teòrics han progressat 

com a eines modernes que poden proveir a l’usuari d’una quantitat ingent d’informació 

sobre un fluid de manera ràpida, neta i barata. En qualsevol cas, manca encara un llarg camí 

per trobar una eina poderosa capaç de calcular el comportament termodinàmic de qualsevol 

compost en qualsevol condició. 

Aquest treball utilitza una robusta equació d’estat anomenada soft-SAFT. El nom 

original prové de la Teoria Estadística de Fluids Associants  (SAFT), que és una equació 

basada en principis de mecànica estadística. Posseeix una molt forta base molecular, 
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proposant un model “físic” per a descriure el compost. Soft-SAFT és una variant de la 

SAFT original que utilitza un terme de referència basat en una interacció de tipus Lennard-

Jones entre les molècules. 

Malgrat que l’equació prèvia ja havia estat provada de manera exitosa en un conjunt 

molt variat de treballs, encara fallava en una regió molt important del diagrama de fases: la 

regió crítica. En aquesta regió, les propietats sofreixen fortes fluctuacions i canvien 

dràsticament degut a les llargues correlacions que es produeixen entre les molècules. La 

versió original de la soft-SAFT no pot tenir en compte aquestes fluctuacions de llarg abast 

perquè està basada en una teoria de camp mig. Tanmateix, aquesta fallida de la teoria ha 

estat superada introduint un tractament específic de “crossover”, que considera les 

fluctuacions inherents. El procediment està basat en la  teoria del grup de renormalització 

de Wilson (1971) i va ser desenvolupada per White (1992). S’escriu com un joc de 

relacions recursives on les correlacions entre les molècules són considerades al llarg de 

vàries iteracions. 

L’objectiu d’aquest treball de tesi s’ha dedicat a la millora d’una equació d’estat 

amb base molecular anomenada soft-SAFT afegint el tractament específic de “crossover” 

mencionat abans. La meta general implica el desenvolupament d’una poderosa eina 

predictiva aplicable a tot tipus de condicions per càlculs termodinàmics. Un tractament 

específic per calcular les fluctuacions inherents presents a la regió crítica s’ha implementat 

dins de la equació. Un cop l’equació fou millorada, la seva aplicació a sistemes 

experimentals ha cobert un ampli rang de famílies de compostos com els n-alcans, 1-

alcanols i n-perfluoroalcans, així com mescles entre ells i amb diòxid de carboni i àcid 

clorhídric. Diferents propietats incloent l’equilibri líquid-vapor, les línies crítiques i les 

propietats derivades de segon ordre han estat calculades amb aquesta eina, provant la seva 

validesa en la majoria de casos. 

 La nova equació, anomenada “crossover soft-SAFT” és en primer lloc comparada 

amb simulacions moleculars d’equilibris líquid-vapor de cadenes de Lennard-Jones. Per 

totes les diferents longituds de cadena, s’obté un acord excel·lent. A continuació, l’equació 

s’utilitza per estudiar tres famílies diferents d’hidrocarburs: els alcans, els alcanols i els 



Resum 225 

perfluoroalcans. Els paràmetres moleculars s’optimitzen emprant dades de densitat de 

líquid i pressió de vapor experimental pels primers vuit member de cada família. Es 

proposa una correlació per a cada paràmetre respecte el pes molecular, i els paràmetres 

s’extrapolen per predir el comportament termodinàmic d’altres membres més pesats de la 

mateixa família, amb un grau de precisió similar a l’obtingut pels membres més lleugers.  

 Un altre important test per l’equació ampliada dut a terme en aquesta tesi doctoral 

ha estat l’avaluació de propietats termodinàmiques derivades de segon ordre. Les capacitats 

calorífiques, la compressibilitat isotèrmica o isentròpica i la velocitat del so han estat 

calculats per totes aquestes famílies de compostos, obtenint novament un molt bon acord 

amb les dades experimentals en la majoria de casos. Els resultats obtinguts per a aquestes 

propietats resulta molt esperançador degut al fet que aquests càlculs s’han realitzat d’una 

manera purament predictiva, usant paràmetres moleculars obtinguts per ajust de dades a 

l’equilibri líquid-vapor.  S’han pogut reproduir les diferents singularitats observades 

experimentalment en la regió veïna al punt crític, mentre que el càlcul dels exponents crítics 

universals també ha revelat un acord amb les mesures experimentals.  

 Finalment, també es presenta l’extensió dels càlculs a la regió crítica de mescles 

binàries i ternàries.  S’han estudiat diferents grups de mescles entre alcans, alcà/alcanol, 

CO2/alcà, CO2/alcanol i HCl/alcà, posant un èmfasi especial en l’estudi de les diferents 

transicions crítiques observades al augmentar la longitud de la cadena de l’hidrocarbur. 

L’equació crossover soft-SAFT es capaç de descriure totes aquestes transicions a partir del 

paràmetres ajustats pels compostos purs, tot i que l’ajust de paràmetres binaris és necessari 

en alguns casos. Finalment, també es presenten alguns resultats preliminars de prediccions 

de bosses de miscibilitat observades en mescles ternàries amb CO2 supercrític / alcà / 

alcanol, com una darrera mostra de la força predictiva d’aquesta eina. 

 Aquest treball pretén ser un pas endavant en la millora de les eines de modelat 

molecular per aplicacions enginyerils. Malgrat que la natura sigui sempre sorprenent i 

difícil de reproduir, l’esforç dedicat a aquesta tasca és prou encoratjador per continuar 

buscant noves fórmules que ens donin la possibilitat d’acostar-nos una mica més al món 

real. 



 

 

 



 
Resumen  

 

  
El progreso y las mejoras conseguidas en el campo industrial han impulsado a los  

investigadores a buscar herramientas más refinadas a fin de modelar estos procesos con un 

mayor grado de precisión. Las propiedades termofísicas son necesarias y su conocimiento 

debe ser muy preciso, ya que una predicción inexacta puede afectar al diseño de una  

operación unitaria, con una consiguiente pérdida de rendimiento y dinero.  

El trabajo experimental ha constituido siempre la base para disponer de una base de 

datos de fluidos puros y mezclas. Sin embargo, actualmente los modelos teóricos han 

progresado como herramientas modernas que pueden proveer al usuario de una cantidad 

ingente de información sobre un fluido de manera rápida, limpia y barata. En cualquier 

caso, falta aún un largo camino para encontrar una herramienta poderosa capaz de calcular 

el comportamiento termodinámico de cualquier compuesto bajo cualquier condición. 

Este trabajo utiliza una robusta ecuación de estado llamada soft-SAFT. El nombre 

original proviene de la Teoría Estadística de Fluidos Asociantes  (SAFT), que es una 

ecuación basada en principios de mecánica estadística. Posee una base molecular muy 

fuerte, proponiendo un modelo “físico” para describir el compuesto. Soft-SAFT es una 

variante de la SAFT original que utiliza un término de referencia basado en una interacción 

de tipo Lennard-Jones entre las moléculas. 
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Pese a que la ecuación previa ya había sido probada de forma exitosa en un 

conjunto muy variado de trabajos, aún fallaba en una región muy importante del diagrama 

de fases: la región crítica. En esta región, las propiedades del compuesto sufren fuertes 

fluctuaciones y cambian drásticamente debido a las largas correlaciones que se producen 

entre las moléculas. La versión original de la soft-SAFT no puede tener en cuenta estas 

fluctuaciones de largo alcance porque está basada en una teoría de campo medio. Sin 

embargo, esta limitación de la teoría ha sido superada introduciendo un tratamiento 

específico llamado de crossover, que considera las fluctuaciones inherentes. El 

procedimiento está basado en la  teoría del grupo de renormalización de Wilson (1971) y 

fue desarrollada por White (1992). Se escribe como un conjunto de relaciones recursivas 

donde las correlaciones entre las moléculas son consideradas a lo largo de varias 

iteraciones. 

El objetivo de este trabajo de tesis ha sido dedicado a la mejora de una ecuación de 

estado con base molecular llamada soft-SAFT mediante la implementación del tratamiento 

específico de crossover anteriormente mencionado. El propósito global ha sido el  de 

desarrollar una poderosa herramienta predictiva aplicable a todo tipo de condiciones para 

cálculos termodinámicos. Una vez la ecuación fue mejorada, su aplicación a sistemas 

experimentales ha cubierto un amplio rango de familias de compuestos, como los n-

alcanos, 1-alcanoles y n-perfluoroalcanos, así como mezclas entre ellos y con dióxido de 

carbono y ácido clorhídrico. Diferentes propiedades incluyendo el equilibrio líquido-vapor, 

las líneas críticas y las propiedades derivadas de segundo orden han sido calculadas con 

esta herramienta, constatando su validez en la mayoría de casos. 

 La nueva ecuación, llamada “crossover soft-SAFT” es, en primer lugar, 

comparada con simulaciones moleculares de equilibrios líquido-vapor de cadenas de 

Lennard-Jones. Para todas las diferentes longitudes de cadena, se obtiene un acuerdo 

excelente. A continuación, la ecuación se utiliza para estudiar tres familias diferentes de 

hidrocarburos: los alcanos, los alcanoles y los perfluoroalcanos. Los parámetros 

moleculares se optimizan usando datos de densidad de líquido y presión de vapor 

experimental para los primeros ocho miembros de cada familia. Se propone una correlación 
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para cada parámetro respecto al peso molecular, y los parámetros se extrapolan para 

predecir el comportamiento termodinámico de otros miembros más pesados de la misma 

familia, con un grado de precisión similar al obtenido para los miembros más ligeros.   

 Otro test importante para la ecuación extendida llevado a cabo en esta tesis 

doctoral ha sido la evaluación de propiedades termodinámicas derivadas de segundo orden. 

Las capacidades caloríficas, la compresibilidad isotérmica o isentrópica y la velocidad del 

sonido han sido calculadas para todas estas familias de compuestos, obteniendo 

nuevamente un muy buen acuerdo con los datos experimentales en la mayoría de casos. Los 

resultados obtenidos para estas propiedades resultan muy esperanzadores debido al hecho 

que estos cálculos se han realizado de un modo puramente predictivo, usando parámetros 

moleculares obtenidos por ajuste de datos al equilibrio líquido-vapor.  Se han podido 

reproducir las diferentes singularidades observadas experimentalmente en la vecindad del 

punto crítico, mientras que el cálculo de los exponentes críticos universales también ha 

revelado un acuerdo con las medidas experimentales.  

 Finalmente, también se presenta la extensión de los cálculos a la región crítica de 

mezclas binarias y ternarias.  Se han estudiado diferentes grupos de mezclas entre alcanos, 

alcano/alcanol, CO2/alcano, CO2/alcanol y HCl/alcano, poniendo un énfasis especial en el 

estudio de las diferentes transiciones críticas observadas al aumentar la longitud de la 

cadena del hidrocarburo. La ecuación crossover soft-SAFT es capaz de describir todas estas 

transiciones a partir de los parámetros ajustados para los compuestos puros, aunque el 

ajuste de parámetros binarios es necesario en algunos casos. Finalmente, también se 

presentan algunos resultados preliminares de predicciones de “bolsas” de miscibilidad 

observadas en mezcles ternarias de CO2 supercrítico / alcano / alcanol, como una última 

muestra de la fuerza predictiva de esta herramienta. 

 Este trabajo pretende ser un paso adelante en la mejora de las herramientas de 

modelado molecular para aplicaciones ingenieriles. Pese a que la naturaleza sea siempre 

sorprendente y difícil de reproducir, el esfuerzo dedicado a esta tarea es lo suficiente 

estimulador para continuar buscando nuevas fórmulas que nos den la posibilidad de 

acercarnos un poco más al mundo real.  
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