
Action Selection in

Cooperative Robot Soccer

using Case-Based Reasoning

Tesi Doctoral

Autora

Raquel Ros Espinoza

Director
Ramon López de Màntaras

Tutor
Josep Puyol Gruart

Programa de Doctorat en Informàtica

Departament de Ciències de la Computació
Universitat Autònoma de Barcelona

Realitzada a

Institut d’Investigació en Intel.ligència Artificial
Consejo Superior de Investigaciones Cient́ıficas

Bellaterra, Febrer del 2008.

al Pepe y a la Mazo

iv

Acknowledgments

Como se suele hacer en estos casos, tendrı́a que comenzar agradeciendo a mi
director de tesis, a Ramon. Y de hecho, lo haré. Pero no solo por haberme
guiado y dado consejo en mi investigación durante estos últimos cuatro años,
sino también por consentirme y permitirme el cambio de tema tesis el dı́a que
se lo propuse, lo cual además suponı́a la adquisición de nuevos robots. Todo
hay que decirlo, y para suerte mı́a, a él también le hacı́an gracia estos juguetes,
y no fue difı́cil convencerlo de este cambio, que finalmente se presenta hoy en
esta tesis. Junto a él, y aunque a efectos burocráticos no figura formalmente,
Josep Lluı́s ha sido mi segundo director. Sin duda alguna las discusiones y
reuniones con él han sido de gran utilidad a la hora de desarrollar esta tesis, y
es por ello que parte de este trabajo se lo debo a él. Continuaré agradeciendo
el apoyo de otro “jefe”, aunque un poco más lejano a la tesis, que me abrió las
puertas del instituto cuando yo empezaba a descubrir el área de la inteligencia
artificial. Carles, mi primer director en el mundo de la investigación, con quien
tengo garantizado pasar buenos momentos charlando, riendo... y comiendo en
la ması́a!

I sincerely thank Manuela Veloso, without whom this thesis wouldn’t have
even begun. She not only accepted to work with me proposing new investi-
gation trends in my career, but always enthusiastically received me in her lab
in several occasions giving me the oppotunity of living new experiencies out
of the IIIA. Also thanks to the CMDash team, specially Sonia, Doug and Colin,
with whom I’m happy to say that besides sharing research interests, we also
share a close friendship. And before flying back to Spain to continue with the
acknowledgments, I would like to thank Cindy Marling, for reviewing this
dissertation, as well as for her helpful comments and suggestions.

Agradezco a la gente del IIIA en general, por los buenos momentos com-
partidos a la hora del café, las comidas, los viajes y congresos. Especialmente
a amigos más cercanos, Eva, Maarten, Dani y Jordi, quienes me han ayudado
de una manera u otra y gracias a quienes incluso los dı́as más duros han sido
más fáciles de superar. A mis amigos de la uni, Enric, Miquel y Pep, a “les
nenes”, Cris, Meri i Glor, a mi familia, Saray, Dı́dac (petit), Beto y Asun, y a
todos los amigos que a pesar de no entender muy bien mi trabajo, han estado
apoyándome en todo momento e intentando comprender lo que hago con unos
perritos futboleros!

Evidentemente dejo al final a los “más importantes”! A Dı́dac, por acom-
pañarme desde el primer dı́a (nunca mejor dicho!) en este proyecto, no sólo a
nivel profesional discutiendo ideas, programando y escribiendo papers, pero
sobretodo apoyándome a nivel personal, en los buenos momentos y en los de

v

vi

frustración, siempre con optimismo y confiando en mi capacidad para salir
adelante. Finalmente, a los protagonistas de esta tesis, a mis robots: Nata,
Boira, Fang y Terra, sin quienes, definitivamente, esta tesis no hubiera podido
ser completada!

Raquel Ros holds a scholarship from the Generalitat de Catalunya Govern-
ment. This work has been partially funded by the Spanish Ministry of Educa-
tion and Science project MID-CBR (TIN2006-15140-C03-01) and by the Gener-
alitat de Catalunya under the grant 2005-SGR-00093.

Abstract

Designing the decision-making engine of a team of robots is a challenging task,
not only due to the complexity of the environment where the robots usually
perform their task, which include uncertainty, dynamism and imprecision, but
also because the coordination of the team must be included in this design. The
robots must be aware of other robots’ actions to cooperate and to successfully
achieve their common goal. Besides, decisions must be made in real-time and
with limited computational resources.

This thesis contributes a novel case-based approach for action selection and
coordination in joint multi-robot tasks in real environments. This approach
has been applied and evaluated in the representative domain of robot soccer,
although the ideas presented are applicable to domains such as disaster rescue
operations, exploration of unknown environments and underwater surveil-
lance, among others.

The retrieval process proposes a case to reuse, evaluating the candidate
cases through different measures to overcome the real world characteristics,
including the adversarial component which is a key ingredient in the robot
soccer domain. Unlike classical case-based reasoning engines, the case reuse
consists in the execution of a set of actions through a team of robots. There-
fore, from the multi-robot perspective, the system has to include a mechanism
for deciding who does what and how. In this thesis, we propose a multi-robot
architecture along with a coordination mechanism to address these issues.

We have validated the approach experimentally both in a simulated envi-
ronment and with real robots. The results showed that our approach achieves
the expected goals of the thesis, i.e. designing the behavior of a cooperative
team of robots. Moreover, the experimentation also showed the advantages
of using collaborative strategies in contrast to individualistic ones, where the
adversarial component plays an important role.

vii

viii

Contents

Contents ix

1 Introduction 1
1.1 Motivation and Overview . 3
1.2 Problem Domain . 7
1.3 Contributions . 10
1.4 Publications . 11
1.5 Outline of the Thesis . 11

2 CBR Preliminaries and Related Work 13
2.1 Case Based Reasoning . 13
2.2 CBR Applied to RoboCup . 16

2.2.1 Karol et al. 16
2.2.2 Lin, Chen and Liu . 16
2.2.3 Berger and Lämmel . 17
2.2.4 Wendler et. al . 17
2.2.5 Marling et al. 18
2.2.6 Ahmadi et al. 19
2.2.7 Steffens . 19

2.3 Other Models Applied to RoboCup 20
2.3.1 Learning from Observation or Imitation 20
2.3.2 Reinforcement Learning 20
2.3.3 Pattern Recognition . 22
2.3.4 Fuzzy Theory . 22
2.3.5 Planning . 23
2.3.6 Neural Networks . 24
2.3.7 Evolutionary Algorithms 25
2.3.8 Other Approaches . 26

2.4 CBR Applied to Other Robotic-Related Domains 27
2.5 Summary . 29

3 The Retrieval Step 33
3.1 Case Definition . 33

3.1.1 Problem Description . 33
3.1.2 Solution Description . 35
3.1.3 Case Scope Representation 37
3.1.4 Case Example . 38

3.2 Case Base Description . 39

ix

x CONTENTS

3.3 Case Retrieval . 41
3.3.1 Similarity Measure . 41
3.3.2 Cost Measure . 44
3.3.3 Case Applicability Measure 47
3.3.4 Case Filtering . 50
3.3.5 Experiments . 53

3.4 Conclusions and Future Work . 59

4 Case Reuse through a Multi-Robot System 61
4.1 Robot Architecture . 61

4.1.1 Deliberative System . 63
4.1.2 Executive System . 64

4.2 Multi-Robot System and Case Reuse 65
4.3 Conclusions and Future Work . 69

5 Learning the Scopes of Cases 71
5.1 Scope Adaptation Algorithm . 72

5.1.1 When to Adjust the Values 73
5.1.2 How to Adjust the Values 74
5.1.3 Example . 76

5.2 Acquiring New Cases . 78
5.3 Experiments . 78

5.3.1 Simulation Experiments 78
5.3.2 Real World Experiments 83

5.4 Conclusions and Future Work . 88

6 Experimentation 89
6.1 CBR System Settings . 90
6.2 Experiments Setup . 95

6.2.1 Robot’s Behaviors . 95
6.2.2 The Scenarios . 96
6.2.3 Evaluation Measures . 98

6.3 Simulation Experiments . 98
6.3.1 The Simulator . 98
6.3.2 Simulation Results . 99

6.4 Real Robot Experiments . 104
6.4.1 The Robots . 104
6.4.2 Results . 106

6.5 A Trial Example . 112
6.6 Discussion and Future Work . 124

7 Conclusions and Future Work 127
7.1 Summary of the Contributions 127
7.2 Future Directions . 129

Bibliography 133

List of Figures

1.1 Snapshot of the Four-Legged League field 8

2.1 The Case-Based Reasoning cycle 15

3.1 Example of a problem description 35
3.2 Example of the scope of a case . 37
3.3 Example of a case . 39
3.4 Example of symmetric cases . 40
3.5 2D Gaussian function . 42
3.6 Strategy function combining time and score difference 43
3.7 Adapted positions example . 45
3.8 Trapezoid layout of two matching pairs 46
3.9 Correspondence examples. 47
3.10 Ball’s trajectory representation 49
3.11 Example of the ball’s path and the opponents similarity compu-

tation . 50
3.12 Sorting experimentation scenarios 54
3.13 Trials sorted by frequency of cases retrieved 55
3.14 Case frequency for each scenario 57

4.1 Robot architecture. 62
4.2 Multi-robot system . 65
4.3 FSM for retrievers and executors 66
4.4 FSM for the case execution . 67
4.5 Kick adaptation during the case reuse 68

5.1 Scope of a case: security region and risk region 73
5.2 Increasing policies for the scope learning process 75
5.3 Case scope evolution. 77
5.4 Learning the scopes parameters in simulation 80
5.5 Learning evolution of the scope in simulation. 81
5.6 Convergence of the average value of τ 82
5.7 Comparing strategies with real robots. 84
5.8 Training a case base with real robots 87

6.1 Case Base: single cases. 91
6.2 Case Base: multiple cases. 92
6.3 Case examples . 94

xi

xii LIST OF FIGURES

6.4 Action region for the defender and the goalie 96
6.5 Scenarios used during the experimentation 97
6.6 Snapshot of the robot soccer simulator PuppySim 2 99
6.7 Ball classification outcome: scenario 1 and 2 101
6.8 Ball classification outcome: scenario 3 and 4 102
6.9 Sony AIBO ERS-7(M2-M3) robot description. 104
6.10 The robots . 105
6.11 Images extracted from the robot vision system 106
6.12 CBR approach sketch performance in scenario 3 108
6.13 Reactive approach sketch performance in scenario 3 109
6.14 CBR approach sketch performance in scenario 4 111
6.15 Reactive approach sketch performance in scenario 4 112
6.16 Trial example: first case . 114
6.17 Trial example: first case (sequence 1 and 2) 115
6.18 Trial example: first case (sequence 3 and 4) 116
6.19 Trial example: second case . 118
6.20 Trial example: second case (sequence 1 and 2) 119
6.21 Trial example: second case (sequence 3 and 4) 120
6.22 Trial example: third case . 121
6.23 Trial example: third case (sequence 1 and 2) 122
6.24 Trial example: third case (sequence 3 and 4) 123

List of Tables

2.1 Table of abbreviations. 29
2.2 Related work classification. 30

3.1 List of available actions and their parameters. 36
3.2 List of spatial transformations. 40
3.3 Number of cases and average time per experiment 56

5.1 Strategies for the real world experiments. 85

6.1 Ball outcome classification (simulation). 100
6.2 Defender’s ball possesion (simulation). 100
6.3 Backing up results . 103
6.4 Single vs. multiple cases results 103
6.5 Ball outcome classification (real robots). 110
6.6 Defender’s ball possesion (real robots). 110

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

He turned once more to the robot. “Get up!”
The robot towered upward slowly and Donovan’s head craned and his
puckered lips whistled.
Powell said: “Can you go out upon the surface? In the light?”
There was consideration while the robot’s slow brain worked. Then,
“Yes, Master.”
“Good. Do you know what a mile is?”
Another consideration, and another slow answer. “Yes, Master.”
“We will take you up to the surface then, and indicate a direction. You
will go about seventeen miles, and somewhere in that general region
you will meet another robot, smaller than yourself. You understand so
far?”
“Yes, Master.”
“You will find this robot and order him to return. If he does not wish
to, you are to bring him back by force.”

Extracted from the short story Runaround,
in Asimov’s I, Robot [7].

“Now on four occasions recently,” Powell said, “your boss deviated
from brain-scheme. Do you remember those occasions?”[...]
Powell turned back to the robot, “What were you doing each time... I
mean the whole group.”[...]
He said [the robot], “The first time we were at work on a difficult out-
cropping in Tunnel 17, Level B. The second time we were buttressing
the roof against a possible cave-in. The third time we were preparing
accurate blasts in order to tunnel farther without breaking into a
subterranean fissure. The fourth time was just after a minor cave-in.”
“What happened at these times?”
“It is difficult to describe. An order would be issued, but before we
could receive and interpret it, a new order came to march in queer
formation.”

Extracted from the short story Catch that Rabbit,
in Asimov’s I, Robot [7].

1

2 CHAPTER 1. INTRODUCTION

Perhaps the excerpts shown previously describe simple and irrelevant scenes
that usually would not attract much of our attention. Moreover, probably the
only curious event that would even draw a slight smile in the reader’s face is
the fact that a human communicates with a robot through natural language,
i.e. talking, while the robot not only understands the conversation, but also
replies in the same way. However, this is not our focus of interest, although
it is in indeed a very challenging task that researchers in artificial intelligence
(AI) are still working on.

The short story from where the first text is extracted (Runaround) takes
place in Mercury and is about a robot, SPD-13 (“Speedy”), that is sent to bring
selenium from the nearest selenium pool, 17 miles away from the base station.
However, after five hours of having departed, Speedy has not returned yet.
Therefore, Donovan and Powell decide to send another robot to get him and to
analyze what happened. At this point, the conversation shown in the text takes
place. Powell orders the robot what seems a simple task. Although the story
actually continues without the robot having to execute the task, we are inter-
ested in analyzing the consequences of this “simple” task. Let us first assume
that somehow the robot understands what the task commanded by Powell is
about. Some of the abilities the robot must have to perform this “simple” task
are: ability to perceive its environment in order to create its internal world
model; ability to build a map (if the robot does not have it a priori) of the en-
vironment and localize itself and the place it has to go within the map; ability
to plan a route to the goal location and then to come back; ability to navigate
through the environment, probably avoiding obstacles, conflicting paths, etc.;
ability to recognize another robot; ability to decide how to perform the task,
i.e. which actions to execute; ability to react and recover upon possible con-
flicts it could encounter during the execution of the task. Hence, what seemed
a simple task turned out to be a more complex one, requiring a set of abili-
ties where each of them leads to a broad range of challenging problems that
different fields in AI have addressed since their origins in the 1950’s.

Besides the above mentioned abilities we expect a robot to be programmed
with, we can find a last interesting component within the second text. In this
occasion (Catch that Rabbit), Powell and Donovan have to discover why the
robot DV-5 (Dave) fails executing the task it is commanded to perform. The
robot’s peculiarity is that it is a robot with six subsidiary robots which are con-
trolled through positronic fields. In other words, Dave can be seen as a co-
ordinator robot with six “worker” robots under its responsability which per-
form the tasks commanded by the coordinator. Back to the story, Powell and
Donovan decide to spy while the robots work to discover why the task is not
being correctly fulfilled. They discover that in general the robots are working
the right way until something unexpected happens and they start marching
and dancing leaving the task aside. To understand why they behave that way,
Powell asks one of the subsidiary robots what is going on (extracted text). At
this point the robot relates the tasks they were assigned to do. Two ingredi-
ents in this story draw our attention. First, the story is related to a team of
robots, and second, the tasks to perform cannot be accomplished individually,
but through teamwork. In order to fulfill the tasks, a coordinator is in charge
of the team, sending the commands to the team and supervising the task exe-
cution. When dealing with cooperative tasks where a group of robots have to
achieve a joint task, some of the challenges, besides the ones mentioned before

1.1. MOTIVATION AND OVERVIEW 3

of course, consist in answering the following questions: who decides what to
do?, i.e. a single robot decides which actions to perform (centralized system)
or all robots discuss the selected actions (distributed system); who does what?,
i.e. one robot is selected to perform the complete task (single task execution)
or each robot may perform part of the task or subtasks (distributed task exe-
cution); who monitors the task execution?, i.e. one robot receives all the infor-
mation from the rest of the robots and decides by itself (single monitoring) or
each robot has its own beliefs of the world and reacts accordingly (distributed
monitoring); and finally, which coordination mechanism to employ in order
to synchronize the robots’ actions?

Thus, from what seemed to be two independent excerpts of not much inter-
est, we have remarked a set of problems that probably, from our human point
of view, have obvious solutions (we face them in our daily life without even
noticing their difficulty). However, from an AI researcher perspective, when
designing the robot behavior, these problems are not trivial at all, and in fact,
result in big challenges for AI nowadays.

1.1 Motivation and Overview

The dissertation presented in this work is addressed to two of the presented
challenges. First, the decision-making for the action selection problem and
second, the incorporation of a coordination mechanism to achieve cooperative
tasks within a multi-robot system. We next overview the main problems which
we have to deal with and how we propose to solve them.

An important aspect to consider when designing the reasoning engine is
the type of environment where the robot performs its task. The difficulties
that arise within deterministic environments (controlled environments) are far
much easier to deal with that when dealing with stochastic environments (un-
controlled). Clearly the latter is much more interesting, and is the one this
dissertation addresses. In such environments, where the world continuously
changes out of our control, the reasoning engine must include mechanisms to
overcome imprecision and dynamism of the environment. More precisely, it
has to be able to react and recover from unexpected situations that may occur
during the performance of the task where a real-time response is fundamental.

The behavior of a robot results from the execution of actions for different
states, if we define acting as the execution of a policy π : s → a (where s is the
current state and a, the action to execute in the given state) [44]. Defining each
possible state and the actions to perform at each state, i.e. defining the policy, is
challenging and tedious to be done completely manually. This policy is one of
the fundamental parts of the robot’s reasoning engine. Therefore, it is crucial to
find a way for automatically and efficiently acquiring it. As we review further
on, several machine learning techniques have been proposed during the past
years.

Besides the difficulties emerged due to the nature of the environment, we
must also take into account the limitations of the robot performing the task.
Thus, the uncertainty of the robot’s internal beliefs of the world depends on the
accuracy of the robot’s sensors. The reasoning engine must be able to handle
uncertainty so the behavior of the robot does not result degraded. A last impor-
tant aspect to consider are the robot’s computational resources. The processor

4 CHAPTER 1. INTRODUCTION

determines the type of algorithms (in terms of complexity) that the reasoning
engine may use.

From a multi-agent perspective, the problem we address in this work is re-
lated to cooperation or collaboration1 among agents. Collaboration is desired
in several domains where a group of robots (also seen as agents) work together
to achieve a common goal. It is not only important to have the agents collab-
orate, but also to do it in a coordinated manner so the task can be organized
to obtain effective results. Providing the agents with capacities to collaborate
and to coordinate is complex, as it is not just a matter of dividing the tasks
and assigning roles to each agent. Instead, it is also a matter of beliefs and
commitments of all robots to fulfill a common task. Drogoul and Collinot [14]
distinguish three levels of behaviors when designing a multi-agent system:

• elementary behaviors, actions or functions that the agents individually
perform (what to do);

• relational behaviors, how agents interact with other agents and the in-
fluences of their elementary actions on the other agents (what to do in
presence of other agents); and,

• organizational behaviors, how the agents can manage their interactions
to stay organized (what to do with these agents).

Similarly, Grosz and Kraus [19] argue that collaborating agents must

• establish mutual beliefs on what actions they will perform to complete
the task (relational level);

• agree on who does what (organizational level); and,

• establish mutual beliefs of their individual intentions to act (relational
level).

Communication among agents is essential to achieve these requirements.
The robot soccer domain is a very challenging test-bed that incorporates

most of the problems enumerated so far. Hence, we deal with a highly dynamic
environment that requires real-time response. Robots’ sensors are not very ac-
curate and therefore, we must model uncertainty within the reasoning engine
to act accordingly. Robots’ actions performances are imprecise and recovery
mechanisms should be considered. Finally, computational resources are very
limited, and thus, simple processes have to be taken into account. In this disser-
tation we contribute with an approach for action selection and coordination for
joint multi-robot tasks. More precisely, we apply Case-Based Reasoning (CBR)
techniques to model the reasoning engine and its application in the robot soccer
domain. Case-based reasoning is an approach to problem solving that empha-
sizes the role of prior experience during future problems solving [39]. It has
been inspired by the way humans reason and use their memory of previous
experiences to solve new problems. An example directly related with the work
presented in this dissertation can be found in team sports. During training
the coach studies with the players different game situations and the according

1Through the dissertation we will refer to both concepts, cooperation or collaboration, as syn-
onyms, although the latter can also be related to “working with the enemy”, including a traitorous
sense.

1.1. MOTIVATION AND OVERVIEW 5

movements (gameplays) that the players should perform. The playbook corre-
sponds to the case base in the CBR system. During a game, when the players
detect a similar configuration between the current situation in the field and
the ones in the playbook (CBR’s retrieval step), they automatically reproduce
the gameplays reviewed during the training, performing certain adaptations if
necessary (CBR’s reuse step).

The approach models the state of the game at a given time as a problem
description, which is compared to a set of predefined situations, called cases.
A case describes the state of the environment (problem description) and the
actions to perform in that state (solution description). The retrieval process
consists in obtaining the most similar case. Next, the solution of the retrieved
case is reused after some adaptation process, as required. We model the case
solution as a set of sequences of actions, gameplays, which indicate what actions
should each robot perform. Finally, we specify a multi-robot architecture and
a coordination mechanism based on messages exchanged among the robots in
order to achieve a cooperative behavior.

Why Case-Based Reasoning?

The first question that can arise when reading this work is why CBR? As we
review in Chapter 2, different approaches to solve the action selection problem
have been presented through the past years (Reinforcement Learning, Fuzzy
Theory, Decision Trees, Neural Networks, etc.) obtaining successful results.
However, we believe that Case-Based Reasoning integrates fundamental prop-
erties that not only help the designer in building a reasoning engine, but also
result very intuitive for humans since it is tightly related to the way humans
reason.

From the implementation point of view, we can classify the design of a
robot behavior from a procedural implementation, where the behavior is com-
posed of a sequence of subroutines and evaluating conditions (low level ap-
proach), to a model-based implementation, where the knowledge representa-
tion is done through state-action models and the task to learn is the mapping
function between states and actions (high level approach). Although the high
level approaches have several advantages over procedural implementations,
low level approaches are still being widely used for designing robot behaviors,
specially in very specific scenarios or in competition in the case of robot soccer
(RoboCup). A common approach used within RoboCup to describe behaviors
are hierarchical finite state machines (FSMs) [60, 67, 53] to provide a certain
degree of abstraction level. The advantage of using this approach is probably
due to its high reactivity. The robot is able to rapidly switch from one behavior
to another when required. However, programming individual or complex be-
haviors is still tedious and slow. As argued in [46, 57] changes are complicated
due to interdependencies and large amount of parameters to consider when
programming the behaviors. A minor modification in the code of a behavior
can have a big impact on other behaviors. Another important drawback within
reactive approaches is that from a strategic point of view we can classify them
as “short-sighted”, meaning that their decision-making is usually driven by a
partial state of the environment where the actions take place, without having
a broader view of the world state. Thus, an action can be suitable for a given
moment in time, but probably another action would have been a better choice

6 CHAPTER 1. INTRODUCTION

if the whole world state or possible future states could have been considered
or predicted.

Regarding model-based approaches, we can classify them according to the
policy readability, i.e. how understandable for a human reader the learned pol-
icy is. Techniques as reinforcement learning (RL), neural networks (NN) or
evolutionary algorithms (EA) have proved to be useful in many domains, in-
cluding action selection in robotics. However, their main drawback is that the
learned policy cannot be manually followed by an expert, and thus, analyzing
why a certain action has been selected is not feasible. As other researchers have
previously remarked [18, 46, 31, 10, 38, 15], we believe that this is an important
property to consider when choosing among the available approaches, specially
within complex domains, where some kind of justification is necessary for eval-
uating the appropriateness of the selected actions. On the other hand, the ad-
vantage of other approaches such as decision trees, expert systems, fuzzy rules
(rule-based approaches in general) or case-base reasoning (instance-based ap-
proaches) is that their knowledge representation is readable from the expert
perspective, not only facilitating the comprehension of the policy, but also pro-
viding easy access to modify the current knowledge of the reasoning engine.

Another important component to consider is the time required for learning
the policy and the amount of training data to achieve an acceptable accuracy
level. From the above mentioned approaches, RL, NN, EA and decision trees
either require a large amount of training data or time or both, which are usually
not available within the robotics field.

Finally, and not less important, a on-line learning ability is desired for this
kind of domains where the robot may encounter unexpected situations that
where not considered during the design stage. With this last component, the
adaptability of the robot’s behavior is guaranteed, allowing it to acquire new
knowledge as it performs the tasks. Rule-based approaches lack of this last
component. The only way for introducing new knowledge is manually modi-
fying the rule set. Other approaches, such as NN, EA or decision trees need to
repeat the training process before using the new learned policy. Modifying the
current knowledge of the system is time consuming and requires new training
data.

After reviewing the desired properties of the approach used for the ac-
tion selection problem, we conclude that Case-Based Reasoning (an instance-
based approach) fulfills the requirements described. The case base contains the
knowledge representation of the reasoning engine, which in fact, corresponds
to a set of situations (cases) the robot encounters through the task execution.
Each case may represent a complete or partial description of the state of the
environment and the corresponding solution to that state, i.e. the actions to
execute. Cases can either be generalized or specialized allowing the expert to
gradually introduce knowledge as needed. The knowledge of the system is
“transparent” and the expert can easily modify or insert new knowledge with-
out spending time training the reasoning engine again.

Regarding cooperation and teamwork, several works have been presented
so far, either using more formal methodologies as the joint intention theory in-
troduced by Cohen and Levesque [11] in Tambe’s flexible team work [62], or
simpler mechanisms such as role assignment where cooperation usually re-
sults as an emerging property [57, 65, 74, 35, 15], or including explicit coor-
dination mechanisms through communication to enforce commitment among

1.2. PROBLEM DOMAIN 7

the involved agents (request-acknowledge type) [66, 3, 18]. Interestingly, in our
work the use of cases also allows us to easily model cooperative tasks. As men-
tioned before, in order to have agents performing joint tasks it is fundamental
that: first, all agents agree on the task to perform; second, the implied agents
commit to execute the task as planned; and third, these agents must be aware
of the actions each of them performs to synchronize. In this work we spec-
ify a coordination mechanism that takes place during both the retrieval and
the reuse steps based on messages exchanged among the robots about their
internal states (beliefs and intentions). Hence, reviewing the requirements by
Grosz and Kraus mentioned before, the combination of the case structure and
the coordination mechanism we propose ensures that: the solution description
indicates the actions the robots should perform (requirement i); the retrieval
process allocates robots to actions (requirement ii); and finally, with the coordi-
nation mechanism, the robots share their individual intentions to act (require-
ment iii).

In conclusion, we believe that using CBR techniques is appropriate, not
only due to the close relation with the way humans reason, but also because
it provides a high level abstraction of the problem to solve through a modular
methodology. This latter allows the expert to easily modify the robots’ behav-
ior as required, either introducing or replacing cases in the case base (knowl-
edge of the system), defining new similarity functions, altering the retrieval
process, etc. CBR is a very flexible and intuitive framework and thus, is suit-
able for the problem domain this dissertation is focused on.

1.2 Problem Domain

The problem domain where this thesis is applied to is robot soccer. RoboCup
is a well known competition [69] whose ultimate goal is to develop a team of
humanoid robots to play soccer against the human world champion team by
2050. Of course this is long term goal, but in fact, the main objective of design-
ing this test-bed is to foster AI and robotics within a very complex domain and
to motivate researchers of different fields to work together in order to achieve
a common goal.

To this end RoboCup offers several leagues where, altough the goal is the
same, the challenges differ. Currently we can find the following leagues: Sim-
ulation, Small size, Middle size, Standard Platform and Humanoid. The Stan-
dard Platform League is a new league that will start next year (2008) replacing
the Four-Legged League2. Within this league all teams use the same robot, so
the challenge is focused on developing the software for the robots, and not the
physical robot contrarily to other leagues.

Within the The Four-Legged League teams consist of four Sony AIBO robots
which operate fully autonomously, i.e. there is no external control, neither by
humans nor by computers. Communication among robots of the same team is
allowed through wireless or speakers and microphones (although the last ones
are not usually used). There are two teams in a game: a red team and a blue
team. The field dimensions are 6m long and 4m wide and represents a Carte-
sian plane as shown in Figure 1.1. There are two goals (cyan and yellow) and

2The robots for this league were the AIBO robots from Sony. Since Sony stopped manufacturing
the robots, the RoboCup organizers had to switch to another model, the humanoid Aldebaran Nao.

8 CHAPTER 1. INTRODUCTION

y

x

yellow goal

cyan goal

markers

Figure 1.1: Snapshot of the Four-Legged League field (image extracted
from the IIIA lab).

four colored markers the robots use to localize themselves on the field. A game
consists of three parts, i. e. the first half, a half-time break, and the second
half. Each half is 10 minutes. The teams change the goal defended and color of
the team markers during the half-time break. At any point of the game, if the
score difference is greater than 10 points the game ends. There is also an exter-
nal controller, the GameController, which sends messages to the robots in order
to stop or resume the game after a goal, to notify penalized robots, to start or
end the game, etc. For more details on the official rules of the game refer the
RoboCup Four-Legged League Rule Book [12].

A Brief History of RoboCup

Extracted from the RoboCup Official website (Overview) [1].

In the history of artificial intelligence and robotics, the year 1997 will be
remembered as a turning point. In May 1997, IBM Deep Blue defeated the
human world champion in chess. Forty years of challenge in the AI community
came to a successful conclusion. On July 4, 1997, NASA’s pathfinder mission
made a successful landing and the first autonomous robotics system, Sojourner,
was deployed on the surface of Mars. Together with these accomplishments,
RoboCup made its first steps toward the development of robotic soccer players
which can beat a human World Cup champion team.

The idea of robots playing soccer was first mentioned by Professor Alan
Mackworth (University of British Columbia, Canada) in a paper entitled “On
Seeing Robots” presented at VI-92, 1992 and later published in a book Com-
puter Vision: System, Theory, and Applications, pages 1-13, World Scientific Press,
Singapore, 1993. A series of papers on the Dynamo robot soccer project was
published by his group.

1.2. PROBLEM DOMAIN 9

Independently, a group of Japanese researchers organized a Workshop on
Grand Challenges in Artificial Intelligence in October, 1992 in Tokyo, discussing
possible grand challenge problems. This workshop led to a serious discussions
of using the game of soccer for promoting science and technology. A series of
investigations were carried out, including a technology feasibility study, a so-
cial impact assessment, and a financial feasibility study. In addition, rules were
drafted, as well as prototype development of soccer robots and simulator sys-
tems. As a result of these studies, they concluded that the project is feasible
and desirable. In June 1993, a group of researchers, including Minoru Asada,
Yasuo Kuniyoshi, and Hiroaki Kitano, decided to launch a robotic competition,
tentatively named the Robot J-League (J-League is the name of the newly es-
tablished Japanese Professional soccer league). Within a month, however, they
received overwhelming reactions from researchers outside of Japan, requesting
that the initiative be extended as an international joint project. Accordingly,
they renamed the project as the Robot World Cup Initiative, “RoboCup” for
short.

Concurrent to this discussion, several researchers were already using the
game of soccer as a domain for their research. For example, Itsuki Noda, at
ElectroTechnical Laboratory (ETL), a government research center in Japan, was
conducting multi-agent research using soccer, and started the development of
a dedicated simulator for soccer games. This simulator later became the official
soccer server of RoboCup. Independently, Professor Minoru Asada’s Lab. at
Osaka University, and Professor Manuela Veloso and her student Peter Stone at
Carnegie Mellon University had been working on soccer playing robots. With-
out the participation of these early pioneers of the field, RoboCup could not
have taken off.

In September 1993, the first public announcement of the initiative was made,
and specific regulations were drafted. Accordingly, discussions on organiza-
tions and technical issues were held at numerous conferences and workshops,
including AAAI-94, JSAI Symposium, and at various robotics society meetings.

Meanwhile, Noda’s team at ETL announced the Soccer Server version 0
(LISP version), the first open system simulator for the soccer domain enabling
multi-agent systems research, followed by version 1.0 of Soccer Server (C++
Version) which was distributed via the web. The first public demonstration of
this simulator was made at IJCAI-95.

During the International Joint Conference on Artificial Intelligence (IJCAI-
95) held at Montreal, Canada, August, 1995, the announcement was made to
organize the First Robot World Cup Soccer Games and Conferences in con-
junction with IJCAI-97 Nagoya. At the same time, the decision was made to
organize Pre-RoboCup-96, in order to identify potential problems associated
with organizing RoboCup at a large scale. The decision was made to provide
two years of preparation and development time, so that initial groups of re-
searchers could start robot and simulation team development, as well as giving
lead time for their funding schedules.

Pre-RoboCup-96 was held during the International Conference on Intelli-
gence Robotics and Systems (IROS-96), Osaka, from November 4–8, 1996, with
eight teams competing in a simulation league and demonstration of real robot
for the middle size league. While limited in scale, this competition was the first
competition using soccer games for promotion of research and education.

The first official RoboCup games and conference was held in 1997 with

10 CHAPTER 1. INTRODUCTION

great success. Over 40 teams participated (real and simulation combined), and
over 5,000 spectators attended.

1.3 Contributions

This thesis contributes a novel case-based approach for action selection and
coordination in joint multi-robot tasks. This approach is applied and evaluated
in the representative domain of robot soccer.

The main characteristics of the approach can be summarized as follows:

• The case definition corresponds to a complete description of the environ-
ment, including the actions to perform by a team of robots and general
domain knowledge to handle uncertainty in the incoming information
from perception.

• Two types of features are introduced: controllable and non-controlable
features. The former ones are related to those features whose values can
be directly modified in order to increase the similarity between the eval-
uated case and the current problem; while the latter ones, correspond to
those features that the system cannot modify.

• The retrieval step is composed of three measures: the aggregation of do-
main-dependent similarity measures; the cost of adapting the current
problem to a case; and the applicability evaluation of a case combining
domain knowledge rules and similarity measures. The retrieval step ap-
plies a filtering mechanism to reduce the search space as fast as possible
due to the real-time response requirements.

• The internal robot architecture is defined as a three-layer hybrid archi-
tecture: the deliberative system, i.e. the case-based reasoning engine; the
reactive system, i.e. a set of behaviors corresponding to skills the robot
performs; and the low level, which includes the sensors and executors of
the robot.

• The multi-robot architecture includes a set of robots called retrievers that
incorporate the reasoning engine and therefore are in charge of deciding
the cases to reuse, and the executors, who only perform the actions indi-
cated by the retrievers (or default actions). However, any robot has the
ability to abort the execution of a task when required.

• A coordination mechanism that enables the case reuse not through a sin-
gle user, but through a team of users (in this case, the robots).

• A supervised learning process to acquire the scope of a case automati-
cally.

Finally, in this dissertation we present empirical evaluation both in a sim-
ulated environment and in a real one with robots to prove the effectiveness of
the proposed approach. Moreover, we argue that a collaborative behavior is
advantageous to achieve the goal of the task, specially because of the adver-
sarial component. It is well known that a good strategy to avoid an opponent

1.4. PUBLICATIONS 11

during a game is to have passes between teammates. In contrast, using an in-
dividual strategy, where only one robot moves with the ball without taking
into account its teammates, increases the chances for the opponent to block the
attack, unless the robot is much faster than the opponent. Therefore, we have
successfully included the pass action in our approach, which is not common,
as far as we know, in this domain (Four-Legged League).

1.4 Publications

The following publications have been derived from this thesis:

• R. Ros, M. Veloso, R. López de Màntaras, C. Sierra and J.L. Arcos (2006),
Retrieving and Reusing Game Plays for Robot Soccer. 8th European Con-
ference on Case-Based Reasoning. Advances in Case-Based Reasoning of
Lecture Notes in Computer Science, Volume 4106, pp. 47–61. Springer.
Best paper award.

• R. Ros, J.L. Arcos (2007). Acquiring a Robust Case Base for the Robot
Soccer Domain. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pp. 1029–1034. AAAI Press.

• R. Ros, M. Veloso (2007). Executing Multi-Robot Cases through a Sin-
gle Coordinator. In Proceedings of the 6th International Conference on Au-
tonomous Agents and Multiagent Systems, E. H. Durfee, M. Yokoo eds., pp.
1264–1266.

• R. Ros, R. López de Màntaras, J.L. Arcos and M. Veloso (2007). Team
Playing Behavior in Robot Soccer: A Case-Based Approach. In Proceed-
ings of the 7th International Conference on Case-Based Reasoning. Case-Based
Reasoning Research and Development of Lecture Notes in Computer Sci-
ence, Volume 4626, pp. 46–60, Springer.

• R. Ros, M. Veloso, R. López de Màntaras, C. Sierra and J.L. Arcos (2007).
Beyond Individualism: Modeling Team Playing Behavior in Robot Soc-
cer through Case-Based Reasoning. In Proceedings of the 22nd AAAI Con-
ference on Artificial Intelligence, pp. 1671–1674. AAAI Press.

1.5 Outline of the Thesis

Next, we summarize the contents of Chapters 2 to 7. The core of the research
work is described in Chapters 3 to 6.

Chapter 2: CBR Preliminaries and Related Work.

In this chapter we first review basic ideas of Case-Based Reasoning to
familiarize the reader with the concepts used through the dissertation.
Next, we present related work that describes the different techniques (in-
cluding CBR) used by researchers in the past years within the robot soc-
cer domain. A brief section is addressed to other robotic domains where
CBR has been successfully applied. Finally, the chapter concludes with
a summary of the related work through a comparative table and where
our work is located with respect to previous work.

12 CHAPTER 1. INTRODUCTION

Chapter 3: Modeling the CBR Approach: The Retrieval Step

This chapter corresponds to the first step of the CBR cycle, i.e. the Re-
trieval Step. Thus, we present the different components of the proposed
CBR system, including: the case description, the case base structure, the
similarity measures and the retrieval process itself. We also present ex-
perimental results in simulation to test the introduced process.

Chapter 4: Case Reuse through a Multi-Robot System

In this work the case reuse is fulfilled through a team of robots, instead
of an individual robot. Hence, we not only have to define the internal
robot architecture, but also the multi-robot architecture. In this chapter,
we describe how the robots interact to perform the task, i.e. how to reuse
the case in a coordinated way.

Chapter 5: Learning the Scopes of Cases

A first attempt towards the learning stage of the CBR cycle is presented
in this chapter. More precisely, it is focused on automatically acquiring
the scope of a case through a supervised learning algorithm. Different
functions used in the algorithm are proposed to this end. The learning
mechanism is evaluated both in simulation and with real robots.

Chapter 6: Experimentation

This chapter is devoted to the experimentation stage. To evaluate the
overall system, we have performed experiments in simulation and with
the real robots. The scenarios consist of two vs. two games, where two
attackers play against a defender and a goalie. The CBR approach is com-
pared with respect to a region-based approach. While the attackers use
both approaches for evaluation, the opponents use a fixed behavior. Re-
sults are discussed and a trial example with real robots is described in
detail.

Chapter 7: Conclusions and Future Work

In this last chapter, we summarize the conclusions addressed in each sep-
arate chapter. We also discuss future research lines and open challenges
to improve the proposed approach.

Chapter 2

CBR Preliminaries and
Related Work

In this chapter we review related work to the one presented in this thesis. First
we briefly overview the Case-Based Reasoning methodology so the reader is
familiar with the concepts referred to afterwards. Next we describe applica-
tions of CBR systems within the robot soccer domain and other machine learn-
ing approaches that address the action-selection problem as well. Finally, a
short review to other CBR systems applied to related domains and a summary
of the reviewed work are presented.

2.1 Case Based Reasoning

Inspired by the cognitive science research in human reasoning and the use of
memory [56], Case-Based Reasoning is the process of problem solving based
on the exploitation of past experiences, called cases, to propose solutions for
present problems [39]. The essence of Case-Based Reasoning is based on the
assumption that “similar problems have similar solutions”.

This lazy learning technique consists in comparing the new problem to
solve with respect to past cases in the case library through a similarity mea-
sure. The most similar case (or set of similar cases) is retrieved in order to re-
produce the solution proposed in the past, probably adapting it to the current
problem to solve. The outcome of the solution is then evaluated and the new
solved problem may be stored as a new case. Many applications have been
proposed since the birth of this methodology, ranging from classical systems
such as CHEF, CASEY, JULIA, HYPO, etc. [30] to contemporary systems deal-
ing with more complex domains as we review in the following sections. Al-
though initially case-based reasoning could probably be seen as a supervised
learning technique for classification, through the past years it has shown its
evolution towards new paradigms and directions increasing the utility of CBR
systems [16].

The knowledge representation of a CBR system is the case library (or case
base). In contrast to general knowledge (such as rule-based methods), cases
represent specific knowledge related to specific situations. Hence, a case is

13

14 CHAPTER 2. CBR PRELIMINARIES AND RELATED WORK

usually represented by the pair problem-solution, where the problem corre-
sponds to the description of the task to solve, and the solution describes how
this task was carried out. A third component can be attached to a case: the
outcome. It corresponds to the resulting state of the world once the solution
has been applied. This latter component is usually used to guide the reasoner
system the next time the case is retrieved.

The simplest and most commonly used problem representation is a set of
attribute-value pairs, although more complex representations can be used. The
solution description may include the solution itself (values of features), a set of
reasoning steps, justifications for decisions made during problem solving, etc.
Finally, the outcome may be whether the applied solution was a success or a
failure when solving the problem, whether it fulfilled the expectations or not,
explanations of the failure, pointer to next attempt solution, etc.

Although different modifications of the CBR methodology can be found in
the literature, their differences are basically based on the names or labels and
possible extensions of the different steps of the process. However, the main
concepts remain unaltered. One of the most accepted problem solving process
is the one introduced by Aamodt and Plaza [2], the well know “4 RE’s” cycle.
The four main steps of the cycle are (Figure 2.1):

• Retrieve: search the case library for cases that are similar to the current
problem, based on a similarity measure and obtain candidate solutions.

• Reuse: construct a solution for the current problem based on the solutions
proposed by the retrieved cases (usually adapting or merging solutions).

• Revise: evaluate the outcome of applying the reused solution and repair
the solution constructed above, if necessary.

• Retain: decide whether the reused case should be incorporated into the
case library or not.

Given a new problem to solve, the system applies a similarity measure to
obtain the most similar cases. The similarity measure depends on the prob-
lem description. Thus, the simplest metric usually corresponds to the distance
between two features. In this case, the retrieval corresponds to a k-nearest neigh-
bor algorithm. More complex measures can be defined, depending on the do-
main and on design preferences. Filtering mechanisms can be used, as well as
aggregations of different measures, static or dynamic procedures, comparing
complete cases or partial descriptions, and so on.

The reuse step consists in building the solution of the current problem to
solve using the solution description(s) of the retrieved case(s). Based on the do-
main requirements, the solution can be straightforward, i.e. reusing the same
solution without previous processing, or through some adaptation process.
Typical adaptation methods are parameter adjustment, local search, substitu-
tion and merging processes, among others [30]. As within the retrieval step,
the adaptation can be addressed to the whole solution description, or part of it.

After the solution is carried out, the next step is to evaluate the effective-
ness of the proposed solution. In most systems this step is usually driven by
the user of the system (analogous to supervised learning technique) who indi-
cates the outcome of the task execution. As mentioned before, not only success

2.1. CASE BASED REASONING 15

Figure 2.1: The Case-Based Reasoning cycle (Aamodt and Plaza [2]).

or failure can be indicated, but also the reasons of failure or whatever addi-
tional useful information for improving the quality of the proposed solution
in future situations. Clearly, it would be much more desirable that the system
could automatically generate the evaluation of the solution. However, in most
domains, this is still a pending task that researchers have to address and which
remains as an open challenge so far.

Finally, the new solved problem can be stored in the case library. This latter
step is responsible for the learning aspect of the CBR methodology. Thus, a new
case is created including the initial problem to solve, the solution proposed
and the outcome (if available). Deciding whether a case should be stored or
not basically depends on how useful the new case will be in the future. Two
aspects must be considered when opting for case retention: case indexing and
case base maintenance. If new cases are introduced, the size of the case base
will increase through time. As a consequence, the search space during retrieval
is also increased. Therefore, case indexing techniques must be considered to
speed up the retrieve step. The second aspect, case maintenance, is related to
analyzing the case base in order to determine which cases can be removed, due
to case redundancy or inconsistency.

The minimal components of a case-based reasoning system are the retrieve
and the reuse steps, i.e. generating a solution for a given problem. The two
remaining ones are related to the learning process of the system, and therefore,
are the most difficult to introduce.

16 CHAPTER 2. CBR PRELIMINARIES AND RELATED WORK

2.2 CBR Applied to RoboCup

In this section we review the research done so far using Case-Based Reasoning
techniques within the RoboCup domain. For each author we briefly detail the
purpose of the CBR approach, the league in which it is applied to and a general
description of the features of the system.

2.2.1 Karol et al.

Very close to our work, Karol et al. [25] present an initial attempt for including
a CBR system in the action selection of a team of robots in the Four-Legged
League. The problem description includes the robots’ positions and the degree
of ball possession (qualitative measure). They also propose the use of meta-
level features to guide the retrieval process, such as score, time and opponent
strategy (if known). As within our work, the solution corresponds to the game-
play. They propose three possible similarity measures, all based on comparing
the robots positions on the field. Two of them are quantitative (based on the
distances the robots would have to travel to be positioned as in the case) and
one qualitative. This latter divides the field in uniform rectangular regions,
and the measure counts the number of steps the robots would have to move
towards the positions indicated in the case. The remaining features of the prob-
lem description are not taken into account yet. Since the work is only a first
introduction of the model, no experiments have been reported.

2.2.2 Lin, Chen and Liu

The work presented by Lin et al. [38] and Chen and Liu [10] is applied in the
Simulation League, where they present a hybrid architecture for soccer players
(as in our work). The deliberative layer corresponds to the CBR system and
the reactive layer corresponds to fuzzy behaviors (motor schemas introduced
by Arkin [6]). The knowledge acquisition is done through first order predicate
logic (FOPL), which they claim is easy for an expert to transmit knowledge.

The problem description of a case consists of fuzzy features describing dis-
tances and directions between robots and objects on the field (such as ball, goal,
etc.). The solution description corresponds to a set of gain values of the motor
schemas. Similar to our work, they introduce the concept of escape conditions: a
new case is retrieved only if the escape conditions are satisfied. This way, the
deliberative system monitors the current execution and the retrieval process
only takes place when necessary. The similarity measures for the features are
trapezoid membership functions initially given by an expert and modified af-
terwards according to the robot’s performance. The overall similarity is based
on the Max-Min composition of individual similarities. They also introduce an
adaptation process through case merging, and the revision step based on the
number of states executed.

They compare their system with other teams obtaining successful results.
Their main argument for the success of their approach is the flexibility of the
system since modifying cases results in modifying the performance of the soc-
cer players. The claim is that knowledge representation based on first order
logic is readable by humans, and therefore, incorporating expert’s knowledge
is fast and easy.

2.2. CBR APPLIED TO ROBOCUP 17

2.2.3 Berger and Lämmel

Recent work has been initiated by Berger and Lämmel [8] where they propose
the use of a CBR system to decide whether a “wall-pass” should be performed
or not. A “wall-pass” consists in passing the ball to a teammate, to immedi-
ately receive a pass again from the latter. The idea is to distract the opponent
so the first player can move to a better position. Their work is applied to the
Simulation League. A case represents the positions of the most relevant players
on both teams in a given situation. They introduce a procedure to extract these
relevant features and show that mostly three or four players are sufficient to
describe the case. The solution of the case indicates if a “wall-pass” is possible
or not. The similarity is based on Euclidean distances between players posi-
tions. Case Retrieval Nets (CRN, introduced in [36]) are used for the retrieval
process in order to speed up the search. In order to build the case base, they an-
alyze log files of previous games to extract all potential “wall-pass” situations
automatically and manually classify them afterwards.

2.2.4 Wendler et. al

Since the initiation of RoboCup, Wendler et al. have addressed different prob-
lems within this domain. The first one, and more related to our work is pre-
sented in [72]. In this work, they propose to learn about the opponents and
based on the observations adapt the actions of the players within the Simu-
lation League. More precisely, the systems indicates the positions where the
players should move according to the opponents actions. Thus, the features
of the problem description are: state of the pitch by means of segments of all
players (in our work we propose the use of ellipses of different sizes for each
opponent player), time steps until a player controls the ball, preference direc-
tions of a player, available power resources and distance to ball and players.
Two similarity measures are defined based on the domain of the features: for
the state of the pitch, two regions are considered to be similar if they are neigh-
bors; and for the remaining features, since they are represented by numerical
values, distance functions are proposed. In contrast to our work, the overall
similarity is computed as the average of individual similarities (we propose
the harmonic mean instead). Similar to the work presented by Berger, the re-
trieval process is done through Case Retrieval Nets. They propose an off-line
learning which would correspond to a training stage to build up the case base,
and an on-line learning, to adapt cases to the opponents in the game.

Continuing with the ideas of studying the opponent team to improve the
performance of the team players, in [70] they address the behavior recognition
and prediction problem based on external observation. The CBR system mod-
els the function that maps the situations of a game (represented by trigger pat-
terns) and the behaviors of the players (behavior patterns). Triggers and behav-
iors consist of different attributes, such as player initialization for pass, vector
from passer to receiver, distances between players, ball speed, direction of ball
movement, etc. The similarity measures for triggers and behaviors are defined
as weighted sums of local similarities (attributes similarities). The weights are
determined either manually by the expert, or automatically. During a game,
when a trigger is identified, the case base is searched for similar triggers. The
retrieved case is then adapted and the resulting behavior is compared with

18 CHAPTER 2. CBR PRELIMINARIES AND RELATED WORK

the actual behavior observed. If the similarity between the predicted behavior
and the observed one is below a given threshold (not similar enough), a new
case case is retained having the triggers as the problem description and the
observed behaviors as the solution description. The results obtained through
experimentation show that although the system performs quite well, the pre-
diction model is team-dependent, i.e. it is specific for each team. Therefore,
when switching opponent teams, behavior predictions are degraded.

Finally, in [71] a fault-tolerant self localization approach is proposed by
means of CBR techniques. In this occasion the work is applied to the Four-
Legged League. A case is defined as follows: the problem description repre-
sents an omnidirectional picture from the robot point of view, where the fea-
tures correspond to size and positions of the landmarks in the image and the
angles between pairs of landmarks; the solution description corresponds to
the position of the robot on the field. Cases are gathered through a two-step
semiautomatic process. First, a table relating the landmark distances and their
perceived sizes is manually created. Next, the distances and angles between
markers and goals are automatically derived. The similarity measure results
from the composition of the individual similarities through a weighted sum.
Once again, CRN are used for the retrieval process, where a set of neighbor-
ing cases from the most similar case are retrieved. A case is considered as a
neighbor of another case if the distance between the landmarks of both cases is
no more than 50cm. The solution proposed by the system corresponds to the
weighted sum of all solutions, i.e. the position of the robot.

2.2.5 Marling et al.

Three CBR reasoner prototypes are presented in [41]: the first one focused on
positioning the goalie, the second one on selecting team formations, and the
last one on recognizing game states. The prototypes are applied to the Small-
Size League, although the experiments are validated in simulation only. For
all prototypes, the case description represents a snapshot of the field. The fea-
tures in the problem description and the solution of the case differ from one
prototype to another based on the task to learn. Next, we briefly describe each
prototype.

The case structure of the first prototype, positioning the goalie, consists of:
a snapshot of the goalie’s half field, where the features correspond to the posi-
tions and orientations of the players, as well as the ball’s position. The solution
indicates the success or failure of the goalie’s move and the position of the ball
after the attempted block. Cases in the case library are organized based on
the ball’s position to speed up the search. Hence, the library is portioned in
three categories: near, middle and far. The similarity measure corresponds to
the distance between the current ball’s position and the one indicated in the
case. After experimentation, they found out that the new prototype was not
improving the current reactive one, and therefore, decided to try with high
level decision, as team formations and game state recognition.

The second prototype, team formations selection, is aimed at being used
by a meta-agent, and not the players themselves. The problem description is
composed of a snapshot of the field (the players’ and ball’s positions); derived
features from the previous features and state description such as offensive, de-
fensive, transitional situation; and short-term goals and subgoals. The solution

2.2. CBR APPLIED TO ROBOCUP 19

description indicates the team formation, i.e. a set of roles for each player. The
role indicates where the robot should move and the task to perform. Similar to
the above prototype, cases are grouped based on the state description (defen-
sive, offensive and transitional).

Finally, in the third prototype, game state recognition, cases represent a
whole snapshot of the field, indicating the positions of the robots and the ball
including symbolic features derived from the spatial features such as number
of defenders in defensive zone, attackers in offensive zone, boolean variable
indicating whether the ball is near the goal or not, etc. The solution of the case
corresponds to a characterization of the state of a game. Some examples are
Man On or Two on One. The retrieval process consists in a standard nearest
neighbor algorithm. They plan to extend the case description to more vision
frames, instead of only considering a single snapshot to capture robot and ball
motion as well.

As mentioned in the beginning, the work presented was not yet finished
and therefore, experiments with real robots are not presented. Future im-
provements as well as new open trends for CBR in this domain are broadly
discussed.

2.2.6 Ahmadi et al.

A common drawback of CBR systems usually discussed among researchers
is the difficulties for fast retrieval in large case bases. Focusing on this issue,
Ahmadi et al. [4] present a two-layered CBR system for prediction in the Sim-
ulation League. A case is evaluated based on low level features, i.e. ball’s
velocity, players’ positions and velocities and some predefined recent events.
However, the importance of a player position varies based on its relation with
the ball location. Thus, a player close to the ball has more importance com-
pared to another one that is far away. This importance is modeled through
weights that are assigned to the players based on the different situations. The
upper CBR layer is in charge of assigning these weights. Thus, every lower
layer case must be adapted to propose different solutions based on the areas
of the field where the situation is taking place. The solution of a case indicates
the next ball’s and players’ positions. The similarity measure compares the
positions of the ball and the players through a weighted sum. The initial case
base is manually created, and afterwards, new cases are introduced during the
system’s performance. Positive and negative cases are retained.

2.2.7 Steffens

The last work reviewed in this section corresponds to the work presented by
Steffens [58] addressed to opponent modeling in the Simulation League. Sim-
ilarly to the work presented by Ahmadi above, he argues that the similarity
measure should be adapted to the situation and role of the agent whose action
is to be predicted. While Ahmadi modifies the weights of the positions of play-
ers taken into account, Steffens proposes a similarity measure that considers
more or less features when comparing the current problem to solve with the
cases. The relevance of the attributes is based on the positions and roles of the
agents and it is obtained from a goal dependency network (GDN [59]) which

20 CHAPTER 2. CBR PRELIMINARIES AND RELATED WORK

represents general knowledge. The high-level actions to be predicted are hold
ball, dribble, intercept ball, pass and shoot on goal.

2.3 Other Models Applied to RoboCup

Besides CBR techniques, other approaches have been studied to solve the ac-
tion selection problem. In this section we review first those fields where most
researchers have focused their efforts on, such as Reinforcement Learning, to
finally review a set of less common approaches used within the RoboCup do-
main.

2.3.1 Learning from Observation or Imitation

Although not much work related to RoboCup has been done, we are interested
in remarking it due to its similarity with Case-Based Reasoning techniques.
The aim of this technique is to model agents that learn from observing other
agents and imitating their behavior. As in CBR, the learning agent selects the
most similar past observed situation with respect to the current problem and
then reproduces the solution performed at that time. The main difference be-
tween these approaches is that the learning agent is not able to improve the
observed agent since there is no feedback in the model.

Lam et al. [33] focus their research on action selection based on scene recog-
nition in the Simulation League. A scene is described by the positions of objects
on the field, i.e. robots and ball, with respect to a single player. Two represen-
tations are proposed: continuous (distance and angle from the player to the
objects) or discrete (fixed regions on the field). Similar to our work, a matching
process is defined in order to map the objects in the current scene with the ones
indicated in previous scenes. Finally, the distance between two scenes is com-
puted as a weighted sum of the individual similarities. A k-nearest neighbor
algorithm is used to obtain the most similar scenes. Each scene is associated to
an action. If more than one scene is retrieved, the most common action (major-
ity voted) is selected.

This work is closely related to ours. However, the main differences are: the
number of agents implied in the scenes (we include teammates which inter-
act among them, while they only include one teamate); the objects locations
(robots and ball are within fixed regions of field in [33], whereas we deal with
variable regions); modeling uncertainty (in our work we include fuzzy func-
tions to this end); and the solution of the problem (we deal with a sequence of
actions for each teammate instead of a single action in [33]).

2.3.2 Reinforcement Learning

Reinforcement Learning (RL) [61] is a classical machine learning technique that
has been frequently used in the RoboCup domain. Although the obtained re-
sults are usually successful, the main drawback of this technique is the large
state space that most problems present. As a consequence, a large amount of
learning steps are required to find the policy that matches states and actions.
Hence, most of the times this technique is not feasible when dealing with real

2.3. OTHER MODELS APPLIED TO ROBOCUP 21

robots. Nevertheless, researchers have tried different approaches to overcome
these drawbacks as we review next.

Riedmiller et al. [52] focus their work on learning two different skill levels:
moving level (low level) and tactical level (high level). The former refers to
learning a specific move, for example, learning to kick, while the latter refers
to learning which move should be applied at a certain point, as pass the ball.
The work is restricted to the Simulation League, and they only used the mov-
ing level during a competition. With respect to the tactical level, they experi-
mented with two attackers against one or two defenders. The attackers used
the approach presented, while the defenders used a fixed policy.

Similarly, Kleiner et al. [28] apply a hierarchical RL in a Semi Markov De-
cision Process (SMDP) framework. In their approach they show that learning
skills and the selection of these simultaneously (not separately as in [52]) is
advantageous with respect to focusing only on one level at a time. They ap-
ply their work to the Middle-Size League, but the learned policy is obtained
through simulation. Results with the real robots show that more than an hour
would be necessary to improve the hand-coded action selection mechanism.

Ahmadi and Stone [5] introduce a Markov Decision Process (MDP) for ac-
tion selection between two types of kicks in the Four-Legged League. In their
approach they compute off-line the value function V for the MDP without con-
sidering opponents and assuming a static environment. During the robot’s
performance, they distinguish two phases: planning, where the robot selects
a kick based on the off-line learned policy, and replanning, when opponents
appear in scene. The replanning stage consists in recalculating the Q values
of the MDP for those states where an opponent is likely to be located. Thus,
they reduce the computational complexity of managing the MDP updating the
policy the minimum number of times (only when an opponent appears). Their
experiments with real robots in controlled scenarios show that the replanning
algorithm improves a policy without on-line update.

Modular Q-learning is proposed by Park et al. [48] within the Small Size
League. In their work, the default behavior of each robot is to move around
the field using a navigation mechanism (uni-vector field navigation, similar to
a potential field). When a robot is within a boundary of the ball, the action
selection layer switches the robot behavior to the shoot action. Each robot has
its own learning module which is in charge of determining when a shoot action
should be taken. Robots’ roles are fixed covering different regions of the field.
Conflicts regarding which robot should move to shoot the ball in overlapping
regions are solved through a mediator. Hence, when two robots select the shoot
the ball action, the mediator intervenes to indicate which of the robots is the one
to perform the action, probably switching roles for short periods. Examples
with real robots are presented.

We can also find in the literature combined approaches such as the one pre-
sented by Duan et al. [15]. In their work they propose a hierarchical learning
module that combines fuzzy neural networks (FNN) and reinforcement learn-
ing (RL). The learning task includes dynamic role assignment, action selection
and action implementation (low level skills). The hierarchical system allows
flexibility and independence to modify a certain layer without modifying the
remaining ones. Based on the assigned role, the robot may select among a set
of actions: the attacker may shoot, pass, dribble and swing, while the defender
may intercept, mark, clear and defend (go back to its home position). For the

22 CHAPTER 2. CBR PRELIMINARIES AND RELATED WORK

offensive player action selection, besides considering the distances between the
robot and opponent goal and the robot and the ball, two parameters that indi-
cate the chances of the opponent to intercept the ball after a shoot or a pass
are computed. Regarding the defensive robot, the postures of the opponent
attacker and the ball are relevant variables to take into account when selecting
the action to perform. Experiments in a simulated environment are performed
to evaluated the proposed approach.

2.3.3 Pattern Recognition

Recognizing and learning from other teams is a desired ability in order to
improve the strategy of a team, and thus, the action selection strategy of the
players. Therefore, some researchers address the opponent modeling problem
through pattern recognition of sequences. The work reviewed in this section is
all applied in the Simulation League, which is the league that can provide most
reliable data for the problem tackled here.

Huang et al. [23] present a mechanism to recognize and retrieve teams’
plans. A plan includes the agents that take part of the plan, the starting condi-
tions, the goal state and the agents’ behaviors. In order to recognize plans, the
first step is to translate observations into agents’ sequential behaviors. These
sequences are gathered following a set of rules and transformed into trie struc-
tures (a multi-way tree structure [29]). They define several events that activate
the recognition functions (for instance, when a robot gets the ball, the algo-
rithm starts recording). Plans are obtained retrieving the most significant sub-
sequences of behaviors within a trie structure through statistical dependency
test.

Lattner, Miene et al. [34, 43] present an approach that applies unsupervised
symbolic off-line learning to a qualitative abstraction in order to create frequent
patterns in dynamic scenes. The quantitative data is represented by time series.
In a first abstraction step, each time series is segmented into time intervals
which satisfy certain monotonicity or threshold conditions. In the second step
the attribute values describing the intervals are mapped into qualitative classes
for direction, speed or distance. The idea then is to create patterns based on
the qualitative information of the environment (input). The result of learning
is a set of prediction rules that give information about what (future) actions or
situations might occur with some probability if certain preconditions satisfy.
Patterns can be generalized, as well as specialized.

2.3.4 Fuzzy Theory

Fuzzy Theory is another selected approach [55] since it naturally handles un-
certainty, which is highly present in the real world. The advantages of fuzzy
theory is that it models imprecise or vague concepts, usually used by humans
in their daily reasoning. Using fuzzy rules is more intuitive for an expert,
rather than trying to find functions that model the problem to solve. How-
ever, the difficulty here is to determine the fuzzy membership functions that
represent the variables to use in the problem to solve.

Within this context, a fuzzy logic based strategy for dynamic role assign-
ment is introduced by Sng et al. [57]. Role assignment is related to action selec-
tion, since each role determines the actions the robots should perform. Hence,

2.3. OTHER MODELS APPLIED TO ROBOCUP 23

the selection of a role indirectly implies the actions selection for a player. Their
work is applied in the Small-Size League (with only 3 robots), where a central-
ized coordinator (the fuzzy role selector) assigns the roles to the players. The
algorithm first selects the “attack ball” role (the robot moving after the ball),
and then assigns the remaining roles to support the main role. Four fuzzy vari-
ables describe each robot situation (distance to ball, orientation, shoot angle,
and path obstacle). The fuzzy rules determine the output fuzzy membership
value for every robot. The robot with the highest value is assigned as the robot
going after the ball. The formation of the other two robots is then derived sim-
ilarly (using fuzzy rules), positioning themselves near to the robot going after
the ball.

Lee et al. [35] present similar work where a fuzzy logic system is used as a
mediator to handle situations where more than one robot may be responsible
for an area. Each robot has a role based on its home area. However, when
the ball is positioned in overlapping areas the robots should switch their roles
to achieve a cooperative strategy, i.e. one robot should go for the ball, while
the other one should assist it. To this end, fuzzy rules for each overlapping
region (three predefined regions) are introduced where the input variables are
the distance between the robot and the ball, angle between the robot and the
ball, and the angle between the robot and the goal. The output indicates the
role of the evaluated robot, i.e. support, shoot, change role with the other robot,
etc. Their work is applied in the Middle-Size League, although experiments are
only shown in a simulated environment.

Related to the action selection problem, Wu and Lee [73] focus their re-
search on the selection of five action categories: intercept, shoot, block, sweep and
stand by within the vision-based soccer system (as in the Small-Size League).
The input variables are the defense factor (distance of the robot to the home
and opponent goal), the competition factor (distances and angles of all robots
to the ball) and the angle factor (ball accessibility from the robot point of view).
The output of the rules indicate the action to perform by the robot. The exper-
iments show one-to-one games. Although this work is more related to ours, in
the sense that explicit actions are chosen, the approach only considers a single
player and therefore, no cooperation can be considered.

2.3.5 Planning

Although a traditional technique within Artificial Intelligence, planning is not
generally applied in complex domains where uncertainty, incomplete knowl-
edge, real time response, etc. are present. However, we can find some work
within the robot soccer domain, since planning can also be seen as a decision
making layer for selecting the appropriate actions to perform.

Fraser and Wotawa [18] propose a framework based on STRIPS [17] where
optimizing the plan is not the main purpose, but monitoring the plan execution
instead. Knowledge representation is done using first order logic and uncer-
tainty is not considered on purpose. Given the initial state I observed by an
agent, a plan p is calculated to achieve the goal G using the domain theory.
They extend the classical planning problem definition by plan invariants. A
plan invariant is a manually defined logical sentence that has to remain satis-
fied in the initial and all subsequent states (similar to our work and the escape
conditions proposed by Lin and Chen). Possible reasons to invalidate a plan

24 CHAPTER 2. CBR PRELIMINARIES AND RELATED WORK

are: inexecutable actions (a precondition is not fulfilled), failed actions (due to
imprecision in the robots actions), unreachable goal (due to external events)
and unfeasible goal (changes in the environment). Hence, plan invariants are
monitored at all times during plan execution. They also introduce a mecha-
nism for achieving cooperative planning through role allocation. Once again
preconditions and invariants assign roles to players. Since the framework is
applied in the Middle-Size League, all robots may not share the same world
state at a given point. In order to avoid conflicts in the role assignment, once
a robot selects its role, the robot broadcasts it with an associated utility value.
Hence, the robot with higher utility value keeps its role, while the conflict-
ing robots must pick some other role. Explicit communication is used among
robots to achieve interaction. For instance, a robot may request a pass to an-
other robot. Invariants are used to monitor the interaction and to make sure
that both robots agree on the cooperative task.

Hierarchical Task Network (HTN) planners have been proposed by Obst
and Boedecher [46] to achieve coordinated behavior while agents follow the
strategy suggested by a human expert. HTN planning makes use of domain
knowledge to speed up the planning process. Tasks may be complex or prim-
itive. The HTN planners use methods to expand complex tasks into primitive
tasks that can be then executed using planning operators. Their planner gen-
erates what they call plan stub, a task network with a primitive task as the first
task. As soon as a plan stub is found, the agent can start executing the task. To
handle non-determinism, a plan is treated as a stack. The tasks in the stack are
marked as pending or expanded. The former ones are tasks waiting for execu-
tion if they are primitive tasks, or waiting for expansion, if they are complex
tasks. When a subtask fails, all remaining subtasks of the complex task are re-
moved from the stack and it is checked if the complex task can be tried again.
Once a task is successfully finished, it is removed from the stack. The lazy
evaluation in the subtask expansion ensures that the planning process is fast
enough for the requirements of the working domain (Simulation League 3D)
and at the same time, maintains its reactiveness property to handle changes in
the environment.

2.3.6 Neural Networks

Neural Networks (NN) [54] have been proved to efficiently perform in many
domains, including robot control. However one of their main drawbacks, as
in decision trees algorithms, is the large amount of data needed for the train-
ing, which is not always feasible to provide. Another drawback is that the
knowledge of the system cannot be evaluated or directly modified by a human
expert.

Initial work is presented by Kim et al. [26]. They propose an action selec-
tion mechanism (ASM) based on the role of the player. The ASM is composed
of four modules: the action set module computes run-time parameters and
feasibility for executing the available actions; the internal module selects an
action given the current situation without considering opponents; the supervi-
sor may alter the actions attributes or enforce certain actions; and finally, the
intervention module calculates the level of disturbance of opponents, i.e. how
the existence of an opponent interferes in the current situation. This latter con-
tribution is similar to the work presented by Ahmadi and Stone, where the Q

2.3. OTHER MODELS APPLIED TO ROBOCUP 25

values of the states where opponents might possibly be located are modified
on-line. In order to compute the level of disturbance a multi-layer percep-
tron is proposed. The training set is manually obtained: an expert observes
a game and labels those situations where the opponents should be taken into
account, and therefore, their disturbance level is high. The MLP is a two layer
feed-forward neural network. The approach is tested with real robots in a one-
to-one scenario.

Jolly et al. [24] present a more complete work, where a two-stage approach
using neural networks for action selection in the Small-Size League is pro-
posed. The first attempt is focused on deciding which of the two robots near
the ball must go after it while the other remains as a supporter. Hence, the in-
put variables to the NN correspond to the distances and angles to the ball. They
also introduce a forward boolean variable, which indicates if there is a teammate
ahead of the ball. This way they enhance the accuracy of the decision-making
with the global strategy of moving forwards, i.e. moving towards the attack-
ing goal. The actions of the robots are based on the region where the ball is
located. Thus, if the ball is within the attack zone, the robot going after the
ball should kick to goal; within the defense zone, the action is to intercept the
ball and pass it to the teammate; and finally, within the pass zone, the robot
should pass the ball to a teammate if this is a forward teammate. Otherwise, a
kick to goal is performed. The NN is a three layer feed-forward network, with
five inputs and two outputs. The first stage of the learning process consists in
using an evolutionary approach to roughly acquire the neural network weight
matrices. Next, the NN is used to fine-tune the weights. The training data
is obtained randomly generating field configurations and the corresponding
robots’ actions are obtained through rules. They also extend their NN to com-
pound networks in order to handle larger teams (5 vs. 5). They show results
for the learning curves of experiments in simulation for 3 vs. 3, 4 vs. 4 and 5
vs. 5 scenarios.

2.3.7 Evolutionary Algorithms

Evolutionary computation is based on the mechanics of natural selection and
the process of evolution [22]. Chromosomes encode the potential solutions
of the problem to solve. During the search, chromosomes are combined and
mutated in order to find the best solution (although it is not guaranteed to find
the optimal one).

Nakashime et al. [45] propose an evolutionary method for acquiring team
strategies in the Simulation League. The algorithm evolves rules (called action
rules) for determining the actions of the players. The actions are of the type: if
agenti in area A and nearest opponent is Bi then action is C. The chromosome
corresponds to a concatenation of the ten players’ possible actions in the differ-
ent predefined regions of the field (48 regions). There are ten possible actions,
such as dribble toward the opponent side, pass the ball to nearest teammate,
clear the ball towards opponent side, etc. Once the rules are evolved, during a
game the players follow the rules except for those situations where a player is
in possession of the ball within the penalty area. In these cases, the player first
evaluates a shoot to the goal. If the evaluation results in success, the player
kicks the ball directly. Otherwise, it follows the rule. This way they ensure
reactiveness in the player’s behavior.

26 CHAPTER 2. CBR PRELIMINARIES AND RELATED WORK

Related to evolving rules, but in this occasion fuzzy rules, Park et al. [47]
propose the use of evolutionary algorithms to determine the appropriate fuzzy
control rules for the path planning problem in robot soccer. More precisely,
they propose some modifications in the classical evolutionary algorithm in or-
der to automatically detect the sensitivity of various genes in contributing to
the fitness solution. This way they ensure that the evolved chromosomes are
goal-oriented, in the sense that their performance is tested against a specific
goal for which they are good at, and not for general purposes. The proposed
modifications for the parent selection process assist in the evolution of opti-
mal solutions for multi-objective path planning problems. Experiments with a
real robot prove that the proposed approach generates paths that have shorter
elapsed times with significantly reduced variation.

Luke et al. [40] propose to learn the robots behaviors through Genetic Pro-
gramming instead of hand-coding them. Their main goal is not to obtain finely-
tuned players, but to study the feasibility of evolving a fair team in the Simu-
lation League. The individuals are represented as program-trees and crossover
and mutation are the operators used to evolve them. Two trees were to be
learned: one for making kicks, and the other, for moving the player. They
also propose two types of teams: homogeneous, where each player would fol-
low the same learned trees, or heterogeneous, where each player would de-
velop its own trees. Teams’ fitness were assessed based on the game score of
competitions (each team evolving its own behaviors). They expected that the
heterogeneous team would outperform the homogeneous team. However, the
evaluation showed the contrary. They believe that more training time would
permit the heterogeneous team to improve the players strategy, and therefore,
outperform the homogeneous team.

2.3.8 Other Approaches

Konur et al. [31] focus their work on learning decision trees for action selection
for a whole team (defenders, attackers and midfields) in the Simulated League.
They restrict the learning to the players in ball possession. They define a set
of meta-level actions which are to be selected by the decision tree (C4.5 intro-
duced by Quinlan [49]). Some of the 35 features used for the attribute set are
type of player, playing region, closest teammate to ball, distance and angle to
ball, etc. The advantages of decision trees are that the encoded rules are “read-
able” for humans in the sense that they are easy to understand and inspect by
an expert. However, in Konur’s approach because of the large number of fea-
tures used during the learning, the resulting rules are not so understandable
nor easy to follow. Instead, we believe that the use of cases is closer to how
humans reason. Moreover, the drawback for using decision trees is the need of
a large set of training examples, which in the case of real robots, is not feasible.
Instead, the Simulation League provides enough data to gather the required
information.

Bayesian classification methods are very common to use when dealing with
uncertainty because they are based on probability theory [13]. Hence, within
the Simulation League 3D, Bustamante et al. [9] present their work addressed
to the action selection using Naive Bayesian Networks. The input variables of
a Naive Bayesian classifier should be discrete, and therefore, they use a fuzzy
extension: a Fuzzy Naive Bayes Classifier. The task of the agent is to evaluate

2.4. CBR APPLIED TO OTHER ROBOTIC-RELATED DOMAINS 27

the success probability of a pass. To this end, the features of the classifier are
fuzzy distances and angles to ball and players (teammates and opponents). In
their experiment, the player in possession of the ball has to select the most
adequate teammate to pass the ball, given their positions on the field. Hence,
for each teammate and each opponent, the agent computes the probability of
success. The teammate with higher probability is chosen to perform the pass.

2.4 CBR Applied to Other Robotic-Related Domains

Next we review some work done in the past years within the robotics field
where CBR techniques have proved to successfully perform. Similar to the
RoboCup domain, real-time response (although probably not as restricted as
within robot soccer), uncertainty, imprecision and dynamism are some of the
features that describe the environments where the work we review next is ad-
dressed to.

Ram and Santamarı́a [51] and Likhachev and Arkin [37] propose the use
of CBR in the robot navigation domain: the SINS system and the MissionLab
system respectively. The goal of the CBR system is to set the gain parameters
for the motor schemas of the robot’s navigational layer. In both approaches
the case description is represented by feature vectors. During retrieval, while
SINS evaluates the current problem with respect to the case base in one round,
MissionLab first compares the spatial feature vectors of the cases filtering those
with low similarity. The selected cases are then compared using the temporal
feature vectors. Once a case is retrieved, SINS reuses the new retrieved case.
MissionLab instead includes a case switching tree to decide whether the cur-
rently applied case should still be applied or should be switched to the new
retrieved case. Next, the gain parameters of the case solution are adapted and
reused. Another difference between both approaches is the learning process.
SINS receives feedback to evaluate whether the retrieved case should be mod-
ified based on the adapted solution currently reused, or a new case should be
created instead. Regarding MissionLab, Kira and Arkin present in [27] an ex-
tension of the system where a learning module decides which cases to remove
if a new case has to be created and the case library is full.

A global navigation strategy in large-scale dynamic environments by means
of CBR techniques is presented by Kruusmaa [32]. The problem is to find the
path between a starting point and a given goal. The system uses a grid-based
path planning and therefore, at least the shape and size of the environment
must be indicated. However, the presence and location of obstacles is unknown
and changes over time. Hence, the main goal of the CBR system is to minimize
collision risk, globally choosing routes where few obstacles are encountered.
Given a new task (going from point A to point B), the system chooses between
planing a new path through a probabilistic planner or using the description of
an old path from the case base (either opting for exploration or exploitation).
The solution description corresponds to the path. The outcome of the solution
is the cost, which reflects how easy the path was to follow. The cost is updated
every time the path is reused indicating the average characteristics of that path.
Choosing the path with lower cost leads the robot to chose safer paths and
minimize time travel. Similar to the approach presented by Kiran [27], a case
forgetting process is included to prevent the case base from growing to much.

28 CHAPTER 2. CBR PRELIMINARIES AND RELATED WORK

Thus, an old case is forgotten and the new one is stored if the cost of the new
case is lower. If no similar case is found for the current problem solved, it is
incorporated in the case library as well.

Similar work addressed to the path-planning problem is proposed by Haigh
and Veloso [21]. They present a path planner for the city of Pittsburgh using the
PRODIGY planner and its analogical reasoning [68]. The general knowledge
corresponds to the map of the city represented as a planar graph whose edges
indicate street segments and the nodes, intersections. A case corresponds to
a trace of the plan generated by PRODIGY including search decisions to be
avoided at reuse, situations encountered at execution time as explanation of
errors and the replanning done to overcome those errors. A case is also ap-
proximated by straight line segments in a two-dimensional graph, which acts
as an indexing feature for facilitating the retrieval process. As in [32] a com-
promise between finding new routes or using old ones is taken into account.
Therefore each case is assigned an efficiency value that indicates the “qual-
ity” of a case considering traffic conditions, road quality and time of the day.
This factor is also considered during retrieval. The retrieval process returns a
set of cases ordered according to the sequence in which the metric (geometric
similarity metric introduced in [20]) believes they should be retrieved. The re-
trieved cases are then merged to obtain the solution route. During reuse, extra
planning can be performed if needed (e.g. a closed road). In this situations, the
failed retrieved case is not altered, and instead, the efficiency value is modified.

The problem of indoor navigation using sonar maps is addressed by Mi-
carelli et al. in [42]. The goal of the system is to classify the sonar-based
maps into a set of predefined categories that represent structured environments
within a building, such as corridor, corner, crossing, end corridor and open
space. A case is defined as a tuple where the problem description corresponds
to a digital sonar map (reprented by an array of 360 real numbers between 0
and 1), and the solution description corresponds to a topological feature, i.e.
one of the categories. There is a first training stage to build the case base where
a human expert indicates the solution of the map detected. As the system ac-
quires more cases, the number of queries to the expert decreases. The similarity
measure corresponds to a cross-correlation factor metric.

Urdiales et al. [64] present a sonar-based reactive navigation approach. The
work is addressed to local obstacle-avoidance of an autonomous robot. They
include a CBR system to determine the direction the robot should follow to
safely avoid colliding with close obstacles. The deliberative layer determines
the robot path and takes into account static or know obstacles, but does not
deal with unexpected obstacles found during navigation. Thus, once the goal
is set, the robot changes its heading to reach it in a straight way. The reactive
layer is only triggered when the robot detects obstacles through the sonar. The
sonar readings are part of the problem description of a case, as well as the goal
of the task, i.e. the point that the robot should reach. Since no global model of
the environment is used, the goal is represented by the direction vector from
the current position of the robot to the goal. A nearest neighbor algorithm
is used for the retrieval step. A first training stage is performed to acquire
the case base. The robot is manually guided through different paths in order
to create new cases. A new case is included each time a significant sensor
configuration is detected. This process is also used during the autonomous
robot performance after the training stage.

2.5. SUMMARY 29

Abbreviation Technique

CBR Case-Based Reasoning
RL Reinforcement Learning
LO Learning from Observation
EA Evolutionary Algorithms
DT Decision Trees
FT Fuzzy Theory
PF Potential Fields
PR Pattern Recognition
NN Neural Networks
A Auctions
P Planning
BN Bayesian Networks

Abbreviation League

SM Simulation League
SSL Small Size League
MSL Middle Size League
4LL Four-Legged League

Table 2.1: Table of abbreviations.

2.5 Summary

We summarize the work reviewed within the RoboCup domain in Table 2.2.
The classification is based on the problem the work is addressed to and the
league where it is applied to, indicating for each work the used technique. The
nomenclature used corresponds to the abbreviations presented in Table 2.1.
The problems we have focused our attention to are: action selection, opponent
modeling or state recognition (team formation recognition), role assignment, posi-
tioning (locations on the field where the robots should move), localization (com-
puting the position of the robot on the field by itself) and skills (learning low
level actions such as kick the ball, walk, etc.).

We must remark that we only list a summary based on the work presented
in this thesis and therefore, with direct relation with the thesis topic. We do
not intend to summarize a complete survey of the work done so far within
RoboCup.

We can observe that in general most of the work is applied to the Simula-
tion League. Besides being the earliest league, the advantage of this league is
that researchers do not have to deal with much of the problems that arise with
real robots. Hence, they can easily focus their efforts on developing skilled soc-
cer players using different techniques addressed to high level decision-making
without considering lower level problems. Moreover, and as mentioned be-
fore, this league also provides much more information about the state of the
world during a game as well as afterwards (log files produced during a game),
which can be later on widely explored using machine learning techniques.

The Middle-Size League has also produced an important amount of work.
Probably the appeal of this league with respect to the other leagues is that on

30 CHAPTER 2. CBR PRELIMINARIES AND RELATED WORK

SL SSL MSL 4LL

Action
Selection

CBR: [10], [38], [8]1

RL: [52]
LO: [33]
EA: [45]
DT: [31]
P: [46]
BN: [9]2

RL: [48], [15]4

FT: [73]3

NN: [26]3, [24]4

RL: [28]5

P: [18]4
CBR: [25]6

RL: [5]7,10

Opp Mod/
State Recog.

CBR: [70], [4], [58]
PR: [23], [43]

CBR: [41]4

Role
Assignment

CBR: [41]4

RL: [15]4

FT: [57], [35]4,8

A: [65]8

Positioning CBR: [72]
CBR: [41]4

EA: [47]9

PF: [48], [63]5
PF: [65]8

Localization CBR: [71]9

Skills RL: [52] RL: [15]4 RL: [28]5

Table 2.2: Related work classification.

(1): The decision making mechanism only indicates whether a pass is feasible
or not.

(2): Selects which teammate is the most appropriate to receive a pass.

(3): 1 vs 1 experiments.

(4): Experiments in simulated environment only.

(5): Experiments with a static opponent(s).

(6): No experimentation reported.

(7): The decision making mechanism chooses the type of kick to perform be-
tween two types of kicks.

(8): Experimentation without opponents.

(9): Experimentation with one robot.

(10): Random movements for opponents.

2.5. SUMMARY 31

the one hand it deals with real robots (robots are rather small and quite precise)
but on the other hand, it maintains a centralized system where most of the pro-
cessing routines, as well as the robot control, take place. Hence, although hav-
ing to deal with both hardware and software problems, the decision-making
is done on an off-field PC. The state of the environment is usually obtained
through an overhead camera and the image processing is done by the off-field
PC. Thus, robust computer vision algorithms can be applied, minimizing the
uncertainty in the incoming information. As we can observe from the summary
table, several different approaches have been applied to this league, attempting
to solve most of the problems remarked here.

The two latter leagues correspond to the most challenging ones, since robots
are completely autonomous and all the decision-making and computational
processes have to be done on-board. The advantage of the Four-Legged League
with respect to the Middle-Size League is that researchers do not have to deal
with hardware design. The robots used in this league are commercial robots
and cannot be modified. However, the drawback is that the robot processor is
limited and therefore, simple algorithms must be designed. On the contrary,
the Middle-Size robots can be adjusted as required, and more powerful PC’s
can be used. The work presented so far in these leagues is much more limited
compared to the other two leagues.

Regarding the experimentation within the leagues with real robots (SSL,
MSL and 4LL) we can observe that, in general, simplifications of a real game are
considered. Thus, simulated environments are used to test the proposed ap-
proaches, or if experimenting with the real robots, opponents are either omit-
ted, static or performing random movements. These assumptions clearly show
the difficulties that researchers have to face when dealing with real robots per-
forming tasks in a real environment.

Our work can be classified within the action selection, role assignment
and positioning problem domains applied to the Four-Legged League. As we
will explain through this dissertation, the CBR system retrieves and adapts a
case specifying the actions the robots must perform (action selection problem).
Moreover, it indicates which actions should perform each robot and their ini-
tial positions. Hence, the role assignment and positioning problems are solved
through the case reuse. Although two works have been presented in the action
selection domain within this league [25, 5], in this dissertation we present a
complete framework addressed to the decision-making of a multi-robot sys-
tem, where a set of actions for each robot is selected (not only two possible
actions as in [5]), and the subsequent execution of these actions (the work pre-
sented in [25] is preliminary and only refers to the first stage, the decision-
making). Furthermore, we have included the cooperative aspect in the task
execution through explicit passes between robots. To this end, a multi-robot
architecture and a coordination mechanism are introduced. To evaluate our
approach, we have performed experiments consisting of two vs. two scenarios
both in simulation and with real robots, where the two attackers play against a
defender and a goalie (non-random opponents).

32 CHAPTER 2. CBR PRELIMINARIES AND RELATED WORK

Chapter 3

Modeling the CBR Approach:
The Retrieval Step

In this chapter we introduce the first step of the CBR cycle: the retrieval step.
Although most of the formulation is domain-oriented, the ideas presented can
be easily translated to other domains where a team of robots must perform a
joint task, such as moving objects in dynamic environment. First we describe
the case definition and the case base structure. Next we present the retrieval
process itself, defining the similarity measures and a filtering mechanism to
select a set of candidate cases. Finally, experiments in simulation are presented
to evaluate the retrieval process.

3.1 Case Definition

A case represents a snapshot of the environment at a given time from a single
robot point of view. We call this robot the reference robot, since the information
in the case is based on its perception and internal state (its beliefs). The case
definition is composed of three parts: the problem description, which corre-
sponds to the state of the game; the solution description, which indicates the
sequence of actions the robots should perform to solve the problem; and finally,
the case scope representation, which contains additional information used to
retrieve the case. We formally define a case as a 3-tuple:

case = (P, A, K)

where P is the problem description, A, the solution description, and K , the
case scope representation.

3.1.1 Problem Description

The problem description corresponds to a set of features that describe the cur-
rent state of the game from the reference robot perspective. In the robot soccer
domain we consider the following features as the most relevant for describing
the state of the game:

P = (RG, R, B, G, TmG, Tm, OppG, Opp, t, S)

33

34 CHAPTER 3. THE RETRIEVAL STEP

where:

1. RG: reference robot’s global position (xR, yR)

xR ∈ [−2700..2700]mm, xR ∈ Z yR ∈ [−1800..1800]mm, yR ∈ Z

2. R: reference robot’s position (xR, yR) with respect to the ball.

3. B: ball’s global position (xB , yB)

xB ∈ [−2700..2700]mm, xB ∈ Z yB ∈ [−1800..1800]mm, yB ∈ Z

4. G: defending goal

G ∈ {cyan, yellow}

5. TmG: teammates’ global positions

TmG = {tm1 : (xR1
, yR1

), ..., tmn : (xRn
, yRn

)}

where tmi is the robot identifier and n = 1..3 for teams of 4 robots. This
set could be empty for cases where no teammates are implied in the case
solution.

6. Tm: teammates’ relative positions with respect to the ball

Tm = {tm1 : (xR1
, yR1

), ..., tmn : (xRn
, yRn

)}

7. OppG: opponents’ global positions

OppG = {opp1 : (xR1
, yR1

), ..., oppm : (xRm
, yRm

)}

where oppi is the opponent identifier and m = 1..4 for teams of 4 robots.
This set could be empty for cases where no opponents are described in
the case.

8. Opp: opponents’ relative positions with respect to the ball

Opp = {opp1 : (xR1
, yR1

), ..., oppm : (xRm
, yRm

)}

9. t: timing of the match. Two halves parts of 10 min

t ∈ [0..20]min, t ∈ N

10. S: difference between the goals scored by our team and the opponent’s
team. The maximum difference allowed is 10. The sign indicates if the
team is losing (negative) or winning (positive).

S ∈ [−10..10], S ∈ Z

3.1. CASE DEFINITION 35

tm1

opp1

R

Figure 3.1: Graphical example of the description of a problem. The black
circle represents the ball, while the rectangles correspond to the teammates
and an opponent (gray).

We include both global and relative coordinates for the robots positions in
the problem description because, as we will see through the chapter, for some
calculation processes it is advantageous to use one representation or the other.
Due to the limited computational resource of the robots it is not feasible to com-
pute the relative representation every time it is needed. Thus, cases are actu-
ally stored using the global representation only, while the relative coordinates
are derived automatically when loading the case base. Figure 3.1 illustrates a
graphical example of the following problem description:

P =

































RG = (517,−506),
R = (−402, 0),
B = (919,−506),
G = yellow,
TmG = {tm1 : (919, 337)},
Tm = {tm1 : (0, 843)},
OppG = {opp1 : (1350,−506)},
Opp = {opp1 : (431, 0)},
t = 5,
S = 1

































3.1.2 Solution Description

The solution of a case corresponds to the sequences of actions each robot per-
forms. We call them gameplays. In this work, a gameplay must also satisfy two
conditions: (i) at least one robot has as its first action to get the ball; and (ii)
only one robot can control the ball at a time. Formally, we define a gameplay
as:

A =





tm0 : [a01, a02, . . . , a0p0
],

. . .
tmn : [an1, an2, . . . , anpn

]





where n = 0..3 is the robot identifier, and pi the number of actions teammate
tmi performs (tm0 corresponds to the reference robot). Actions are either indi-

36 CHAPTER 3. THE RETRIEVAL STEP

Action Parameters Description

NONE - no action

GET NEAR BALL - move close to the ball

APPROACH GRAB - approach the ball and grab it

GO TO POINT (x, y) move to point (x, y)

TURN [θ|(x, y)|tmi] turn until the robot’s global
heading is θ or until facing ei-
ther point (x, y) or robot tmi

TURN WITH BALL [θ|(x, y)|tmi] turn while grabbing the ball un-
til the robot’s global heading is θ
or until facing either point (x, y)

or robot tmi

WAIT BALL tmi wait until robot tmi kicks the
ball

DODGE [side|(x, y)] dodge to the left or right side, or
towards point (x, y)

PICK BALL - get ball

SUPPORT (x, y) move towards point (x, y) facing
the ball

KICK TO POINT (x, y) kick the ball towards point (x, y)

KICK kick kick the ball with kick type (e.g.
forward, side, bump, etc.)

Table 3.1: List of available actions and their parameters.

vidual actions, such as “get the ball” or “kick”, or joint actions, such as “pass
the ball to robot tmi”. The actions may have parameters that indicate addi-
tional information to execute them. For instance, in the turn action we can
either specify the global heading the robot should have or a point to face; in
the kick action we indicate which type of kick to perform (forward, left, ...), etc.
Table 3.1 details the list of available actions and their parameters.

During the execution of the solution, all robots on the team start perform-
ing their sequences of actions at the same time. The duration of each action
is implicitly given by the action type and its initiation depends on the action
preconditions. Consider the following situation: robot rA must pass the ball
to robot rB , and robot rC has to move to a point p. Without explicitly indicat-
ing the timestep of each action, the timing of the overall performance will be:
robot rA starts moving towards the ball to get it, while robot rB waits for robot
rA to make the pass. Once robot rA has done the pass, rB receives the ball
and kicks it forwards. In the meantime, since robot rC has no preconditions, it
starts moving to point p independently from the state in which the other robots
are. For this example, the solution would be:

A =





rA : [get ball, pass ball(rB)],
rB : [wait, receive ball(rA), kick(forward)],
rC : [go to point(p)]





3.1. CASE DEFINITION 37

(a) (b)

Figure 3.2: (a) Example of the scope of a case. The black circle represents
the ball and the gray rectangle represents the opponent. The ellipses corre-
spond to the ball’s scope (solid ellipse) and the opponent’s scope (dashed
ellipse). (b) Example of a simplified problem description. The opponent’s
scope is translated with respect to the ball.

3.1.3 Case Scope Representation

Because of the high degree of uncertainty in the incoming information about
the state of the world, the reasoning engine cannot rely on precise values of
the positions of the objects (robots and ball) on the field to make decisions.
Therefore, we model these positions as regions of the field called scopes. The
scopes are elliptic regions centered in the object’s position with radius τx and
τy . The case scope is defined as:

K = (ball : (τB
x , τB

y), opp1 : (τ1
x , τ1

y), . . . , oppm : (τm
x , τm

y))

where τB
x and τB

y correspond to the x and y radius of the ball’s scope, oppi is

the opponent identifier, and τ i
x and τ i

y , to the radius of opponent oppi’s scope
(i = 1..m). If there are no opponents in the case, then we do not include any
opponent pair opp = (τx, τy). Notice that we only consider the robots that
are opponents, and not the ones belonging to the team, i.e. reference robot
and teammates (R, tmi). As we will explain during the retrieval process, we
define two different measures for each type of robots. While one requires the
use of scopes, the other does not. Therefore, we do not need to include this
information for all robots in the case description.

We must also anticipate that the ball’s scope is fundamental for the retrieval
process as we will explain in Section 3.3. A case might be considered a potential
solution only if the position of the ball described in the problem to solve is
within the ball’s scope of the case. Otherwise, the case is dissmissed.

Regarding the opponents features, Opp, as defined in the problem descrip-
tion it corresponds to the relative positions of the opponents with respect to
the ball. The advantage of representing the opponents combining their relative
coordinates and their scopes is that we can easily define qualitative locations
of the opponents on the field with respect to the ball. Reasoning with qualita-
tive information is advantageous in this kind of domains, specially, as we have
said, because of the high uncertainty in the incoming information, and more-
over, because it facilitates the generalization of similar situations. For instance,

38 CHAPTER 3. THE RETRIEVAL STEP

it is more general to reason about an opponent being in front of the ball, rather
than the opponent being in position (x, y).

Figure 3.2a shows a simple example of this situation. The interpretation
of this case is that if we want to consider it as a potential solution for a given
problem, then the ball should be located within the ball’s scope and an oppo-
nent should be positioned in front of it. Figure 3.2b depicts a problem example
where the opponent is considered to be in front of the ball because it is located
within the opponent’s scope. Note that the opponent’s scope has been trans-
lated with respect to the current position of the ball in the problem. This is due
to the relative representation of the opponents with respect to the ball. Since
the ball is also situated within the ball’s scope of the case, we can state that the
case in Figure 3.2a is a potential solution to the problem in Figure 3.2b.

3.1.4 Case Example

Following the example shown before for the problem description, Figure 3.3
completes the case representation including the solution description and the
case scope. We represent the scopes of the ball and the opponent with solid
and dashed ellipses respectively. The arrows show the sequence of actions the
robots should perform to solve the problem. Robot R takes the ball first and
passes it to robot tm1 with a left head kick. Next tm1 receives the pass, turns
until facing point (2700, 200) (the pointed location indicated by the arrow in
the figure) and kicks with a forward kick. The formal description of this case
example is notated as:

case =





































































































RG = (517,−506),
R = (−402, 0),
B = (919,−506),
G = yellow,
TmG = {tm1 : (919, 337)},
Tm = {tm1 : (0, 843)},
OppG = {opp1 : (1350,−506)},
Opp = {opp1 : (431, 0)},
t = 5,
S = 1

































,













tm0 :

[

get ball,
pass ball(tm1, kick(head left)

]

tm1 :

[

wait, receive ball(tm0),
turn(2700, 200), kick(forward)

]













,

(

ball : (860, 480),
opp1 : (315, 200)

)





































































3.2. CASE BASE DESCRIPTION 39

tm1

R

Figure 3.3: Graphical example of the description of a case.

3.2 Case Base Description

Because of the spatial nature of the features in the case description, interest-
ingly a particular case can be mapped into multiple ones through spatial trans-
formations. Thus, from a small set of cases, we can automatically generate a
larger set reducing the human effort when building the initial case base.

From the set of features of the problem description, the ball’s and robots’
global positions and the defending goal have three symmetric properties:

1. with respect to the x axis,

2. with respect to the y axis and the defending goal, and

3. with respect to both axis, x and y, and the defending goal.

Hence, given a description of a problem, we can easily generate three more
problems applying spatial transformations based on the symmetric properties
shown above. We must point out that the spatial transformations have to be
done using the global coordinates of the features instead of using the relative
ones. Thus, when loading the case base, we first generate the symmetric cases
and then we derive the relative positions of the features for each case.

Similarly, we also compute the symmetric description of the case solution.
More precisely, we must transform only the parameters of some of the actions
that are related to spatial features, such as right, target point, turn angle, etc.
Regarding the case scope, no spatial transformations are needed since they
only represent the radius of the scopes. Table 3.2 summarizes the spatial trans-
formations defined above for the different types of features or parameters used
in the case description. Figure 3.4 illustrates an example of a simplified case de-
scription and its three symmetric descriptions (we omit the scopes and actions
for clarity purposes).

Since we are working in a real time domain and because of computational
limitations in the robots, it is essential to minimize the time invested during
the retrieval process. To speed up the search we use an indexed list to store
the cases in memory once they have been loaded. Thus, we separate the cases
based on the defending goal feature (yellow or cyan). When a new problem
has to be solved, we only look for similar cases in one of the subsets. Searching

40 CHAPTER 3. THE RETRIEVAL STEP

symmetry with respect to
x y & defending goal xy & defending goal

(x, y) (x,−y) (−x, y) (−x,−y)

g g {cyan, yellow} \ {g} {cyan, yellow} \ {g}
α −α π − α π + α

side {right, left} \ {side} {right, left} \ {side} side

Table 3.2: Spatial transformations of the different features and parameters
used in a case, where (x, y) corresponds to a point on the field, g is the
defending goal, α is an angle indicating the global heading of the robot,
and side is a direction parameter of a given action.

tm1

R

R

tm1

(a) (b)

tm1

R

R

tm1

(c) (d)

Figure 3.4: Example of the spatial transformations of a case: (a) original
case; symmetric cases with respect to (b) the x axis, (c) the y axis and de-
fending goal, and (d) the x and y axis and the defending goal.

3.3. CASE RETRIEVAL 41

in the rest of the case base is useless since those cases will not match the current
problem at all.

Summarizing, the case base is composed of a set of cases manually created,
where only the basic information is stored (global positions). When the case
base is loaded, for each case we first compute its symmetric cases and then
the relative coordinates of the features in each case. Therefore, we enlarge the
original case base four times its original size, covering the whole field. We
use an indexed list to classify the cases based on the defending goal feature to
speed up the search, i.e. we only have to explore half of the case base instead
of the complete one.

3.3 Case Retrieval

After having described the case definition and the description of the case base
used in this work, in the remaining of this chapter we focus our attention in
the retrieval step of the Case-Based Reasoning approach proposed.

Case retrieval is in general driven by a similarity measure between the new
problem and the saved cases. We introduce a novel method to base the se-
lection of the case to retrieve. We evaluate similarity along three important
aspects: the similarity between the problem and the case, the cost of adapting
the problem to the case, and the applicability of the solution of the case. Before
explaining in more detail the similarity computation we first define two types
of features:

• controllable features, i.e. position of the reference robot ant the teammates.
(the robots can move to more appropriate positions if needed).

• non-controllable features, i.e. the ball’s and opponents’ positions, the de-
fending goal, time and score (which we cannot directly modify).

The idea of separating the features into controllable and non-controllable
is that a case can be retrieved if we can modify part of the current problem
description in order to adapt it to the description of that case. Given the do-
main we are working on, the modification of the controllable features leads to
a planning process where the system has to define how to reach the positions
of the robots indicated in the retrieved case in order to reuse its solution.

3.3.1 Similarity Measure

Since the nature of the features’ domain differs from one to another, we intro-
duce different similarity functions to compare the features of a problem p and
a case c. We first compute the similarities along each feature (assuming fea-
ture independence) and then we use an aggregation function to compute the
overall similarity between the problem and the case. More precisely, for this
measure we compare a subset of the non-controllable features (ball’s position,
time, score difference) leaving the opponents’ positions for the applicability
measure. The defending goal is not taken into account here since, as already
mentioned in the case base description, we have pruned the search of cases
from the case base in advance by only considering those with defending goal
equal to the one described in problem p.

42 CHAPTER 3. THE RETRIEVAL STEP

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

-600
-300

 0
 300

 600 -600
-300

 0
 300

 600

 0

 0.2

 0.4

 0.6

 0.8

 1

similarity

X

Y

similarity

Figure 3.5: 2D Gaussian centered in the origin with τx = 450 and τy = 250.
The solid ellipse on the plane XY corresponds to G(x, y) = 0.367.

Similarity of Spatial Features

We are interested in defining a continuous function that given two points in
a Cartesian Plane indicates the degree of similarity based on the distance be-
tween the points. As larger the distance between two points is, the lower the
similarity degree between them. We propose to use a Gaussian function, which
besides fullfilling these properties, it is parametrized by its variance. We can
use this parameter to model the maximum distance allowed to consider two
points to have some degree of similarity. Since we are working in a two-
dimensional space, we use a 2D Gaussian function, G(x, y), to compute the
degree of similarity between two points.

Hence, in the robot soccer domain, we define the similarity function for the
ball feature as:

simB(xp, yp, xc, yc) = G(xp−xc, yp−yc) = exp

(

−

[

(xp − xc

τB
x

)2

+
(yp − yc

τB
y

)2
])

where (xp, yp) corresponds to the ball’s position in problem p, (xc, yc), to the
ball’s position in case c, and τB

x and τB
y the ball’s scope indicated in the case

as defined in Section 3.1.3. Figure 3.5 draws a 2D Gaussian function and its
projection on the XY plane (sequence of ellipses with increasing radius as the
similarity decreases). As we can observe, the Gaussian’s projection with radius
τB
x and τB

y represents the scope of the ball, i.e. the region within which we
consider two points to be similar enough, and corresponds to G(x, y) = 0.367.

Similarity of Game Strategic Features

Defining a function that combines time and score is essential since they are
closely related. As time passes, depending on the score of the game, we expect
a more offensive or defensive behavior. We consider as critical situations those
where the score difference S is minimum, i.e. when the chances for any of the

3.3. CASE RETRIEVAL 43

-0.2

-0.1

 0

 0.1

 0.2

-10 -8 -6 -4 -2 0 2 4 6 8 10

st
ra

te
gy

score difference

 0 2 4 6 8 10 12 14 16 18 20
-8

-4
 0

 4
 8

-1

-0.5

 0

 0.5

 1

strategy

time

score difference

strategy

(a) (b)

Figure 3.6: (a) Strategy function for time t = 5. (b) Strategy function over
time.

two teams of winning or losing the game are still high, and thus the strategy
(or behavior) of the team might be decisive. We model the strategy for a 20
minutes game as:

strat(t, S) =







t
20(S−1) if S < 0 (losing the game)
t
20 if S = 0 (tie game)

t
20(S+1) if S > 0 (winning the game)

where strat(t, S) ∈ [−1..1], with -1 meaning a very offensive strategy and 1
meaning a very defensive strategy.

Figure 3.6a depicts the behavior of the team at time t. Positive and negative
scoring differences mean that the team is winning or losing respectively. The
higher the absolute value of S is, the lower the opportunity of changing the
current score and the behavior of the team. For extreme values of S (in the
interval [−10..10], close to −10 or 10) the outcome of the function approaches
zero. Otherwise, the function value indicates the degree of intensity, either
for a defensive or an offensive behavior. Figure 3.6b shows the behavior of the
function combining both variables. As time passes, the intensity of the strategy
increases until reaching maximum values of 1 and -1, (defensive and offensive,
respectively). These features are beyond robot soccer and are applicable to
other games.

We define the similarity function for time and score difference as:

simtS(tp, Sp, tc, Sc) = 1− |strat(tp, Sp)− strat(tc, Sc)|

where tp and Sp corresponds to the time and score difference features in prob-
lem p and tc and Sc, the features in case c.

Aggregation Function

After describing the similarity functions for the different features, we must de-
fine an aggregation function in order to compute the overall similarity between

44 CHAPTER 3. THE RETRIEVAL STEP

the problem and the case. To this end, we tested four different functions: the
mean, the weighted mean, the minimum and the harmonic mean. After evalu-
ating their behavior, we concluded that:

• The minimum function results in a very restrictive aggregation function
since the overall outcome is based only on the lowest value. Hence, low
values penalize high values rapidly.

• Regarding the harmonic mean, for similar values, its behavior is closer
to the mean function. While for disparate values, the lower values are
highly considered and the outcome decreases (although not as much as
with the minimum function) as more lower values are taken into account.
On the contrary, the mean function rapidly increases the outcome for
high values, and does not give enough importance to low values.

• Finally, the weighted mean does not differentiate between low and high
values either, since the importance of each value is given by their weights.
If a low value has a low weight and the rest of the values are all high, the
outcome is slightly affected and results high anyway.

We are interested in obtaining an aggregation function that considers all
values as much as possible but highlighting the lower ones. This is an impor-
tant property as the values we are considering are similarities. Hence, if one
of the features has a low similarity, the overall similarity has to reflect this fact
decreasing its value. Based on the conclusions detailed above, we finally opt
for the harmonic mean as the aggregation function:

h(x1, ..., xn) =
n

∑n
i=1

1
xi

where xi corresponds to the individual similarity values of the features.
Therefore, within the domain we are working on, we define the similarity

function between problem p and case c as:

sim(p, c) =
2

1
simB

+ 1
simtS

=
2simBsimtS

simB + simtS

where simB and simtS are the similarity functions for the ball and time-score
difference features respectively.

3.3.2 Cost Measure

This measure computes the cost of modifying the controllable features, i.e. the
cost of adapting the current problem to the case. It is computed as a function
of the distances between the positions of the robots in the problem and the
adapted positions specified in the case after obtaining their correspondences.
Next we separately present the new concepts introduced with this measure.

Adapted Positions

We refer to the adapted positions as those global locations where the robots
should position in order to execute the solution of the case. In general, to com-
pute them we transform the robots’ relative coordinates to global coordinates,

3.3. CASE RETRIEVAL 45

��
���
���
���

���
���
���

������
������
������
������

������
������
������
������tmc

1

Rc Bc

Rp

tm
p
1

Bp

Figure 3.7: Case description (Rc, Bc, tmc
1), and current problem descrip-

tion (Rp, Bp, tm
p

1
). The dashed rectangles represent the adapted positions

of the robots with respect to the ball’s position described in the problem.

having the position of the ball in the problem as the reference point. But in fact,
the adapted position of the first robot taking the ball in the gameplay is com-
puted differently. It actually corresponds to the closest point to the ball within
the straight line between the current robot’s and ball’s position. As we defined
in the solution description, there is exclusively one robot whose first action is
going after the ball. Hence, its first position on the field will be next to the ball.
Figure 3.7 illustrates a simple adaptation example with two robots. Robot R is
the one that controls the ball first, while tm1 waits to receive the pass.

Robots’ Correspondence

In order to compute the cost of adapting a problem to a case we must first de-
termine the correspondence between the robots described in the problem and
the ones described in the case, i.e. which robot ri from the problem description
corresponds to which robot rj in the case description. Moreover, we must find
the best match, i.e. the one that minimizes the cost, including one restriction:
the distance between two points must be shorter than a given threshold, thrc.
Because of the domain’s dynamism, the distances the robots have to travel
must be limited since we cannot consent the robots to move from one point to
another for long periods of time. In the meantime, the state of the world may
have significantly changed and thus, the case may not be useful anymore.

In this work, since the maximum number of robots is small and fixed (n = 3,
the goalie is always the same robot, so we only have to find the best match for
the remaining three players of the team) we can easily compute all possible
matches (3! = 6) without the need of an efficient search algorithm. However,
as the number of robots becomes larger, the number of combinations increases
exponentially. Thus, we require a search algorithm to optimize the search as
we present later.

Cost Computation

We have studied two alternative functions to compute the cost: the sum of
distances the robots have to travel and the maximum distance. The sum of
distances aggregates all available distances in order to compute the outcome,

46 CHAPTER 3. THE RETRIEVAL STEP

2 B

1
A

a + b < D1 + D2

max(D1, D2) < max(a, b)

a

d

D1

c

D2

b

Figure 3.8: Trapezoid layout of the matching between pairs {1, 2} and
{A, B}. The correspondence based on the sum function is represented by
solid lines, while the max function is represented by the dashed ones.

while the max function is based only on one distance (the maximum), without
considering the remaining ones. Therefore, we could define the sum as a more
informed measure, where all values take part of the outcome. Moreover, in-
terestingly the maximum distance function has a drawback when considering
trapezoid (not necessarily having two parallel sides) configurations. Consider
the layout depicted in Figure 3.8, where we have to find the optimal match be-
tween points {1, 2} and {A, B}. We have depicted in solid lines the distances
the robots would have to travel using the sum function, and in dashed lines, the
distances using the max function. As we can observe, using the latter function
the robots’ paths intersect. This situation will happen whenever both trape-
zoid diagonals, D1 and D2, are shorter than the trapezoid larger side, b, and
the matching points correspond to the end points of the middle sides, c and d.
Figure 3.9 illustrates two more examples comparing the correspondence out-
come when using both functions. It is clearly shown that we prefer to use the
sum function instead of the max function.

Hence, in this domain we define the adaptation cost as the sum of distances
the robots have to travel from their current locations to their adapted positions:

cost(p, c) =

n
∑

i=1

dist(ri, adaptPosi)

where n is the number of robots that take part of the case solution, dist is
the Euclidian distance, ri is the current position of robot i and adaptPosi, the
adapted position for robot i.

Optimizing the search

As mentioned previously, finding the robots’ correspondence for a large num-
ber of robots requires an optimization algorithm to reduce the search complex-
ity. Therefore, we propose a Branch&Bound (B&B) search algorithm in a binary
tree for finding the best match between two robot configurations (the robots’
layout in the problem and the layout in the case). Each node of the tree rep-
resents either the fact of considering a match between the pair (ri, rj), or the
fact of not considering the match between this pair. In order to apply the algo-
rithm we need to define a heuristic function to estimate the lower bound and
to set the constraints that restrict the configurations in the nodes of the B&B
algorithm (in our case just one constraint):

3.3. CASE RETRIEVAL 47

Figure 3.9: Two different layouts showing the advantage of the sum func-
tion (solid lines) compared to the max function (dashed lines).

• heuristic: the cost of all possible matches will always be larger or equal
to the actual cost of a concrete mapping.

h(Rp, Rc) =
∑

j

min
i

(dist(ri, rj))

where Rp and Rc correspond to the set of robots positions in the problem
(ri) and the case (rj) respectively, i = 1..n for n robots in the problem
description, j = 1..m for m robots in the case description (m ≤ n), and
dist is a function that returns the Euclidean distance between two points.

• constraint: the distance between two points must be shorter than a given
threshold, thrc.

Hence, we reduce the complexity of the search for n robots from O(n!), all
possible combinations, to O(2n), the complexity of the search in a binary tree.

3.3.3 Case Applicability Measure

From the set of features included in the problem description of a case, there
is one that we have not yet included in any of the metrics described so far:
the opponents feature. This last feature is precisely the one we focus on next,
which is used to compute the applicability of a case.

Defining all possible configurations of opponents during a game, i.e. oppo-
nents’ positions on the field, is impossible. Hence, achieving a complete case
base composed of all possible situations would be not be feasible at all. For
this reason we believe that a certain degree of generalization must be included

48 CHAPTER 3. THE RETRIEVAL STEP

in the reasoning engine when dealing with this feature. Thus, we propose to
combine rules and case similarity as follows:

• free path rule: the trajectory of the ball indicated in the case must be free
of opponents to consider the evaluated case to be applicable.

• opponent similarity: the more opponents locations described in the prob-
lem coincide with the opponents locations described in the case, the higher
the similarity between the problem and the case.

Free Path

Given a case, the free path corresponds to a function that indicates whether the
trajectories the ball follows during the execution of the case solution is free of
opponents or not.

Because of the ball’s movement imprecision after a kick (either due to the
robot’s motion or the field’s unevenness), the ball could end in different loca-
tions. Hence, we represent a trajectory by means of a fuzzy set whose mem-
bership function µ is a function that indicates the degree of membership of a
point to the trajectory such that the closer the point to the center of the trajec-
tory, the higher the membership. More precisely, this function is defined as a
sequence of unidimensional Gaussians along a central axis, where the width
of each Gaussian increases from a minimum radius to a maximum one defined
in the trajectory. The projection of the µ function on the XY plane results in a
trapezoid (Figure 3.10a). This trapezoid covers the area of the field where the
ball could most likely go through according to the experimentation we have
performed. We formally define the membership function for a trajectory tj as:

µtj
(x, y) = exp

(

−

[

y

ρ(x, rmin, rmax, l)

]2)

where rmin, rmax and l correspond to the minimum and maximum radius re-
spectively, and the length of trajectory tj . Finally, ρ is a linear function that
indicates the radius of the Gaussian as a function of x. Figure 3.10b draws the
membership function described.

We call ball path the sequence of trajectories the ball travels through in the
solution of case c. Hence, we must verify that there are no opponents in the
current state of the game (problem p to solve) located within any of the trajec-
tories of the ball path. Figure 3.11a depicts an example. The initial position of
the ball corresponds to B1. After the first trajectory, t1, the ball stops at B2 and
continues the second trajectory, t2. Each trajectory results from a robot’s kick.
Formally, we define the free path function as:

free path(p, c) = 1−max
tj∈T

(φtj
(Opp))

φtj
(Opp) =

{

1, ∃oppi ∈ Opp (µtj
(oppi) > thrt)

0, otherwise

where T is the sequence of fuzzy trajectories (t1 and t2 in Figure 3.11a) de-
scribed in case c, Opp is the set of opponents (each opponent oppi is repre-
sented by the coordinates (x, y) of its position) in problem p, and µtj

∈ [0..1] is

3.3. CASE RETRIEVAL 49

rmin

rmax

l

ρ

y

x

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

-800 -600 -400 -200 0 200 400 600 800
 100

 200
 300

 400
 500

 0

 0.2

 0.4

 0.6

 0.8

 1

membership

Y

X

membership

(a) (b)

Figure 3.10: (a) Ball’s trajectory represented by an isosceles trapezoid de-
fined by the minimum and maximum radius, and the trajectory length.
(b) Membership function µ corresponding to the fuzzy trajectory with
rmin = 100, rmax = 300 and l = 500. The solid lines on the plane XY

correspond to µ(x, y) = 0.367

the membership function. We consider that a point (x, y) is within a trajectory
tj if µtj

(x, y) > thrt, where thrt = 0.367. The free path function could indicate
the degree of path freedom using µ directly, instead of φ. In other words, we
could define it as a fuzzy function as well.

Opponent’s Similarity

Opponents on the field are modeled by means of elliptical regions as defined in
Section 3.1. The opponent’s similarity measure indicates the number of these
regions that are occupied by at least one opponent described in the problem
to solve. We call them restrictions. As more restrictions are satisfied, the more
similar the state of the game and the case description are. Figure 3.11a shows
an example where only one restriction is fulfilled, since only one region (reg1) is
occupied by at least one opponent. We define the opponent similarity function
between a problem p and a case c as:

simopp(p, c) = |{regj | regj ∈ Reg, ∃oppi ∈ Opp (Ωregj
(oppi) > thropp)}|

Ωregj
(oppi) = G(xi − xj , yi − yj) = exp

(

−

[

(xi − xj

τ j
x

)2

+

(yi − yj

τ j
y

)2
])

where Reg is the set of elliptic regions in case c (reg1 and reg2 in Figure 3.11a)
and Opp is the set of opponents (oppi is represented by the coordinates (xi, yi)

of its position) described in problem p. Each region regj is defined by an ellipse
with radius τ j

x and τ j
y centered in (xj , yj) (the opponent’s scope indicated in the

case as defined in Section 3.1.3). We define Ω as a 2D Gaussian function, where
the projection on the XY plane for Ω(x, y) = 0.367 corresponds to an elliptical
region on the field with radius τ j

x and τ j
y . Thus, to consider that an opponent is

within a given region we set the threshold thropp to 0.367. Once again, in this

50 CHAPTER 3. THE RETRIEVAL STEP

attacking goal

t1
B2

t2

reg2

reg1
B1

a2

a1

(a) (b)

Figure 3.11: (a) Example of the ball’s path performed by a pass between
two players (robots are not depicted for simplicity). The dashed ellipses
represent the opponents regions described in the case, and the gray rect-
angles, the opponents described in the problem to solve. (b) Opponent
similarity as a justification of the action to perform. Action a1 represents
kicking towards the goal, while action a2, kicking towards the robot’s right
side.

work we only consider if an opponent is within a region or not, but we could
use the degree of occupation of a given region instead.

We must notice that although this measure is not crucial for the selection
of a case as a candidate (as we describe in the next section), its importance
lies in the candidates sorting process in order to select the retrieved one. While
the free path function is fundamental when deciding whether a solution can be
applicable or not, the opponent similarity measure can be seen as a justification
of the actions defined in the case solution. Consider the example shown in
Figure 3.11b. The robot in front of the ball can either kick towards the goal
(action a1), or kick towards its right (action a2). The selection of one action or
the other is basically given by the existence of an opponent in between the ball
and the goal. Hence, if there is no opponent, it is clear that the most appropriate
action to achieve the robot’s objective is to kick towards the goal. But if an
opponent (a goalie) is right in front, it makes more sense to try to move to a
better position where the robot can then try some other action. Therefore, we
can view the existence of an opponent as a justification for the selected action,
in this example, kick towards the right.

3.3.4 Case Filtering

After describing the different measures, we now have to combine them to re-
trieve a case to solve the current state of the game (the new problem p). Because
of the real time response requirements and the limited computational resources
of the robots, we need to reduce as much as possible the search space. There-
fore, for the retrieval process, we use a filtering mechanism. Each case c is eval-
uated using the measures explained in the previous sections. A case is rejected
as soon as one of the conditions is not fulfilled, and we proceed with the next
case. If a case fulfills all the conditions, then it becomes a candidate case. The
filtering mechanism is shown in Algorithm 1. We first verify the ball similarity
between the problem and the evaluated case (line 1), i.e. whether the current
ball position is within the ball’s scope indicated in the case (thrb = 0.367). Next,

3.3. CASE RETRIEVAL 51

from lines 2 to 6 we check that every distance between the current robots’ posi-
tions and their adapted positions is below the cost threshold (thrc = 1500mm).
Finally, if the ball’s path is free of opponents (line 7) then we consider the eval-
uated case as a valid candidate (line 8).

Algorithm 1 IsCandidate(p, c)

1: if simB(Bp, Bc) > thrb then
2: for all (robotp, robotc) ∈ match(p, c) do
3: if dist(robotp, robotc) > thrc then
4: return False
5: end if
6: end for
7: if free path(p, c) then
8: return True
9: else

10: return False
11: end if
12: else
13: return False
14: end if

After evaluating all possible cases, we obtain a set of candidates. From this
set we select only one using a sorting mechanism. The mechanism orders the
candidate cases based on a set of criterion. Thus, given a set of candidates and
the problem to solve p, each criterion orders the cases as follows:

ordered list = [ci, cj, ..., ck]

where ci, cj , ck are candidate cases, and the criteria are:

1. number of fulfilled restrictions (according to the opponent similarity): the
more restrictions satisfied, the better.

simopp(p, ci) ≥ simopp(p, cj) ≥ . . . ≥ simopp(p, ck)

2. number of teammates that take part in the solution of the case: we are interested
in using cases with multiple robots implied in the solution so we can
obtain a cooperative team behavior instead of an individualistic team,
where only one robot takes part in the execution of actions. Therefore,
the more teammates implied in the gameplay, the better.

numtm(ci) ≥ numtm(cj) ≥ . . . ≥ numtm(ck)

where numtm returns the number of teammates that take part in the case.

3. adaptation cost: the lower the cost, the better.

cost(p, ci) ≤ cost(p, cj) ≤ . . . ≤ cost(p, ck)

4. similarity: the higher the similarity, the better.

sim(p, ci) ≥ sim(p, cj) ≥ . . . ≥ sim(p, ck)

52 CHAPTER 3. THE RETRIEVAL STEP

5. similarity intervals: case classification in different subsets based on their
similarity. In this work we classify the cases in four similarity intervals
(the intervals can be easily modified based on the requirements of the
domain where the approach is applied):

• very high similarity: H = [0.8, 1.0],

• high similarity: h = [0.6, 0.8),

• low similarity: l = [0.4, 0.6), and

• very low similarity: L = (0.0, 0.4).

A further sorting process within each interval based on some other cri-
terion must be then performed. For this work we chose the adaptation
cost criterion. The goal of the similarity intervals is to have a trade-off
between the similarity and the adaptation cost. Having a case with high
similarity is as important as having cases with low cost. Therefore, even
if the similarity is very high, if its cost is also too high, it is more interest-
ing to select a less similar case within the same interval, but with lower
cost.

Finally we obtain a flat1 list:

ordered list = flat([intH, inth, intl, intL]) = [ci, cj , ..., ck]

where ints = [ci, cj, ...] is an ordered list of cases based on the cost crite-
rion, s ∈ {H, h, l, L} stands for the similarity interval, and flat is a func-
tion that returns a flat list.

Although we have presented five criteria to sort the candidates, the de-
signer may freely create any other alternative criterion that fits better to the
domain the approach is focused on. The next decision point is whether the
candidates ranking is based on a single criterion or based on a set of criteria. In
the latter case, the designer not only has to select which criteria to use, but also
the order in which each criterion will be applied.

Finally, after sorting the candidates, either based on a single criterion or
using multiple criteria, the most adequate case to retrieve corresponds to the
first element of the ordered list:

ret case = first(ordered list)

The overall retrieval process is presented in Algorithm 2. Its inputs are the
problem to solve, p, and the case base, CB.

In this work we opted to employ the combination of the five criteria previ-
ously described in the sorting process. Hence, we must decide which combina-
tion is the most appropriate to use in this domain, i.e. in which order to apply
each individual criterion. In the next section we study different candidate sort-
ing functions varying the order of the criteria used to rank the cases.

1We define a flat list as a list with one single level, i.e. no nested lists.

3.3. CASE RETRIEVAL 53

Algorithm 2 Retrieve(p, CB)

1: for c in CB do
2: if IsCandidate(p, c) then
3: candidates← append(c, candidates)
4: end if
5: end for
6: ordered list← sort(candidates)
7: ret case← first(ordered list)
8: return ret case

3.3.5 Experiments

The goal of the experimentation is to determine the most suitable criteria se-
quence to employ when sorting the candidate cases obtained after the filtering
process. To this end, we defined three sequences that apply the different crite-
ria described in the previous section in the following order:

• sorting function 1:

1. number of teammates

2. similarity intervals

3. number of fulfilled restrictions

4. adaptation cost

5. similarity

• sorting function 2:

1. number of fulfilled restrictions

2. number of teammates

3. similarity intervals

4. adaptation cost

5. similarity

• sorting function 3:

1. number of teammates

2. number of fulfilled restrictions

3. similarity intervals

4. adaptation cost

5. similarity

The experiments are performed in simulation only. The case base is com-
posed of 33 hand coded cases (hence, 132 cases in total after the generation of
their symmetric cases). The cases can be classified as single or multiple. The
former refers to those cases where only one robot takes part of the case, while
the latter, cases where two robots take part of the case. Furthermore, cases can
also be grouped based on the regions of the field they cover and the purpose
of the case. Hence, we organize the cases as follows:

54 CHAPTER 3. THE RETRIEVAL STEP

(a) (b) (c)

Figure 3.12: From left to right scenarios 1, 2 and 3 used during the experi-
mentation.

• back of the field (with or without opponents)

• middle of the field (with or without opponents)

• side of the field (with or without opponents)

• corner of the field (with or without opponents)

• in front of the goal (with or without goalie)

• in diagonal of the goal (with or without goalie)

A trial starts positioning the robots (two robots from one team, and a goalie
as an opponent) and the ball in a fixed location. Next, the robots from the
same team start playing using the CBR approach, i.e. retrieving cases and ex-
ecuting their solutions (we detail the reuse step in Chapter 4), while the goalie
randomly moves within its penalty box. The aim of the robots performing the
CBR approach is to score a goal. A trial ends when either the ball goes out of
the field or the goalie touches it.

Each experiment consists of 500 trials using the same sorting function and
the same layout, i.e. initial positions of robots and ball. Figure 3.12 depicts
the three scenarios we designed for the experimentation. Each experiment is
repeated for every scenario and every sorting function defined previously. In
this experimentation stage we are not interested in evaluating the outcome of
the trial in terms of goals scored, goals stopped, etc., but in observing the be-
havior of the sorting criteria defined above based on the cases they propose
as solutions to the different states of the game. Therefore, we computed two
measures: number of different retrieved cases during a complete experiment
(500 trials), and the average time for a trial to finish. Table 3.3 summarizes
the results obtained for each configuration. We have also computed the num-
ber of cases retrieved per trial and then ordered them based on this measure.
Figure 3.13 plots the outcome for the three scenarios.

3.3. CASE RETRIEVAL 55

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500

fr
eq

ue
nc

y

trial

sort1
sort2
sort3

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500

fr
eq

ue
nc

y

trial

sort1
sort2
sort3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500

fr
eq

ue
nc

y

trial

sort1
sort2
sort3

Figure 3.13: Trials sorted by frequency of cases retrieved in each scenario.

56 CHAPTER 3. THE RETRIEVAL STEP

scenario sort func #diff cases time (sec)

1
1 40 15.90
2 16 7.51
3 24 8.56

2
1 44 30.01
2 31 22.63
3 41 28.78

3
1 44 32.22
2 40 24.44
3 46 28.85

Table 3.3: Number of different cases reused in the experiments and aver-
age time per trial.

We can immediately observe that the second sorting function performs the
fastest compared to the other two, and at the same time, makes use of less cases
during the experimentation (shown both in the table and in the figures). These
two facts are directly related since the reason why it takes less time for a trial to
end and uses less cases is because the cases retrieved with the second sorting
function were more appropriate than those retrieved by the other functions. To
confirm this statement we studied the number of times each different case was
completely executed2 by each function. Figure 3.14 depicts the most relevant
outcomes for all three scenarios (for visibility reasons we cannot show all the
retrieved cases; we omitted those with very low frequency). Each letter cor-
responds to a different case. After analyzing the results in detail we conclude
that:

• In general, cases B, C, D, E, V and W are retrieved by the three functions
in every scenario. These cases correspond to situations where a robot is
in front or at one side of the goal with or witout the goalie. It is easy to
see that whenever the robots get near the goal they would need at some
point to use any of these cases to try to score avoiding the goalie in case
it was blocking the goal. Case A is often retrieved as well in the different
scenarios. This case represents a robot in the middle front of the field
having a short kick to the front. It is a very common situation that can
take place in any of the scenarios at any moment.

• Scenarios 2 and 3 present a layout where the robots are initially posi-
tioned in the middle back of the field. Hence, it is necessary to consider
cases located in this region, as cases G, H, I, J, K and L are. As we can
notice, case I has a very high frequency in scenario 2. This is due to the
fact that it is always the first case retrieved given the initial configura-
tion. Thus, all trials always start retrieving this case to move the ball to
the front region of the field.

• Case N is noticeably frequent in scenario 3. In this situation the ball is
positioned in an edge of the field (side of the field). Once again, since

2We do not consider cases that were aborted during their execution. The execution of a case
may be aborted when the state of the environment does not match anymore the case retrieved, i.e.
the case is no longer applicable.

3.3. CASE RETRIEVAL 57

Figure 3.14: Case frequency for each scenario. From top to down, scenario
1, 2 and 3.

58 CHAPTER 3. THE RETRIEVAL STEP

it perfectly matches the initial configuration of the scenario, this case is
always retrieved when the trial starts. The gameplay consists in pass-
ing the ball to the other robot (teammate) and this latter kicks the ball
towards the middle of the field. From that point on, middle cases as G,
H, I, J, K and L are most likely to be retrieved depending on the location
where the ball ends after the last kick.

• In scenario 1 case O is regularly retrieved by all three functions. It corre-
sponds to a situation where both robots are near the goal, one near to the
ball and having the goalie in front of it blocking the ball, and the other
robot on one side with a free path to score. Hence, a pass towards the free
robot is the most suitable action, so it can then try to score.

• Cases P, Q, R, S, T and U are specially retrieved by functions sort1 and
sort3 in all three scenarios. They correspond to cases with two robots in
the middle of the field with an opponent in front of the ball and another
one to one side of it. Therefore, the solution corresponds to a side pass
(the side free of opponents) to the other teammate.

Both sorting functions give the highest priority to cases with more than
one robot (criterion 2). Therefore, although a short kick could be enough
to get closer to the goal, it is not preferred because that would imply
having only one robot in the gameplay (individualistic behavior), instead
of having a pass between teammates (cooperative behavior). Although
for many adversarial situations cooperation among teammates is desired,
in this situation is not needed since the robots are alone in the middle of
the field without any opponents near (the only opponent is the goalie, but
it remains in its penalty box). Having passes in these situations can even
be disadvantageous because the pass could fail moving the ball further
from the goal, instead of getting closer to it.

On the contrary, function sort2 first considers the number of restrictions
fulfilled (criterion 1), and then the number of players (criterion 2). There-
fore, a case with simple kick to move the ball forward and no opponents
would be ranked first, while the cases mentioned above would be ranked
lower because they do not fulfill any of the restrictions, i.e. regions occu-
pied by opponents.

• We pay special attention to the first scenario, where function sort1 often
retrieves case F, while functions sort2 and sort3, retrieve case X instead.
In both cases the ball is diagonally located with respect to the goal, but in
the first case, there is a goalie, while in the latter, there is not (Figure 3.11b
draws this situation). Hence, the main difference between both cases is
the fact of having or not an opponent, i.e. the number of fulfilled restric-
tions (criterion 1). As an example, consider the situation where there is no
goalie in between the ball and the goal and that the similarity of case F is
much higher than the similarity of case X. Since function sort1 considers
the restrictions fulfilled (criterion 1) after the similarity intervals (crite-
rion 5), it is more likely that it would retrieve case F instead of case X. On
the contrary, the other two functions consider criterion 1 before criterion
5, and therefore, they first maximize the number of fulfilled restrictions,
and then the similarity. Since in this example there are no opponents,
retrieving case X is the most adequate.

3.4. CONCLUSIONS AND FUTURE WORK 59

Summarizing, in general all three functions worked well, achieving the goal
of the experiments and retrieving the appropriate cases to move the robots in a
reasonable and expected way (first four points of the previous analysis). How-
ever, after evaluating the experiments in more detail we can deduce that crite-
rion 1, i.e. number of fulfilled restrictions, is fundamental for ranking the cases
and considering it in first place is indispensable (mainly for the last two points
discussed). Moreover, the right selection of the case to reuse has direct impact
on the time invested in successfully achieving the goal. Therefore, we conclude
that function sort2 is the most suitable one to use in the retrieval process for the
remaining experiments of this work.

3.4 Conclusions and Future Work

In this chapter we have described the first step of the CBR cycle, i.e. the re-
trieval step. To this end, we have introduced the case structure, which corre-
sponds to features that describe the environment, as well as derived features
used during the different computational processes of the case retrieval. We
have also classified the features in two sets: controllable and non-controllable
features. The distinction between both types lies in the capability of the system
to modify the values of the features in the problem to solve, in order to increase
their similarity with the evaluated case.

The initial case base is composed of a set of hand-coded cases. Once the
case library is loaded, it is automatically enlarged exploiting the symmetric
properties of the case description through spatial transformations. The case
base is divided in two sets of cases depending on the defending goal feature,
reducing the search space during retrieval.

A case is considered as a candidate solution based on three measures: the
similarity measure, which corresponds to the aggregation of individual simi-
larities; the cost measure, which indicates the cost of modifying the controllable
features; and the applicability measure, which verifies if the case is applicable
or not based on the opponents’ positions in the problem to solve. This latter
measure is, in turn, composed of two different functions: the free path function
that indicates whether the ball’s trajectories are free of opponents or not, and
the opponent similarity, which is used to reinforce the similarity between the
problem and the case.

A filtering mechanism is applied to obtain a set of candidate cases to speed
up the search. These candidates are sorted based on different criteria and the
first case of the list corresponds to the retrieved case to use afterwards in the
reuse step. We have shown empirical experiments in simulation to test the
efficiency of the retrieval process.

As future work, several improvements to the current model that could be
addressed are the following (although not limited to them):

• The cost function should also reflect the existence of obstacles in the
robots’ paths (in this domain, obstacles correspond to opponents) to reach
the adapted positions. Thus, the cost could increase depending on the
obstacles found in the planned trajectory. However, we must not forget
that in this domain we are dealing with dynamic obstacles, and there-
fore, the cost at retrieval time can differ from the cost at reuse time. In

60 CHAPTER 3. THE RETRIEVAL STEP

other words, while the robot moves to a given point, the opponents also
modify their locations either moving from/to the robot’s path, altering
the initial computed cost. As proposed in [57] other features that could
be considered in the cost computation are the orientation of the robots,
velocities, etc.

• As already mentioned in Section 3.3.3 we could make use of the fuzzy
representations of the free path function and the opponent similarity func-
tion instead of the boolean function used in the current model. Hence, the
retrieval step would be more flexible when considering the applicability
of a case.

• Cases may only differ in their solution description. The retrieval process
presented in this chapter only evaluates cases based on their problem de-
scription. Therefore, two cases may result with the same ranking score. In
order to discriminate between similar cases, probably the outcome evalu-
ation of the reused solution should be introduced in the case description.
The problem here is how to evaluate the outcome of the reused case, i.e.
how well the execution of the case was performed? Is the outcome al-
tered due to external factors (because of the world dynamics) or not?

• Through time, cases are retrieved and reused one after another. After the
execution of a given case, there is a correlation between the last reused
case and the candidate cases of the following retrieval step. Thus, if the
last reused case corresponded to a given region of the field, it is most
likely that cases within or near that region will be considered as candi-
date cases in the next retrieval step. On the contrary, cases describing
situations in further locations, are less probably to have any similarity
with the current state. We believe, then, that it would be interesting to
include these relations in the case description. A simple way is to main-
tain for each case ci, a list of cases that were retrieved after its execution
(of case ci). Those cases in the list with higher frequency correspond to
the most likely cases to retrieve in the next CBR cycle. With this infor-
mation we could reduce the search space, and instead of looking in the
whole case base, the retrieval step could first center the search to a subset
of cases. If no case were found, then it should search in the remaining
of the case base. Moreover, we could obtain sequences of linked cases,
where given a case indicates the most probable next case to retrieve, and
in turn, this latter indicates its next probable case to retrieve, and so on.
Thus, patterns of cases can be obtained and analyzed afterwards for in-
stance to evaluate the overall behavior of the team, or used as predictions
of future states.

Chapter 4

Case Reuse through a
Multi-Robot System

We focus this chapter on the second step of the Case-Based Reasoning ap-
proach: the reuse step. In the previous chapter we described the retrieval step,
including the case definition, the different measures used for computing the
case similarity, and the retrieval process itself. Hence, after obtaining the re-
trieved case, we must center our attention on how to reuse this case.

In most case-based applications the reuse step consist in proposing a solu-
tion (or adapted solution) to the user who would then make use of this infor-
mation as she requires it. In this work, the user querying the case-based system
is not a single user, but a team of robots. The solution proposed by the system
consists of a set of sequences of actions that each robot of the team should reuse
(execute). Moreover, the execution must be done in a coordinated manner.

The first part of the chapter is devoted to the internal robot’s architecture,
while the second one is focused on the multi-robot system, the coordination
mechanism and the case reuse. More precisely, we describe how we have in-
tegrated the retrieval and reuse steps of the CBR approach within a team of
robots.

4.1 Robot Architecture

We define our robot architecture as a hybrid architecture with three layers (Fig-
ure 4.1):

• deliberative system, in charge of making the high level decisions. Two
modules coexist in this layer: the case-based reasoning engine (CBR mod-
ule), and the region-based algorithm (RBA module).

• executive system, responsible for the execution of plans or actions indi-
cated by the deliberative system. The system is composed of the behav-
iors module and the perception module.

• actuators/sensors: they correspond to the physical components of the robot.
Thus, the motors (legs, head and neck) correspond to the actuators, and

61

62 CHAPTER 4. CASE REUSE THROUGH A MULTI-ROBOT SYSTEM

motors

perception

state
world

RBA

no ca
se

RTM

CB

RUM

camera

w
or

ld
 s

ta
te

co
m

m
an

ds

behaviors

CBR

A
C

T
U

A
T

O
R

S/
SE

N
SO

R
S

SY
ST

E
M

D
E

L
IB

E
R

A
T

IV
E

E
X

E
C

U
T

IV
E

SY
ST

E
M

im
ag

es

msg

msg

w
ir

el
es

s
la

n

behi

behj

behk

be
h

i

be
h

i

Figure 4.1: Robot architecture.

the camera correspond to the sensors. The actuators receive the low level
commands from the executive system, i.e. from the behaviors, while the
camera sends the images to the perception module.

We also include the communication channel between the internal robot ar-
chitecture and the rest of the robots, i.e. the wireless lan. Robots are constantly
exchanging messages among them. Two main types of messages are transmit-
ted:

• periodical messages, which contain information about the robot’s beliefs
and state, such as teammate’s Id, teammate’s position, distance to the
ball, etc.

• explicit messages, which are used to transmit specific information, such
as an ABORT message.

The periodical information is included in the current robot’s world model,
while the specific information is queried by the specific modules that are ex-
pecting it. The modules are also able to send messages to the remaining robots.

Most part of the implementation of this architecture has been realized us-
ing the Carnegie Mellon’s team code, CMDash’06. More precisely, we have
used the executive system and the RBA module. We have extended their im-
plementation to include the CBR module and its relation with the rest of the
architecture.

4.1. ROBOT ARCHITECTURE 63

4.1.1 Deliberative System

As many other robot architectures, the deliberative system is in charge of mak-
ing the high level decisions in order to achieve a given goal. Moreover, in our
work the system is composed of two hierarchical modules: the CBR module
and the RBA module.

CBR Module

The CBR module contains the Case-Based Reasoning system. It is in charge
of proposing a solution for the current state of the game and monitoring its
execution afterwards, i.e. it is responsible for the case retrieval and the case
reuse. Hence, this module is composed of two components: the retrieve mod-
ule (RTM) and the reuse module (RUM). Since both components need access
to the case base, we also include it in the module.

The retrieval process defined in Section 3.3 takes place in the retrieve mod-
ule (RTM). Hence, given the current state of the game (the world model ob-
tained through the perception module), the RTM proposes a case as a solution
to that problem. It not only indicates the case identifier to the reuse module,
but also the matching between robots (so each robot knows which sequence of
actions indicated in the case to perform).

The reuse module (RUM) is triggered when it receives the information about
the retrieved case: the case identifier and the robots’ correspondence. It is in
charge of first moving the robot towards its adapted position, and next, execut-
ing and monitoring the sequence of actions indicated in the retrieved case. If at
any point, the case is not applicable anymore (we must recall that we are work-
ing in a dynamic domain and therefore, the state changes constantly), then the
execution of the case is aborted. We will go through the reuse step in more de-
tail in the next section since it implies the multi-robot system and we first need
to define some new concepts before continuing with the reuse description.

RBA Module

The region-based algorithm (RBA) is a general behavior-based algorithm that
activates different behaviors based on the region of the field where the ball is
located at a given time. It could be seen as a rule-based approach combined
with a decision tree algorithm. Each rule corresponds to a region of the field.
Thus, it defines a small set of rules of type: if ball in region regi, then apply
behavior behi. Each behavior is defined as a procedural process where typically
the robot will first approach the ball, and then based on a decision tree, it will
try either to get closer to the attacking goal or to score if it is close enough to
the goal.

The RBA also includes an implicit coordination mechanism to avoid having
the robots go after the ball at the same time. Thus, when a robot possesses the
ball, it informs the others so they move away from its path. In general, the
robots back up from their current positions on the field. The algorithm also
includes a set of roles that are assigned to each robot so they cover different
regions of the field. For instance, a defender stays at the back of the field, while
a striker remains in the front of the field waiting for an opportunity to attack
when the ball gets within its region.

64 CHAPTER 4. CASE REUSE THROUGH A MULTI-ROBOT SYSTEM

Combining the Modules

As we can see, the region-based approach describes a general player’s behavior
taking into account only local information for fast and reactive response to the
current state of the world. In other words, although it has some degree of de-
liberation, it still lacks a broader view of the state of the game to try to achieve
more ambitious strategies including collective actions with teammates. It is
mainly focused on taking the ball and moving towards the attacking goal in
an individualistic way, which of course, is also beneficial for certain situations
where a fast attack is fundamental.

On the contrary, the case-based approach uses a more complete model of
the state of the world considering, not only the ball’s position, but also other
aspects such as the positions of all the robots and evaluating the appropriate-
ness of executing a set of actions.

Hence, in the proposed deliberative system we combine both strategies, a
more deliberative one (the CBR approach) with a more general and reactive
one (the RBA approach), in a way that the latter one is triggered only when the
former does not find an appropriate solution for the current problem, i.e. there
is no case that matches the current problem well enough to be of use.

4.1.2 Executive System

This system is responsible for the execution of the actions indicated by the
deliberative system (in this case the actions correspond to behaviors), and the
world model generation.

A behavior is a sequence of actions that a robot executes to perform a task.
There is a wide range of behaviors, varying from very simple tasks, such as
“walk forward”, to very complex ones, such as “move away from ball”. Usu-
ally complex behaviors are compositions of simpler behaviors, or make use
of them for specific substasks, i.e. they have a hierarchical structure. For in-
stance, in the “move away from ball” behavior, the high level behavior must
constantly know the position of the ball. Hence, it makes use of the “track ball”
low level behavior. In general all behaviors, except for the very simple ones,
make use of the world model to know where the robots and the ball are located
on the field.

The perception module is in charge of building the world model of the
robot, i.e. the robot’s beliefs of the state of the world (its position, the ball’s
position, etc.). Although the perception system is much more complex than
the one we show here, for the purpose of this work we note two main sources
of incoming information from the outside world: the images from the camera
and the messages sent by other robots. The module processes the images sent
by the camera and infers the state of the world (objects positions). It also incor-
porates the incoming information from the teammates, i.e. the messages sent
through the wireless network. Hence, the world model of the robot not only
considers its own perception, but the teammates’ perceptions as well.

4.2. MULTI-ROBOT SYSTEM AND CASE REUSE 65

CB

perception action

CB

perception action

CB

actionperception

MSG
MSG

MSG

retriever2

retriever1 robot3

Figure 4.2: Multi-robot system for n = 3 robots and k = 2 retrievers. Each
robot has a library of cases (CB).

4.2 Multi-Robot System and Case Reuse

After detailing the internal robots’ architecture, we next describe the architec-
ture for our multi-robot system integrating the retrieval and reuse steps of the
CBR approach.

The multi-robot system is composed of n robots. All robots interact with the
environment and with each other, i.e. they perceive the world, they perform ac-
tions and they send messages (MSG) to each other to coordinate (e.g. retrieved
case, match, abort execution,...) and to exchange information about their in-
ternal state (e.g. retrieving, adapting, reusing,...). There is no external system
observing the complete environment where the robots execute their tasks, nor
a centralized system to collect the incoming information from the robots to
make decisions and to organize the task. Therefore, the team as a whole must
decide how to fulfill the task collaborating with each other, or even exchanging
useful information that some of the robots of the team may not perceive. This
characteristic is common in those domains where human access is not feasible,
and therefore, installing a centralized system is impracticable. Some examples
of such systems are planetary explorations or disaster rescue operations.

We distinguish a subset of k (1 ≤ k ≤ n) robots, called retrievers. These
robots are capable of retrieving cases as new problems arise. We refer as ex-
ecutors to the rest of the robots, i.e. those that are not retrieves and are only
capable of reusing the solution of cases. All robots, retrievers and executors,
have a copy of the same case base so they can gather the information needed
during the case reuse. Figure 4.2 shows the described multi-robot system.

Given a new problem to solve, the first step of the process is to decide which
of the retriever robots is going to actually retrieve a case to solve it (since only
one case can be reused at a time). The most appropriate robot to perform this
task should be the one that has the most accurate information about the en-
vironment. From the set of features described in a case, the only feature that
might have different values from one robot to another is the ball’s position.
Moreover, this is the most important feature in order to retrieve the correct
case and we must ensure as less uncertainty as possible. The remaining fea-
tures are either common to all the robots, i.e. robots’ positions, or given by an
external system, i.e. defending goal, the score and time of the game. Therefore,
we propose that the robot retrieving the case should be the closest to the ball,
since its information will be the most accurate (the further a robot is from an

66 CHAPTER 4. CASE REUSE THROUGH A MULTI-ROBOT SYSTEM

coordinator
select

retrieve case

wait
(beh)

reuse case

coord id
MSG

MSG

ret_case

ret_case

me

not
me start

start

coord id

end/abort case
RTM RUM

(a)

wait
(beh)

reuse case

ret_case

start

end/abort case

MSG

MSG

RTM RUM

(b)

Figure 4.3: Finite state machine for (a) the retriever robots and (b) the execu-
tor robots. Solid arrows indicate transitions, while dashed ones correspond
to messages sent between robots.

object, the higher the uncertainty about the object’s information). From now
on, we will refer to this robot as the coordinator. While the selected coordinator
is retrieving a case, the remaining robots wait (either remaining in their cur-
rent positions or performing some other behavior). Figure 4.3 depicts the finite
state machines for the retriever robots and for the executor robots.

Since we are working with a distributed system, the robots may have differ-
ent information about each other at a given time. Their beliefs about the state of
the world are constantly updated. They are also constantly sending messages
about their current internal beliefs (robot’s Id, position, ball’s position, etc.) to
the rest of the robots. As a consequence, we cannot ensure that all robots agree
on who is the one closest to the ball at a given time. To solve this issue, only
one robot is responsible for selecting the coordinator. In order to have a robust
system (robots may crash, or be removed due to a penalty), the robot perform-
ing this task is always the one with lower Id among those present in the game
(since each robot has a unique fixed Id). Once it selects the coordinator, it sends
a message to all the robots indicating the Id of the new coordinator.

After the coordinator is selected, it retrieves a case according to the process
described in Section 3.3.4 and informs the rest of the team the case to reuse. It
also informs the correspondences between the robots in the current problem
and the robots in the retrieved case (so they know what actions to execute ac-
cessing their case bases. The correspondences are obtained following the pro-

4.2. MULTI-ROBOT SYSTEM AND CASE REUSE 67

ADAPT EXECUTEWAIT AT POS

WAIT END
(beh)

M
SG

_A
B

O
R

T

at pos

M
SG

_A
B

O
R

T

all
ready**

timeout/aborttimeout/abort
end execution

M
SG

_A
B

O
R

T

ab
or

t

ready*

not in case

Figure 4.4: Finite state machine for the case execution (*independent posi-
tioning strategy, **dependent positioning strategy).

cedure detailed in Section 3.3.2). This process takes place in the RTM module
of the robot’s internal architecture.

Then the case execution begins. Figure 4.4 describes the finite state ma-
chine for the case reuse process (corresponding to the RUM module within the
robot’s architecture). First, all robots that take part of the solution of the case
start moving to their adapted positions (ADAPT state). As explained in Sec-
tion 3.3.2 these positions correspond to relative positions indicated in the case
with respect to the current ball’s position. Hence, a robot can easily derive the
location where it should move using the matching information transmitted by
the coordinator. The robots that do not take part of the case reuse remain in the
WAIT END state (either waiting at their positions or performing an alternative
behavior) until the execution ends. At this point we can choose between two
strategies:

• independent positioning: the robots move towards their adapted positions
independently from each other until reaching it. Once they reach their
adapted positions, they send a message to the coordinator. In this case,
the coordinator is in charge of receiving the messages from the robots in-
dicating they are at their adapted positions, and then sending a message
to all the robots to start executing the gameplay. Hence, the case reuse
only starts when all robots arrive to their initial positions.

In Figure 4.4 this strategy would correspond to the WAIT AT POS state
and switching to the EXECUTE state when all robots are ready waiting
at their adapted positions.

• dependent positioning: the robots do not have to wait for all robots to reach
their adapted positions. As we described in Section 3.1.2, there is always
a robot that goes first to get the ball. All robots know who this robot is and
also know in which state all robots are (adapting, reusing, waiting, etc.).
Hence, they only wait for this robot to arrive to its adapted position and
immediately start executing the gameplay, even if they have not reached
their own adapted positions yet. In other words, the robots’ positioning
depends on a given robot (i.e. the one going first to the ball).

In the finite state machine depicted in Figure 4.4 the robot can either tran-
sit from the ADAPT state or the WAIT AT POS state to the EXECUTE state

68 CHAPTER 4. CASE REUSE THROUGH A MULTI-ROBOT SYSTEM

A B

Figure 4.5: Kick adaptation during the case reuse. The arrow represents
the ball direction indicated in the case. Thus, robot A should perform a left
kick, while robot B, a right kick.

when the robot getting the ball first has already reached its adapted posi-
tion. In the former situation, switching from the ADAPT state, the robot
is still moving towards its adapted position when the transition takes
place. In the latter situation, switching from the WAIT AT POS state, the
robot has reached its adapted position but the robot getting the ball first
has not yet.

In an adversarial game domain, as the one this work is focused on, we
realized that it is more advantageous to use the dependent strategy than the
independent one. Otherwise, while the robots are all moving to their adapted
positions, the opponents may steal the ball. An independent strategy is more
convenient to use in other domains where reaching the initial positions is cru-
cial to successfully fulfill the task.

Either using the independent or the dependent positioning strategy, the ex-
ecution of the solution of a case starts (state EXECUTE in Figure 4.4) and all
robots perform their sequences of actions. Each action corresponds to a behav-
ior in the executive system (Figure 4.1). A last adaptation process takes place
when the action corresponds to a kick. In this case, depending on the direction
from where the robot reaches the ball, the robot might perform the symmetric
of the kick indicated in the case solution to move the ball towards the expected
direction. Figure 4.5 shows an example. As we can observe, the kick varies if
the robot is coming from the front (situation described by robot A in the figure)
or from the back (robot B representation in the figure) of the ball. The execution
continues until all robots finish their sequences of actions.

Finally, they report to the coordinator that they finished the execution and
wait for the rest of the robots to end (WAIT END state in Figure 4.4). In this
state the robots may perform some other behavior while waiting for the other
robots to end the execution. When the coordinator receives all messages, it
informs the robots so they all go back to the initial state of the process, i.e.
selecting a new coordinator, retrieving a case and executing its solution.

The execution of a case may be aborted at any moment when any of the
following situations occur:

• Any of the robots detects that the retrieved case is not applicable any-
more. Once the execution of a case has started, we consider a case to be

4.3. CONCLUSIONS AND FUTURE WORK 69

applicable if the remaining ball’s path is still free, i.e. there are no oppo-
nents within the trajectories the ball is about to follow.

• A robot receives an unexpected message. Because of the noise in the
wireless network, a message can be delayed or even get lost. Hence,
when a message arrives and it is not coherent with the current case reuse
state, we opt for aborting the current case execution. Although we are
aware that it is a drastic solution, due to the domain requirements (real
time response and limited computational capacities), we believe that it is
more suitable since it is a simple and fast tactic.

• A timeout occurs. We include timeouts for the states ADAPT and EX-
ECUTE since we want to make sure that the case reuse is not going to
take too long. In general this situation occurs when a robot does not re-
ceive all necessary messages or its perception fails. The former situation
could cause the robot to remain in a state infinitely, while the latter could
lead the robot to search for the ball in a wrong location, lengthening the
behavior execution.

In any case, the robot detecting the exceptional situation sends an aborting
message to the rest of the robots so that they all stop executing their actions.
Then, they once again go back to the initial state in order to restart the process,
i.e. select a coordinator, retrieve a case and reuse it. We must remark that most
of the aborting situations occur due to the first situation (case applicability),
while the remaining ones are mainly defined to ensure robustness in case of
system failure and are not so common.

4.3 Conclusions and Future Work

This chapter has been addressed to the internal architecture of a robot, as well
as the multi-robot architecture of the team. Regarding the robot’s internal ar-
chitecture we have proposed a hybrid architecture, where the deliberative layer
is responsible for the high level decision-making, i.e. the combination of the
CBR reasoning system and a region-based algorithm, while the executive layer
controls the execution of the behaviors proposed by the deliberative layer.

Within the multi-robot architecture we define two types of robots: the re-
trievers, who include the CBR system and therefore are in charge of proposing
cases, and the executors, who only execute the cases indicated by the retriev-
ers, i.e. cannot propose solutions to the current state of the world. In order to
determine the next case to reuse, a coordinator is selected among the retrievers
based on their distances to the ball. After the coordinator is chosen, it retrieves
a case and informs the rest of the team (retrievers and executors). At this point
the reuse step of the case starts. Two positioning strategies have been proposed
to start the execution of the actions indicated in the case. During the case reuse,
any robot (retriever or executor) may abort the case reuse if it considers that the
case is not applicable anymore.

As future work we propose to improve the case selection for reuse. Each
retriever may propose a different case based on its internal beliefs of the state
of the world. Hence, a negotiation protocol could be included to decide which
is the most suitable retrieved case to reuse. This way we provide the team

70 CHAPTER 4. CASE REUSE THROUGH A MULTI-ROBOT SYSTEM

with a more cooperative mechanism where all robots participate in the global
decision-making and the achievement of the goals of the team.

Chapter 5

Learning the Scopes of Cases

The case base is the most fundamental component of a case-based reasoning
system since it provides the domain knowledge of the reasoner, and therefore,
determines the system’s accuracy performance. As Ram states in [50], a rea-
soner program may fail on finding the right solution, if any, due to incomplete
knowledge in the system. More precisely, he detects three sources for gaps in
the system’s knowledge: (i) novel situations, there is no case to solve the new
problem, (ii) mis-indexed cases, although there might be a case in the case li-
brary to solve the new problem, the system is not able to retrieve it because of
mistaken case indexation, and (iii) incorrect or incomplete case, the situation
represented by the case may not be completely understood, and thus, the case
is incorrect or incomplete. The work we present in this chapter is mainly ad-
dressed to knowledge adaptation, i.e. incorrect or incomplete cases (source iii),
and initial steps for knowledge acquisition, i.e. novel situations (source i):

• knowledge adaptation: the perception of the expert providing the initial
knowledge to the reasoner may largely vary from the perception of the
reasoner. This a very common situation when the reasoning system is
applied in the real world and depends on the system’s sensors accuracy.
Hence, although the knowledge provided to the reasoner might be “cor-
rect”, from its point of view it is not. For this reason, an adaptation of
the knowledge, in this case the case base, is necessary to achieve a correct
performance of the reasoning system.

A second reason for including a mechanism for adapting the reasoner’s
knowledge is that the environment may change (either gradually evolv-
ing or being suddenly altered) through time. Hence, the initial knowl-
edge may become useless degrading the performance of the system.

• knowledge acquisition: although the expert may try to provide the nec-
essary knowledge to the reasoner, she may miss some situations, and
therefore, generate gaps in the system’s knowledge. Besides, again re-
lated to the changes in the environment through time mentioned above,
it is most likely that the expert cannot predict all future situations the rea-
soning system will have to deal with. Thus, to overcome these situations,
it is fundamental for the system to automatically incorporate knowledge
to cover these gaps.

71

72 CHAPTER 5. LEARNING THE SCOPES OF CASES

In this chapter we present a first attempt to automate the adaptation and
acquisition of the case-based reasoning system’s knowledge with respect to
the scope of a case, i.e. the case coverage. The motivations for studying an
algorithm that allows the automation of this process in the working domain
are:

1. because of the nature of the domain this work is focused on (real robots
with high uncertainty in its perception), we believe that it is fundamen-
tal that the knowledge of the reasoner system corresponds to its actual
perception, and not only to the expert’s one;

2. the opponents of a game are part of the environment the reasoner system
is dealing with. If we consider the opponent’s strategy as part of the
environment, it is easy to see that the environment may radically vary
based on the strategy the opponents apply during a game, i.e. a change
in the opponent’s strategy (even more, changing opponents) implies a
modification on the environment. Hence, it is essential to provide the
reasoning system with an engine to alter its current knowledge through
adaptation. This adaptation may lead to gaps in the knowledge, and
therefore, introducing new cases to cover these gaps is crucial.

Thus, we propose a supervised learning algorithm for the adaptation of the
knowledge of the reasoning system. More precisely, we focus the algorithm
on learning the ball’s scope of a case (which matches with the case scope),
although the concepts and mechanisms presented here can be equally applied
to the opponents’ scopes.

The idea is to provide the robot with a set of cases which must be adapted
to its actual perception. The expert knows several generic situations (prototyp-
ical cases) and their corresponding solutions, but cannot predict the real scope
of the cases from the robot’s point of view. The learning starts with a classi-
fication task, where the robot classifies the problems proposed by the expert
with respect to the available cases in the case library (every case corresponds
to a different class). If a class is returned, i.e. a case, then the robot adjusts
the case scope based on the feedback classification. Ideally, this feedback could
be automatically inferred by the robot itself after observing the outcome of its
actions, but this is a far more complex task that we do not address in this work.
On the contrary, if no class is returned, then it means that there is a gap in
the case library. Thus, an automatic mechanism for creating new cases should
be included in the system. Once a case is created, the system must determine
the case coverage, i.e. the case scope. At this point, the adaptation process
presented in this chapter can be applied.

The chapter is organized as follows. We first introduce the learning algo-
rithm for adapting the case scope, i.e. when and how to modify the scope.
Next, we present a simple mechanism to introduce new cases when no solu-
tion is found. Experiments to show the effectiveness of the leanring algorithm
follow next, and finally, conclusions and future work conclude the chapter.

5.1 Scope Adaptation Algorithm

The adaptation mechanism is addressed to existing cases, and does not deal
with gaps in the case library. As we have described in Section 3.1.3, the ball’s

5.1. SCOPE ADAPTATION ALGORITHM 73

p1

τx

τyp3

p2

b
τx

τy

1
2
τx

3
4
τy

p3

p2

p1

b

(a) (b)

Figure 5.1: Case scope representation. The center of the ellipse, b, cor-
responds to the ball’s position indicated in the case, while problems p1,
p2 and p3 are the problems to classify. (a) Graphical similarity evaluation
of three problem examples. (b) Example of the security region (gray re-
gion) and the risk region (white region) of a case defined by γx = 0.5 and
γy = 0.75.

scope is defined by an ellipse with radius τB
x and τB

y . Since we are focusing
this section on learning the ball’s scope, for simplicity we will generalize the
concept of ball’s scope to the scope of the case and omit the superindex B in the
τ parameters. Moreover, henceforward we will refer to the scope of the case,
either as the scope or the ellipse. The algorithm consists in updating the size of
the cases scopes varying their τ parameters, i.e. the radii of the ellipse. To this
end, we must define a policy to determine when and how these parameters
should be adjusted given the expert’s feedback.

The center of the ellipse represents the position of the ball (b) on the field
specified in that case. As we move towards the boundary of the ellipse, the
uncertainty about whether the points belong to the scope of the case increases.
The points next to the boundary of the ellipse represent higher degree of uncer-
tainty. Figure 5.1a depicts the scope of a case ci and three problems to classify.
Problems p1 and p2 are similar to the case, i.e. they belong to the class ci, since
they are within its scope, although p1 with higher similarity degree compared
to p2 (since it is closer to the center of the scope). In contrast, p3 is out of the
scope, and therefore we do not consider it similar to the case, i.e. it does not
belong to class ci. If two cases overlap their scopes, a problem may belong
to one or more classes, i.e. the problem to classify has some similarity degree
with both cases. Thus, the outcome of the classification corresponds to the class
with higher similarity. The similarity is computed with the gaussian function
presented in 3.3.1.

5.1.1 When to Adjust the Values

The goal of increasing or decreasing the size of the ellipse is to reach the ex-
pected region that a case should cover. The expected region corresponds to
the region that the expert believes the case should cover. We call security region
the set of points next to the center of the ellipse, and risk region those near the
boundary of the ellipse. We define γx and γy as the proportion of radius τx and
τy that corresponds to the security region (where γx ∈ [0, 1] and γy ∈ [0, 1]).

74 CHAPTER 5. LEARNING THE SCOPES OF CASES

Figure 5.1b shows an example of these two regions. Problem p1 is within the
security region, while problem p2 is within the risk region of the case scope.

When the system classifies a new problem, i.e. returns a case c to which the
problem belongs with higher similarity degree, we use the expert’s feedback
for tuning the scope’s parameters τx and τy of that case. If the proposed case is
correct, the scope of the case is increased. Otherwise, it is decreased.

• Increasing the scope: If the problem is located within the security region
(i.e. the position of the ball is in this region) the system cannot introduce
new knowledge to case c. Its current information is robust enough to de-
termine that the problem corresponds to the scope of that case. On the
contrary, if the problem is inside the risk region the system can confirm
that the current scope of the case is correct. Thus, we increase the size
of the ellipse modifying the scope’s parameters to (i) enlarge the security
region and (ii) to evaluate a bigger scope of the case. Since the security re-
gion is computed as a proportion of the ellipse size, expanding the ellipse
results in expanding this region as well.

• Decreasing the scope: A problem is incorrectly classified using case c be-
cause of its scope overestimation. Hence, we have to reduce the size of
the ellipse. If the ball is inside the security region, we do not decrease
the parameters since it corresponds to a robust region. If the problem is
within this region and the feedback is negative, we assume that the er-
ror is originated by other reasons (wrong localization) and not because
of wrong information of the case. Suppose the following situation: the
robot is not well localized and as a consequence, it perceives the ball in
a wrong position. It could happen that it correctly classifies the problem
given its own perception. But from the external observer perception, the
returned case that classifies that problem is not the right one. Therefore,
the feedback given to the robot is negative. If the system reduces the el-
lipse, it could radically reduce the scope of the case, not because it was
overestimated, but because of the high uncertainty in the robot’s percep-
tion. However, when the problem is inside the risk region, the system
does reduce the scope of the case, since the scope overestimation might
be the cause of the negative feedback.

In summary, the adaptation algorithm enlarges or reduces the scope of a
case when the problem to solve is correctly or incorrectly solved and it is within
the case’s risk region.

5.1.2 How to Adjust the Values

After describing when to enlarge or reduce the scope of a case, we will now
detail how to update the τ parameters, or in other words, how much to increase
or decrease them. First we introduce some notation. Given a new problem p
to classify, and given the case (class) c that classifies that problem at time t, we
define:

• δ̂x, δ̂y : the maximum increasing values for τx and τy respectively. These
values are assigned by the expert.

5.1. SCOPE ADAPTATION ALGORITHM 75

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

(a) (b) (c)

Figure 5.2: Increasing policy functions, finc, with δ̂ = 10 and γ = 0.5: (a)
step function, (b) linear function, and (c) polynomial function.

• δt
x, δt

y: the actual increasing values for τ t
x and τ t

y respectively. These are
the values to compute.

• △t
x,△t

y: the relative distances between problem p and the center of the
case scope c, i.e. the ball’s position described in the case:

△t
x = px − bx △t

y = py − by

where px and py correspond to the ball’s coordinates in the problem and
bx and by, the ball’s coordinates in the case.

In order to compute the δt
x, δt

y values for adjusting the τ t values at time t we
propose three increasing policy functions, finc (henceforward we will refer to
them as the policies):

• fixed: the increasing amount is a fixed value. Thus, we define a step func-
tion (Figure 5.2a):

δt
x =

{

δ̂x if γxτ t
x ≤ △

t
x ≤ τ t

x

0 otherwise
δt
y =

{

δ̂y if γyτ t
y ≤ △

t
y ≤ τ t

y

0 otherwise

• linear: we compute the increasing value based on a linear function (Fig-
ure 5.2b):

δt
x =

{

△
t
x−γxτ t

x

τ t
x−γxτ t

x
· δ̂x if γxτ t

x ≤ △
t
x ≤ τ t

x

0 otherwise

δy =

{

△
t
y−γyτ t

y

τ t
y−γyτ t

y
· δ̂y if γyτ t

y ≤ △
t
y ≤ τ t

y

0 otherwise

• polynomial: we compute the increasing value based on a polynomial func-
tion (Figure 5.2c):

δt
x =

{

(△t
x−γxτ t

x)5

(τ t
x−γxτ t

x)5 · δ̂x if γxτ t
x ≤ △

t
x ≤ τ t

x

0 otherwise

δt
y =

{

(△t
y−γyτ t

y)5

(τ t
y−γyτ t

y)5 · δ̂x if γyτ t
y ≤ △

t
y ≤ τ t

y

0 otherwise

76 CHAPTER 5. LEARNING THE SCOPES OF CASES

Once we compute the increasing values, we update the case scope:

τ t+1
x = τ t

x + δt
x τ t+1

y = τ t
y + δt

y

where τ t+1
x and τ t+1

y represent the updated radius of the case scope.
The goal of reducing the scope of a case is to resize the ellipse so that the in-

correctly solved problem is not considered similar to the case anymore, i.e. the
problem remains outside the ellipse. We compute the new values as follows:

τ t+1
x =

{

△t
x if γxτ t

x ≤ △
t
x ≤ τ t

x

τ t
x otherwise

τ t
y + 1 =

{

△t
y if γyτ t

y ≤ △
t
y ≤ τ t

y

τ t
y otherwise

Note that we only update the τx value if the problem x component (△x) is
within the risk region. Similarly, we modify the τy if the y component (△y) is
within the risk region. Updating both values separately prevents from radi-
cally reducing the scope of the case.

Algorithm 3 describes the overall adaptation algorithm. Given a problem p,
the case c that classifies p, the expert’s feedback and the parameters presented

above (the increasing policy function finc, δ̂, and γ), the algorithm updates the
τ values for resizing the case scope if the problem is within the scope’s risk re-
gion (line 1). When the feedback is positive (line 4), the algorithm increases the
current size of the scope (lines 5 to 8). Otherwise, the scope is reduced (lines 10
to 14). The process is repeated until the expert determines that the expected
scope has been reached, i.e.the new incoming problems are classified with lit-
tle error. Next we describe a simple example for illustrating the algorithm.

Algorithm 3 Update Scope(p, c, feedback, finc, γx, γy, δ̂x, δ̂y)

1: if p ∈ risk region(c) then
2: △x ← px − bx

3: △y ← py − by

4: if feedback is TRUE then
5: δx ← finc(△x, γx, δ̂x, τx)

6: δy ← finc(△y, γy, δ̂y, τy)

7: τx ← τx + δx

8: τy ← τy + δy

9: else
10: if△x ≥ γxτx then
11: τx ←△x

12: end if
13: if△y ≥ γyτy then
14: τy ←△y

15: end if
16: end if
17: end if

5.1.3 Example

Figure 5.3 depicts four steps of the adaptation process. The gray region repre-
sents the security region, while the dashed ellipse corresponds to the expected

5.1. SCOPE ADAPTATION ALGORITHM 77

(a) (b)

(d)(
)

τ 0
y

τ 0
x

τ i
y

τ i
x

τ t−1
x

τ t−1
y τ t

y

τ t
x

Figure 5.3: Case scope evolution. The dashed ellipse represents the “ideal”
scope. In gray, the security region with γx = γy = 0.8.

scope of the case (defined by the human trainer) we attempt to reach. Any
problem located within this ideal area produces a positive feedback by the ex-
pert. The black dot represents a new solved problem (ball position with respect
to the case). Figure 5.3a shows the initial stage at time 0, where the scope of
the case is minimum (τ0

x , τ0
y). Since the new solved problem is within the risk

region and the feedback is positive, we proceed to enlarge the size of the ellipse
using one of the policies defined.

At time i, Figure 5.3b, we can observe that the ellipse has increased, but still
has not reached the expected size. Hence, we keep on enlarging the scope by
solving new problems as long as the expert feedback is still positive.

Figure 5.3c, time t−1, depicts a situation where the updated ellipse is bigger
than the expected size. From now on, the feedback may be positive or negative.
If a new problem is within the risk region and the feedback is positive, then we
would proceed to increase the ellipse. But, if the feedback is negative, then the
decreasing process is used to reduce the ellipse. The figure shows an example
of this situation. As we can see, the new problem is located within the risk
region, but out of the ideal scope. Thus, the current scope is reduced, but only
updating τx since△y < γyτy .

Figure 5.3d shows the updated scope, where the problem remains outside
the scope of the case. As more problems are solved, the scope of the case will
converge to the ideal scope.

In conclusion, we distinguish two phases in the adaptation process: grow-
ing the scope of the case, and converging to the ideal scope. During the first
phase, the feedback is always positive and the scope is always being expanded.
The second phase occurs once the expected scope is exceeded. Then, the feed-
back could either be positive or negative. The goal of the first one is to enlarge
the scope, while the second one, is to converge to the ideal scope the human
trainer expects.

78 CHAPTER 5. LEARNING THE SCOPES OF CASES

5.2 Acquiring New Cases

After the adaptation step, the knowledge of the system might present some
gaps, i.e. the scope of the cases may not cover the whole field. The coverage
depends on the number of cases used during the first learning stage. How-
ever, as we previously mentioned, the expert cannot a priori define all possible
cases. Hence, we present the first step towards a learning mechanism to ac-
quire new knowledge when novel situations occur and the system does not
have any case to solve them. Although with this mechanism we create simpli-
fied cases, it is useful to guide the expert in completing the knowledge of the
system, providing support on the manual generation of the case base.

A new case is created using the description of the environment (problem
description, i.e. robot’s and ball’s position), and a generated gameplay (solu-
tion of the new case). To create a gameplay, we provide the system a set of
possible actions the robot can perform. Hence, given a new problem to solve,
if the system does not retrieve any case, i.e. the problem does not belong to
any of the classes (either due to imprecision problems or because the prob-
lem is actually in a gap) the system randomly selects a gameplay. The robot
executes the suggested action and the expert evaluates the correctness of the
solution proposed. Only if it succeeds, the new case is created. We are aware
that this procedure is too simplistic. But as mentioned before, at least the pro-
cess provides information to the expert regarding the coverage of the current
system’s knowledge, the case library, allowing her to afterwards improve the
case description with more suitable information.

When a new case is inserted into the system, it is created with a minimum
scope (a small ellipse). From that moment on, the evolution of the new case
depends on how often the robot reuses it, enlarging or reducing its scope using
the adaptation mechanism presented previously. The idea is that at the begin-
ning, the new case could seem to be a good solution for that concrete situation,
but its actual effectiveness has to be evaluated when the robot reuses it. As time
passes, if the scope of the case does not increase, and instead, it is reduced, we
can deduce that the case is not useful for the robot’s performance. On the con-
trary, if its scope increases, or at least, it remains stable, then we consider that
the case contributes to the system’s knowledge.

5.3 Experiments

This section describes the experiments performed in order to test the learning
algorithm introduced above. We divide the experimentation in two stages:
simulation and real robots.

5.3.1 Simulation Experiments

The goal of this first phase is to determine the behavior of the policies using
different values for the parameters presented in Section 5.1.2. Since we had to
test different combinations of values, simulation was the fastest way to obtain
orientative results. The most relevant were selected for the experimentation
with real robots.

5.3. EXPERIMENTS 79

We based the experiments on the adaptation of a single case to observe
how the different values (τx,τy) computed through the learning process affect
the evolution of its scope, i.e. the resulting size of the ellipse in mm. The initial
case was defined with a small scope, τx = 100 and τy = 100. The expected
outcome (“ground-truth”) was τx = 450 and τy = 250. A trial consists of 5000
random problems which are iterated as the input for the learning algorithm.

For each trial we fix the increasing policy and the parameters γ and δ̂. The
outcome of the trial are the new learned τ values, i.e. the radius of the scope.
An experiment consists of 10 trials with the same parameters per trial. Since
the problems are randomly generated, each trial generates a different outcome.
For every experiment we combined each policy with the following set of values
per parameter:

• security region proportion size:

γx = γy = {0.5, 0.6, 0.7, 0.8, 0.9}

• maximum increasing parameter (expressed in mm):

δ̂x = δ̂y = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

Figure 5.4 shows the average of the results obtained for the experiments

performed. The x axis corresponds to the maximum increasing parameter, δ̂,
while the y axis indicates the average τ computed for each experiment. Each
curve is obtained varying the values of the security region parameter, γ. On the

one hand, δ̂ defines how much the ellipse may increase at each time. Hence,
the higher their values, the bigger the resulting scope of the case. On the other
hand, γ determines the size of the security region and the risk region (low val-
ues represent small security regions and large risk regions). The risk region
determines when the scope of the case has to be modified. As this region in-
creases, there are more chances of modifying the scope as well. Thus, for all
three policies, the curves tend to increase from left to right, i.e. obtaining larger
scopes (higher τ values) on the right side of the figure.

With respect to the evaluation of the policies behavior, the fixed policy ob-
tains the highest τ values, while the polynomial, obtains the lowest ones. The
former function has a more aggressive behavior, radically increasing the size of
the ellipse always with the maximum increment allowed. The latter function
has a more conservative behavior, computing small increments (δ’s) for prob-
lems near the boundary between the security and the risk region, and enlarging
them as the problems to solve reach the boundary of the ellipse. We can easily
observe the behavior differences between all three policies and their influence
on the outcome, τx and τy , in Figure 5.5. We depict the evolution of the learned

values for a single trial with δ̂ = 10 and γ = 0.5. During the converging step of
the adaptation process (region marked with a dashed rectangle) the variations
of the radius using the fixed policy are much larger (the oscillation of the τx

ranges from 450 to 760, and the τy , from 250 to 469) than the ones obtained
with the polynomial policy (the τx varies from 450 to 552, and the τy , from 250
to 326).

As a consequence of the influence of the two factors mentioned above (i.e.

the behavior of the policy itself and the values of the δ̂ and γ parameters used

80 CHAPTER 5. LEARNING THE SCOPES OF CASES

 450

 500

 550

 600

 650

 700

 750

 10 20 30 40 50 60 70 80 90 100

τ x

maximum δ

0.5
0.6
0.7
0.8
0.9

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90 100

τ y

maximum δ

0.5
0.6
0.7
0.8
0.9

(a) (b)

 450

 500

 550

 600

 650

 700

 750

 10 20 30 40 50 60 70 80 90 100

τ x

maximum δ

0.5
0.6
0.7
0.8
0.9

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90 100

τ y

maximum δ

0.5
0.6
0.7
0.8
0.9

(c) (d)

 450

 500

 550

 600

 650

 700

 750

 10 20 30 40 50 60 70 80 90 100

τ x

maximum δ

0.5
0.6
0.7
0.8
0.9

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90 100

τ y

maximum δ

0.5
0.6
0.7
0.8
0.9

(e) (f)

Figure 5.4: Resulting τx (left column) and τy (right column) using the fol-
lowing policies: fixed (a) and (b); linear (c) and (d); and polynomial (e) and
(f). Ground truth represented with a dashed line.

5.3. EXPERIMENTS 81

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000

τ x

Problems

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1000 2000 3000 4000 5000
τ y

Problems

(a) (b)

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000

τ x

Problems

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1000 2000 3000 4000 5000

τ y

Problems

(c) (d)

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000

τ x

Problems

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1000 2000 3000 4000 5000

τ y

Problems

(e) (f)

Figure 5.5: Single trial example of the evolution of the τx (left column)
and τy (right column) scope parameters using the following policies: fixed
(a) and (b); linear (c) and (d); and polynomial (e) and (f). The dashed
rectangles contain the convergence steps for each curve.

82 CHAPTER 5. LEARNING THE SCOPES OF CASES

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000

τ x

Problems

fixed
linear

poly

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1000 2000 3000 4000 5000

τ y

Problems

fixed
linear

poly

(a) (b)

Figure 5.6: Convergence of the average value of (a) τx and (b) τy of a spe-
cific trial. Ground-truth in dashed line.

in the learning process), the distance between the curves in Figure 5.4 using
the fixed policy is significantly larger than the ones using the polynomial pol-
icy. For instance, in Figure 5.4a the average τx computed with the fixed policy

varies on the left side (low δ̂) from 475 to 565, and on the right side (high δ̂)
from 593 to 721. On the contrary, the curves computed with the polynomial
functions (Figure 5.4e) vary on the left side from 471 to 488, and on the right
side, from 515 to 534. Regarding the linear policy, we can observe that it has
an intermediate behavior between the other two (tending to behave more as
the fixed policy). Furthermore, the differences between the curves obtained
with the fixed policy and the ground-truth (τx = 450) are much larger than
the ones obtained with the polynomial policy. As expected, we can state that
the polynomial policy has a more stable behavior compared to the fixed one,
besides of achieving similar results to the ground-truth. Figure 5.6 shows the
average value of τx and τy computed after each problem has been classified for

a specific trial (with δ̂ = 10 and γ = 0.5). It is clear that the polynomial policy
obtains the closest values to the ground-truth.

The configuration that obtained the closest values to the “ideal” ones, τx =

450 and τy = 250, was: polynomial policy, γ = 0.9 and δ̂ = 10. Hence, after
the experimentation we can confirm that a more conservative strategy, i.e. low
increasing values and small risk regions, is the most appropriate combination
to obtain the desired scope of the cases. This conclusion is clear when perform-
ing the experiments in a simulated environment. But two problems arise when
extending the experiments to the real world: time and uncertainty. First, the
number of iterations needed to reach the expected result is not feasible when
working with real robots; and second, a noise-free environment is only avail-
able under simulation. Although we have observed different behaviors in the
graphics obtained when gradually modifying the parameters, these differences
are not so obvious in a real environment because other issues modify the ex-
pected result. Therefore, the next stage is to experiment with the robot in the
real world evaluating the most relevant parameters (understanding relevant as
the ones that show more contrasting behaviors) to determine the effectiveness
of the presented learning algorithm.

5.3. EXPERIMENTS 83

5.3.2 Real World Experiments

Two types of experiments were performed in a real environment. The first
one is aimed at finding out the most appropriate parameters and policy to use
during the learning process. The second one consists in evaluating the conver-
gence of the cases in a given case base, and the acquisition of a new case.

Testing the Parameters and Policies

As mentioned in the example of the learning algorithm (Section 5.1.3), we can
divide the training process in two steps: growing the scope of the case and con-
verging to the expected scope. We are interested in rapidly enlarging the size
of the ellipse until almost reaching the expected one (i.e. use as less problem
examples as possible since in the real world we cannot afford to generate and
classify a large set of problems), and then opt for a more conservative behavior
to adjust it. The growing step finalizes when a negative feedback is given by
the expert’s for the first time. As we mentioned in the explanation of the algo-
rithm, a negative feedback means that the scope of the case is overestimated,
and therefore it has to be reduced to converge to the expected one. Thus, we
modify the algorithm such that it switches from one policy to the other when
the convergence step starts, i.e. the size of the ellipse is decreased for the first
time. Moreover, besides alternating the policies used for determining the grow-
ing size of the ellipse, we can also vary the parameters that define the size of

the security region (γ), and the maximum increment for enlarging the scope (δ̂)
as observed in the simulation evaluation.

We have defined a set of strategies to study their resulting behavior and
thus, select the most appropriate one to use in the second part of the experi-
mentation. Table 5.1 summarizes the set of strategies. We differentiate between
the two steps of the learning algorithm, growing and converging the scope, in-
dicating the policy used at each step, as well as the values of the parameters γ

and δ̂ (the same values for both x and y axis). The experimentation is similar
to the simulation stage, where the experiments are based on a single case with
initial scope τx = τy = 100. The expected scope of the case is τx = 900 and
τy = 600. A single trial consists in positioning the robot in a fixed location on
the field and randomly generating 100 problems that the robot detects as inputs
for the learning algorithm. We manually move the ball from one position to an-
other within the field of view of the robot since for this experiments the robot
only moves its head to search for the ball. The learning algorithm is tested with
one of the strategy configurations shown in Table 5.1. An experiment consists
of 10 trials for each strategy.

Figure 5.7 illustrates the average size of the learned scope for each exper-
iment. Comparing the results obtained with respect to the expected scope
(ground truth in both figures) we conclude that:

• the strategies using only the fixed and linear policies for both learning
steps generate the highest τ values, while the strategy using only the
polynomial policy obtains the lowest. As concluded in the simulation
experiments, the former policies have a more aggressive behavior com-
pared to the latter.

• the strategy defined with only the polynomial policy does not even reach

84 CHAPTER 5. LEARNING THE SCOPES OF CASES

 0

 200

 400

 600

 800

 1000

 1200

 1400

γx = 0.5/0.7;δx = 100/50γx = 0.7;δx = 50γx = 0.5;δx = 100

τ x
fixed

linear
polynomial
fixed-poly

linear-poly

(a)

 0

 200

 400

 600

 800

 1000

γy = 0.5/0.7;δy = 100/50γy = 0.7;δy = 50γy = 0.5;δy = 100

τ y

fixed
linear

polynomial
fixed-poly

linear-poly

(b)

Figure 5.7: Average outcomes and deviations for the different strategies.
The dashed line represents the ground truth. (a) τx average and ground
truth τx = 900. (b) τy average and ground truth τy = 600..

5.3. EXPERIMENTS 85

growing step convergence step

policy γ δ̂ policy γ δ̂
fixed 0.5 100 fixed 0.5 100
fixed 0.7 50 fixed 0.7 50
fixed 0.5 100 fixed 0.7 50
linear 0.5 100 linear 0.5 100
linear 0.7 50 linear 0.7 50
linear 0.5 100 linear 0.7 50

polynomial 0.5 100 polynomial 0.5 100
polynomial 0.7 50 polynomial 0.7 50
polynomial 0.5 100 polynomial 0.7 50

fixed 0.5 100 polynomial 0.5 100
fixed 0.7 50 polynomial 0.7 50
fixed 0.5 100 polynomial 0.7 50
linear 0.5 100 polynomial 0.5 100
linear 0.7 50 polynomial 0.7 50
linear 0.5 100 polynomial 0.7 50

Table 5.1: Strategies defined in the real world experiments varying the

policies and the scope parameters γ and δ̂.

the expected scope most of the times due to its low increasing speed dur-
ing the growing stage. At every time step the increment is not as high as
the one computed with the other policies and therefore, reaching the ex-
pected scope requires a larger amount of problems to solve until starting
the convergence stage.

• the strategies combining two types of policies (fixed/polynomial and lin-
ear/polynomial) as well as the values for the scope parameters (γ =

0.5/0.7 and δ̂ = 100/50) obtain the closest scopes to the expected ones,
since they combine the advantages of both policies and the parameters
increasing properties, i.e. first large risk regions and high increments for
the growing step, and then small risk regions and low increments for the
converging step.

• comparing the results for the x and the y axis with respect to their ground
truths (horizontal lines in the figures) we can observe that the ones ob-
tained for the y axis reach and exceed the ground truth most of the times.
During the experiments, the robot is positioned parallel to the x axis.
Therefore, variations in the x component of the ball’s position are harder
to identify by the robot, compared to the y component. For instance,
moving the ball 10cm closer to the robot is not as easy to distinguish as
moving the ball 10cm to the left. Hence, the number of problems needed
to rapidly fulfill the growing process for the x axis is higher than for the
y axis. Since the problems were randomly generated without taking into
account this issue, we can estimate that 50% of the problems were used
for each axis, and therefore, not enough problems remained for the con-
verging step in the x axis.

We conclude that the best strategy within the real world is to have aggres-

86 CHAPTER 5. LEARNING THE SCOPES OF CASES

sive strategies for the growing step in order to reach as fast as possible the ideal
scope, and then progressively adjust it to the robot’s perception using a more
stable strategy.

Adapting the Case Base

The final experiment consists in training a small case base in order to evaluate
if the robot is able to learn the expected scopes. We created a simple case base
of four cases (Figure 5.8a) that covered a quarter of a field:

• center: midfield.

• side: left edge.

• corner: left corner.

• front: between the center case and the goal.

All cases were initiated with the same scope (τx = τy = 100) as depicted
in Figure 5.8b. A trial consists of 50 random problems manually positioning
the ball in a quarter of the field and let the robot move searching for the ball
until facing it. During the growing step we used the fixed policy with large risk

region and high increment parameters (γ = 0.5 and δ̂ = 100) to rapidly reach
the expected scopes. For the converging step the algorithm switched to the
polynomial policy with small risk region and low increment values (γ = 0.7

and δ̂ = 50). We performed 25 trials in total.
The outcome of a trial example of the adaptation algorithm is drawn in

Figure 5.8c. The classified problems are represented with crosses (×) for the
center case, circles (◦) for the side case, plus (+) for the corner case and squares
(�) for front case. As we can observe, the modified scopes approximate with
high accuracy the expected outcome. Figure 5.8d shows the final steps of a
trial where the size of the ellipses are converging towards the final outcome.
Finally, Figure 5.8e shows the average of the 25 trials outcomes. As we can
see, the robot successfully acquired the estimated scopes for the cases in the
case base designed by the expert (Figure 5.8a). Moreover, in spite of the high
uncertainty in the robot’s perception, we can deduce that it is still close enough
to the expert’s own perception.

Acquiring Knowledge

After the adaptation process of the case base, the robot is ready to acquire new
cases. The goal is to verify that the robot is able to fill in the gaps of the adapted
knowledge. We focused the experiment on learning a single case located be-
tween the four cases. The expected action was to get near the ball facing the
goal and bump it (the intention is to bring the ball closer to the goal not with a
forward kick since it is too strong and would push it outside the field).

We performed 20 trials, each composed of 50 random problems. Through
all the trials the new case was at some point created and adapted to cover
the empty region, while the other cases’ scopes stayed stable even though the
adaptation algorithm was being used. This confirms that the conservative pol-
icy used during the converging step (polynomial policy, small risk region and
low increment values) ensures stability of the learned parameters. Figure 5.8f

5.3. EXPERIMENTS 87

x

y

(a) (b)

0

500

1000

1500

Y

0 500 1000 1500 2000 2500

X

0

500

1000

1500

Y

0 500 1000 1500 2000 2500

X

(c) (d)

0

500

1000

1500

Y

0 500 1000 1500 2000 2500

X

0

500

1000

1500

Y

0 500 1000 1500 2000 2500

X

(e) (f)

Figure 5.8: (a) Case base designed by the expert. (b) Initial case base for
the learning process. (c) Trail example outcome. (d) Converging step of the
learning process. (e) Final case base obtained after the adaptation process
(average of the 25 trials). (f) Acquiring a new case (average of 20 trials).

88 CHAPTER 5. LEARNING THE SCOPES OF CASES

shows the scope (average of the 20 trials) of the new case after expanding it.
We can observe a slight modification of the remaining scopes’ size with respect
to Figure 5.8e (the initial case base for this last experiment). As we can see, the
gap is almost completely covered with the expected case.

5.4 Conclusions and Future Work

We have presented the first steps towards developing an automated mecha-
nism to adapt and acquire the knowledge of a reasoner engine. More precisely,
the mechanism focusses on learning the scope of a case. The algorithm consists
in a two-step process: growing the scope, and converging the scope. We have
presented different policies to determine how to increase the size of the scope,
and when to do it. We have also introduced a simple mechanism to create new
cases. To analyze the learning algorithm, we have performed experiments both
in simulation and with the real robot.

The experiments we have presented confirm that the proposed algorithm
is able to successfully evolve the cases scopes based on the robot’s perception.
Moreover, it also confirms that the resulting scopes are similar to the ones ex-
pected by the expert’s perception. Hence, although the adaptation is not nec-
essary for the initial cases created by the expert, it is indeed useful to guide her
through the acquisition of new cases and the coverage of the existing ones.

The introduced knowledge acquisition algorithm is not really meant for the
reasoning system to successfully acquire new knowledge, but to help the ex-
pert on detecting possible gaps in the system’s knowledge. As future work we
would like to develop a more complete process for knowledge acquisition, so
that not only serves as a support engine for the expert, but in fact, automati-
cally creates new cases with complete descriptions, i.e. including teammates,
opponents, and more complex solutions. Once a case has been introduced,
the adaptation algorithm presented in this chapter can be used to generate its
coverage.

We believe that the learning approach should observe the robot’s own per-
formance and automatically detect new interesting situations to reproduce in
the future. This is a very challenging task since the main difficulties are: (i)
when to consider that a potential case has started, i.e. the initial situation, (ii)
when does it finish, i.e. which are the actions to store as part of the solution
of a case, and (iii) how to evaluate the outcome of the performed actions to
determine if the case is useful or not for achieving the robot’s goals (i.e. posi-
tive or negative feedback). While the challenges of the first two questions are
easy to see, the latter one may seem less complex because it consists in judg-
ing whether the actions were successful or not. But in general, and specially
in these kind of domains, this judgement is not so simple because the conse-
quences of the actions taken at a given time cannot be analyzed in a short term,
but in the long term. Thus the robot is faced with the credit assignment problem,
i.e. which actions contributed to the success or failure of the execution? The
problem can become even more difficult if there are more robots involved in
the execution, i.e. who did well? This is a very ambitious and complex research
area which would complete the cycle of the case-based reasoning process pre-
sented in this thesis.

Chapter 6

Experimentation

We focus this chapter on the evaluation of the approach presented in the pre-
vious chapters. The goal of the experimentation is to empirically demonstrate,
not only that the robots successfully perform the task, but also that the per-
formance results in a cooperative behavior where the team works together to
achieve a common goal, a desired property in this kind of domain. The ap-
proach allows the robots to apply a more deliberative strategy, where they can
reason about the state of the game in a more global way, as well as to have
special consideration of the opponents. Thus, they try to avoid the opponents
by passing the ball between them, which increases the possession of the ball by
the same team, and therefore, the team has more chances to reach the attacking
goal.

We compare our approach with the approach implemented in the Carnegie
Mellon’s CMDash’06 team, i.e. the region-based algorithm (RBA) described
in Section 4.1.1. As we already mentioned, the approach includes an implicit
coordination mechanism to avoid having two robots “fighting” for the ball at
the same time. The robot in possession of the ball notifies it to the rest of the
team, and then the rest of the robots move towards different directions to avoid
collisions. The robots also have roles which force them to remain within certain
regions of the field (for instance, defender, striker, etc.). The resulting behavior
of this approach is more individualistic and reactive in the sense that the robots
always try to go after the ball as fast as possible and move alone towards the
attacking goal. Although they try to avoid opponents (turning before kicking,
or dribbling), they do not perform explicit passes between teammates and, in
general, they move with the ball individually. Passes only occur by chance
and therefore are not previously planned. Henceforward we will refer to this
approach as the reactive approach.

The experiments presented in this chapter are focused on verifying the fol-
lowing hypotheses:

Hypothesis 1. Action selection in multi-robot domains is feasible applying
Case-Based Reasoning techniques, since it facilitates the design of the robots
behaviors, it is close to what humans do, and it provides a clear model for
defining the situations to solve and their corresponding solutions.

89

90 CHAPTER 6. EXPERIMENTATION

Hypothesis 2. The approach proposed is robust enough to deal with uncer-
tainty in the incoming information (perception) and to recover from impreci-
sion in the outcome solution (robot’s action execution).

Hypothesis 3. Due to the adversarial component in the working domain,
a team of robots using a cooperative strategy that includes passes between
robots outperforms an individualistic strategy where the robots do not plan
joint actions to achieve the common goal.

The first part of the chapter corresponds to the Case-Based Reasoning sys-
tem settings, mainly the case base description. Then we detail the experiments
setup including the evaluation measures used to assess the experimentation
results, as well as the different scenarios used. Finally, we present and analyze
the outcome of the experiments performed, both in simulation and with real
robots.

6.1 CBR System Settings

The case base used for the experimentation is composed of 136 cases. From
this set, 34 cases are hand-coded, while the remaining ones are automatically
generated using spatial transformations exploiting the symmetries of the soc-
cer field as described in 3.2. After some experimental tests we concluded that
this set of cases was large enough, at least for the purpose of the evaluation
presented in this work. As we describe later, in the experiments we have de-
signed, the robots always attack the same goal. Hence, during the retrieval
process only half of the case base (68 cases) is actually processed in the search
due to the indexed list used to store the cases when they are loaded, i.e. we
only consider those cases with attacking goal equal to the current problem to
solve.

In general we can classify the cases along the following components:

1. strategic component: based on the region of the field that the case covers,
it can vary from offensive to defensive. Regions close to the defending
goal correspond to a more defensive strategy, while regions close to the
attacking goal imply a more offensive strategy. Regions in the middle
represent a neutral strategy.

2. teamwork component: the number of robots (teammates) described in the
case indicates the degree of teamwork, ranging from individualistic to
cooperative, i.e. ranging from one robot to n robots. The larger n is, the
more cooperative is the team behavior.

3. adversarial component: the number of opponents in the case description
ranks a case from highly adversarial to non-adversarial (no opponents at
all).

In this work the case base is composed of cases which combine the com-
ponents defined above in different degrees. Figures 6.1 and 6.2 depict half of
the case base (the 68 cases with yellow defending goal). For simplicity we only
show the ball’s scope, which is useful to evaluate the region of the field where
the case is triggered. We define the following types of cases for our experimen-
tation:

6.1. CBR SYSTEM SETTINGS 91

(a)

(b)

Figure 6.1: Case Base: cases with one teammate and (a) no opponents or
(b) one or two opponents.

92 CHAPTER 6. EXPERIMENTATION

(a)

(b)

Figure 6.2: Case Base: cases with two teammates and (a) no opponents or
(b) one or two opponents.

6.1. CBR SYSTEM SETTINGS 93

1. neutral to offensive cases: most of the cases are situated on the half of
the field containing the attacking goal, although we also include some
cases for the middle-back of the field in case the ball moves towards that
region. In the figures we identify the following regions: front (f), corner
(c), diagonal (d or D), middle (m), side (s) and back (b).

2. individualistic and cooperative cases: mainly two types of cases, either
considering one teammate (single cases, Figure 6.1) or two (multiple cases,
Figure 6.2). Although we are interested in achieving a high degree of
collaboration among robots, there are situations where having passes be-
tween teammates is not the best choice. More precisely, this happens in
those situations where the ball is in front of the attacking goal. In this
case, trying to score individually may yield better results, rather than
planning a pass with other teammate. As we can observe in Figure 6.2
there are no cases in front of the goal. Another reason for including sin-
gle cases is to cover situations where the robots are too distant from each
other. In these situations the resulting adaptation cost could be too high,
and therefore, the filtering mechanism would reject all possible multiple
cases as candidate solutions, considering only single cases as feasible so-
lutions.

3. non-adversarial and adversarial cases: we include cases without oppo-
nents (Figures 6.1a and 6.2a) and with one or two opponents (Figures 6.1b
and 6.2b). Since the opponents in the experiments are moving robots, it
can often happen that there are no opponents near the ball. Hence, a case
with no opponents can be then reused.

Thus, the case identifier is defined by the regular expression:

case id = (s|m)[G?O∗](region)[R|L][H|N|S]

where, s and m indicate the teamwork degree (single or multiple); G and O
correspond to the optional adversarial component (G stands for goalie and O,
for opponent; the number of O’s matches the number of opponents). Omitting
this expression would correspond to a non-adversarial case, i.e. no opponents;
region corresponds to the strategic component represented by either the com-
plete name region or its first letter; and finally, the optional reduced solution
description, represented by two parameters that indicate the side of the attack-
ing goal to point the kick (right side or left side) and the strength of the kick
(hard, soft, or normal if no parameter is set).

Thus, for instance, the encoded identifier mMiddle(R/L)(H/N/S) in Fig-
ure 6.2a corresponds to cases in the middle of the field with two teammates
(multiple) without opponents, performing a hard, normal or soft kick (H/N/S)
towards either the right side or the left side of the attacking goal (L/R). Fig-
ure 6.3 illustrates four case examples.

We do not include the time and score difference features of the problem de-
scription of a case to simplify the experiments. Hence, we set both indices in
the cases and the problems to solve to default values, i.e. t = 0 and S = 0, so
their resulting similarity is equal to 1 (simtS(tp, Sp, tc, Sc) = 1.0). Regarding
the thresholds for the ball similarity (thrb) and the adaptation cost (thrc) used
in the filtering mechanism (Section 3.3.4, Algorithm 1) we set them to the fol-
lowing values: thrb = 0.367 (which corresponds to the Gaussian projection on

94 CHAPTER 6. EXPERIMENTATION

ID: sBack
#tm: 1
#opp: 0
region: back
sol: normal front kick

ID: sGf
#tm: 1
#opp: 1 (goalie)
region: front
sol: turn to free goal and kick

(a) (b)

ID: mSideS
#tm: 2
#opp: 0
region: side
sol: left pass and soft kick

to goal

ID: mOOmRH
#tm: 2
#opp: 2 (defenders)
region: middle
sol: right pass and hard kick

to right side of the goal

(c) (d)

Figure 6.3: Case examples: (a) sBack, (b) sGf, (c) mSideS, and (d)
mOOmRH. The small circle is the ball. The big circles A and B correspond
to the teammates, and the squares D and E, to the opponents. The ellipses
represent the case scope, both for the ball and the opponents, while the
trapezoids correspond to the ball’s path.

6.2. EXPERIMENTS SETUP 95

the XY plane) and thrc = 1500mm (obtained through empirical experimenta-
tion). The sorting function for ranking the candidate cases is set to sort2 as we
discussed in Section 3.3.5. Finally, with respect to the multi-robot system, since
we are dealing with only two robots, they both are retrievers (k = 2), i.e. both
are able to reason and to propose solutions to the problems presented in the
experimentation stage.

6.2 Experiments Setup

Two types of experiments were performed: experiments with simulated robots
and experiments with real robots. As in most robotic domains, the first ex-
periments are performed in a simulated environment in order to easily detect
problems and therefore, correct and improve the evaluated approach until ob-
taining satisfactory results. Once this stage is achieved, the next step is to ex-
periment with the real environment, i.e. the robots, and thus, prove that the
approach works as expected.

For both experiments we initialize a trial positioning the robots (two attack-
ers vs. a defender and a goalie) and the ball in a fixed location. A trial ends
either when the ball goes out of the field, enters the goal, or the goalie touches
it.

6.2.1 Robot’s Behaviors

The attackers are the players to be evaluated, i.e. they use either the CBR ap-
proach or the reactive approach. We must recall that within the CBR approach
the robots may perform the region-based algorithm, i.e. the reactive approach,
when no case is retrieved as explained in Section 4.1.1. However, these situa-
tions usually occur when the cost of any of the available cases is over the cost
threshold, and not because there are no cases defined. Hence, while the attack-
ers move towards the ball performing the region-based algorithm, they reduce
their distances with respect to the ball. At some point, any of the available
cases that was previously filtered out due to cost issues, may now become a
candidate solution.

Both approaches also share a behavior, which we will refer to as the default
behavior. This behavior consist in moving next to the ball, far enough to not
interfere in its movements, but close enough to easily approach it and take it
(around a meter away). Within the CBR approach the robots performing this
behavior are those robots that do not take part of the case reuse, or that finished
their gameplays while the case reuse continues (i.e. when the robots are in the
WAIT END state detailed in Section 4.2). Regarding the reactive approach, the
robots perform the default behavior when a robot indicates that it has the ball,
and therefore, the remaining ones have to move away from the ball’s path.

With respect to the opponents, we have implemented a simple behavior for
the defender and the goalie. Both perform the same behavior when playing
against any of the two evaluated approaches (reactive and CBR).

We define the action region as the region of the field where the robot can
freely move, go after the ball and perform any action with it. The robot cannot
move outside its action region. Thus, when the ball is within the robot’s action
region, the robot grabs it and kicks it towards the center of field to prevent the

96 CHAPTER 6. EXPERIMENTATION

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

line of action

action region

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

action region

line of action

Figure 6.4: Action region for (a) the defender and (b) the goalie. The robots
are facing the ball since it is out of their action region.

attackers from trying to score. We call line of action the imaginary line parallel
to the y axis where the robot waits until the ball enters its action region. Hence,
if the ball is out of the robot’s action region, then the robot remains on its line
of action facing the ball, perpendicular to the ball’s position.

Figures 6.4a and 6.4b depict the action region for the defender and the
goalie respectively, defined for the experiments. As we can observe, the de-
fender’s action region is also limited by the penalty area, since the rules of
the robot soccer forbid any robot to enter its own penalty area, except for the
goalie, of course. Regarding the goalie, its action region corresponds to the
penalty area (although in a real game it can indeed walk out of this region).
We have set the defender’s line of action to x = 900, i.e. 90cm away from the
midfield line, while the goalie’s to x = 2400, close to the middle of the penalty
area.

6.2.2 The Scenarios

We have defined four scenarios for the experimentation stage. We can classify
them in two sets:

• Scenarios 1 and 2 (Figures 6.5a and 6.5b): the ball (small circle) and the
attackers (A and B) are positioned in the middle-back of the field, while
the defender (D) remains in its line of action facing the center of the field
without blocking the ball, and the goalie (G) is situated within the penalty
area. These scenarios correspond to general situations where the attack-
ers are coming from the back of the field towards the attacking goal, while
the defender is waiting at its position.

• Scenarios 3 and 4 (Figures 6.5c and 6.5d): the ball and attackers are lo-
cated in the middle-front of the field, the goalie remains within the penalty
area facing the ball and the defender is right in front of the ball. These
type of scenarios are more interesting from a strategic point of view, since
the first decision (action) the attackers make (execute) is critical in their
aim to reach the goal while avoiding the defender whose main task is
either to intercept or to steal the ball.

We believe that these two sets of scenarios are general enough to repre-
sent the most important and qualitatively different situations the robots can
encounter in a game. Initiating the trials on the left or right side of the field

6.2. EXPERIMENTS SETUP 97

(a) (b)

(c) (d)

Figure 6.5: Scenarios used during the experimentation. Teammates are
represented with circles, while opponents, with squares. (a) Scenario 1, (b)
scenario 2, (c) scenario 3 and (d) scenario 4.

does not make much difference on the actions the robots might perform in any
of the two evaluated approaches, since they would perform their symmetric
actions instead.

We have neither defined any scenario with the ball near the attacking goal
because the defender would not be able to do much since it cannot enter the
penalty area, as mentioned in the previous section. Instead, we are interested
in having the defender as an active opponent complicating the attackers’ task.

Finally, regarding the corners, although they are also interesting areas to
evaluate, we have not included any specific scenario with this initial layout be-
cause the big challenge within the corners is not really focused on the strategy
to use, but on improving the localization of the robots. Computing the position
of the robot with a minimum degree of accuracy when it is located in a corner
is a very difficult localization task. The visible objects the robot can detect from
that position are not enough to ensure a robust localization. Hence, we pre-
ferred to omit these initial situations because there are high chances for both
approaches to perform poorly. Nevertheless, during the experiments the ball
can end in a corner situation, and the approaches must somehow overcome
these situations for the robots to achieve their goal.

98 CHAPTER 6. EXPERIMENTATION

6.2.3 Evaluation Measures

We have defined two main measures to assess the performance of the com-
pared approaches. The first one is based on the final outcome of a trial, while
the second one is based on the opponent’s (more precisely, the defender) pos-
session of the ball during the trial (a similar evaluation is performed in [15]).

As mentioned before, a trial ends when either the ball goes out of the field,
enter the goal or the goalie blocks it. In order to evaluate each trial we classify
the possible outcomes as:

• goal: the ball enters the goal.

• close: the ball goes out of the field but passes near one of the goalposts.
More precisely, at most 25cm to the left (right) of the left (right) goalpost.

• out: the ball goes out the field without being a goal or close to goal.

• block: the goalie stops or kicks the ball.

We also consider the to goal balls, which correspond to balls that are either goals
or close to goal. This measure indicates the degree of goal intention of the kicks.
Thus, although the balls might not enter the goal, at least they were intended
to do so.

Regarding the ball’s possession by the defender, for every trial we count
the number of times that the defender touched or kicked the ball away. This
measure shows the effectiveness of a cooperative behavior. We can intuitively
state that having a pass when a defender is in front reduces the chances of the
defender to get the ball, if the pass does not fail. Therefore, the likelihood of
successfully completing the task increases.

6.3 Simulation Experiments

In this section we evaluate and discuss the experiments performed in simula-
tion using the four scenarios described before. The goal of this experimentation
stage is mainly to verify hypotheses 1 and 3.

6.3.1 The Simulator

The simulator used for this part of the experiments is PuppySim 2, created by
the Carnegie Mellon’s team. We had to implement some additional features
for our experiments, such as managing team messages, robots walking while
grabbing the ball, etc. The final version of the simulator is a simplified version
of the real world. The robots’ perception is noiseless, i.e. the ball’s position and
the location of all robots on the field is accurate. However the actions the robots
perform have a certain degree of randomness. The kicks are not perfect and the
ball can end in different points within its trajectory (defined in Section 3.3.3).
In addition, when the robot tries to get the ball, it does not always succeed,
simulating a “grabbing” failure (a very common situation with the real robots).
The ball’s movement is modeled taking into account the friction with the field,
starting with a high speed and decreasing through time and gradually ceasing

6.3. SIMULATION EXPERIMENTS 99

Figure 6.6: Snapshot of the robot soccer simulator PuppySim 2. Robots 1
and 2 correspond to the attackers (A and B), while robots 3 and 4, to the
goalie and the defender respectively.

(if no one intercepts it before). A snapshot of the simulator is presented in
Figure 6.6.

When a trial ends, the simulator stores the ball outcome (based on the ball
classification stated before), the position where the ball ended and the dura-
tion of the trial in seconds. Then it restarts a new trial. This information is
afterwards used to compute the statistics shown in the next section.

6.3.2 Simulation Results

We performed 500 trials for each approach and each scenario, i.e. a total of
4000 trials. Table 6.1 shows the ball classification outcome obtained for all four
scenarios (results in percentage). We also computed the to goal measure, which
results from the sum of the goal balls and close balls.

As we can see the percentage of balls to goal with the CBR approach is
higher in all four scenarios compared to the reactive approach. Moreover, the
percentage of balls out are lower when using the CBR, indicating that the de-
fender had less opportunities to take the ball and kick it out of the field. The
differences are specially significant in scenarios 3 and 4, where the initial posi-
tion of the defender is right in front of the ball. In these situations, it is difficult
for a robot to move with the ball by itself without losing it, which is what the
reactive approach would do. Thus, the chances for the opponent to steal the
ball increase. On the contrary, performing a pass between teammates is more
useful, since the team keeps the possession of the ball, decreasing the oppor-
tunities for the defender to take it. This is the aimed strategy using the CBR
approach.

Figures 6.7 and 6.8 graphically compare the ball classification outcome be-

100 CHAPTER 6. EXPERIMENTATION

scenario approach
ball classification (%)

goal close out block to goal

1
cbr 25 9 28 38 34

reactive 25 3 37 35 28

2
cbr 26 8 28 38 34

reactive 25 6 41 28 31

3
cbr 25 6 40 29 31

reactive 13 4 59 24 17

4
cbr 36 8 11 45 44

reactive 22 4 25 49 26

Table 6.1: Ball outcome classification (simulation).

scenario approach
ball possession
average stdev

1
cbr 1.34 1.37

reactive 1.91 1.39

2
cbr 1.38 1.29

reactive 2.13 1.82

3
cbr 1.35 1.23

reactive 2.20 1.33

4
cbr 0.43 0.94

reactive 0.85 1.42

Table 6.2: Defender’s ball possesion (simulation).

tween both approaches (the CBR approach outcome on the right column and
the reactive approach results on the left). We can easily observe that the den-
sity of points corresponding to out balls is higher for the reactive approach, as
the percentage in Table 6.1 shows. More interestingly, with the CBR approach
these points are mainly located on the half of the attacking field (i.e. the right
half side of the field), while with the reactive approach, they are dispersed
along the width of the field (specially in the third scenario, Figure 6.8b, where
the points are even more concentrated on the left half of the field, rather than
on the right half). This occurs because the defender had more opportunities to
steal the ball close to the middle of the field before the attackers managed to
reach the middle-front of the field (right side of the field closer to the attack-
ing goal). The defender then clears the ball sending it towards the back of the
field, and easily kicking it out of the field. We can also notice that, in general,
the density of out balls next to the attacking goal (i.e. points with y coordinate
within the interval [-1500..1500]) is higher for the CBR approach. Thus, we can
deduce that at least the attackers were definitely aiming at scoring more times
that the attackers with the reactive approach.

Table 6.2 summarizes the defender’s performance during the experimen-
tion. It shows the average and the standard deviation of the number of times
the defender either touched the ball or kicked it per trial. We can see that in
general the defender playing against the reactive approach had more chances
for reaching or taking the ball than when playing against the CBR approach.
Furthermore, in the last scenario, it even doubled the average. The higher aver-

6.3.
S

IM
U

L
A

T
IO

N
E

X
P

E
R

IM
E

N
T

S
1

0
1

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000 0 1000 2000

Y

X

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000 0 1000 2000

Y

X

(a
)

(b
)

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000 0 1000 2000

Y

X

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000 0 1000 2000

Y

X

(c)
(d

)

F
ig

u
re

6
.7

:
B

all
classifi

catio
n

o
u

tco
m

e
(sim

u
latio

n
):

(a)
an

d
(b

)
co

rresp
o

n
d

to
S

cen
ario

1,
w

h
ile

(c)
an

d
(d

),
to

scen
ario

2.
L

eft
fi

g
u

res
resu

lt
fro

m
th

e
C

B
R

ap
p

ro
ach

p
erfo

rm
an

ce,
w

h
ile

rig
h

t
fi

g
u

res,
fro

m
th

e
reactiv

e
ap

-
p

ro
ach

p
erfo

rm
an

ce.
R

ed
cro

sses
(+

)
rep

resen
t

ou
t

b
alls;g

reen
x

’s
(×

),goal
b

alls;b
lu

e
stars

(∗
),

to
goal

b
alls;an

d
p

in
k

b
o

x
es

(⊡
),blocked

b
alls.

1
0

2
C

H
A

P
T

E
R

6.
E

X
P

E
R

IM
E

N
T

A
T

IO
N

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000 0 1000 2000

Y

X

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000 0 1000 2000

Y
X

(a
)

(b
)

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000 0 1000 2000

Y

X

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000 0 1000 2000

Y

X

(c)
(d

)

F
ig

u
re

6
.8

:
B

all
classifi

catio
n

o
u

tco
m

e
(sim

u
latio

n
):

(a)
an

d
(b

)
co

rresp
o

n
d

to
scen

ario
3,

w
h

ile
(c)

an
d

(d
),

to
scen

ario
4.

L
eft

fi
g

u
res

resu
lt

fro
m

th
e

C
B

R
ap

p
ro

ach
p

erfo
rm

an
ce,

w
h

ile
rig

h
t

fi
g

u
res,

fro
m

th
e

reactiv
e

ap
-

p
ro

ach
p

erfo
rm

an
ce.

R
ed

cro
sses

(+
)

rep
resen

t
ou

t
b

alls;g
reen

x
’s

(×
),goal

b
alls;b

lu
e

stars
(∗

),to
goal

b
alls;an

d
p

in
k

b
o

x
es

(⊡
),blocked

b
alls.

6.3. SIMULATION EXPERIMENTS 103

scenario 1 scenario 2 scenario 3 scenario 4
robot A B A B A B A B
AV 3.3 16.0 7.2 26.2 2.8 18.6 16.5 21.6
% 17 83 21 79 13 87 43 57

Table 6.3: Average and percentage of the backing up times per robot (A or
B) and scenario.

scenario 1 scenario 2 scenario 3 scenario 4
case single mult single mult single mult single mult
AV 3.9 5.0 4.1 6.0 3.6 5.3 2.4 2.5
% 44 56 41 59 40 60 49 51

Table 6.4: Average and percentage of “single” and “multiple” cases used
during the experimentations.

age values for both approaches correspond to the first three scenarios since in
these scenarios the ball is located further from the goal compared to the fourth
scenario. Hence, the chances for the defender to steal the ball are higher since
the distance the attacking robots have to travel to reach the goal is longer.

In order to show the degree of the collaboration among robots we com-
puted two more measures in this experimentation set. As we described in Sec-
tion 6.2.1, the reactive approach provides the robots with a simple coordination
mechanism: while a robot possesses the ball, the second robot performs a de-
fault behavior to avoid interfering with the first one. Thus, in general, during
a trial the robot starting the first action (e.g. get the ball and kick it) moves
with the ball while the second one is backing up. Once the action ends, both
robots will try to get near to the ball, but the chances for the second robot to
arrive first are lower since it had previously moved away from the ball. The
first robot instead, has more chances to get the ball first, while the second robot
will have to back up again and again. For each trial, we counted the number
of times each robot backed up. Table 6.3 shows the average and percentage of
the number of times the robots backed up per trial. As we can see, except for
the last scenario, the percentage of times that robot A backs up is significantly
lower compared to robot B. Hence, we can conclude that in general, because
of the strategy used, robot A (the robot that gets the ball first) acts individually
without integrating robot B (the other) in the task.

Since the reactive and CBR approaches are very different, we cannot apply
the ”number of backing ups” measure to the latter one. Therefore, to demon-
strate collaborative behavior with the CBR approach, we counted the number
of reused cases that implied a single robot in the solution, or more than one
(in this work two robots) during the experiments. We label “single” cases to
those cases with only one robot in their case description, and “multiple” cases
to those cases with more than one robot. The percentage of the type of cases
used and the average per trial is detailed in Table 6.4. As we can observe, in
general, half of the time (or even slightly more) the robots retrieve multiple
cases, i.e. cases where an explicit pass between two robots takes place. This is
probably due to the fact that the robots start their performance in the middle of
the field and with a defender in between them and the goal. In this situation a

104 CHAPTER 6. EXPERIMENTATION

pressure sensors

mouth

camera

leds

tail

memory stick slot/battery slot

Figure 6.9: Sony AIBO ERS-7(M2-M3) robot description.

cooperative strategy (multiple cases) is more useful since the robots can work
together to get closer to the goal. Once they get near the penalty area, it makes
more sense to try to score individually (simple cases), and not to have passes
between teammates.

6.4 Real Robot Experiments

After the successfull results in simulation, the next step is to test similar experi-
ments, but this time with the real robots. We must keep in mind the difficulties
that arise when dealing in a real environment, increasing the complexity of the
problem to solve. More precisely, the uncertainty in the incoming information
(robots’ perception), which has not been taken into account in the simulated
environment. Hence, with this second experimentation stage we aim to verify
hypothesis 2, i.e. the ability of the approach presented in this work to handle
uncertainty, as well as to reinforce hypotheses 1 and 3, already supported in
the previous experimentation stage.

6.4.1 The Robots

The robots we have used in this experimentation stage are four Sony AIBO
ERS-7 robots (one M2 robot, and three M3 robot). The AIBO robot is a four-
legged robot with a dog shape (Figure 6.9). The dimensions of the robot are
180×28×319 (in mm, width×height×length). A camera is located in its nose
with a field of view of 56.9 ◦ wide and 45.2 ◦ high. It has 18 PID joints, each
with force sensing: 3 joints per leg (elevate, rotate, knee), 3 joints on the neck
(tilt, pan, nod), 2 joints on the tail (tilt, pan) and 1 joint on the mouth. Its in-
ternal CPU is a 576MHz processor with 64MB RAM. As we can see, it is a very
limited processor and therefore requires the implementation of fast and simple
algorithms. The programs are copied to a Memory Stick that is inserted in the
robot. When the robot is turned on, it loads all the information from the Mem-
ory Stick and starts moving autonomously. The robots communicate through
a standard wireless network card (802.11b wireless ethernet). The robot has 26

6.4. REAL ROBOT EXPERIMENTS 105

(a) (b)

(c) (d)

Figure 6.10: The robots: (a) Fang (Mud), (b) Boira (Mist), (c) Terra (Soil)
and (d) Nata (Cream).

independent leds on its face which are useful for debugging the robot’s behav-
ior. It also has four pressure sensors (three on its back and one on its head)
employed to modify the robot’s behavior (pause, resume, reset, etc.). Pictures
of our four robots are shown in Figure 6.10.

Vision Issues

The vision system of the robots is in charge of identifying and localizing the ob-
jects in the environment, i.e. ball, markers, goals, lines and other robots. Hence,
a robot is capable of knowing its own position on the field (its localization is
based on the observed markers positioned along the field) and deriving the lo-
cations of the objects in its field of view accordingly. Because of computational
limitations the vision processes must be fast and simple. Therefore, the robust-
ness of the vision system is not guaranteed. The main efforts of the designers
are focused on rapidly detecting the ball and markers on the field, which are
the most important objects for the robot to perform its task, i.e. move the ball
towards the goal. Hence, although there is an attempt to also identify and lo-
calize opponents, in fact, the robots can hardly know where the opponents are
with a minimum degree of accuracy. Figure 6.11 illustrates some examples of
images extracted from the robot vision system, both original images (RGB) and
after the segmentation process.

The purpose of this research is to study the performance of the approaches,

106 CHAPTER 6. EXPERIMENTATION

(a) (b) (c)

Figure 6.11: Top: original images (RGB), and bottom: segmented images.
(a) Cyan goal and a robot. (b) Marker and ball. (c) Yellow goal and ball in
the center of the field.

and not to improve robustness to the perception system. Since the opponents
locations are fundamental for the experimentation we present in this work, to
evaluate both approaches independently from vision issues, the robots from
the opponent team report their positions to all the robots on the field through
the network (the same way the robots from the same team do so).

We must also mention that during the experimentation with the CBR ap-
proach, after every cycle (i.e. retrieving and executing the case) all robots stop
for 5 seconds in order to update their localization on the field with lower un-
certainty and thus, increase the accuracy of the case retrieval. Otherwise, the
performance of the CBR approach would be degraded due to visual issues,
misleading the overall evaluation of the system.

6.4.2 Results

Since working with real robots is harder than in simulation (it is unfeasible to
reproduce with the real robots the volume of experimentation done in simula-
tion), for this second part of the evaluation we only used the third and fourth
scenarios. As mentioned before, we believe these are more interesting than the
first two scenarios because the defender is located in front of the ball, blocking
the first movement the attacker could perform. Hence, the attacker needs to
apply some strategy to avoid the defender and not to lose the ball.

We performed 30 trials per approach and per scenario, 120 trials in total.
Next we evaluate both scenarios separately discussing for both approaches:
first, the approach performance; second, the ball classification outcome; and
finally, the defender’s performance.

Scenario 3

• CBR approach performance
After observing the 30 trials performed by the robots, we sketch the gen-
eral behavior of the CBR approach in Figure 6.12. As we can observe,

6.4. REAL ROBOT EXPERIMENTS 107

given the initial positions of the robots, the first action is to perform a
pass to avoid the defender (Figure 6.12a). Hence, robot A moves towards
the ball to start the pass, while robot B moves towards the front to re-
ceive the ball. Meanwhile, the defender (robot D) remains on its line of
action facing the ball. As the pass takes place, the defender moves to a
better position to continue blocking the ball. Since robot A has ended its
sequence of actions (gameplay) it performs the default behavior, main-
taining a close distance to the ball, but without going after it. When
robot B receives the ball, it performs a kick towards the middle line (Fig-
ure 6.12b). The first case reuse ends. The next case consists in moving
the ball forward in order to move it closer to the attacking goal. Hence,
as robot A is closer to the ball, it is in charge of reusing alone the second
case, while robot B moves next to the ball towards a better position ex-
ecuting the default behavior. Meanwhile the defender tries to reach the
ball as well (Figures 6.12c and 6.12d). Finally, the last case is retrieved,
which once again consist in having a pass between robots A and B to
avoid the goalie (robot G). Hence, robot A moves to take the ball, while
robot B waits for the pass (Figure 6.12e). Once it receives the ball, it kicks
towards the goal (Figure 6.12e).

The sequence detailed above is a perfect execution, where the attackers
manage to score and the trial ends. Unfortunately, because of the high
imprecision of the action executions, the performances of the trials varied
from one to another retrieving different cases (thus, executing different
actions) to overcome the altered sequence. The critical points where a
modification of the ideal execution occurs are:

– during a pass (Figures 6.12b and 6.12f): the pass could fail because
(i) the ball is sent to the wrong direction (usually due to wrong local-
ization of the robots), (ii) the receiver does not succeed in grabbing
the ball, or (iii) the defender intercepts the pass.

– during the adaptation of the case (Figures 6.12c and 6.12e): while
the robot is moving towards the ball, the defender may reach the
ball first, clearing the ball or kicking it out of the field.

• Reactive approach performance
The approach only takes into account the position of the opponent for
making decisions when the opponent is very close to the ball (approxi-
mately 40 cm away at most), blocking it from a forward kick. Hence, in
the initial trial layout, the defender is far enough from the ball to consider
it during the decision making and therefore, robot A first performs a for-
ward kick (Figure 6.13a). In the next timestep, the ball is close enough
to the defender and thus, the reactive approach includes it as an obsta-
cle that must be avoided. Since explicit passes are not modeled in this
approach, the only chance for avoiding the opponent is to dodge it, mov-
ing in diagonal (either to the right or to the left) while grabbing the ball
as shown in Figure 6.13b. The opponent, in this case the defender, also
moves towards the ball and both robots collide fighting for the ball. The
outcome is either a success for the attacker, getting rid of the defender
and kicking the ball forward, or a success for the defender, stealing the
ball and clearing it.

108 CHAPTER 6. EXPERIMENTATION

D GA

B

A

D GB

(a) (b)

A

G

D

B

G

B

D

A

(c) (d)

G

B

A

D

GA

B

D

(e) (f)

Figure 6.12: Sketch performance of the attackers using the CBR approach
in scenario 3. Solid arrows represent the robots movements, dashed ar-
rows, the default behaviors (moving next to the ball), and pointed arrows,
the ball’s movement.

6.4. REAL ROBOT EXPERIMENTS 109

D GA

B B

D GA

(a) (b)

Figure 6.13: Sketch performance of the attackers using the reactive ap-
proach in scenario 3.

The overall performance of the reactive approach is the same in general,
trying to move the ball close to the attacking goal, and dodging the op-
ponent when it gets near the ball approaching from the front. At some
point, the attacker reaches the attacking goal and tries to score avoiding
the goalie either turning or dodging side to side.

• Ball classification
The CBR approach outperforms the reactive approach. As summarized
in Table 6.5 the percentage of balls to goal is higher for the CBR approach
(30%) with respect to the reactive one (17%), as well as the percentage
of blocked balls, i.e. 43% for the CBR approach, and 30% for the reactive
approach. Hence, the chances for scoring with the CBR approach are
higher, since more times the attackers reached the attacking goal, ending
the trial either scoring or trying to score. This fact is also derived from
the percentage of balls out, where we can observe that the percentage
for the reactive approach (53%) even doubles the percentage for the CBR
approach (27%). More precisely, as listed in Table 6.6, the number of balls
out due to the defender’s actions is higher for the reactive approach (11)
with respect to the CBR approach (6).

• Defender’s ball possession
The chances for the defender to steal the ball are higher when the attack-
ers use the reactive approach. Table 6.6 lists the average and standard de-
viation of the number of times the defender possessed the ball, i.e. either
touched or kicked the ball. The average of the defender’s ball possession
is 2.27 in contrast to the average of 1.40 when playing against the at-
tackers with the CBR approach. This means that in average, at least two
times the defender had the opportunity to either block the ball or even
worst, to clear the ball from its defending zone (the half side of the field
it defends). Thus, we can state that the teamwork component in the CBR
approach, more precisely the passes between teammates, are indispens-
able for reducing the opponent’s chances to intercept the ball. This fact
is also confirmed by the number of balls out mentioned above, where the
defender kicks the ball out of the field more times when playing against
the reactive approach.

110 CHAPTER 6. EXPERIMENTATION

scenario approach
ball classification (%)

goal close out block to goal

3
cbr 20 10 27 43 30

reactive 10 7 53 30 17

4
cbr 20 3 17 60 23

reactive 30 7 30 33 37

Table 6.5: Ball outcome classification (real robots).

scenario approach
ball possession out balls
average stdev def att total

3
cbr 1.40 1.16 6 2 8

reactive 2.27 1.93 11 5 16

4
cbr 0.60 0.72 2 3 5

reactive 1.07 0.87 5 4 9

Table 6.6: Defender’s ball possesion (real robots).

Scenario 4

• CBR approach performance
Similarly to the previous scenario, the first action the attackers perform is
a pass between them to avoid the defender, while the latter tries to take
it (Figure 6.14a and Figure 6.14b). After the first case reuse, the ball ends
close to the penalty area, where the goalie is expecting it as shown in
Figure 6.14c. Since the goalie is on the right side of its penalty area, it is
not only blocking the ball from a front kick, but also incapacitating robot
A from scoring. Hence, the only solution is for robot B to individually try
to score dodging the goalie (Figure 6.14d), while the defender comes from
the back trying to take the ball on time. Once again, failures during the
execution can occur due to the reasons already mentioned in the previous
scenario (errors during passes or defender reaching the ball first).

• Reactive approach performance
In contrast to the third scenario, in this occasion the initial configura-
tion sets the opponent close enough to the ball, so the attacker can detect
it. Hence, using the dodging tactic robot A tries to avoid the defender,
moving diagonally towards the left and kicking the ball forward (Fig-
ure 6.15a). Meanwhile, robot B moves towards the attacking goal, avoid-
ing to intercept the ball. Once robot A has finished the kick, robot B can
immediately go after the ball (Figure 6.15b). This action could be inter-
preted as a pass, although it was not really meant to be. Next, robot B is
close enough to the attacking goal and alone with the goalie, and there-
fore, tries to score (Figure 6.15c).

We must once again recall that the above described scenario corresponds
to an ideal execution. As the results we have obtained show, most of the
times the defender prevented the attackers from reaching the goal or at
least, greatly difficulted their task.

6.4. REAL ROBOT EXPERIMENTS 111

A D

B
G B

A

G

D

(a) (b)

A

D

G
B B

D

A

G

(c) (d)

Figure 6.14: Sketch performance of the attackers using the CBR approach
in scenario 4.

• Ball classification
The CBR approach is not as efficient as the reactive approach. As we can
observe in Table 6.5 the percentage of balls to goal using the reactive ap-
proach (37%) is higher than using the CBR approach (23%). However, we
must also take special attention to the fact that the percentage of blocked
balls by the goalie is much higher for the CBR approach (60%, it doubles
the reactive approach). Therefore, we confirm that altough the attack-
ers with the CBR approach did not manage to score as many goals as
the attackers with the reactive approach, at least most of the times they
reached the attacking goal and aimed at scoring. Moreover, as detailed
in Table 6.6, while playing against the reactive robots the defender had
more opportunities to kick the ball out of the field (5 times vs. 2 against
the CBR approach), preventing the attackers from reaching the attacking
goal.

• Defender’s ball possession
Similarly to scenario 3, as Table 6.6 summarizes, the average number of
times the defender intercepted the ball when playing against the reactive
approach (1.07) is higher than when playing against the CBR approach
(0.60). As mentioned in the approach performance, the first attacker’s
action using the reactive approach is to dodge the defender moving for-
ward with the ball, instead of performing a pass, as the CBR approach

112 CHAPTER 6. EXPERIMENTATION

B
G

A D DA

G

B

(a) (b)

A

B

G

D

(c)

Figure 6.15: Sketch performance of the attackers using the reactive ap-
proach in scenario 4.

does. Hence, although the attacker might try to avoid the defender, most
of the times, the defender manages to block its movements, forcing the
attacker to lose the ball. Therefore, in average, at least one time the de-
fender blocks the ball, complicating the task of the attacker to finally
move the ball towards the attacking goal.

Further discussion on the overall performance of the approaches compar-
ing the simulation and the real robots results is presented in the last section of
this chapter.

6.5 A Trial Example

In order to complete the experimentation stage, we next detail a complete trial
with the real robots, starting with the coordinator selection of the multi-robot
system, continuing with the retrieval process, and finally, showing the execu-
tion of a case, i.e. the case reuse.

Figures 6.16 through 6.24 show the evolution of a trial using the fourth sce-
nario. For each case reuse we first show the retrieved case and the paths fol-
lowed by the robot. The subsequent figures show the execution sequence of
the case, composed of four series of snapshots. The general description of each
image is the following:

• retrieved case: similar to the figures shown in the beginning of this chap-
ter (Section 6.1), the green circles correspond to teammates (A and B),

6.5. A TRIAL EXAMPLE 113

while squares correspond to opponents, the defender (D) and the goalie
(G). The ball and opponents’ scopes are depicted with ellipses, and the
ball’s path with trapezoids.

• path image: it illustrates the path of the robots and the ball during the
case execution. As shown in the legend, green crosses correspond to
robot A and blue stars, to robot B (the attackers). The defender and the
goalie (D and G) are represented with a yellow and a pink square respec-
tively. Finally, the ball is denoted by the red circle. The data is obtained
from the internal beliefs of the robots, i.e. where they believe they are
located on the field and what is the ball’s position.

• execution sequence: each step of the case reuse is composed of three im-
ages:

– a snapshot of the video of the trial. The brown robots correspond to
the attackers, while the white ones, to the opponents.

– the robot’s internal beliefs, also called world model1 corresponding
to any of the two attackers.

– an image extracted from one of the robots vision system (segmented
images). The robots id’s in the world model are 1 and 2 for the at-
tackers, 3 for the goalie, and 4 for the defender (white or gray filled
squares).

In this trial example, three cases were reused to fulfill the task. We next
detail each of the steps:

1. Case 1 (Figures 6.16, 6.17 and 6.18): as observed in the first snapshot of
the field, Figure 6.17 (1), the robots are located as in the initial layout
of the fourth scenario. The selected coordinator corresponds to robot A,
the closest robot to the ball. The world model and the segmented image
were obtained from robot A. A reduced description of the problem to
solve corresponds to (from robot A’s perspective):

id position (x,y)
A 182 -1288
B 756 -79
defender 1458 -1273
goalie 2359 -163
ball 682 -1263

The retrieved case corresponds to the case mSide (multiple-side), Fig-
ure 6.16a, which consists in a pass between both robots to avoid the de-
fender positioned in front of the ball.

The second row, Figure 6.17 (2), shows the robots starting the execution
of the case, i.e. the case reuse. In the picture we can see that robot A is
performing the pass, while robot B is waiting to receive the ball. Mean-
while, the defender has moved to intercept the pass. Next, robot B takes

1To obtain this information we used Chokechain2, a debugging tool implemented by the CMU
team. The symbols and graphics shown correspond to features used to debug the robot’s behavior.
We only detail those relevant for this example.

114 CHAPTER 6. EXPERIMENTATION

the ball, Figure 6.18 (3), and turns to kick the ball towards the attacking
goal, Figure 6.18 (4). The segmented image in this last row is taken from
robot A, and illustrates the kick performed by its teammate (robot B) fi-
nalizing the execution of the case. The ball ends close to the attacking
penalty area as shown in red in the path’s image (Figure 6.16b).

(a)

-1500

-1000

-500

 0

 500

 1000

 1500

-1000 -500 0 500 1000 1500 2000 2500

Y

X

ball
A
B
G
D

(b)

Figure 6.16: Trial example: first case. (a) Retrieved case, (b) robots’ paths.

6.5.
A

T
R

IA
L

E
X

A
M

P
L

E
1

1
5

(1)

(2)

Figure 6.17: Trial example: first case (sequence 1 and 2). Snapshot, world
model and segmented image.

1
1

6
C

H
A

P
T

E
R

6.
E

X
P

E
R

IM
E

N
T

A
T

IO
N

(3)

(4)

Figure 6.18: Trial example: first case (sequence 3 and 4). Snapshot, world
model and segmented image.

6.5. A TRIAL EXAMPLE 117

2. Case 2 (Figures 6.19, 6.20 and 6.21): after the execution of the previous
case, robot B is selected as the new coordinator. Robot A is further in the
back blocked by the defender, while the goalie starts moving perpendic-
ular to the ball to prevent a goal. The problem description corresponds
to (this time from robot B’s perspective):

id position (x,y)
A 952 -1288
B 685 -371
defender 908 -1006
goalie 2369 -140
ball 1595 -4

Since robot B is alone in front of the goalie, Figure 6.20 (1), case sGf
(single-goalie-front) is retrieved, Figure 6.19a. Thus, the robot should
take the ball and try to score alone avoiding the goalie (either turning to
face an empty spot in the goal or dodging the goalie).

In the second row, Figure 6.20 (2), we can observe that robot B approaches
the ball and the defender starts traveling towards that point as well. The
segmented image is taken from robot A’s point of view, where we can
observe robot B getting closer to the ball. In the next row, Figure 6.21 (3),
robot B kicks the ball while the defender tries to steal it. The defender
does not manage to get the ball, although the goalie moves to block it
and succeeds (segmented image in Figure 6.21 (4)). However, the trial in
this occasion is not stopped, since the goalie has not kicked the ball out
i.e. it just blocked the ball.

3. Case 3 (Figures 6.22, 6.23 and 6.24): in this final step, robot B is selected
as the coordinator once again, although as we see next, the case is reused
only by robot A. Thus, given the current state of the world:

id position (x,y)
A 1656 -363
B 1522 114
defender 1630 -328
goalie 2374 0
ball 1952 -42

The retrieved case corresponds to case sFront (single-front), Figure 6.22a,
where no opponent is considered. Although from our perspective (hu-
man) we can clearly see in the first picture, Figures 6.23 (1), that the goalie
is in front of robot A and therefore, the case sGf (as above) would be more
appropriate, we must recall that a high degree of uncertainty is present
within the robots’ beliefs. In fact, if we observe the picture in the Fig-
ure 6.23 (2), it turns out that the goalie moves too much towards its left,
leaving the goal free for a short period of time (the segmented image
illustrates a free gap in the attacking goal). Thus, the case execution con-
tinues, Figure 6.24 (3) and (4), and in spite of the opponents’ efforts to
prevent the goal, finally robot A manages to score.

118 CHAPTER 6. EXPERIMENTATION

(a)

-1500

-1000

-500

 0

 500

 1000

 1500

-1000 -500 0 500 1000 1500 2000 2500

Y

X

ball
A
B
G
D

(b)

Figure 6.19: Trial example: second case. (a) Retrieved case, (b) robots’
paths.

6.5.
A

T
R

IA
L

E
X

A
M

P
L

E
1

1
9

(1)

(2)

Figure 6.20: Trial example: second case (sequence 1 and 2). Snapshot,
world model and segmented image.

1
2

0
C

H
A

P
T

E
R

6.
E

X
P

E
R

IM
E

N
T

A
T

IO
N

(3)

(4)

Figure 6.21: Trial example: second case (sequence 3 and 4). Snapshot,
world model and segmented image.

6.5. A TRIAL EXAMPLE 121

(a)

-1500

-1000

-500

 0

 500

 1000

 1500

-1000 -500 0 500 1000 1500 2000 2500

Y

X

ball
A
B
G
D

(b)

Figure 6.22: Trial example: third case. (a) Retrieved case, (b) robots’ paths.

1
2

2
C

H
A

P
T

E
R

6.
E

X
P

E
R

IM
E

N
T

A
T

IO
N

(1)

(2)

Figure 6.23: Trial example: third case (sequence 1 and 2). Snapshot, world
model and segmented image.

6.5.
A

T
R

IA
L

E
X

A
M

P
L

E
1

2
3

(3)

(4)

Figure 6.24: Trial example: third case (sequence 3 and 4). Snapshot, world
model and segmented image.

124 CHAPTER 6. EXPERIMENTATION

6.6 Discussion and Future Work

In general, analyzing both results obtained in simulation and the ones obtained
with the real robots, we can confirm that the Case-Based Reasoning approach
indeed improves upon the region-based approach, not only on achieving a
higher percentage of to goal balls, but also, achieving a lower percentage of
out balls. More precisely, the third scenario results with the real robots con-
firms the results obtained in simulation. In the fourth scenario, once again the
average of balls out is higher for the reactive approach, which confirms that the
defender had more chances to take the ball.

However, in the last scenario, the reactive approach achieved a higher per-
centage of balls to goal compared to the CBR approach. We must point out that
comparing the ideal executions of both approaches (Figures 6.14 and 6.15) we
can easily observe that the reactive approach is more efficient on faster moving
the ball towards the attacking goal, i.e. with two kicks the robots can score.
On the contrary, the attackers with CBR approach need at least three kicks to
complete the same task. Hence, the chances for the goalie to move towards a
better position to block the ball also increase, as confirmed in the percentage
of blocked balls by the goalie (60% for the CBR approach vs. 33% for the reac-
tive approach). These results also support that at least the CBR approach had
more chances to get closer to the attacking goal, i.e. succeeded on avoiding
the defender in the first step (Figure 6.14b), while with the reactive approach,
the attacker’s first action was blocked most of the times (Figure 6.15a). Other-
wise, as the ideal sequences shows, the attackers would have had even more
opportunities to try scoring, considerably increasing the percentage of to goal
balls.

We must analyze a last issue. Comparing the results obtained for the fourth
scenario in simulation and with the real robots, we can see that in simulation,
the CBR approach outperformed the reactive approach. Hence, no matter that
the number of kicks is higher, the CBR can still improve the reactive approach.
However, we must always have in mind that the high uncertainty in the per-
ception for the robots is not present in the simulated environment. If we take
a look back to Figure 6.14c, we can observe that after reusing the first case, the
ball stops near the penalty area. Although the goalie is not allowed to leave
its action region (the penalty area), due to the high uncertainty in the robot’s
world model, the goalie may believe that the ball is within its action region,
and therefore, try to grab it. In the simulated environment this situation never
takes place, unless the ball is actually within the penalty area. Hence, while in
the real world the trial could end with the goalie clearing the ball, i.e. block ball
in the statistics, in simulation the attacker would probably be able to score, i.e.
a to goal ball.

This fourth scenario situation, where the attackers are in front of the op-
ponent’s goal, verifies that in this kind of domains (high uncertainty, highly
dynamic and real time response requirements) to solve critical situations it is
useful to have a reactive strategy rather than a deliberative strategy. When the
players are in front of the goal, there is no need of reasoning about interesting
plays. Instead, being focused on trying to score as fast as possible is the best
strategy. We must also remember that the defenders are forbidden to enter
the penalty area, and thus, the opponent team has less opportunities to take
the ball. The goalie is the last obstacle to achieve the goal. Thus, acting fast

6.6. DISCUSSION AND FUTURE WORK 125

is crucial. However, a deliberative strategy outperforms a reactive one for the
remaining situations, i.e. in the middle, back, sides and corners of the field
where the opponents have more chances of stealing the ball.

Regarding the defender’s performance, we have confirmed that using the
CBR approach is a better strategy to avoid the defender stealing the ball be-
cause of the explicit passes between teammates. The reactive strategy almost
doubles the chances for the defender to steal the ball compared to the CBR
approach.

In conclusion, we believe we have indeed verified all three hypotheses pre-
sented in the beginning of the chapter. First, both experiments in simulation
and with the real robots confirm that applying Case-Based Reasoning tech-
niques is a feasible alternative to procedural programming; second, the real
robots experiments reinforce the ability of the CBR approach to handle uncer-
tainty; and third, again, both experiments encourage the advantages of per-
forming a cooperative strategy for joint tasks within dynamic adversarial do-
mains, as the robot soccer presented in this work.

As future work, we are interested in studying in depth a combined strategy
integrating both approaches, i.e. a pure deliberative strategy with a reactive
one. We believe that because of the domain features, the reactive component
must always be part of the overall strategy to solve critical situations. Hence,
by combining both approaches we can benefit from their advantages.

126 CHAPTER 6. EXPERIMENTATION

Chapter 7

Conclusions and Future Work

In this chapter we review the contributions presented in this dissertation. We
also summarize future research lines to improve the presented approach.

7.1 Summary of the Contributions

Designing the decision-making engine of a team of robots is a challenging task,
not only due to the complexity of the environment where the robots usually
perform their task, which include uncertainty, dynamism and imprecision, but
also because the coordination of a team must be included in this design. The
robots must be aware of other robots’ actions to cooperate and to successfully
achieve their common goal. Besides, decisions must be made in real-time and
with limited computational resources. In this thesis we have proposed a Case-
Based Reasoning system for action selection in a team of robots within the robot
soccer domain.

We next go through the contributions presented in this dissertation and
briefly summarize the conclusions drawn from each chapter:

Case definition and Case Base description

A case represents a snapshot of a game, i.e. the description of the envi-
ronment, the actions the robots should perform, i.e. the solution descrip-
tion, and the case scope, i.e. general domain knowledge. An initial set of
cases has been manually created. When the system loads the case base,
a larger set of cases is automatically derived through spatial transforma-
tions. The complete case base is divided in two sets to reduce the search
space during retrieval.

Assessing case similarity

When comparing the current problem to solve with the cases in the case
base, we first compute their similarity based on what we call the non-
controllable features. The values of these features cannot be directly mod-
ified by the system. Different similarity functions have been proposed
depending on the features domains. The overall similarity results from
the aggregation of the individual similarities. Next, we compute the cost
of adapting the current problem to the case using the controllable features.

127

128 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

The idea underlying this measure is that the robots of the team (not the
opponents of course) can move to better positions in order to increase the
similarity between the state of the world and the evaluated case. The last
measures to compute involve the positions of the opponents. The aim is
to evaluate whether the case is applicable or not even though the prob-
lem to solve and the case have been considered similar enough. Thus,
a case is applicable if the trajectories the ball follows when applying the
actions indicated in the solution of the case are free of opponents. Finally,
the opponent similarity measure reinforces the similarity degree. All this
process is conducted through a filtering mechanism. Hence, whenever a
case fails in any of the filtering stages, it is immediately withdrawn and
the procedure evaluates the next case in the case base, thus reducing the
time invested in the search.

Filtering mechanism

After the filtering process takes place, a set of candidate cases are ob-
tained. A sorting algorithm ranks the candidates based on several cri-
teria. In this work we have presented five criteria and three different
sorting algorithms. We have performed empirical evaluation in simula-
tion to verify that the retrieval process is suitable for the work presented
here, and also to determine the most efficient sorting algorithm among
the three proposed.

Multi-robot architecture, coordination and case reuse

After a case is retrieved, the next step is to reuse it. Hence, we have
introduced a multi-robot architecture and a coordination mechanism to
execute the actions indicated by the retrieved case in a cooperative way.
The multi-robot system is composed of two types of robots: the retriev-
ers and the executors. As their names indicate, the retrievers are capable
of retrieving cases, i.e. they incorporate a CBR module in their internal
architecture. The executors instead, wait for the retrievers to indicate the
case to reuse. Only one case can be executed at a time. Therefore, a coor-
dinator is selected to retrieve the next case to reuse.

Once the coordinator informs the rest of the team (retrievers and execu-
tors) about the retrieved case, they all first move towards their adapted
positions to start the execution of the case. During the case reuse, any
of the robots may abort the execution if, based on its beliefs, it finds out
that the case is not applicable anymore. When the case reuse ends, the
process starts again, selecting a coordinator, retrieving a case, reusing it,
and so on.

Supervised learning for acquiring the scope of cases

In this thesis we have also included a first attempt to automate the adap-
tation and acquisition of the case-based reasoning system’s knowledge
with respect to the scope of a case, i.e. the case coverage. To this end,
a two-steps algorithm has been presented. The first step grows the ini-
tial scope of a case until approximating the expected one (based on the
expert’s knowledge), while the second one, makes it converge. We have
presented three different function policies to this end, and evaluated them

7.2. FUTURE DIRECTIONS 129

through simulation and with a real robot. We have also included a simple
mechanism to create new cases when no case is found.

Empirical evaluation of the approach

Finally, we have evaluated the retrieval and the reuse step both in simu-
lation and with real robots comparing the proposed approach (CBR ap-
proach) with the region-based approach (reactive approach) presented
by the Carnegie Mellon team, CMDash. The scenarios consisted of two
vs. two games, where the attackers played using either the CBR or the
reactive approach. We have implemented the behaviors for the defender
and the goalie, which were used against both types of attackers.

The results showed that the CBR approach not only outperformed the
reactive approach in general, scoring more goals, throwing fewer balls
out of the field and decreasing the defender’s ball possession, but also
encouraged the team to behave in a cooperative way, having passes be-
tween the attackers when possible. The experiments also demonstrated
that in this kind of domains (high uncertainty, highly dynamic and real
time response requirements) to solve critical situations it is sometimes
useful to have a reactive strategy rather than a deliberative strategy where
acting fast is crucial. Thus, we believe that the combination of both strate-
gies is essential to obtain an effective robot behavior.

7.2 Future Directions

The presented work introduces a complete framework for the action selection
problem in a team of robots, starting from the decision-making until the coor-
dinated execution of the selected actions. As concluded in the previous section,
and observing the successful results obtained through the experimentation, we
can claim that the goals of the thesis have been achieved, while the proposed
hypotheses have also been verified. However, and as expected, improvements
and open issues are still pending. We next review the open challenges pro-
posed through this dissertation.

Retrieval Step

The cost function should model not only the distance the robots have
to travel to reach their adapted positions, but also the possible obstacles
the robots may encounter in their paths. However, it must be taken into
account that the cost may vary from decision time, i.e. during retrieval,
to execution time, i.e. during reuse, since the obstacles are other robots
that are constantly moving. Other parameters such as robot’s orientation
or velocities can also be considered when defining the cost function.

In order to increase flexibility in the applicability measure, we could
make use of the fuzzy representation of the free path and the opponent
similarity functions.

The evaluation of the candidate cases could be extended, including not
only the problem description, but also an analysis of the solution descrip-
tion. This way we could discriminate between similar cases whose prob-
lem descriptions are equal, but with different actions. To this end, the

130 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

outcome of the reused case should be included in the case description so
that different solutions can be compared.

It would be also interesting to include for each case description, a list of
most likely cases to be retrieved in the next cycle of the CBR. This way
patterns of case executions can be obtained for further analysis, such as
the evaluation of the team behavior or prediction of future states.

Reuse Step

The selection of the case to reuse could be improved considering the pro-
posals of each retriever robot. Thus, a negotiation mechanism should
be introduced so the robots could bargain for selecting the most suitable
case to reuse among the retrieved ones.

Some of the available negotiation mechanisms we can find in the litera-
ture, among others, and that should be studied to determine their viabil-
ity, are:

• voting mechanisms, where the retrievers would vote for a case or a set
of candidate cases, and the most voted case would be selected;

• bidding mechanisms, where each retriever indicates along with the
proposed case, a bid representing the confidence on how suitable
the retrieved case is given its current internal beliefs (we must recall
that uncertainty in the robot’s beliefs is always present in different
degrees); or

• argumentation mechanisms, which are far more complex, since the
robots (agents) must exchange arguments for or against the propos-
als submitted for discussion. However, this approach might not be
feasible in domains where acting fast is crucial.

Revise Step

Including this step in the current approach is fundamental if we expect
the system to automatically improve its performance as well as to adapt
and to learn new situations encountered through time. However, because
of the nature of the domain, and more precisely, the continuous property
of the domain, the design of this latter step is very challenging. In or-
der to revise the reused case, at least the following questions should be
analyzed:

• when to consider that a potential case has started, i.e. identify the
initial situation;

• when does it finish, i.e. which are the actions to store as part of the
solution of a case; and,

• how to evaluate the outcome of the performed actions to determine if
the case is useful or not for achieving the robot’s goals (i.e. positive
or negative feedback).

Some previous works have been already presented in the past addressing
these issues [51, 37, 27], and should be studied in detail in order to adapt
their ideas to the robot soccer domain.

7.2. FUTURE DIRECTIONS 131

As discussed in the experimentation chapter, we should also study in more
detail the combination of the two types of strategies, deliberative and reactive,
in order to benefit from the advantages of both. Having a deliberative strategy
is fundamental for making decisions from a high level point of view, consider-
ing the complete state of the world, as well as past history or future predictions
of the state evolution. However, a reactive strategy is also essential when fast
response is required to solve critical situations.

Finally, the parameters used in the approach, such as thresholds, could be
modified on-line in order to alter the behavior of the retrieval and the reuse
step. Thus, different cases would be retrieved modifying the team strategy.
Moreover, these parameters could vary based on the time and score of the
game. For instance, consider a situation where few minutes remain for end-
ing the game and the team is losing. It would be then desirable that the team
switched to an offensive strategy. We could achieve this through two means:
we could design a specific set of cases for each type of strategy, and let the
retrieval step to select the most suitable type of case as presented in this dis-
sertation; or we could vary the parameters of the approach such that cases that
would be initially withdrawn, would now be candidates because the measures’
thresholds have been altered. In the case of the free path function for instance,
a case is discarded if an opponent is within the ball’s trajectory(whose width
is parametrized by a given threshold). If we alter the value of this latter pa-
rameter, we could reduce the width of the trajectory. Hence, the opponent that
initially occupied part of the path, would not be considered within it anymore,
and therefore, the case would be a next candidate. Similarly, the ball’s scope
and the opponents’ scope can be also modified on-line, and as a consequence,
the retrieval process of the CBR system is modified as well, which in turn, alters
the robots’ behavior.

132 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] A brief history of robocup, http://www.robocup.org/overview/23.html.

[2] A. Aamodt and E. Plaza. Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches. AI Communications,
7(1):39 – 59, 1994.

[3] G. Adorni, S. Cagnoni, M. Mordonini, and M. Piaggio. Team/goal-keeper
coordination in the robocup mid-size league. In P. Stone, T. R. Balch, and
G. K. Kraetzschmar, editors, RoboCup 2000: Robot Soccer World Cup IV,
volume 2019 of Lecture Notes in Computer Science, pages 279–284. Springer,
2001.

[4] M. Ahmadi, A. K. Lamjiri, M. M. Nevisi, J. Habibi, and K. Badie. Us-
ing a two-layered case-based reasoning for prediction in soccer coach. In
H. R. Arabnia and E. B. Kozerenko, editors, Proceedings of the International
Conference on Machine Learning; Models, Technologies and Applications, pages
181–185. CSREA Press, 2003.

[5] M. Ahmadi and P. Stone. Instance-based action models for fast action
planning. In U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert, editors,
RoboCup 2007: Robot Soccer World Cup XI. Springer Verlag, Berlin, 2008.
To appear.

[6] R. C. Arkin. Motor schema-based mobile robot navigation. International
Journal of Robotics Research, 8(4):92–112, 1989.

[7] I. Asimov. I, robot. Gnome Press, USA, 1950.

[8] R. Berger and G. Lämmel. Exploiting past experience - case-based decision
support for soccer agents. In KI 2007: Advances in Artificial Intelligence,
volume 4667 of Lecture Notes in Computer Science, pages 440–443. Springer,
2007.

[9] C. Bustamante, L. Garrido, and R. Soto. Fuzzy naive bayesian classifica-
tion in robosoccer 3d: A hybrid approach to decision making. In RoboCup
2006: Robot Soccer World Cup X, volume 4434 of Lecture Notes in Computer
Science, pages 507–515. Springer, 2007.

[10] K.-Y. Chen and A. Liu. A design method for incorporating multidisci-
plinary requirements for developing a robot soccer player. In Proceedings
of the Fourth IEEE International Symposium on Multimedia Software Engineer-
ing, pages 25–32. IEEE Computer Society, 2002.

133

134 BIBLIOGRAPHY

[11] P. R. Cohen and H. J. Levesque. Teamwork. Nous, 25(4):487–512, 1991.

[12] R. T. Committee. Sony Four Legged Robot Football League Rule Book, Decem-
ber 2004.

[13] M. H. DeGroot and M. J. Schervish. Probability and Statistics. Addison-
Wesley, 2001. 3rd. Edition.

[14] A. Drogoul and A. Collinot. Applying an agent-oriented methodology
to the design of artificial organizations: A case study in robotic soccer.
Autonomous Agents and Multi-Agent Systems, 1(1):113–129, 1998.

[15] Y. Duan, Q. Liu, and X. Xu. Application of reinforcement learning in robot
soccer. Engineering Applications of Artificial Intelligence, 20(7):936–950, 2007.

[16] S. Dutta, B. Wierenga, and A. Dalebout. Case-based reasoning systems:
From automation to decision-aiding and stimulation. IEEE Transactions on
Knowledge and Data Engineering, 9(6):911–922, 1997.

[17] R. Fikes and N. Nilsson. Strips: a new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[18] G. Fraser and F. Wotawa. Cooperative planning and plan execution in par-
tially observable dynamic domains. In RoboCup 2004: Robot Soccer World
Cup VIII, volume 3276 of Lecture Notes in Computer Science, pages 524–531.
Springer, 2005.

[19] B. J. Grosz and S. Kraus. Collaborative plans for complex group action.
Artificial Intelligence, 86(2):269–357, 1996.

[20] K. Haigh and J. Shewchuk. Geometric similarity metrics for case-based
reasoning. In Case-Based Reasoning: Working Notes from the AAAI-94 Work-
shop, pages 182–187. AAAI Press, 1994.

[21] K. Haigh and M. Veloso. Route planning by analogy. In M. Veloso and
A. Aamodt, editors, Case-Based Reasoning Research and Development, vol-
ume 1010 of Lecture Notes in Computer Science, pages 169–180. Springer-
Verlag, 1995.

[22] J. H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

[23] Z. Huang, Y. Yang, and X. Chen. An approach to plan recognition and
retrieval for multi-agent systems. In Workshop on Adaptability in Multi-
Agent Systems (AORC 2003), 2003.

[24] K. G. Jolly, K. P. Ravindran, R. Vijayakumar, and R. S. Kumar. Intelligent
decision making in multi-agent robot soccer system through compounded
artificial neural networks. Robotics and Autonomous Systems, 55(7):589–596,
2007.

[25] A. Karol, B. Nebel, C. Stanton, and M.-A. Williams. Case based game
play in the robocup four-legged league part i the theoretical model. In
D. Polani, B. Browning, A. Bonarini, and K. Yoshida, editors, RoboCup
2003: Robot Soccer World Cup VII, volume 3020 of Lecture Notes in Computer
Science, pages 739–747. Springer, 2004.

BIBLIOGRAPHY 135

[26] H.-S. Kim, H.-S. Shim, M.-J. Jung, and J.-H. Kim. Action selection mech-
anism for soccer robot. In Proceedings of the 1997 IEEE International Sym-
posium on Computational Intelligence in Robotics and Automation, page 390.
IEEE Computer Society, 1997.

[27] Z. Kira and R. C. Arkin. Forgetting bad behavior: Memory management
for case-based navigation. In International Conference on Intelligent Robots
and Systems, volume 4, pages 3145–3152, 2004.

[28] A. Kleiner, M. Dietl, and B. Nebel. Towards a life-long learning soccer
agent. In G. A. Kaminka, P. U. Lima, and R. Rojas, editors, RoboCup 2002:
Robot Soccer World Cup VI, volume 2752 of Lecture Notes in Computer Sci-
ence, pages 126–134. Springer, 2003.

[29] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, vol-
ume 3. Addison Wesley, 1973.

[30] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA,
USA, 1993.

[31] S. Konur, A. Ferrein, and G. Lakemeyer. Learning decision trees for action
selection in soccer agents. In ECAI-04 Workshop on Agents in dynamic and
real-time environments, 2004.

[32] M. Kruusmaa. Global navigation in dynamic environments using case-
based reasoning. Autonomous Robots, 14(1):71–91, 2003.

[33] K. Lam, B. Esfandiari, and D. Tudino. A scene-based imitation frame-
work for robocup clients. In Workshop on Modeling Others from Observations
(AAAI 2006), 2006.

[34] A. D. Lattner, A. Miene, U. Visser, and O. Herzog. Sequential pattern
mining for situation and behavior prediction in simulated robotic soccer.
In A. Bredenfeld, A. Jacoff, I. Noda, and Y. Takahashi, editors, RoboCup
2005: Robot Soccer World Cup IX, volume 4020 of Lecture Notes in Computer
Science, pages 118–129. Springer, 2006.

[35] J. Lee, D. Ji, W. Lee, G. Kang, and M. G. Joo. A tactics for robot soccer with
fuzzy logic mediator. In Computational Intelligence and Security, volume
3801 of Lecture Notes in Computer Science, pages 127–132. Springer, 2005.

[36] M. Lenz and H.-D. Burkhard. Case retrieval nets: Basic ideas and exten-
sions. In G. Gorz and S. Holldobler, editors, KI-96: Advances in Artificial
Intelligence, volume 1137 of Lecture Notes in Computer Science, pages 227–
239. Springer Verlag, 1996.

[37] M. Likhachev and R. C. Arkin. Spatio-temporal case-based reasoning for
behavioral selection. In International Conference on Robotics and Automation,
volume 2, pages 1627–1634. IEEE, 2001.

[38] Y.-S. Lin, A. Liu, and K.-Y. Chen. A hybrid architecture of case-based rea-
soning and fuzzy behavioral control applied to robot soccer. In Workshop
on Artificial Intelligence, 2002 International Computer Symposium (ICS2002),
2002.

136 BIBLIOGRAPHY

[39] R. López de Màntaras, D. McSherry, D. Bridge, D. Leake, B. Smyth,
S. Craw, B. Faltings, M. L. Maher, M. T. Cox, K. Forbus, M. Keane,
A. Aamodt, and I. Watson. Retrieval, reuse, revision and retention in case-
based reasoning. Knowledge Engineering Review, 20(3):215–240, 2005.

[40] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler. Co-evolving soc-
cer softbot team coordination with genetic programming. In RoboCup-97:
Robot Soccer World Cup I, volume 1395 of Lecture Notes in Computer Science,
pages 398–411. Springer, 1998.

[41] C. Marling, M. Tomko, M. Gillen, D. Alexander, and D. Chelberg. Case-
based reasoning for planning and world modeling in the robocup small
size league. In IJCAI-03 Workshop on Issues in Designing Physical Agents for
Dynamic Real-Time Environments: World Modeling, Planning, Learning, and
Communicating, 2003.

[42] A. Micarelli, A. Neri, S. Panzieri, and G. Sansonetti. A case-based ap-
proach to indoor navigation using sonar maps. In International IFAC Sym-
posium On Robot Control SYROCO, 2000.

[43] A. Miene, U. Visser, and O. Herzog. Recognition and prediction of mo-
tion situations based on a qualitative motion description. In D. Polani,
B. Browning, A. Bonarini, and K. Yoshida, editors, RoboCup 2003: Robot
Soccer World Cup VII, volume 3020 of Lecture Notes in Computer Science,
pages 77–88. Springer, 2004.

[44] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[45] T. Nakashima, M. Takatani, M. Udo, H. Ishibuchi, and M. Nii. Perfor-
mance evaluation of an evolutionary method for robocup soccer strate-
gies. In RoboCup 2005: Robot Soccer World Cup IX, volume 4020 of Lecture
Notes in Computer Science, pages 616–623. Springer, 2006.

[46] O. Obst and J. Boedecker. Flexible coordination of multiagent team be-
havior using htn planning. In RoboCup 2005: Robot Soccer World Cup IX,
volume 4020 of Lecture Notes in Computer Science, pages 521–528. Springer,
2006.

[47] J.-H. Park, D. Stonier, J.-H. Kim, B.-H. Ahn, and M.-G. Jeon. Recombinant
rule selection in evolutionary algorithm for fuzzy path planner of robot
soccer. In C. Freksa, M. Kohlhase, and K. Schill, editors, KI 2006: Advances
in Artificial Intelligence, volume 4314 of Lecture Notes in Computer Science,
pages 317–330. Springer, 2006.

[48] K.-H. Park, Y.-J. Kim, and J.-H. Kim. Modular q-learning based multi-
agent cooperation for robot soccer. Robotics and Autonomous Systems,
35(2):109–122, 2001.

[49] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[50] A. Ram. Indexing elaboration and refinement: Incremental learning of
explanatory cases. Machine Learning, 10(3):201–248, 1993.

BIBLIOGRAPHY 137

[51] A. Ram and J. C. Santamarı́a. Continuous case-based reasoning. Artificial
Intelligence, 90(1-2):25–77, 1997.

[52] M. A. Riedmiller, A. Merke, D. Meier, A. Hoffmann, A. Sinner, O. Thate,
and R. Ehrmann. Karlsruhe brainstormers - a reinforcement learning ap-
proach to robotic soccer. In P. Stone, T. R. Balch, and G. K. Kraetzschmar,
editors, RoboCup 2000: Robot Soccer World Cup IV, volume 2019 of Lecture
Notes in Computer Science, pages 367–372. Springer, 2001.

[53] T. Rofer, T. Laue, and M. W. et al. Germanteam robocup 2005. Technical
report, Universitat Bremen, Humboldt-Universitat zu Berlin, Technische
Universitat Darmstadt, Dortmund University, 2005.

[54] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing. MIT
Press, Cambridge, MA, 1986.

[55] A. Saffiotti. The uses of fuzzy logic in autonomous robot navigation. Soft
Computing, 1(4):180–197, 1997.

[56] R. C. Schank. Dynamic Memory: A Theory of Reminding and Learning in
Computers and People. Cambridge University Press, New York, NY, USA,
1983.

[57] H. L. Sng, G. S. Gupta, and C. H. Messom. Strategy for collaboration
in robot soccer. In Proceedings of the The First IEEE International Workshop
on Electronic Design, Test and Applications (DELTA), pages 347–354. IEEE
Computer Society, 2002.

[58] T. Steffens. Adapting similarity-measures to agenttypes in opponent-
modelling. In Workshop on Modeling Other Agents from Observations at AA-
MAS 2004, 2004.

[59] R. Stepp and R. S. Michalski. Conceptual clustering: Inventing goal-
oriented classifications of structured objects. Machine Learning: An Arti-
ficial Intelligence Approach, 2:471–498, 1986.

[60] P. Stone, M. Sridharan, D. Stronger, G. Kuhlmann, N. Kohl, P. Fidelman,
and N. K. Jong. From pixels to multi-robot decision-making: A study in
uncertainty. Robotics and Autonomous Systems, 54(11):933–943, 2006.

[61] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

[62] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Re-
search, 7:83–124, 1997.

[63] A. Tews and G. Wyeth. Multi-robot coordination in the robot soccer en-
vironment. In Proceedings of the Australian Conference on Robotics and Au-
tomation, pages 90–95, 1999.

[64] C. Urdiales, E. J. Prez, J. Vzquez-Salceda, M. Snchez-Marr, and F. S. Hern-
ndez. A purely reactive navigation scheme for dynamic environments
using case-based reasoning. Autonomous Robots, 21(1):65–78, 2006.

138 BIBLIOGRAPHY

[65] D. Vail and M. Veloso. Dynamic multi-robot coordination. In Multi-Robot
Systems: From Swarms to Intelligent Automata, volume 2, pages 87–100.
Kluwer, 2003.

[66] B. van der Vecht and P. U. Lima. Formulation and implementation of re-
lational behaviours for multi-robot cooperative systems. In RoboCup 2004:
Robot Soccer World Cup VIII, volume 3276 of Lecture Notes in Computer Sci-
ence, pages 516–523. Springer, 2005.

[67] M. Veloso, P. E. Rybski, S. Chernova, C. McMillen, J. Fasola, F. vonHun-
delshausen, D. Vail, A. Trevor, S. Hauert, and R. Ros. Cmdash05: Team
report. Technical report, Carnegie Mellon University, 2005.

[68] M. M. Veloso. Planning and Learning by Analogical Reasoning, volume 886
of Lecture Notes in Computer Science. Springer Verlag, 1994.

[69] U. Visser and H.-D. Burkhard. RoboCup: 10 Years of Achievments and
Future Challenges. AI Magazine, 28(2):115–132, Summer 2007.

[70] J. Wendler and J. Bach. Recognizing and predicting agent behavior
with case based reasoning. In D. Polani, B. Browning, A. Bonarini, and
K. Yoshida, editors, RoboCup 2003: Robot Soccer World Cup VII, volume
3020 of Lecture Notes in Computer Science, pages 729–738. Springer, 2004.

[71] J. Wendler, S. Brggert, H.-D. Burkhard, and H. Myritz. Fault-tolerant self
localization by case-based reasoning. In P. Stone, T. R. Balch, and G. K.
Kraetzschmar, editors, RoboCup 2000: Robot Soccer World Cup IV, volume
2019 of Lecture Notes in Computer Science, pages 259–268. Springer, 2001.

[72] J. Wendler and M. Lenz. CBR for Dynamic Situation Assessment in an
Agent-Oriented Setting. In AAAI-98 Workshop on CaseBased Reasoning In-
tegrations, 1998.

[73] C.-J. Wu and T.-L. Lee. A fuzzy mechanism for action selection of soccer
robots. Journal of Intelligent Robotics Systems, 39(1):57–70, 2004.

[74] K. Yoshimura, N. Barnes, R. Rnnquist, and L. Sonenberg. Towards real-
time strategic teamwork: A robocup case study. In G. A. Kaminka, P. U.
Lima, and R. Rojas, editors, RoboCup 2002: Robot Soccer World Cup VI, vol-
ume 2752 of Lecture Notes in Computer Science, pages 342–350. Springer,
2003.

