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Controlling G-AIMD by Index Policy

Konstantin E. Avrachenkov, Vivek S. Borkar and Sarath Pattathil∗

Abstract— We consider the Generalized Additive Increase
Multiplicative Decrease (G-AIMD) dynamics for resource al-
location with alpha fairness utility function. This dynamics has
a number of important applications such as internet congestion
control, charging electric vehicles, and smart grids. We prove
indexability for the special case of MIMD model and provide
an efficient scheme to compute the index. The use of index
policy allows us to avoid the curse of dimensionality. We
also demonstrate through simulations for another special case,
AIMD, that the index policy is close to optimal and significantly
outperforms a natural heuristic which penalizes the strongest
user.

I. INTRODUCTION

The method of alternating increase and decrease dynamics
was proposed in [12] and implemented in TCP [20], [2] as
a means to control congestion in the Internet. Since then,
many modifications have been studied to improve further the
performance of the Internet. We refer an interested reader to
[1], [9], [11], [13], [23], [31].

It is a natural idea to apply control theoretic methods for
analysis and improvement of congestion control and more
generally, to resource allocation, see e.g., [8], [17], [18],
[22], [24], [31] and references therein. Given the extent of
randomness in the Internet traffic, it is surprising that not
many works applied adaptive / learning control methods to
congestion control, barring a few notable exceptions such as
[26], [25], [19], [7]. Among these, only [19], [7] develop
effective heuristic control policies based on the celebrated
Whittle index [36]. We believe that adaptive / learning con-
trol methods based on multi-arm bandits and index policies
are especially well suited for resource allocation problems, as
they help avoid the curse of dimensionality and are naturally
adapted to varying number of users.

Here we advance this line of research. Specifically, in [7],
the index policy was proposed for the discrete state space
setting without proof of indexability. The present model, G-
AIMD, is much more general than that of [7] and includes
as particular cases both AIMD and MIMD mechanisms.
Furthermore, we consider here a general network topology.
For a related continuous-space continuous-time model, it has
been shown in [8] that the optimal policies have threshold
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structure. However, no Whittle index or primal-dual decom-
position method has been proposed. Here, for the case of
MIMD in the continuous space discrete-time model, we
prove indexability (in fact, we consider a generalization of
the Whittle index and discounted criterion) and propose an
efficient procedure to compute the index. For AIMD, we
argue that the heuristic reducing the rate of the strongest
user [5], [28] coincides with Whittle-type index policy in
the symmetric case. In the non-symmetric case, numerical
experiments show that the former heuristic is significantly
worse than the proposed index policy.

AIMD dynamics and its generalizations have been applied
to smart grids, smart cities [14], [16], [21], [27] and charging
of electric vehicles [6], [13], [15], [32]. This gives addi-
tional motivation to revisit such adaptive / learning control
approaches to resource allocation.

The paper is structured as follows: in the next section
we formally define the problem in a very general setting
with discounted α-fairness as the optimization criterion. In
Section III we prove indexability of the problem for MIMD
and outline the computational procedure for the index. Then
in Section IV, we show by numerical experiments for AIMD
that the index policy significantly outperforms the natural
heuristic that upon congestion reduces the allocation to the
strongest user. Finally, we conclude in Section V with a
roadmap for future research.

We conclude this section with a brief introduction to the
Whittle index [36] adapted for discounted reward control
problems. Let Xi(t), t ≥ 0, 1 ≤ i ≤ N , be N Markov
chains, each (say ith) with two modes of operations: active
and passive, with associated transition kernels p1(·|·), p0(·|·)
resp. Let r1(Xi(t)), r0(Xi(t)) be instantaneous rewards in
the respective modes with r1(·) ≥ r0(·). The objective is
to schedule active/passive modes so as to maximize the
total expected discounted reward

∑
t

∑
j β

tE[rνj(t)(X
j(t))]

where νj(t) = 1 if jth process is active at time t and 0 if
not, under the constraint

∑
j ν

j(t) ≤ M ∀t, i.e., at most
M processes are active. This problem is provably hard [29],
so one relaxes the constraint to

∑
t

∑
j β

tE[νj(t)] ≤ M.
This makes it a problem with separable cost and constraints
which, given the Lagrange multiplier λ, decouples into N
individual problems with reward for passivity changed to
λ+r0(·). The problem is Whittle indexable if under optimal
policy, the set of passive states for each of these problems
increases monotonically from empty set to full state space.
If so, the Whittle index for a given state x can be defined
as the value of λ = λ(x) for which both modes are equally
desirable. The index policy is then to compute these for the
current state profile, sort them in decreasing order, and render



active the top M processes, the rest passive. The decoupling
implies O(N) growth of state space as opposed to the
original problem for which it is exponential in N . Further,
the processes are coupled only through a simple index policy.
The latter is known to be asymptotically optimal as N ↑ ∞
[35], [34]. However, no convenient general analytic bound
on optimality gap seems available.

II. PROBLEM FORMULATION

Let us consider a Generalized AIMD (G-AIMD) dynamics
with N users in discrete time. In absence of a control signal,
the allocation to user k (e.g., transmission rate in Internet
congestion control) increases according to the equation:

xk(t+ 1) = xk(t) + akx
γk
k (t), (1)

with γk ∈ [0, 1] and ak > 0. However, when the control
signal is sent to user k, the resource allocation to user k
abruptly decreases according to

xk(t+ 1) = bkxk(t), (2)

with bk ∈ (0, 1). The above dynamics is fairly general and
covers at least two important cases: if γk = 0 we retrieve the
classical Additive Increase Multiplicative Decrease (AIMD)
mechanism, and if γk = 1 we retrieve the Multiplica-
tive Increase Multiplicative Decrease (MIMD) mechanism.
MIMD is a very aggressive dynamics and in contrast AIMD
is quite gentle, slowly probing the network capacity. The
parametrized family of dynamics thus captures the extent of
trade-off between the two as γk vary.

Denote by x(t) = [x1(t) · · · xN (t)]T the vector of
resource allocations at time t. The total resource is composed
of R subresources (e.g., links in case of congestion control).
The incidence matrix D indicates which subresources are
used by which users. Namely,

dij =

{
1, if subresource i is used by user j,
0, otherwise.

At each time step we operate the system under the constraint
Dx ≤ κ where κ = [κ1 · · · κR]T is the vector of capacities
of the subresources. This constraint is a generalization of
the Whittle formulation and as therein, renders the problem
hard. Following Whittle, we relax the above constraint to

(1− β)

∞∑
t=0

βtDx(t) ≤ κ. (3)

In contrast to [36], this is a discounted rather than average
cost formulation. Our objective function is the discounted
weighted α-fairness function

V β(x0) = (1− β)

∞∑
t=0

βt
N∑
k=1

wk
x1−αk (t)− 1

1− α
. (4)

The cases α = 0, α → 1 and α → ∞ correspond to
throughput maximization, proportional fairness and max-min
fairness, resp. We shall consider the range α ∈ [0, 1]. As in
[3], we have modified the α-fairness to remove discontinuity

without affecting the optimal solution. Note also that opti-
mization of the discounted sum of the α-fairness results in
better instantaneous fairness [4]. Thus time-discounting is
well suited to avoid imbalances on shorter time scales.

III. INDEX POLICY

The Whittle-type relaxation above makes it a separable
control problem with separable constraints [36]. Thus we
can focus on the individual dynamics of the processes, with
that of the kth process rewritten as:

xk(t+1) = (1−uk(t))(bkxk(t))+uk(t)(xk(t)+akx
γk
k (t)).

where uk(t) = 1 denotes that the rate is increased (this is
the active state) at time t and uk(t) = 0 indicates that the
rate is decreased (this is the passive state). The relaxation of
constraint (3) gives the following running cost

ck(xk) := wk
x1−αk − 1

1− α
−
∑
j

µj(djkxk − κj), (5)

where µj’s are the Lagrange multipliers. Alternatively, we
can view them as a priori specified penalties for constraint
violation. If µj are known, the optimization problem gets
decoupled to individual optimization problems for single
users. Therefore we consider the optimization problem for
a single user. The dynamic programming equation for the
β-discounted infinite horizon problem for user k is given by

V βλ,k(xk) = ck(xk) + max(λ+ βV βλ,k(bkxk),

βV βλ,k(xk + akx
γk
k )). (6)

Here λ can be interpreted as the subsidy for passivity.
The legitimacy of the Whittle-type index policy depends

upon verification of a certain ‘indexability’ property. We
prove it below in Theorem 3.1 for the cases of γ = 1
(MIMD) alone. We do not have a complete proof for the
case of γ ∈ [0, 1) at present, we leave it as a conjecture.
Thus in what follows, γ = 1.

Henceforth we drop the subscript k from V (.) for ease of
notation and rewrite (6) as:

V βλ (x) = c(x) + max(λ+ βV βλ (bx), βV βλ (x+ axγ))

= c(x) + max
u∈{0,1}

[(1− u)(λ+ βV βλ (bx)) +

uβV βλ (x+ axγ)]. (7)

Also, we assume that there is an upper bound on the
permissible rate R, so that the dynamics of increase will
be modified to x(t + 1) = ((1 + a)x(t)) ∧ R. In fact, TCP
has limitation on the size of the congestion window, which
limits the sending rate [2].

Lemma 3.1: V βλ (·) is a concave function in [0, R] with

R ≤
(
w((1 + a)1−α − b1−α)∑

µjdj(1 + a− b)

) 1
α

. (8)

Proof: Define:

f(x) = w
x1−α − 1

1− α
−
∑
j

µj(djx− κj), (9)



where dj is 1 if the user uses link j and 0 otherwise. Note
that f(.) is a concave function. Let the system start at rate
x(0) = x0. Then the evolution of the system is deterministic
and the utility function will be of the form:

V βλ (x0) = max
{mj},{kj}

( ∞∑
i=0

βi[f(mix0) + kiλ]

)
(10)

for mi, ki defined as follows. Let u(i) = 1active at time i. Then,
if u(i) = 1, then mi = (1+a)mi−1 and ki = 0. If u(i) = 0,
then mi = bmi−1 and ki = 1. We set m−1 = 1. Let

g(x0) =

∞∑
i=0

βi[f(mix0) + kiλ]. (11)

Now recall that the dynamics is of the form

x(t+ 1) = rtx(t),

where rt ∈ {b, 1 + a}. We allow for randomized actions1,
thus picking in ith time slot ri = (1 + a), ki = 0 with
probability pi ∈ [0, 1] and ri = b, ki = 1 with probability
1 − pi, then replacing the r.h.s. of (11) by its expectation.
Note that g(x0) then is affine separately in each pi when the
rest are held constant. We have:

g′(x0) = E

[ ∞∑
i=0

βimif
′(mix0)

]
, (12)

which is a decreasing function of x0 since f(·) is concave.
This yields: (

V βλ (x0)

)′
=

(
max
{pj}

g(x0)

)′
(13)

= g′(x0)

∣∣∣∣
argmax
{pj}

g(x0)

(14)

where we deduce equation (14) from equation (13) using
Danskin’s theorem (see Appendix B in [10]). To prove
monotone decreasing property of a function with respect to
several parameters, it suffices to prove it in each one keeping
the rest fixed. To do so with respect to the value of pi above
in a fixed time slot, we may keep the values of pj , j 6= i,
fixed. A direct calculation then shows that under (8),

∂2f(p̄, x)

∂x∂pi
≥ 0,

for all i, where we have exhibited f as a function of p̄ = {pi}
and x separately by abuse of notation. Using Theorem 10.4
and Theorem 10.7 of [33], we have that under (8),

x0 7→ argmax
{pi}

g(x0)

is an increasing map, and therefore, the derivative of V βλ (x0)

is decreasing. This shows that V βλ (x0) is concave in x0.

1This does not affect the optimum which follows by a standard dynamic
programming argument.

Concavity, as proven in Lemma 3.1, implies that V βλ (.)
has the property of decreasing differences, i.e.,

z > 0, x > y, =⇒
V βλ (x+ z)− V βλ (x) ≤ V βλ (y + z)− V βλ (y). (15)

The following results in the paper is stated for γ ∈ [0, 1].
Note, however, that this is based on the conjecture that
Lemma 3.1 holds for these γ. We have rigorous proof as
above only for the case when γ = 1 under the rate constraint
(8).

Lemma 3.2: The optimal policy is a threshold policy.

Proof: By (15), the difference

V βλ (x+ axγ)− V βλ (bx) (16)

is monotone decreasing in x. From the structure of the
dynamic programming equation (7), it follows that the set
of passive states is those x for which

λ ≤ β(V βλ (x+ axγ)− V βλ (bx)).

It then follows that the optimal policy must be a threshold
policy such that for some threshold x∗(λ), it is optimal to
remain active below the threshold and passive above.

Theorem 3.1: This problem is ’Whittle-type indexable’,
i.e., as λ goes from −∞ to ∞, the set of passive states goes
from the empty set to the entire space monotonically.

Proof: Consider the measure ν defined as follows:∫
φdν =

∑
i

βiφ(x(i))

for bounded continuous functions φ. Let Λ =
∑
j µjaj ,

then we can write the optimal reward (which depends on
the controls used) in terms of λ as follows (we have used
ζ(λ) = V βλ (x0) for fixed β, x0):

ζ(λ) = max
ν

(∫
w
x1−α − 1

1− α
dν − Λ

∫
xdν + ΛL

+

∫
λ̃(·)dν

)
(17)

where L is a constant which can be deduced from equation
(9) and λ̃(x) is either λ or 0 depending on whether the state
is passive or active, respectively. As a maximum of functions
linear in λ, ζ(λ) is convex in λ. Let the optimal threshold be
x∗(λ), known to exist by Lemma 3.2. From equation (17)
and Danskin’s theorem, the right derivative (which, along
with left derivative, exists by convexity) is:

ζ ′(λ) =

(
d

dλ

∫
λ̃(·)dν

)
, (18)

evaluated at ν∗ := the maximizing value of ν. Since by
Lemma 3.2 there is an optimal threshold policy, we can
maximize over the ν’s corresponding to threshold policies.
Thus, we may replace

∫
λ(x)dν by λ

∑
m β

m
1{xm≥xν}

where xν is the threshold corresponding to the control policy
ν and xm is the rate sequence which evolves according to



this control policy. Define {x̃m(λ)}m≥0 to be the optimal
rate sequence. Then by Danskin’s Theorem,

ζ ′(λ) =
∑
m

βm1{x̃m(λ)≥x∗(λ)}. (19)

This function should be increasing in λ (since ζ(λ) is
convex). However, x̃m(λ) is decreasing in λ (This is because
the utility in staying passive is linearly increasing in λ, when
the other parameters are fixed. Therefore, as λ increases,
there is more utility in staying passive which leads to a
decrease in the rate). These two statements imply that x∗(λ)
has to decrease with λ. Therefore, as λ goes from −∞ to
∞, the set of passive states goes from the empty set to
the entire space monotonically. This proves the Whittle-type
indexability of the problem.

In particular, λ 7→ ζ(λ) is Lipschitz.

Proposed Index Policy: The strategy that we propose
for resource allocation is the following: Whenever at least
one subresource (link) is saturated, we compare the index
of all the users. The one with the lowest index on the
congested subresource has to reduce its transmission rate.
Thereafter the system continues to evolve as before.

Note that the Whittle-type index can be precomputed
offline by a numerical procedure described below and each
user can store the index values.

Computation of the ‘Whittle-type Index’: The ‘Whittle-type
Index’ for rate x is obtained from the following set of
iterations

V βλn(y) = c(y) + λn + βV βλn(by) if y > x, (20)

V βλn(y) = c(y) + βV βλn(y + ayγ) if y ≤ x, (21)

λn+1 = λn + η(βV βλn(x+ axγ)− βV βλn(bx)− λn),
(22)

where η is a small stepsize (e.g., taken as 0.01).

Theorem 3.2: The sequence λn converges to a small (to
be precise, O(η)) neighborhood of λ(x).

Proof: As the problem is indexable, the Whittle-type
index λ(x) = βV βλ (x+axγ)−βV βλ (bx). At each iteration n,
(20)-(21) constitute the linear system for evaluating the value
function Vn for the prescribed threshold policy with threshold
x, and the current subsidy for passivity, λn. Therefore if λn is
more than the index, the ‘error’ term in the RHS of equation
(22) is < 0 and if λn is less than the index, the ‘error’
term in the RHS of equation (22) is > 0. Given this fact the
dynamics of equation (22) is such that λn converges to an
O(η) neighborhood of the index λ(x).

Note that we are interested only in the ordinal comparison
of the indices, so small errors do not matter. A bigger
problem is the fact that this computation is only for a fixed
x and x takes values in a continuum. So one has to use a
further approximation, e.g., evaluate λ(x) for a judiciously
chosen finite collection of x’s and interpolate.

IV. SIMULATIONS

For simulations, we first consider a simple network in
which there are two users sharing a single resource (e.g.,
link). We simulate the AIMD model (i.e. γ = 0) in which
the increase factor is a = 0.5 and the decrease factor is
b = 0.5 for both the users. We take the capacity of the link
to be 10. We have taken β = 0.7 (it can be any number less
than 1).

Fig. 1. Plot of Whittle Index on varying alpha (weight = 1).

Fig. 2. Plot of Whittle Index varying with weight (alpha = 1.3).

Figures 1 and 2 show how the proposed ‘Whittle-type
Index’ varies with the rate of the users for different values of
α and weight w. From the plots, we see that the users who
are too close to capacity are penalized by having a smaller
value of the index and therefore their rates are reduced by
the proposed scheme. Also, rates very near zero have a
higher index which indicates that this policy tries to avoid
users having near zero rates, irrespective of their weights.
As the figures show, the ‘Whittle-type Index’ is a decreasing



function of the rate. This implies that if all the weights,
increase and decrease factors are the same, the ’Whittle-type
index’ will reduce to the scheme [5], [28], where we cut the
rate of the user with the highest rate any time when there is
congestion on the link. So now, in the completely symmetric
case, the ‘reduce maximum rate’ heuristic [5], [28] has
justification as a Whittle-type index policy. However, as will
be demonstrated below, the heuristic ‘reduce maximum rate’
can drastically underperform in the non-symmetric case.

In Figure 3, we keep weights of the two users fixed at 1
with different increase factors. The index policy is seen to
perform better than the scheme which penalizes the user with
maximum rate and is closer to the optimal policy computed
by value iteration [30]. Note that because of the curse of
dimensionality, the optimal policy cannot be easily computed
for more than 2-3 users.

Fig. 3. Example with 2 users.

In Figures 4 and 5, we have extended the above setup,
to 10 users (Capacity 100) and 100 (Capacity 1000) users,
respectively. The weight for each user is still fixed at 1. The
increase factor ak is different for each user, chosen uniformly
from the interval [0,1]. We observe that in the non-symmetric
case with a large number of users, there is a big difference
in the performance between the Whittle-type index and the
‘reduce maximum rate’ heuristic.

In Figure 6, we plot the results from the simulation of
a system in which there are 3 users sharing 2 subresources
(e.g., links). The capacity of both the links are kept the same
at 10. One of the users uses both links, the other two use
only one each. The incidence matrix in this case is given by

A =

[
1 1 0
1 0 1

]
.

The weights are taken to be 1 for all three users and the
increase ak = 0.25 for the user using both links and ak = 0.5
for the other two users. This choice is motivated by the fact
that TCP connections along longer routes take more time to

Fig. 4. Example with 10 users.

Fig. 5. Example with 100 users.

increase their transmission rates. The index policy performs
significantly better than the ‘reduce maximum rate’ heuristic.

V. CONCLUSION AND FUTURE RESEARCH

We considered the G-AIMD dynamics (of which AIMD
and MIMD are particular cases) for resource allocation with
time-discounted α-fairness utility function. Time-discounting
avoids imbalances on shorter time scales. We prove Whittle-
type indexability of MIMD model and provide an efficient
scheme to compute the index. We conjecture that G-AIMD
dynamics is also indexable. The index policy allows us to
avoid the curse of dimensionality. For AIMD, the index
policy coincides with the ‘reduce maximum rate’ heuristic
in the symmetric case. In the non-symmetric case, numerical
experiments show that the index policy can significantly
outperform this heuristic.

The G-AIMD dynamics has important applications, e.g.,
to internet congestion control, charging electric vehicles and



Fig. 6. Example with 3 users and 2 links.

smart grids. Thus one research and development agenda is
to adapt the proposed general scheme to various application
cases. Another interesting direction is to extend the index
based approach to the case of varying number of users. One
more direction of research is to incorporate adaptation with
respect to other parameters such as the increase factor.
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