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Abstract. JavaScript framework libraries like jQuery are widely used,
but complicate program analyses. Indeed, they encode clean high-level
constructions such as class inheritance via dynamic object copies and
transformations that are harder to reason about. One common pattern
used in them consists of loops that copy or transform part or all of the
fields of an object. Such loops are challenging to analyze precisely, due
to weak updates and as unrolling techniques do not always apply. In
this paper, we observe that precise field correspondence relations are re-
quired for client analyses (e.g., for call-graph construction), and propose
abstractions of objects and program executions that allow to reason sep-
arately about the effect of distinct iterations without resorting to full
unrolling. We formalize and implement an analysis based on this tech-
nique. We assess the performance and precision on the computation of
call-graph information on examples from jQuery tutorials.

1 Introduction

As JavaScript became popular, JavaScript libraries such as jQuery were also
widely adopted. Among others, these libraries implement high-level program-
ming constructions like module systems or class inheritance. While framework
libraries are prevalent and contribute to making programs modular and reusable,
they also make it more difficult to statically compute semantic properties of
JavaScript programs such as type information and call graphs. This is due to the
conversion of static high-level constructions into JavaScript dynamic construc-
tions like objects [8]. Abundant works have been carried out so as to compute
static information for type checking [14], optimization [11], program understand-
ing [10], and security auditing [20]. However, they are not yet able to analyze
JavaScript framework libraries precisely due to the highly dynamic features.

One of the problematic dynamic features is the read / write access to object
fields the names of which are computed at runtime. In JavaScript, an object
has a set of fields, each of which consists of a name and a value pair, and the
field lookup and update operations take the value of an expression as an index
that designates the field to read or write. JavaScript framework libraries exploit
this facility to build an object from another object by copying all fields one by
one (shallow copy) or by computing fields defined by the source object (e.g., to
simulate accessor methods). To reason over such field copy or transformation
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1 function fix( e ) {

2 i = copy.length;

3 while ( i-- ) {

4 p = copy[ i ];

5 t = oE[ p ];

6 e[ p ] = t;

7 } // oE.x ./ e.x, oE.y ./ e.y

8 }

9 var oE = {x: f1 , y: f2}, o = {};

10 fix( o );

11 o.x();

Fig. 1: A simplified excerpt from jQuery 1.7.2 and an example use case

patterns (for short, FCT patterns), analysis tools need to resolve precisely the
fields of objects, the relations among them, and how they encode the higher-level
programming constructions. This is considerably harder than the resolution of
classes in a direct Java-like implementation.

As an example, we consider the jQuery implementation of class-inheritance
based on the field copies of the fields of an object, as shown in Figure 1. To
achieve that, the function fix copies the fields of oE designated as the elements
of an array copy into an array e. This copy of the fields of object oE takes
place in the loop at lines 3–7. More generally, an FCT pattern boils down to an
assignment of the form o1[f(v)] = g(o2[v]), where v is a variable, o1 and o2

are two objects, f is a function over field names and g is a function over values.
We call the variable v the key variable of the FCT pattern. In Figure 1, the
statements at lines 5 and 6 define an FCT pattern e[p] = oE[p] with the key
variable p, where f and g both are the identity function.

When fields that get copied store closures, the static resolution of function
calls requires to identify precise field relations. This is the case of the call at
line 11, in the code of Figure 1. Therefore, the computation of a call-graph for
this code requires a precise analysis of the effect of the FCT pattern at lines 5
and 6. Indeed, to determine the function called at line 11, we need to observe
that the value of the field x in the object e is a copy of the value in the field x

of the object oE. We note oE.x ./ e.x for this field correspondence relation. A
basic points-to analysis that applies no sensitivity technique on the loop (such as
loop unrolling) will fail to establish this field correspondence relation, hence will
not allow to determine to compute call-graph. Indeed, it would consider that at
line 11, o.x() may call not only f1 (that is actually called when executing the
program), but also the spurious callee f2.

In this paper, we design a static analysis for the inference of precise field
correspondence relations in programs that define FCT patterns. The inference
of precise field correspondence relations is especially difficult when it takes place
in loops (as in Figure 1, line 3), due to the possibly unbounded number of repli-
cated fields. This complicates significantly the analysis of meta-programming
framework libraries like jQuery. To achieve this, we observe that, while some
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1 for (var v in o1) {

2 o2[v] = o1[v];

3 }

(a)

1 var i = arr.length;

2 while ( i-- ) {

3 v = arr[i];

4 o2[v] = o1[v];

5 }
(b)

Fig. 2: Examples of loops with FCT patterns

loops can be analyzed using existing sensitivity techniques, others require a more
sophisticated abstraction of the structure of objects, which can describe field cor-
respondence relations over unbounded collections of fields. A first application of
our analysis is the static computation of precise call-graph information, but it
would also apply to other analyses, that also require tracking values propagated
in FCT patterns. We make the following contributions:
– in Section 2, we categorize loops that perform field copies and transforma-

tions to two sorts, and characterize the techniques adapted for each of them;
– in Section 3, we construct a new analysis to infer precise field correspondence

relations for programs that perform field copies and transformations;
– in Section 4, we evaluate our analysis on micro-benchmarks and real code.

2 Background

In this section, we study the categories of loops that contain FCT patterns, and
discuss to what extent existing techniques can cope with them. Based on this
discussion, we emphasize the need for different semantic abstraction techniques,
to deal with cases that cannot be handled well.

Categories of loops with FCT patterns. A very common static analysis technique
for loops proceeds by full or partial unrolling. Thus, we seek for categories of
loops containing FCT patterns into two groups, depending on whether loop un-
rolling will allow to resolve impacted fields precisely. For instance, let us consider
a loop the body of which contains an FCT pattern o1[f(v)] = g(o2[v]). Then,
field correspondence relations are parameterized by the value of the key variable
v. Thus, to infer such relations precisely, we need a precise characterization of
the range of values of v. When v is the loop index, and the number of iterations
is fixed to a known number N , we can simply unroll the loop fully N times.

JavaScript features both for-in and while loops, and we need to consider
both kinds. Figure 2(a) displays a full FCT pattern based on a for-in loop: all
fields of o1 are copied into o2. Figure 2(b) shows a partial FCT pattern that is
based on a while loop: the loop selects only fields that belong to arr. In both
cases, to compute a precise field correspondence relation, we need to identify
precisely the impacted fields and the relation between source and target objects.

When all iterations can be fully enumerated (e.g., by loop unrolling), it is
possible to achieve this. In the case of the program in Figure 2(a), this is the case
when the names and values of the fields of the object o1 are known exactly from
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the pre-condition. We call such an instance a “concrete” for-in loop (which
we abbreviate as CF). By contrast, when the set of fields is not known stati-
cally in the pre-condition, simple loop unrolling will not be sufficient to resolve
fields precisely. We call such a case “abstract” for-in loop (or, for short, AF).
The same distinction can be made for the while loop of Figure 2(b): when the
pre-condition guarantees a fixed and known set of elements for the array arr,
unrolling can make the analysis fully precise, and we call this configuration a
“concrete” general loop (CG); otherwise, we call it “abstract” (AG).

We now briefly discuss the consequences of the imprecision that can follow
from AF and AG loops, where no loop unrolling technique will prevent the weak
updates in the analysis of FCT patterns in the loop body. Essentially, relations
between field names and field values will be lost, as values of the key variable v

range over a set that is statically undetermined. To illustrate this, we consider
the case of Figure 2(b), and assume that the object o1 has two fields named x

and y, respectively storing closures fx and fy as values. Due to weak updates,
the analysis of the partial copy loop will produce spurious field correspondence
relations such as (o1.x ./ o2.y). As a consequence, the control flow analysis of
a subsequent statement o2.y() would produce a spurious call edge to fx. Thus,
call-graph information would be much less precise.

Analysis applied of loops with FCT patterns. When a loop that contains an
FCT pattern can be categorized as CG or CF, unrolling is possible, and will allow
strong updates. Thus, the above imprecision is eliminated. This technique is used
in the state-of-the-art JavaScript analyzers such as TAJS [1] and SAFELSA [16].
Since many of the loops in simple JavaScript programs are categorized as CG or
CF, the dynamic unrolling approach has been successful to infer precise field cor-
respondence relations so far. On the other hand, these sensitivity and unrolling
based techniques cannot cope precisely with AF and AG loops. We note that
the categorization of a loop as CF or AF (resp., as CG or AG) depends on the
pre-condition of the loop, thus the computation of a more precise pre-condition
may allow to reduce the analysis of an “abstract” loop to that of a “concrete”
one. However, this is not always feasible. In particular, when the set of inputs of
a program is infinite, and causes the pre-condition to include states with objects
that may have an unbounded number of fields, this is not doable.

In the rest of the paper, we devise a new abstraction that can handle more
precisely FCT patterns to compute more accurate field correspondence relations.
The key idea is to let the analysis of one iteration of a loop with an FCT pattern
o1[f(v)] = g(o2[v]) describe a set of concrete iterations with the same value of
the key variable. Since iteration orders do not matter for inferring the relations,
one can abstract a set of non-consecutive iterations to an abstract iteration.

3 Composite Abstraction

We provide a high-level description of a composite abstraction to compute a
precise over-approximation of field correspondence relations over FCT patterns.
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3.1 Overview

We overview our approach with the analysis of an AG loop following the ter-
minology of Section 2. We consider the program of Figure 2(b) assuming that
the array arr is unknown and that o1 has two fields with names x and y. This
program carries out a partial copy of fields of o1 into object o2 depending on
the contents of the array arr. Under this pre-condition, the loop is indeed AG,
since the fields to be copied are not known statically. The variable v is key here,
as it stores the value of the indices of the fields to consider.

Even though arr is unknown, the program may copy only the fields in o1:
the field x is either absent from o1 or copied into o2, and the same for the
field y (for short, we call the field designated by the name v “the field v”
and use this terminology throughout the paper). Therefore, the field correspon-
dence relation at the end of the execution of the loop may be any subset of
{(o1.x ./ o2.x), (o1.y ./ o2.y)}.

Abstraction. We first study the predicates that the analysis needs to manipu-
late, and the abstraction that they define. In general, we let abstract addresses
used in the analysis be marked with a hat symbol, as in â. Since the set of
addresses that occur in a program execution is not known statically and is un-
bounded, the analysis needs to manipulate summary abstract addresses that
may denote several concrete addresses. The analysis of a write into a summary
address needs to account for the effect of a modification to any address it de-
scribes, thus it will result in a weak update [3]. On the other hand, a write into
a non-summary address can be handled with a more precise strong update.

We need to tie to abstract addresses abstractions of sets of concrete objects
that may not have exactly the same set of fields. Therefore, we let abstract
objects collect abstract fields that may occur in the concrete objects they describe
with an annotation that says whether the field must appear: “!” (resp., “?”)
designates a field that must (resp., may) exist. We also let abstract objects map
fields that must not exist to undefined (or for short, �̂).

In Figure 3, the abstract states a©, b©, and c© show invariants at each
program point in the first iteration over the loop. The state a© shows an initial
abstract state, where o1, o2, and arr point to abstract objects at addresses â1,
â2, and â3, respectively, which are non-summary abstract addresses. The object
o1 has two abstract fields x̂ and ŷ, and their values are v̂1 and v̂2. The field
names x̂ and ŷ are non-summary abstract values which respectively denote the
strings “x” and “y”, and the values v̂1 and v̂2 are the values of the variables v1

and v2. The fields of o1 are annotated with !, as we know that the fields of o1

is exactly {x, y}. The array arr has a definitely existing field "length" and its

value is an unknown number. The other abstract field (>̂num, >̂, ?) expresses
that the array has 0 or many elements, with unknown value. In the initial state,
the object o2 is empty, and the value of i is an unknown number >̂num.

The state i© designates both the loop invariant and the post-condition of
the program. We observe that the fields of o2 are annotated with a question
mark, which means they may or may not appear. We note that it captures the
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2 while ( i-- ) {

3 v = arr[ i ];

4 o2[ v ] = o1[ v ];

5 }

a© (>̂, >̂)

â1

x̂ v̂1 !

ŷ v̂2 !

o1 â2

empty

o2 â3

>̂num >̂ ?

“length” >̂num !

arr

i >̂num

i© (>̂, >̂)

â1

x̂ v̂1 !

ŷ v̂2 !

o1 â2

x̂ v̂1 ?

ŷ v̂2 ?

â2

>̂ �̂ ?

o2 â3

>̂num >̂ ?

“length” >̂num !

arr

i >̂num v >̂

b© (>̂, >̂)

â1

x̂ v̂1 !

ŷ v̂2 !

o1 â2

empty

o2 â3

>̂num >̂ ?

“length” >̂num !

arr

i >̂num v >̂

c©

(x̂,∈)

â1

x̂ v̂1 !

ŷ v̂2 !

o1 â2

x̂ v̂1 !

o2 â3

>̂num >̂ ?

“length” >̂num !

arr

i >̂num v x̂

(ŷ,∈)

â1

x̂ v̂1 !

ŷ v̂2 !

o1 â2

ŷ v̂2 !

o2 â3

>̂num >̂ ?

“length” >̂num !

arr

i >̂num v ŷ

(>̂, 6∈)

â1

x̂ v̂1 !

ŷ v̂2 !

o1 â2

>̂ �̂ ?

o2 â3

>̂num >̂ ?

“length” >̂num !

arr

i >̂num v >̂

Fig. 3: Invariants for the program of Figure 2(b): loop invariant at i© and
abstract states in the first iteration for all the other points.

intended field correspondence relations (o1.x ./ o2.x) and (o1.y ./ o2.y): if
o2 has a field x, the value of that field is the same as o1.x (and the same for y).

Analysis algorithm. We now present an analysis to compute invariants such
as those shown in Figure 3. It proceeds by forward abstract interpretation [4],
using the abstract states described above. It starts with the abstract state b©
that describes the initial states: v stores an unknown value >̂ and i stores an
unknown number (as arr is unknown). It then progresses through the program
forwards, accounts for an over-approximation of the effect of each statement, and
computes loop invariants as the limit of sequences of abstract iterations over the
effect of the loop body.
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The first challenge is to analyze precisely the effect of one iteration of the
loop body. For the field lookup operation o1[v] at line 4, we expect three pos-
sible results: v̂1, v̂2, and undefined because the object o1 has two fields, x̂ and
ŷ, and the lookup operation will return undefined when it attempts to read an
undefined field. Since the value of v subsumes the inputs of those three results,
and in each case, the loop body has a different effect, the analysis needs to split
the states into three sets of states characterized by the result of the lookup oper-
ation. In abstract interpretation terms, this means the analysis should perform
some trace partitioning, so as to reason over the loop body using disjunctive
properties. More precisely, the analysis should consider three cases:

1. If v ∈ o1 and v is x̂, since the value of v designates an abstract field
of o1 that corresponds to exactly one concrete cell denoted by a non-summary
address, this abstract field is copied to o2 as a strong update. Therefore, at the
end of the loop body, o2 contains an abstract field (x̂, v̂1, !), as described in the
first component {(x̂,∈)} of the abstract states c©.

2. The case where v ∈ o1 and v is ŷ is similar (the second one at c©).

3. If v 6∈ o1, the result of o1[v] is undefined since the value of v does
not designate a field in o1. Thus, after line 4, o2 may contain abstract fields
designated by the value of v whose values are undefined. The last state (>̂, 6∈)
of c© corresponds to this case.

This partitioning operation turns one abstract state into a disjunction of several
abstract states that cover the initial abstract state. In our implementation, this
partitioning is carried out into two stages: first, the analysis discriminates exe-
cutions depending on whether v is the name of a field of o1; second, when v is
the name of a field of o1, the analysis produces a disjunction over the abstract
fields of o1.

The second challenge is to compute precise approximations for unions of sets
of states, as abstract joins (merging of partitions and control flow paths) and
widening (union of abstract iterates to let the analysis of loops converge).

First, we observe that joining partitioned abstract states early would cause
a precision loss, so that the analysis needs to delay their join. Indeed, let us
assume that the analysis joins the results that correspond to the three sets of
states at the end of the loop body at line 5. Then, the resulting abstract object
would become the one in Figure 4, and the third field (>̂, {v̂1, v̂2, �̂}, ?) means
that the value of any field in the object is either v̂1, v̂2, or �̂; this abstraction
fails to capture the precise field correspondence relation. Thus, instead of joining
all the analysis results at the end of the loop body, our analysis maintains two
abstract objects for the object pointed by o2 as described in i©.

However, in order to avoid overly large sets of disjuncts caused by delayed
joins, the analysis also requires an efficient join algorithm, able to merge abstract
states that are similar enough so that the imprecision shown in Figure 4 can be
avoided. To do this, we rely on a join condition that states when abstract objects
are “close enough” to be joined without a significant precision loss. Essentially,
our analysis does not join objects with possibly overlapping abstract fields, the
values of which are not similar. For example, at c©, the abstract objects o2
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â2

x̂ v̂1 ?

ŷ v̂2 ?

>̂ v̂1, v̂2, �̂ ?

o2

Fig. 4: The join of all the results at the end of the loop body in Figure 3.

(x̂,∈) and (ŷ,∈) satisfy the join condition and are joined. On the contrary, at

the same point, the abstract object (>̂, 6∈) is not joined with any other.

To ensure the convergence of abstract iterates, a widening operation over
abstract objects is necessary. The widening algorithm is based on a similar prin-
ciple as the join algorithm, but instead of merging two abstract objects, the
analysis applies widening to them. Since the widening algorithm also relies on a
join condition, it also does not lose the field correspondence relation. For exam-
ple, at the loop head after the second iteration, the analysis applies widening to
the state from the first iteration a© and the state from the second iteration i©.
The widening finds two matchings for o2 in a© and i©: the empty object in a©
with each of the objects in i©. Because each field does not need widening, the
result of widening for those two matchings are the same as the one in o2 in i©.

In the rest of the section, we formalize our composite abstraction to reason
over FCT patterns and to infer precise field correspondence relations. It consists
of two layers. The partitioning abstraction (Section 3.2) allows case splits, and
the object abstraction (Section 3.3) describes accurate properties over fields, so
as to disambiguate the field correspondence relations even after abstract joins.

3.2 Trace Partitioning Abstraction

A partitioning abstraction splits a set of traces based on a specific trace abstrac-
tion so as to reason more accurately on smaller sets of executions. We first set
up a general partitioning framework, then define two instances with two trace
abstractions that provide the two stages of partitioning we used in Section 3.1.

First, we fix a few notations. A concrete program state s ∈ S is a pair made
of a control state (program counter at a given time) c ∈ C and a memory state
m ∈ M, thus S = C×M. We write c ≈ c′ to denote that the syntactic program
points of two control states c and c′ are the same. A trace σ is a finite sequence
〈s0, ..., sn〉 where s0, ..., sn ∈ S. We write S? for the set of traces, and let our
concrete domain be (D,v) = (P(S?),⊆). Also, if σ is a trace, we write σcM for
the memory state of the last state in σ. A trace partitioning abstraction will be
an instance of the following definition:

Definition 1 (Partitioning Abstraction). We let D]
T and γT : D]

T → D
define a trace abstraction that is covering (i.e., D = ∪{γT (t]) | t] ∈ D]

T }) and

we assume that D]
M and γM : D]

M → P(M) defines a store abstraction. Then,
the partitioning abstraction parameterized by these two abstractions is defined
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by the domain D] = D]
T → D]

M and the concretization function γ defined by:

γ : D] −→ D
X̂ 7−→ {σ ∈ S? | ∀t] ∈ D]

T , σ ∈ γT (t])⇒ σcM ∈ γM (X̂(t]))}.

Trace abstraction by field existence. The first instance of partitioning abstraction
that we need abstracts traces depending on the existence or absence of a field in
an object. It is based on the following trace abstraction:

Definition 2 (Abstract Trace by Field Existence). The trace abstraction

D]
fe is defined by the following abstract elements and abstraction relations:

– a quadruple (c, x, y, p), where c ∈ C, x is a variable, y is a variable (pointing
to an object) and p ∈ {∈, 6∈}, denotes all the traces that went through the control
state c with a memory state such that the membership of the field the name of
which is the value of x in the object y is characterized by p;

– >̂ abstracts any trace.

For example, an abstract trace (c, x, y,∈) denotes a set of traces such that an
object y has a field designated by the value of the variable x at a given control
state c. The first two states (x̂,∈) and (ŷ,∈) of c© in Figure 3 are the states
partitioned by the abstract trace (c, v, o1,∈).

Trace abstraction by variable value. The second instance of partitioning abstrac-
tion required by our analysis discriminates traces based on the value of a variable
at a specific control point, and is parameterized by a value abstraction V]

val:

Definition 3 (Abstract Trace by Variable Value). The trace abstraction
D]

vv is defined by the following abstract element and abstraction relations:
– a triple (c, x, v̂), where c ∈ C, x is a program variable, and v̂ is an abstract

value v̂ ∈ V]
val, describes the traces that visited c with a memory state such that

the value of x can be described by v̂;
– >̂ abstracts any trace.

In Figure 3, the abstract state (x̂, ∈) at c© denotes the partitioned states by
the abstract trace (c, v, x̂).

Combination of trace abstractions. Trace abstractions can be combined into a re-
duced product abstraction, which defines the two-stage partitioning abstraction
discussed in Section 3.1:

Definition 4 (Combination of Abstract Traces). An abstract trace char-
acterized by a combination of two abstract traces is a reduced product [5] of their
trace abstractions.

Our analysis uses product D]
T

def
= D]

fe×D]
vv. For example, the three states at point

c© in Figure 3 correspond to the partitions defined by ((c, v, o1,∈), (c, v, x̂)),

((c, v, o1,∈), (c, v, ŷ)), and ((c, v, o1, 6∈), (c, v, >̂)).
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γO] : O] −→ P(O)

l 7−→ {o ∈ O | o ∈ γl(l) ∧ Dom(o) ⊆ Dom]
l (l)}

γl : p 7−→ γp(p)
l0 ∧ l1 7−→ γl(l0) ∩ γl(l1)
l0 ∨ l1 7−→ γl(l0) ∪ γl(l1)

γp : ε 7−→ O
(ŝ 7→ !, v̂) 7−→ {o ∈ O | ∀s ∈ γstr(ŝ), o(s) ∈ γval(v̂)}
(ŝ 7→ ?, v̂) 7−→ {o ∈ O | ∀s ∈ γstr(ŝ), s ∈ Dom(o)⇒ o(s) ∈ γval(v̂)}

Dom]
l : p 7−→ Dom]

p(p)

l0 ∧ l1 7−→ Dom]
l (l0) ∪ Dom]

l (l1)

l0 ∨ l1 7−→ Dom]
l (l0) ∪ Dom]

l (l1)

Dom]
p : ε 7−→ ∅

(ŝ 7→ E, v̂) 7−→ γstr(ŝ)

Fig. 5: Concretization of abstract objects

3.3 Object Abstraction

The object abstraction forms the second layer of our composite abstraction, and
describes the fields of JavaScript objects. A JavaScript object consists of a (non-
fixed) set of mutable fields, and the main operations on the objects are field
lookup, field update, and field deletion. A concrete object is a map o ∈ O =
Vstr →fin Vval, where Vstr stands for the set of string values and Vval stands for
the set of values. We write Dom(o) for the set of fields of an object o.

To accurately handle absent fields, our object abstraction can track cases
where a field is definitely absent. Similarly, to handle lookup of definitely existing
fields precisely, the object abstraction annotates such fields with the predicate
“!”. Fields that may or may not exist are annotated with the predicate “?”:
the lookup of such fields may return a value or the value undefined. In the
following, we assume an abstraction for values defined by the domain V]

val and

the concretization function γval : V]
val → P(Vval), and an abstraction for string

values defined by the finite height domain V]
str and the concretization function

γstr : V]
str → P(Vstr).

Definition 5 (Abstract Object). An abstract object ô ∈ O] is a logical for-
mula described by the following grammar:

ô ::= l
p ::= ε | (ŝ 7→ E, v̂)

l ::= p | l ∧ l | l ∨ l
E ::= ! | ?

ŝ ∈ V]
str

v̂ ∈ V]
val

The concretization of γO](ô) of an abstract object ô is defined in Figure 5.

An abstract field p is either ε, which represents an object with unknown fields,
or (ŝ 7→ E, v̂), which represents any object such that the membership of fields
the names of which are represented by ŝ is described by E and the values of
the corresponding fields (if any) by v̂. Note that E may be ! (must exist) or ?
(may exist). A logical formula l describes a set of objects, either as an abstract
field p, or as a union or intersection of sets of objects. A conjunction of abstract
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fields represents a set of concrete open objects. A disjunction l0 ∨ l1 represents
two abstract objects l0 and l1 as for the object o2 in the abstract state at
point i© in Figure 3. Because the objects represented by an abstract field p
may have an unbounded number of fields, the concretization of abstract objects
γO] bounds the set of fields with Dom(o) ⊆ Dom]

l (l). The auxiliary function

Dom]
l (l) represents a set of fields that are defined in a given logical formula l,

which denotes that a field is definitely absent if the field is not defined in l. For
example, the concretization of an abstract field γp(x̂ 7→ !, v̂) represents a set of
objects, where the values of the fields designated by the abstract string x̂ are
represented by the abstract value v̂ and the other fields are unknown, whereas
the abstract object concretization γO](x̂ 7→ !, v̂) represents a set of objects all
fields of which are abstracted by x̂ (i.e., any field not described by v̂ is absent).
The conjunction and disjunction are conventional.

Then, the object box notation used in Figure 3 is interpreted as follows:

x̂ v̂1 ?

ŷ v̂2 ?

>̂ �̂ ? is equivalent to

((x̂ 7→ ?, v̂1) ∧ (ŷ 7→ ?, v̂2))
∨

(>̂ 7→ ?, �̂).

3.4 Analysis Algorithms

We now study the analysis algorithms to infer invariants such as those shown in
Figure 3. These rely on the trace partitioning abstraction defined in Section 3.2
and on the object abstraction defined in Section 3.3. We focus on the introduction
of partitions and on the join algorithm to achieve precise analysis of the FCT
patterns. We provide a formal description for a language and an algorithm in
Appendices ?? and ??.

Partitioning algorithm. As we have shown in Section 3.1, the analysis needs
to create partitions dynamically. We first discuss the analysis of loops classified
as AF, and consider the case of AG loops afterwards.

For-in loops. We desugar the for-in loop in Figure 2(a) with high-level iterInit,
iterHasNext, iterNext, and merge instructions as shown in Figure 6(a). The
semantics of the for-in statement is as follows: it iterates over the fields of a
given object o1, and lets the index variable v range over their names. To mimic
this behavior, the instruction v = iterInit(o1) generates the list of the fields
of the object o1; iterHasNext(t) checks whether there exists a field that has
not been visited yet, and iterNext(o1, t) returns the next field to visit. Since
the order a for-in loop uses to visit fields is undefined in the language se-
mantics [9], we simply assume a non-deterministic order of fields. We add the
merge(v) pseudo-instruction at the end of each loop to denote the end of the
FCT pattern with the key variable v. In order to reason over distinct fields sep-
arately, the analysis performs dynamic partitioning during the analysis of the v

= iterNext(o1, t) instruction, and generates partitions for each possible field
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var v, t = iterInit(o1);

while (iterHasNext(t)) {

v = iterNext(o1 , t);

o2[v] = o1[v];

merge(v);

}
(a)

var i = arr.length;

while ( i-- ) {

v = arr[i];

o2[v] = o1[v];

merge(v);

}
(b)

Fig. 6: Desugared version of for-in and while loops shown in Figure 2.

name. Because the analysis needs to analyze field names in each partition pre-
cisely so that it can analyze the field lookup instruction at line 4 precisely, it
collects a set of field names in the given object o1, and generates partitions for
each field name in the set. In Figure 7(a), we illustrate such a case. At the end
of the loop body, the partitions are merged by the merge instruction as shown
in Figure 7(c).

General loops. We first perform a simple syntactic pre-analysis, which finds
variables that are used as index variables in field lookup and update instructions
in the loop body, in order to identify key variables of the FCT pattern. The pre-
analysis adds the merge(x) instruction at the end of the loop when it identifies
x as the key variable of an FCT pattern. We consider the while loop in Figure
2(b), and we show the result of the pre-analysis in Figure 6(b). In this instance,
v is identified as a key variable as it appears for both a field lookup and a field
update in the loop body. On the contrary, the variable i is not a key variable
because it is only used for field lookup.

Based on the result of this pre-analysis, the analysis creates partitions when
it encounters a field lookup indexed by a key variable. It essentially creates
one partition per possible (defined or undefined) abstract value produced as the
result of the lookup operation. For example, Figure 7(b) shows that for such cases
when the field lookup may return either the field {(q̂, v̂1)} or the field {(ŵ, v̂2)},
or the undefined value {�̂} (if the field is absent in the object). The variable x1
is temporarily created to hold the result of the lookup. Each generated partition
corresponds to a field correspondence relation. Similarly for the for-in loop
case, the partitions are merged at the end of the loop body.

Soundness of partitioning algorithm. The partitioning algorithm is sound since
(1) the generated partitions for the iterNext instruction subsumes all possible
iterations in a given for-in loop, and (2) the abstract lookup operation returns
a disjunction of cases that subsume the result of the concrete lookup operation.

Join and widening algorithms. We now discuss the join and widening that
allow to merge abstract partitions at merge pseudo instructions and to analyze
loops. For instance, in Figure 3, the analysis computes the object o2 at point

i© by joining the three objects o2 of c©.
To simplify the algorithms, we make sure that each abstract object is in

“disjunctive normal form”, which means that its logical formula is a disjunction
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(a)

pre-condition

(>̂, >̂)

â1

q̂ v̂1 !

ŵ v̂2 !

· · ·

o1

v = iterNext(o1, t)

post-condition

(q̂,∈) o1 · · ·
v q̂

(ŵ,∈) o1 · · ·
v ŵ

· · ·

(b)

pre-condition

(>̂, >̂)

â1

q̂ v̂1 !

ŵ v̂2 !

o1

v >̂

x1 = o1[v]

post-condition

(q̂,∈) o1 · · ·
v q̂ x1 v̂1

(ŵ,∈) o1 · · ·
v ŵ x1 v̂2

(>̂, 6∈) o1 · · ·
v >̂ x1 û

(c)

pre-condition

(q̂,∈)

â1

q̂ v̂1 !

ŵ v̂2 !

x2

v q̂

merge(v)

post-condition

(>̂, >̂)

â1

q̂ v̂1 !

ŵ v̂2 !

x2

v q̂

Fig. 7: Example cases for (a) the iterNext instruction, (b) the field lookup
instruction with the key variable v, and (c) the merge instruction by the key
variable v with the first post-state of both of (a) and (b).

of “conjunctive abstract objects” that consist of a conjunction of abstract fields
or of the empty abstract field ε. The join algorithm takes two abstract objects
in this form and computes an over-approximation of all the concrete objects
they represent. For two such abstract objects o0 and o1, the join algorithm
searches for a matching of the conjunctive abstract objects in o0 and o1, that
can be merged without too significant a precision loss, as characterized by a join
condition that we discuss below. When c0 and c1 satisfy this condition and can
be joined, they are replaced with a new conjunctive abstract object, where each
abstract field approximates abstract fields of c0 and c1.

We now make this join condition used to decide which conjunctive objects
to join. Let us consider the join of a pair of abstract fields. When the name of
one of these fields subsumes the name of the other but is not equal to it, their
names and values are merged and the result fails to capture an optimal field
correspondence relation. For example, the result of joining two abstract fields
(x̂, !, v̂1) and (>̂, ?, v̂2) is (>̂, ?, {v̂1, v̂2}) because the name >̂ subsumes the name
of the other field x̂. Thus, we avoid joining abstract objects containing such pairs
of abstract fields as characterized by the definition below:

Definition 6 (Join Condition). Two sets of abstract fields P̂1 and P̂2 are
correlated if and only if ∀ŝ1 ∈ N(P̂1), ∀ŝ2 ∈ N(P̂2), γstr(ŝ1) ∩ γstr(ŝ2) 6= ∅
where N(P̂ ) (resp., V (P̂ )) denotes the names (resp., values) of the fields in P̂ .
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Two abstract objects ô1 and ô2 satisfy the join condition if and only if, for
all the correlated abstract fields P̂1 and P̂2 in ô1 and ô2, one of the following
conditions holds:
– N̂1 = N̂2

– N̂1 ⊆ N̂2 ∧ V̂1 v V̂2, or, symmetrically N̂2 ⊆ N̂1 ∧ V̂2 v V̂1
– N̂1 ∩ N̂2 6= ∅ ∧ V̂1 = V̂2

where N̂1 = {γstr(ŝ) | ŝ ∈ N(P̂1)}, N̂2 = {γstr(ŝ) | ŝ ∈ N(P̂2)}, V̂1 = ∪ V (P̂1),
and V̂2 = ∪ V (P̂2).

For example, the object o2 in the third disjunct at c© does not satisfy the join
condition with the object o2 in either of the other two disjuncts at that point.
On the other hand, the abstract objects corresponding to o2 in the first two
disjuncts at c© satisfy this condition, and will be joined together.

Join soundness. The abstract join algorithm is sound. It returns a conservative
over-approximation of its inputs when the join condition holds; otherwise, it
returns their disjunction, the result of which also over-approximates them.

Widening and termination. The analysis of a loop proceeds by computation of
a sequence of abstract iterates. To ensure its convergence, we use a widening
operator [4], that is, an operator that computes an over-approximation of union
and ensures termination. Since the height of the baseline string abstraction is
finite, the second join condition (N̂1 ⊆ N̂2 or N̂2 ⊆ N̂1) can be satisfied for at
most finitely many iterations. This entails that any sequence of abstract joins is
ultimately stationary, which ensures the termination of the analysis of loops.

Analysis termination and soundness. The analysis terminates and com-
putes a sound over-approximation for the set of concrete program behaviors.
Thus, it computes a conservative approximation of the call-graph of an input
program.

4 Evaluation

This section seeks for an experimental validation that the composite abstraction
is necessary and useful for the computation of precise call-graph information.

Analysis implementation and experimentation settings. We implemented the an-
alyzer CompAbs, based on our new composite abstraction. CompAbs was built on
top of the open-source JavaScript analysis framework SAFE [15]. CompAbs is
fully context sensitive except for recursive calls, which are unrolled at most j
times, where j is a parameter of the analysis. Dynamic unrolling of loops is
also bounded by a parameter k. Moreover, CompAbs abstracts strings based on
creation-site, and on a reduced product of a string constant domain and a prefix
string domain. We used different parameters for different experiments. We per-
formed all the experiments on a Linux machine with 4.0GHz Intel Core i7-6700K
CPU and 32GB Memory.
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Analysis of micro benchmarks with different loop patterns. The goal of this ex-
periment is to observe the current status of the state-of-the-art JavaScript static
analyzers TAJS and SAFELSA for each category of loops introduced in Section 2.

We ran TAJS, SAFELSA, and CompAbs on a number of small diagnostic bench-
marks, each of which consists of a loop containing an FCT pattern. We manually
wrote the test cases to assess whether an analysis can precisely infer a field cor-
respondence relation or not for each category of loops. The benchmarks do not
use DOM-related features. They are set up so that each loop is being classified in
the same category in all of three analyzers TAJS, SAFELSA, and CompAbs. At the
end of each loop, we attempt to verify the precise field correspondence relation
by equality check between fields (o.x 6= o.y). Since we compare the analysis
result on small benchmarks, CompAbs used j = 0 and k = 0 as parameters, which
leads to merging all recursive calls and no dynamic unrolling.

Subject TAJS SAFELSA CompAbs

CF 3 3 3

CG 3 3 3

AF 7 7 3

AG 7 7 3

The inset table summarizes the result
of the micro benchmarks whether each an-
alyzer can precisely infer the field corre-
spondence relation or not. The first col-
umn shows the FCT pattern category of
each single loop program. The remaining
columns report whether each analysis suc-
cessfully infers the precise field correspondence relation or not. TAJS and SAFELSA

fail to infer precise field correspondence relations in the case of “abstract” loops
(AF or AG), which is consistent with our observation that such loops cannot be
addressed by using only the unrolling techniques implemented in these tools.

This confirms that the existing analyzers fail to infer precise field correspon-
dence relations for loops with an FCT pattern, which are classified as “abstract”.

Analysis of jQuery tutorials. The goal of this experiment is to compare our ap-
proach with the existing analyzers using jQuery tutorial benchmarks. We mea-
sured the number of programs that have “abstract” loops to assess the necessity
of our approach. We also measured the number of programs that can be ana-
lyzed in a given time limit to assess the scalability, and measured the number of
spurious call edges in the result to assess the precision. To evaluate the analysis
of FCT patterns in framework libraries, we use the jQuery benchmarks from
the experiments of TAJS [1]. They used 71 programs chosen from the jQuery
tutorial3 that performs simple operations using jQuery 1.10.0. In order to mini-
mize the effects of DOM modeling on the analysis results, our experiments use
jQuery 1.4.4 that supports all the features required for the benchmarks while us-
ing fewer DOM-related features than jQuery 1.10.0. We faithfully implemented
DOM models based on a Chrome browser to support the semantics of DOM-
related code in our benchmarks. We do not abstract the DOM tree in the initial
state, and abstract a set of dynamically generated DOM elements to an abstract
DOM element depending on its allocation site. The programs are about 7430
lines of code including jQuery.

3 http://www.jquery-tutorial.net/

http://www.jquery-tutorial.net/
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Table 1: Scalability and precision for call graphs compared to existing analyzers.

Success SE SC Cov(%)

CompAbs 68 / 71 0.03 14.9 99.8
TAJS 2 / 71 6.00 132.8 77.3
SAFELSA 0 / 71 45.96 51.1 81.7

First, to investigate the necessity of our work, we measured how many pro-
grams have “abstract” loops during analysis. In order to compute a precise pre-
condition to reduce the analysis of an “abstract” loop to that of a “concrete”
one, CompAbs used j = 2 and k = 30 as parameters, which leads to unrolling re-
cursive calls twice and bounding dynamic unrolling depth to 30 (when it can be
applied). We chose the parameters by experiments. Among 71 benchmarks, we
observed that 27 programs have at least one abstract loop. Thus, about 38% of
the benchmarks need to handle abstract loops, which may require our technique.

Second, to compare the analysis scalability, we measured the number of pro-
grams the analysis of which terminates in less than 4 hours by CompAbs, TAJS,
and SAFELSA. The second column in Table 1 summarizes the scalability measure-
ments; out of 71 benchmarks, CompAbs finished analysis of 68 programs among
these within 4 hours; TAJS finished analysis of 2 programs among these; and
SAFELSA did not finish analysis of any of these 71 programs. CompAbs finished
analysis of each of 64 programs within 6 minutes, and it took 27 seconds on av-
erage (minimum, median, and maximum are 5, 9, and 315 seconds, respectively)
for each program. Among the 7 other programs, CompAbs analyzed each of 4
programs within 4 hours, and analyzed each of the rest of 3 programs within 2.1
days. Our manual investigation revealed that two reasons caused the analysis
performance overhead: (1) a large number of recursive call cycles, and (2) long
call chains. The large number of recursive call cycles is a common problem in
static analysis, and the techniques to mitigate the complexity are beyond the
scope of this paper. Also, since CompAbs is fully context sensitive, longer call
chains make the analysis take more time. On the other hand, TAJS finished anal-
ysis of 2 programs within 7 minutes. However TAJS did not complete the analysis
of any of the 69 other programs within 4 hours. SAFELSA did not finish analysis
of any of these 71 programs within 4 hours.

At last, to assess the analysis precision, we measured the number of spurious
call edges in analysis results. We identify spurious call edges in the analysis result
of a program by using dynamic call graphs constructed by real execution of the
instrumented program in a Chrome browser. Since the benchmarks are simple
and we ran them several times trying to cover all the possible execution flows,
we assume that the dynamic call graphs contain a complete set of call edges.
Then, in the analysis results, if a call site has more than one call edge that do
not appear in the dynamic call graphs, we consider them spurious call edges.

We found spurious call edges from eight subjects (39, 40, 44, 47, 50, 53, 69,
and 71) out of 71. We manually investigated them, and observed that dynamic
call graphs for five subjects (40, 44, 50, 53, 71) were incomplete because Chrome
browser had an HTML parsing problem. We confirmed that the spurious call
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Table 2: Scalability and precision for call graphs compared to dynamic call graphs.

Time
SE SC Prec(%) Cov(%)

Avg Med Max

CompAbs 5687 sec 10 sec 2.1 days 0.03 14.9 99.995 99.97
ACG < 1 sec < 1 sec < 1 sec 85.37 1061.5 65.148 84.39

edges from the five subjects disappeared after we revised the HTML documents
to bypass the parsing problem. We found that each of the remaining 3 subjects
had one callsite with spurious call edges, all of which are due to imprecise DOM
modeling or infeasible execution flows. Because our DOM modeling does not
consider the precise semantics of browser layout engines, the analysis cannot
precisely analyze several DOM-related functions such as querySelectorAll or
getComputedStyle. Imprecise analysis results of such function calls affect the
analysis results of execution flows, which may cause spurious call edges.

The third to the fifth columns of Table 1 summarize the precision measure-
ments of 71 benchmarks; SE denotes the number of spurious call edges on aver-
age, and SC denotes the number of spurious call sites on average; Cov denotes
the coverage ratio of actual call sites. Since we measured the number of spurious
call edges from an incomplete analysis result when an analyzer does not finish
analyzing a program in 4 hours, the average coverage ratio is not 100%, and the
actual number of spurious call edges may be larger than the one in the table.
We use the revised HTML documents to bypass the browser parsing problem.

CompAbs outperforms TAJS and SAFELSA in analysis time and precision. TAJS
and SAFELSA lose their precision and scalability when they analyze “abstract”
loops. TAJS used a modified jQuery library by manually removing abstract field
names that can cause “abstract” loops in their evaluation [1]. Since we do not
use the modification in our benchmarks, the scalability of TAJS got worse than
what they presented in their evaluation. Since the approach of SAFELSA to handle
loops is similar to TAJS, SAFELSA has the same issue.

We also checked the soundness of CompAbs using dynamic call graphs. We
confirmed that static call graphs of 70 out of 71 programs subsumed their corre-
sponding dynamic call graphs. Because the subject (4) used eval that constructs
code dynamically, static call graphs could not cover dynamically constructed call
edges, for which CompAbs reports possible unsoundness warnings.

Comparison with an unsound approach. The goal of this experiment is to com-
pare the results of a sound approach and an unsound one. We first evaluate
CompAbs, which computes over-approximation of call graphs, and the practical
unsound JavaScript call graph analyzer [10] by two metrics: the scalability and
precision. We write ACG to denote the practical unsound call graph analyzer4.
The experiment also uses the 71 jQuery benchmarks.

Table 2 summarizes the scalability and precision. The second to the forth
columns show the average, the median, and the worst case analysis time, respec-
tively. The remaining columns show the analysis precision; SE, SC, and Cov are

4 https://github.com/xiemaisi/acg.js

https://github.com/xiemaisi/acg.js
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as in Table 1, and Prec denotes the percentage of “true” call edges among all

call edges, which is computed as |D∩S|
|S| where D is the set of call edges of a given

call site in the dynamic call graph and S is the set of call edges determined by
the analysis.

The analysis time of ACG is dramatically faster than CompAbs because it
does not consider dynamic field lookup and update instructions, does not keep
more than one abstract object, and does not reason about any non-functional
values. On the other hand, since ACG does not compute over-approximation, the
analysis cannot capture 15.61% of actual call-sites. In addition, while CompAbs

identifies exactly what is missing in the branch coverage, ACG does not show
what is missing, which is unsound. CompAbs computes more precise call graphs
than that of ACG. Since CompAbs precisely tracks the program flows, it produces
fewer spurious call sites and fewer spurious call edges.

Thus, ACG is more appropriate than CompAbs in supporting tools such as the
“Jump to Declaration” feature in Integrated Development Environment(IDE).
Since ACG does not require the full source code of a target program to analyze,
it is applicable to incomplete source code which is under development. In the
case of IDE usage, the increased scalability can compensate the low precision of
the analysis and the unsoundness. While CompAbs supports call edges only in
reachable code, ACG also supports call edges in dead code. In this case, the low
precision of the number of spurious call sites is rather an advantage.

On the other hand, CompAbs is more appropriate than ACG in verifying se-
mantic properties of JavaScript programs such as private information leakage.
Since a verification tool requires zero false negatives, formalizing the analysis as
abstract interpretation to compute over-approximations of program behaviors as
in CompAbs is appropriate in this purpose. Also, the high-precision of CompAbs

will be useful in reducing the number of false alarms in a verification tool. Ver-
ification tools do not need to provide instant feedback to developers, and we
believe that the importance of verification compensates analysis time overhead.

5 Related Work

SAFE [15] is an analysis framework for JavaScript web applications, which sup-
ports DOM modeling [17] and web API misuse detection [2], among others.
It is based on abstract interpretation, and supports various analysis sensitivi-
ties including k-CFA, parameter sensitivity, object sensitivity, and loop-sensitive
analysis (LSA) [16]. While its aggressively unrolling LSA works well for programs
using simple loops with bounded iterations, we showed that it does not scale for
complex loops with unbounded numbers of iterations or imprecise pre-conditions.

TAJS [14,1] is an open-source static analyzer for JavaScript, which supports
DOM modeling [13]. It uses a simple object abstraction, which can be repre-
sented by a limited form of conjunctions, without disjunctions. While the object
abstraction is clearly designed and highly tuned for their own string abstraction,
it does not support various string abstractions for a field name abstraction. In ad-
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dition, as we described in Section 2, it may lose precision when it disambiguates
field correspondence relations after joining the states from loop iterations.

HOO [6] computes a very different abstraction of JavaScript objects, which
captures abstract forms of field relations. Indeed, HOO lets symbolic set variables
denote unbounded size sets of fields of JavaScript objects to express logical facts
on these sets, using specific set abstract domains [7]. For instance, it can express
that two objects have exactly the same set of fields, or that the fields of a first
object are included into the fields of a second object. Such program invariants
are useful to reason over libraries that may be used in a general and unknown
context, or in order to implement a modular verifier. By contrast, this approach
is less adequate to compute precise information about the result of long and
complex initialization routines like the codes our analysis targets.

WALA [12] supports static analysis of JavaScript programs. It performs a
conventional propagation-based pointer analysis with techniques that can handle
some of the FCT patterns [19,18].

ACG [10] is a field-based, intentionally unsound call graph analysis. The anal-
ysis ignores dynamic field lookup and update instructions, does not track non-
functional values, and does not distinguish JavaScript objects since it abstracts
all concrete objects into a single abstract object. Thus, ACG achieves a prac-
tical level of scalability and precision. Since ACG does not compute an over-
approximation of program behaviors, the analysis is not appropriate to verify
safety properties in a program. On the other hand, it is useful to support devel-
opment tools.

6 Conclusion

We presented a composite abstraction that can capture precise field correspon-
dence relations by local reasoning about loop iterations. The composite abstrac-
tion consists of two layers of abstractions: the partitioning abstraction that sum-
marizes loop iterations in an iteration order independent way, and the object
abstraction that accurately captures field correspondence relation of JavaScript
objects. While most existing JavaScript analyses unroll loops aggressively, which
does not scale for loops that cannot be unrolled, our analysis can infer field cor-
respondence relations precisely even for loops which cannot be unrolled. The
results of experiments based on a prototype implementation show that the anal-
ysis can avoid a large number of spurious callees caused by the precision loss of
the field correspondence relation in jQuery examples.
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