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Abstract

This paper considers realizability of expected schedules by production systems
with concurrent tasks, bounded resources that have to be shared among tasks,
and random behaviors and durations. Schedules are high level views of desired
executions of systems represented as partial orders decorated with timing con-
straints. Production systems (production cells,train networks. . . ) are modeled as
stochastic time Petri nets STPNs with an elementary (1-bounded) semantics. We
detail their interleaved operational semantics, and then propose a non-interleaved
semantics through the notion of time processes. We then consider boolean re-
alizability: a schedule S is realizable by a net N if S embeds in a time process
of N that satisfies all its constraints. However, with continuous time domains,
the probability of a time process with exact dates is null. We hence consider
probabilistic realizability up to α time units, that holds if the probability that N
realizes S with constraints enlarged by α is strictly positive. Upon a sensible
restriction guaranteeing time progress, boolean and probabilistic realizability
of a schedule can be checked on the finite set of symbolic prefixes extracted
from a bounded unfolding of the net. We give a construction technique for these
prefixes and show that they represent all time processes of a net occurring up to
a given maximal date. We then show how to verify existence of an embedding
and compute the probability of its realization.

Keywords: Petri nets, unfolding, scheduling, realizability.

1. Introduction

Scheduling basic operations a priori in automated systems (e.g., manufactur-
ing or transport systems, etc.) is a way to manage at best available resources,
avoid undesired configurations, or achieve an objective within a bounded delay.
Following a predetermined schedule is also a way to meet QoS objectives. For5

instance, operating a metro network or a fleet of buses usually amounts to
implementing at best a predetermined timetable to meet users needs. In many
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cases, schedules are designed to avoid deadlocks, races or congestion problems,
and ease up recovery from minor delays that are part of the normal behavior of
the system. Failing to implement a chosen schedule may then result in a loss10

of QoS, lead to congestion when delays accumulate, cause conflicting accesses
to shared resources and, in the worst cases, cause deadlocks. Schedules are
high-level views for correct ordering of important or critical operations (i.e., that
use shared resources) in a system. They consider time issues such as delays
between tasks, optimal dates, durations. . . in a production plan. They can be15

seen as partial orders among basic tasks, that abstract low-level implementation
details, and are decorated with dates and timing constraints.

Designing a correct and optimal schedule for a system is a complex problem.
On one hand, occurrence dates of events can be seen as variables, and correct
and optimal schedules as optimal solutions (w.r.t. some criteria) for a set20

of constraints over these variables. Linear programming solutions have been
proposed to optimize scheduling in train networks [1, 2]. On the other hand,
optimal solutions (for instance, w.r.t. completion date) are not necessarily the
most probable nor the most robust ones: indeed, systems such as metro networks
are subject to small delays (variations in trips durations from a station to another,25

passengers misbehavior. . . ). Delays are hence expected and considered as part of
the normal behavior of the system. To overcome this problem, metro schedules
integrate small recovery margins that avoid the network performance to collapse
as soon as a train is late. Consequently, optimal and realizable schedules are not
necessarily robust enough if they impose tight realization dates to systems that30

are subject to random variations (delays in productions, faults. . . ). Note also
that the size of timetabling problems for real systems running for hours cannot
be handled in a completely automated way by tools, that usually have to be
guided by experts to return quasi-optimal solutions. Hence, timetables design
involves expert competences that differ from those needed to design systems.35

When a schedule and a low-level system description are designed separately,
nothing guarantees that the system is able to realize the expected schedule.
This calls for tools to check realizability of a schedule. One can expect systems
designers and timetable experts to share a common understanding of the behavior
of their system, so in general, the answer to a boolean realizability question40

should be positive. However, being able to realize a schedule does not mean
that the probability to meet optimal objectives is high enough. Obviously, in
systems with random delays, the probability to realize a schedule with precise
dates is null. Beyond boolean realizability, a schedule shall hence be considered
as realizable if it can be realized up to some bounded imprecision, and with a45

significant probability.
This paper addresses realizability of schedules by timed systems with concur-

rently running tasks, working in a stochastic environment. Such systems range
from automated production cells, to transport networks and human organiza-
tions. The nature of considered systems calls for the use of concurrency models,50

for which one can expect efficient decision procedures as long as global states
need not be computed. Addressing realizability also forces to consider time:
one cannot consider that a schedule is realized if it cannot be implemented in
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a finite and reasonable amount of time. Last, realization of a schedule can not
be addressed in a purely boolean setting: one can not consider that a system55

realizes a schedule if the probability of executions that implement a schedule is
null. This calls for models with probabilities, and for a quantitative notion of
realizability.

The first contribution of the paper is the formalization of the implementation
model with stochastic time Petri nets (STPN for short) and of its partial order60

semantics. STPNs are inspired from [3], but with a blocking semantics. In
this semantics, a transition cannot fire if its postset is not empty. Considering
blocking is essential to model systems with shared resources. This semantics
guarantees 1-boundedness of places along all runs. We show that this blocking
semantics can be captured in a concurrent setting by time processes. However,65

in a timed setting, blocking has non-trivial consequences on both interleaved
and partial-order semantics. First, it forces to adapt the notion of urgency, as
an urgent transition may have to wait for the postset of a transition to be free
to fire. A second difficulty is related to the partial order semantics. Processes
are obtained by unfolding STPNs with standard algorithms [4, 5], and then70

adding dates to events of these untimed processes in a way that is consistent
with the time constraints attached to transitions of the net. A major difficulty is
that under blocking semantics, process construction is not monotonic anymore.
Indeed, due to blocking, one cannot decide to stop unfolding as soon as a set of
constraints is unsatisfiable.75

The second contribution of this paper is a boolean framework to address
realizability of schedules by a STPN. Schedules are specified as partial orders
decorated with time constraints. Boolean realizability of a schedule S by a STPN
N is defined as the existence of a process of N that embeds S, and whose dates
are compatible with the time constraint specified in S. We prove that upon some80

reasonable time progress assumption that guarantees time progress, realizability
can be checked on a finite set of symbolic processes, obtained from a bounded
untimed unfolding of N . Symbolic processes are processes of the unfolding with
satisfiable constraints on occurrence dates of events. A symbolic framework to
unfold time Petri nets was already proposed in [6, 7] but blocking semantics85

brings additional constraints on firing dates of transitions.
Embedding a schedule S in a process ofN only guarantees boolean realizability:

the probability of a time process in which at least one event is forced to occur at
a precise date can be null. The third contribution of the paper is the study of a
quantitative notion of realizability ensuring that a schedule can be realized up90

to some bounded imprecision, with a non null probability. Uncertainty in the
systems we consider originates from random delays with low individual penalty.
We hence do not consider major failures that result in hours of delays: such
failures call for use of recovery scenarios that lay outside the normal behavior
of a system, and realizability addresses normal situations perturbed by small95

deviations with respect to the expected most probable values. These deviations
are defined via continuous probability distributions for the actual value that
a duration may take. We use transient analysis techniques [3] for STPNs to
compute the probability of occurrence of the set of processes that realize a
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schedule, and consequently prove its realizability up to an imprecision of α100

with a strictly positive probability. The last contribution of the paper is the
application of boolean and quantitative realizability to a practical case study,
namely verification of correct scheduling of train trips in a metro network.

The paper is organized as follows: Section 2 defines the models used in
the paper, namely stochastic time Petri nets with a blocking semantics and105

schedules, and gives a concurrent semantics to STPNs. Section 3 defines a notion
of unfolding and symbolic process for STPNs. Section 4 shows how to verify that
a schedule is compatible with at least one process of the system and measure
the probability of such realization. Section 5 shows how to check realizability on
a case study, namely correct realization of trips in a train network. Section 6110

compares the contents of this paper with former models and former works related
to scheduling, before conclusion. Due to lack of space, some proofs and several
technical details are omitted, but can be found in Appendices.

2. Formal models for Timetables and metro networks

2.1. Preliminaries115

For simplicity, we will consider that random durations appearing in our
systems are sampled from closed intervals of the form [a, b] with a < b and
open intervals of the form [a,+∞). A probability density function (PDF) for a
continuous random variable X is a function fX : R→ [0, 1] that describes the
relative likelihood for X to take a given value. Its integral over the domain of X120

is equal to 1. A cumulative distribution function (CDF) FX : R→ [0, 1] for X
describes the probability for X to take a value less than or equal to a chosen value.
We denote by Σpdf the set of PDFs, Σcdf the set of CDFs, and we only consider
PDFs for variables representing durations, i.e., whose domains are included in
R≥0. The CDF of X can be computed from its PDF as FX(x) =

∫ x
0
fX(y) dy.125

Several standard solutions can be used to model continuous distributions:
Gaussian distributions, exponential laws. . . A drawback of Gaussian distributions
is that, considering a duration as a randomly chosen value x around a pivot
value a, a Gaussian distribution attributes the same probability to event x < a
and x > a. Intuitively, if such a distribution is used to represent a trip duration
for a train, this train has the same probability to be late and to be in advance.
Everyday’s experience shows that the probability for a train to be delayed is
higher, so Gaussian distributions do not match exactly the need for asymmetric
distributions in transport systems. In the rest of the paper, we will adopt
distributions defined with truncated expolynomial functions, that have all the
features needed to model random delays. A truncated expolynomial function
is a function f(x) defined over an interval [a, b] as a sum of K ∈ N weighted
exponentials of the form:

f(x) =

{ ∑
k∈1...K ck · xak · e−λk·x if x ∈ [a, b]

0 otherwise

4
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Figure 1: Expressing probability of a delay with a Gaussian distribution (plain line) and an
expolynomial function (dashed line).

When f(x) defines a distribution, the integral
∫ b
a
f(x) dx must be equal to

1. Figure 1 illustrates the advantages of using expolynomial functions to model
continuous distributions. The curves represented in this figure are a standard
Gaussian distribution centered around value 4, and an expolynomial function
f(x) = 0.58 · x2 · e−1.7x + 0.29 · x3 · e−1.2x defined over domain [0.5, 6]. As130

already explained in [3], expolynomial functions can be used to model phase
functions, that is functions where distributions have the shape of several bell-like
curves centered around several pivot values. This is particularly interesting,
for instance, to represent speed profiles of trains: pivot values correspond to
choices of a targeted travel time, and pseudo-bell shapes around these values to135

perturbations of these target durations. Last, expolynomial functions compose
well and are easy to manipulate: joint distributions are products of exponentials,
projections on a variable or on a domain can be done as simple integrations, and
remain expolynomial functions.

2.2. Petri nets140

Petri nets are good models to represent workflows (e.g., to show how trains
can move in a network), but are of little use without timing information and
randomness. A frequent question asked for train networks is whether the service
is properly ensured. This means in particular whether trains serve stations at a
regular enough pace, or in case departure dates of trains are very sparse, whether145

trains arrivals and departures match an expected timetable. This question can be
addressed only in a timed setting, where actions take time, but also where timed
guards can force execution of actions after a measured delay (this is captured by
the essential notion of urgency). We propose a variant of stochastic time Petri
nets inspired by [3] that handles time, urgency, and randomness, with a blocking150

semantics allowing to represent competition for shared resources.

Definition 1 (stochastic time Petri net). A stochastic time Petri net (STPN
for short) is a tuple N = 〈P, T,•(), ()•,m0, eft, lft,F ,W〉 where P is a finite set
of places; T is a finite set of transitions; •() : T → 2P and ()• : T → 2P are
pre and post conditions depicting from which places transitions consume tokens,155

and to which places they output produced tokens; m0 : P → {0, 1} is the initial
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marking of the net; eft : T → Q≥0 and lft : T → Q≥0 ∪{+∞} respectively specify
the minimum and maximum time-to-fire that can be sampled for each transition;
and F : T → Σpdf and W : T → R>0 respectively associate a PDF and a strictly
positive weight to each transition.160

For a given place or transition x ∈ P ∪ T , •x will be called the preset of
x, and x• the postset of x. We denote by ft the PDF F(t), and by Ft the
associated CDF. To be consistent, we assume that for every t ∈ T , the support
of ft is [eft(t), lft(t)]. The semantics of STPNs can be summarized in a few lines:
markings associate 0 or 1 token to places. A transition is enabled if places in its165

preset are filled. When a transition t becomes enabled, a value xt is sampled
from the interval and the distribution attached to t. Then, this value decreases
over time. A transition can fire as soon as its clock has reached 0, its preset
is filled, and its postset is empty. We give a precise semantics for STPNs in
section 2.3.170

To illustrate how such nets can be used, consider the piece of network in
Figure 2. A similar mechanism is used later in section 5 to model a simple
shunting mechanism in a train network. Places are used to represent tracks
(tokens symbolize trains), and transitions model departures and arrivals of trains.
Once at station D (represented by place PD), a train can be controlled to175

move towards station E, it will then enter the track portion from D to E,
represented by place PD,E , or it will follow another itinerary, and enter another
track (represented by place PD,D) to move towards station D. This decision is
represented by transition t2. When a train is on its way to station E, entering
station E (represented by place PE) is symbolized by firing of transition t3.180

Decision to fire t1 or t2 is controlled by additional places (the dotted places
Pc1 and Pc2). One can notice that firing t1 empties Pc1 and fills Pc2, and firing
t2 empties Pc2 and fills Pc1. With such a simple controller, it is assumed that
one train out of two goes from D to E, and the other goes from D to D. The
distributions f1, f2, f3 attached to transitions t1, t2, t3 are represented in the185

right part of Figure 2. Intuitively, a train staying at station D will leave after a
sojourn time comprised between 60 and 80 seconds, as long as its destination
place is empty. Sojourn times in place PD have different distributions in interval
[60, 80], depicted by function f1, f2, and that depend on whether the train leaves
for station E or station D. The trip from D to E lasts between 130 and 140190

seconds, and the distribution of trip duration is depicted by function f3. Now,
if a train is ready to leave station D to go to E after a sufficient dwell time,
but a train already occupies the track portion from D to E, then departure is
forbidden. In our model, this is implemented by the blocking semantics that
says that a transition can fire only when its postset is empty. In particular,195

in the model of Figure 2, this means that a token will enter place PD,E (resp.
place PD,D) at earliest 60 time units after PD was filled and at latest 80 time
units after if Pc1 (resp. Pc2) contains a token. However, even if Pc1 (resp. Pc2)
contain a token, there is no guarantee that the sojourn time of a token in PD
is smaller than 80 seconds, despite urgency. Indeed, if places Pc2 and PD,E are200

filled, transition t1 has to wait for PD,E to be empty to fire, which may occur at
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earliest 130 seconds and at latest 140 seconds later.

•PD

[60, 80]

t1

•
PD,E

[130, 140]

t3

•
PE

[60, 80]

t2

•PD,D • Pc1

• Pc2

60 65 70 75 80

ft1

ft2

130 132 134 136 138 140

ft3

Figure 2: Using STPNs to model trains moves

A possible execution for the STPN of Figure 2 is as follows. Assuming that
the value sampled for t1 is xt1 = 62, and the value sampled for t3 is xt3 = 132,
then clock xt1 expires after 62 time units, but t1 cannot fire as place PD,E is filled.205

Hence, one has to wait 132 time units, fire t3, and then fire t1. In terms of timed
word, this execution can be represented as w = 〈t3, 132〉 · 〈t1, 132〉. Equivalently,
one can describe this execution as a time process TP of N . Roughly speaking,
a time process unfolds the net and associates an execution date to occurrences
of transitions (the formal definition of time processes and their construction is210

given in Section 2.3). The time process corresponding to timed word w is given
in Figure 3. Note on this example that even if the first occurrences of t1 and
t3 seem to be concurrent (they occur at the same dates, and are not causally
related), the blocking semantics imposes that t13 fires before t11.

p1
D

t11 132

p1
D,E

t13 132

p1
c1

p1
c2

p2
D,E p1

E

Figure 3: Time process for the net of Figure 2

2.3. Semantics of Stochastic Time Petri Nets215

Roughly speaking, an STPN is a time Petri net with distributions on firing
times attached to transitions. The semantics of this model describes how tokens
move from the preset of a transition to its postset. The time that must elapse
between enabling of a transition and its firing is sampled according to the
distribution attached to the transition. This model borrows its main features220

from [3], with the major difference that the semantics is blocking, i.e. it forces
nets to remain safe (1-bounded), as in elementary nets. This restriction is
justified by the nature of the systems we address: in production chains, places
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symbolize tools that process only one item at a time. Similarly, when modeling
train networks, security requirements impose that two trains cannot occupy the225

same track portion. Standard time or stochastic Petri nets do not assume a priori
bounds on their markings. A way to force boundedness is to add complementary
places to the original Petri net and then study it under the usual semantics [8].
However, this trick does not allow to preserve all time and probability issues of
the original net. Enforcing a bound via a blocking semantics is hence a practical230

way to guarantee a priori that models do not allow specification of undesired
situations.

Let N = 〈P, T,•(), ()•,m0, eft, lft,F ,W〉 be a STPN. A marking of N is a
function that assigns 0 or 1 token to each place p ∈ P . We will say that a
transition t is enabled by a marking m iff ∀p ∈ •t,m(p) = 1. We denote by235

enab(m) the set of transitions enabled by a marking m. For a given marking
m and a set of places P ′, we will denote by m − P ′ the marking that assigns
m(p) tokens to each place p ∈ P \ P ′, and m(p)− 1 tokens to each place p ∈ P ′.
Similarly, we will denote by m+P ′ the marking that assigns m(p) tokens to each
place p ∈ P \P ′, and m(p) + 1 tokens to each place p ∈ P ′. Firing a transition t240

is done in two steps and consists in: (1) consuming tokens from •t, leading to a
temporary marking mtmp = m−•t, then (2) producing tokens in t•, leading to a
marking m′ = mtmp + t•.

The blocking semantics can be described by timed and discrete moves among
configurations, and can be described informally as follows. A variable τt is245

attached to each transition t of the STPN. As soon as the preset of a transition
t is marked, τt is set to a random value ζt (called the time-to-fire of t, or TTF
for short) sampled from [eft(t), lft(t)] according to ft. We will assume that
every CDF Ft is strictly increasing on [eft(t), lft(t)], which allows to use inverse
transform sampling to choose a value (see for instance [9] for details). Intuitively,250

this TTF represents a duration that must elapse before firing t once t is enabled.
The value of τt then decreases as time elapses but cannot reach negative values.
The semantics of STPNs is urgent : time can elapse by durations that do not
exceed the minimal remaining TTF of enabled transitions that are not blocked.
When the TTF of a transition t reaches 0, then if t• is empty in mtmp, t becomes255

urgent and has to fire unless another transition with TTF 0 and empty postset
fires; otherwise (if t• is not empty in mtmp), t becomes blocked : its TTF stops
decreasing and keeps value 0, and its firing is delayed until the postset of t
becomes empty; in the meantime, t can be disabled by the firing of another
transition. If more than one transition is urgent, then the transition that fires260

is randomly chosen according to the respective weights of urgent transitions.
Weight are used only when several transitions are firable at the same instant. In
general, the probability that two transitions become urgent at the same instant
is null, but in some degenerate models where time intervals are singletons, such
situation can occur. In this situation, weights are arbitrary values set to favor265

transitions that are the most probable. In a train setting, for instance, if a
freight train and a passenger train can leave at the same instant, one can favor
departure of the passenger train by assigning a high weight to the transition
symbolizing its departure, and a low weight to the other departure. In general,
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one may also assume that all transitions have the same weight, and that the270

urgent transition that fires first is drawn from an uniform discrete distribution
on these transitions. We formalize the semantics of STPNs in terms of discrete
and timed moves between configurations that memorize markings and TTFs for
enabled transitions.

Definition 2 (configuration of an STPN). A configuration of an STPN is275

a pair CN = 〈m, τ〉 where m is a marking, and τ : enab(m)→ R≥0 is a function
that assigns a positive real TTF τi = τ(ti) to each transition ti enabled by m. A
transition t is enabled in a configuration 〈m, τ〉 iff it is enabled by m.

Definition 3 (firable and blocked transitions). A transition t is firable in
〈m, τ〉 iff it is enabled by m, all places of its postset are empty in m−•t, and280

its TTF is equal to 0. We denote by fira(〈m, τ〉) the set of firable transitions of
〈m, τ〉. A transition t is blocked in 〈m, τ〉 iff it is enabled by m, its TTF τ(t)
is equal to 0, and one of its postset places is marked in m−•t. We denote by
blck(〈m, τ〉) the set of blocked transitions in 〈m, τ〉.

Timed moves: A timed move 〈m, τ〉 δ−→ 〈m, τ ′〉 lets a strictly positive duration285

δ ∈ R elapse. To be allowed, δ must be smaller or equal to all TTFs of transitions
enabled by m and not yet blocked. The new configuration 〈m, τ ′〉 decreases TTFs
of every enabled and non-blocked transition t by δ time units (τ ′(t) = τ(t)− δ).
Blocked transitions keep a TTF of 0, and m remains unchanged. Timed moves
are formally defined by the following operational rule:290

δ > 0
∧ ∀t ∈ enab(m) \ blck(〈m, τ〉), τ(t) ≥ δ ∧ τ ′(t) = τ(t)− δ
∧ ∀t ∈ blck(〈m, τ〉), τ ′(t) = τ(t)

〈m, τ〉 δ−→ 〈m, τ ′〉

Discrete moves: A discrete move 〈m, τ〉 t−→ 〈m′, τ ′〉 consists in firing a transi-
tion t from a configuration 〈m, τ〉 to reach a configuration 〈m′ = m−•t+ t•, τ ′〉.
Discrete moves change the marking of a configuration, and sample new times to
fire for transitions that become enabled after the move. To define the semantics
of discrete moves, we first introduce newly enabled transitions.295

Definition 4 (newly enabled transitions). Let m be a marking and t a tran-
sition enabled by m. A transition t′ is newly enabled after firing of t from m iff
it is enabled by marking m′ = (m−•t) + t• and either it is not enabled by m−•t
or t′ = t. We denote by newl(m, t) = enab(m′) ∩ ({t} ∪ (T \ enab(m−•t))) the
set of transitions newly enabled by firing of t from m.300

The transition t fired during a discrete move is chosen among all firable
transitions of 〈m, τ〉. The new marking reached is m′ = (m−•t) + t•, and τ ′ is
obtained by sampling a new TTF for every newly enabled transition and keeping
unchanged TTFs of transitions already enabled by m and still enabled by m′.
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A transition t′ is persistent after firing of t from m iff it is enabled in m, t 6= t′,305

and t′ is enabled inm−•t. We denote by pers(m, t) = (enab(m)∩enab(mtmp))\{t}
the set of persistent transitions after firing of t from m. Discrete moves are
formally defined by the following operational rule:

t ∈ fira(〈m, τ〉)
∧ m′ = (m−•t) + t•

∧ ∀ti ∈ pers(m, t), τ ′(ti) = τ(ti)
∧ ∀ti ∈ newl(m, t), τ ′(ti) ∈ [eft(t), lft(t)]

〈m, τ〉 t−→ 〈m′, τ ′〉
We will consider that runs of a STPN N start from an initial configuration

〈m0, τ0〉 where m0 is the initial marking of N , and τ0 attaches a sampled TTF310

to each transition enabled by m0. We will write 〈m, τ〉 → 〈m′, τ ′〉 iff there exists

a timed or discrete move from 〈m, τ〉 to 〈m′, τ ′〉, and 〈m, τ〉 ∗−→ 〈m′, τ ′〉 iff there
exists a sequence of moves leading from 〈m, τ〉 to 〈m′, τ ′〉.

p1

t1 [0, 6]

p2

p3

t2 [2, 8]

p1
1

t11 5.5

p2
1 p1

2

t21 8.1 t12 8.1

p3
1 p1

3p2
2

Figure 4: a) An example STPN N1 and b) a time process of N1

Consider the STPN N1 of Figure 4, and suppose that N1 is in configuration
〈m, τ〉, with m(p1) = 1, m(p2) = m(p3) = 0, τ(t1) = 5.5. From this configuration,315

one can let 5.5 time units elapse, and then fire t1. After this firing, the STPN
reaches marking m′ with m′(p1) = m′(p2) = 1, m′(p3) = 0. New TTFs d1, d2

are sampled for t1, t2, leading to a configuration 〈m′, τ ′〉, where τ ′(t1) = d1 and
τ ′(t2) = d2. Let us suppose that d1 = 1.5 and d2 = 2.6. Then one can let 1.5
time units elapse, but after this timed move, transition t1 cannot fire, as place320

p2 contains a token. N1 is hence in a configuration 〈m′, τ ′′〉, where τ ′′(t1) = 0,
τ ′′(t2) = 1.1, and t1 is blocked. After letting 1.1 time units elapse, transition
t2 can fire, leading to marking m′′(p1) = m′′(p3) = 1,m′′(p2) = 0. Once t2 has
fired, t1 is urgent and firable, and immediately fires, at the same date.

Let us now assign probabilities to STPN moves. Randomness in STPNs se-325

mantics mainly comes from sampling of TTFs. However, when several transitions
are firable from a configuration, weights are used to determine the probability
for a transition to fire first. Timed moves are achieved with probability 1:
once TTFs are set, there is a unique configuration allowing discrete moves.

In a discrete move 〈m, τ〉 t−→ 〈m′, τ ′〉, m′ is built deterministically, but τ ′ is330
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obtained by sampling a random value ζt for each newly enabled transition t.
Each ζt is chosen according to CDF Ft, i.e., we have P(ζt ≤ x) = Ft(x) (for any
x ∈ [eft(t), lft(t)]). When more than one transition is firable from 〈m, τ〉, the
transition that fires is randomly chosen according to the respective weight of
each firable transition: each transition tk in fira(〈m, τ〉) has a probability to fire335

Pfire(tk) = W(tk)
/∑

ti∈fira(〈m,τ〉)W(ti). Note that, as STPNs have continuous
probability laws, the probability to choose a particular value ζt is the probability
of a point in a continuous domain and is hence null. However, in the next
sections, we will consider probabilities for events of the form τ(ti) ≤ τ(tj), which
may have strictly positive probabilities.340

STPNs define sequences of moves ρ = (〈m, τ〉 ei−→ 〈m′, τ ′〉)i∈1...k, where
ei is a transition name in discrete moves and a real value in timed moves.
Leaving probabilities for the moment, STPNs can also be seen as generators
for timed words over T . A timed word over an alphabet A is a sequence
〈a1, d1〉 . . . 〈aq, dq〉 . . . in (A× R≥0)∗, where each ai is a letter from A, each di345

defines the occurrence date of ai, and d1, . . . , dq is an increasing sequence of
positive real numbers. Letting i1, . . . , iq denote the indices of discrete moves in ρ,
we can build a timed word uρ = 〈ai1 , d1〉 . . . 〈aiq , dq〉 ∈ (T×R≥0)q that associates
dates to transitions firings, where d1 =

∑
j<i1

ej , and dj = dj−1 +
∑
ij−1<k<ij

ek
for j ∈ {2, . . . , q}. The timed language of an STPN N is the set L(N ) of timed350

words associated with its sequences of moves. We denote by L≤D(N ) the set of
words in L(N ) with a maximal date lower than D.

2.4. Partial order semantics of Stochastic Time Petri Nets

As already highlighted in [10] for TPNs, timed languages give a sequential
and interleaved view for executions of inherently concurrent models. A non-355

interleaved semantics can be defined using time processes, i.e., causal nets
equipped with dating functions. We recall that causal nets are finite acyclic nets
of the form CN = 〈B,E,•(), ()•〉, where for every b ∈ B, |b•| ≤ 1 and |•b| ≤ 1.
Intuitively, a causal net contains no conflict (pairs of transitions with common
places in their presets) nor places receiving tokens from more than one transition.360

Definition 5 (time process). A time process is a tuple TP = 〈CN, θ〉, where
CN = 〈B,E,•(), ()•〉 is a causal net, and θ : E → R≥0 associates a positive real
date to transitions of net CN , and is such that ∀e, e′ ∈ E with e•∩ •e′ 6= ∅ we
have θ(e) ≤ θ(e′). In time processes, places in B are called conditions, and
transitions in E are called events. The depth of a time process is the maximal365

number of events along a path of the graph 〈B∪E,•()∪ ()•〉. We will write e ≺ e′
iff e•∩•e′ 6= ∅, and denote by � the transitive and reflexive closure of ≺.

Intuitively, conditions in B represent occurrences of places fillings, and events
in E are occurrences of transitions firings of the underlying STPN. We denote by
tr(e) the transition t attached to an event e, and by pl(b) the place p associated370

with a condition b. To differentiate occurrences of transitions firings, an event
will be defined as a pair e = 〈X, t〉, where t is the transition whose firing is
represented by e and X is the set of conditions it consumes. Similarly, a condition
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is defined as a pair b = 〈p, e〉, where p is the place whose filling is represented by
b, and e is the event whose occurrence created b. The flow relations are hence375

implicit: •e = {b | e = 〈X, t〉 ∧ b ∈ X}, and similarly e•= {b | b = 〈p, e〉}, and
for b = 〈p, e〉, •b = e and b•= {e ∈ E | b ∈ •e}. We will then often drop flow
relations and simply refer to time processes as triples TP = 〈B,E, θ〉.

Given an STPN N , for every timed word u = 〈a1, d1〉 . . . 〈an, dn〉 in L(N ),
we can compute a time process TPu = 〈B,E,•(), ()•, θ〉. The construction380

described below is the same as in [10]. It does not consider probabilities and,
as the construction starts from an executable word, it does not have to handle
blockings either. We denote by TPu the time process obtained from a timed
word u = 〈t1, d1〉〈t2, d2〉 . . . 〈tk, dk〉 ∈ L(N ). It can be built incrementally by
adding transitions occurrences with their associated dates one after another,385

starting from a set of conditions B0 = {(⊥, p) | p ∈ m0}. We give a detailed
construction in Appendix A.

Figure 4-b is an example of a time process for STPN N1. In this ex-
ample, event tji (resp. condition pji ) denotes the jth occurrence of transi-
tion ti (resp. place pi). This time process corresponds to the time word390

u = 〈t1, 5.5〉〈t2, 8.1〉〈t1, 8.1〉 ∈ L(N1). It contains causal dependencies among
transitions (e.g., from t11 to t12). Event t21 cannot occur before t12 as t1 cannot
fire as long as place p2 is filled. However, this information is not explicit in the
process. The timed language L(N ) of a TPN can be reconstructed as the set of
linearizations of its time processes. In these linearizations, ordering of events395

considers both causality and dates of events: for a pair of events e, e′ with e 6= e′,
e must precede e′ in a linearization of a process if θ(e) < θ(e′) or if e � e′. With
blocking semantics, some causality and time-preserving interleavings may not be
valid timed words of L(N ): in the process of Figure 4-b, t21 cannot occur before
t12, even if both transitions have the same date. A correct ordering among events400

with identical dates in a process TPu can however be found by checking that a
chosen ordering does not prevent occurrence of other transitions.

2.5. Schedules

Schedules are objects of everyday’s life, and are both used as documentation
for a system (for instance, bus and train schedules indicate to users when and405

where to pick up their transport), and to guide a system along behaviors that
guarantee some quality of service. Though schedules are often perceived as linear
orderings of actions, a partial ordering of actions is often useful, for instance
to order tasks in a Gantt diagram, manage bus fleets, or train moves in metro
networks. . .410

Blocking semantics allows to handle safety requirements for systems with
critical resources. However, this semantics makes reasoning on systems harder,
and brings no guarantee on the liveness of a system. On our example of Figure 2,
a possible wish of designers is that trains stay no longer than 80 seconds at
station D, and one train out of two goes to E. The second requirement is easily415

implemented by the simple additional control represented by the dashed places
and flows. However, nothing guarantees a priori the first requirement, i.e., that
place PD,E is emptied at latest 80 seconds after a token has entered PD. So,
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even if the model seems correct, trains may have to wait longer than expected a
priori. The objective of this paper is to make sure that a system can implement420

a predetermined schedule. The principle of schedules appears in many places of
our everyday lives. Trains, metros, buses, follow predetermined schedules, also
called timetables. The view that everyday users of transports have of a schedule
is only a partial view corresponding to the station where they catch a train or
a bus, listing all possible departure hours. Now, this list of dates is simply a425

projection of more complex objects.
Timetables describe a trajectory for every object: for instance the list of

stops that a bus has to visit, and the arrival/departure dates from these stops.
Distinct objects cannot use the same resource at the same date. Hence, although
individual trajectories can be seen as very linear, and could for instance be430

modeled as timed words, dependencies exist: a train can enter a station only
after its predecessor on the same line has left it.

The natural notion to encode timetables is hence that of partially ordered
sets of events decorated with dates. Events represent the beginning/end of a task,
the arrival/departure of a train or bus, etc. Partial ordering among events allows435

to account for linearity in individual trajectories and for causal dependencies due
to exclusive resource use (a train can enter a station only after its predecessor
has left). The dates decorating these partial order are dates that comply with
the dependencies, and also with some physical characteristics of the modeled
systems: a train move from a station Si to the following one Si+1 in its itinerary440

takes time, which shall be reflected by the dates attached to departures and
arrivals at different stations.

A schedule can be seen as a solution for a set of constraints over variables
representing dates of events. Even if a proposed solution satisfies all constraints
attached to a system, it is usually a high-level view of the overall expected445

behavior of a system. This raises the question of whether a particular schedule
can be effectively realized by the system. As schedules and systems models are
descriptions of the same system, one can expect the answer to be positive in
most of cases. However, solutions returned by a solver for a constraint problem
are optimal solutions w.r.t. some criteria, but not necessarily the most plausible450

nor the most robust ones. Indeed, for obvious reasons, one cannot ask a bus to
reach each stop at the earliest possible date: such solution makes systems poorly
robust to random delays, that necessarily occur in transport systems. Providing
the ability to check that a schedule is realizable with reasonable chances is hence
an essential tool to design schedules.455

In many transport systems, schedules are only ideal behaviors of vehicles, that
are realized up to some imprecision, and used mainly to guide the system. Systems
such as bus fleets or metros often deviate from the expected timing prescribed
by a timetable at peak hours. This deviation mainly concerns occurrence dates
of events. Re-ordering of events is rare, and mainly occurs in case of a major460

failure of the system that forces working in a degraded setting, where following
a timetable makes no sense. Systems are also adaptive: production cells can
be equipped with controllers, bus drivers receive instructions to avoid bunching
phenomena [11], and metro systems are controlled by regulation algorithms that
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help trains sticking to predetermined schedules. In this setting, a key question465

is to asses how much regulation and control is needed to make a system run
as expected in its schedule. A first way to answer this question is to ask the
probability that a schedule is realized by the system. In section 4.2, we give ways
to compute the probability that a schedule is realized up to some minor shift
in occurrence dates of its events. This measure does not consider adaptation470

techniques (control, regulation) that help a system stick to a predetermined
schedule. However, this measure still makes sense, as it quantifies the need for
correction in unregulated systems.

1 : dA

08 : 02

2 : dB

08 : 04

3 : dC

08 : 06

4 : dD

08 : 09

5 : dC

08 : 03

6 : dD

08 : 05

7 : dE

08 : 10

8 : dF

08 : 11

9 : dF

08 : 10

10 : dE

08 : 12

11 : dD

08 : 14

12 : dD

08 : 17

Figure 5: A possible schedule for trains departures in a metro network

Consider the example of Figure 5. This Figure represents the beginning
of a schedule for three trains, where only departure dates are planned. The475

departures for each train are depicted as boxes, carrying a label of the form i : dJ ,
where i is the event number, and dJ means that this event is a departure from
station J . Furthermore, an execution date is attached to each node. One can see
on this drawing that schedules are partial orders containing train trajectories.
However, there are some dependencies among events from distinct trains: for480

instance, our schedule imposes that the second departure of the day at station D
(event 6 : dD) precedes departure 3 : dC from station C. Similarly, 7 : dE must
precede 12 : dD. Now, a sensible question is: can a network realize this schedule?
More precisely, can the STPN designed for this network (with additional control
places) realize such a schedule starting at 08 : 00 with a train at station A, a485

train at station C and a train at station F? The answer to this question is not
straightforward. Even if the answer is positive, the next step is to ask whether
this schedule, with a tolerance of 1 min delay for each departure, is probable
enough. If the answer is that the probability to realize our schedule is very low,
then this schedule should not be considered as operational.490

A schedule describes causal dependencies among tasks, and timing constraints
on their respective starting dates. Schedules are defined as decorated partial
orders. We allow timing constraints among tasks that are not causally related.

Definition 6 (schedule). A schedule over a finite alphabet A is a quadruple
S = 〈N,→, λ, C〉 where N is a set of nodes, → ⊆N ×N is an acyclic precedence495

relation, λ : N → A is a labeling of nodes, and C : N ×N 7→ Q>0 is a partial
function that associates a time constraint to pairs of nodes. A dating function for
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a schedule S is a function d : N → Q≥0 that satisfies all constraints of C and →,
i.e., 〈n, n′〉 ∈ → implies d(n′) ≥ d(n), and C(n, n′) = x implies d(n′)−d(n) ≥ x.

This model for schedules is inspired from [1, 2]. Intuitively, if C(n, n′) = x,500

then n′ cannot occur earlier than x time units after n, and if 〈n, n′〉 ∈ →,
then n (causally) precedes n′. Constraints model the minimal times needed to
perform tasks and initiate the next ones in production cells, the times needed
for trains to move from a station to another, etc. A schedule S is consistent
if the graph 〈N,→ ∪ {〈n, n′〉 | C(n, n′) is defined}〉 does not contain cycles.505

Obviously, consistent schedules admit at least one dating function. A frequent
approach is to associate costs to dating functions and to find optimal functions
that meet a schedule. A cost example is the earliest completion date. Optimizing
this cost amounts to assigning to each node the earliest possible execution date.
However, these optimal schedules are not the most probable ones. For the earliest510

completion date objective, if an event n occurs later than prescribed by d, then
all its successors will also be delayed. In real systems running in an uncertain
environment (e.g., with human interactions or influenced by weather conditions),
tight timings are impossible to achieve. Finding a good schedule is hence a
trade-off between maximization of an objective and of the likelihood to stay515

close to optimal realizations at runtime.
Realizability: Accuracy of schedules can be formally defined as follows: we
want to check whether a consistent schedule S can be realized by a system,
described as a STPN N . More formally, this amounts to verifying that there
exists a timed execution TP of N and an embedding function ψ mapping abstract520

events of S onto concrete events of TP , such that causally related events of S
are causally dependent in TP and dates of events in TP meet the constraints
on their abstract representation. In the rest of the paper, we show how to check
realizability of a schedule C by a STPN N , and how to compute a lower bound
on the probability that S is realized by N . This allows in particular to check525

that the probability of realization of a schedule is not null.

3. Unfolding of STPNs

A time process emphasizes concurrency but only gives a partial order view
of a single timed word. Many time processes of N1 have the same structure
as the process of Figure 4-b, but different dating functions. Indeed, there can530

be uncountably many time processes with identical structure, but different
real dates. It is hence interesting to consider symbolic time processes, that
define constraints on events dates instead of exact dates. Similarly, to avoid
recomputing the structural part of each symbolic process, we will work with
unfoldings, i.e., structures that contain all symbolic processes of an STPN, but535

factorize common prefixes. Symbolic unfoldings were introduced for TPNs in [12]
and used in [13]. In this section, we show how to unfold STPNs with blockings
and extract symbolic processes out of this unfolding. Our aim is to find the
minimal structure that represents prefixes of all symbolic processes that embed a
schedule of known duration. We show that if a system cannot execute arbitrary540
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large sets of events without progressing time, unfolding up to some bounded
depth is sufficient.

Definition 7 (time progress). An STPN N guarantees time progress iff there
exists δ ∈ Q>0 such that ∀t ∈ T, i ∈ N, and for every time word u = 〈t1, d1〉 . . .
〈ti, θ1〉 . . . 〈ti+1, θ2〉 . . . 〈tk, dk〉 ∈ L(N ) where ti denotes the ith occurrence of t,545

we have θ2 − θ1 ≥ δ.

Time progress is close to non-Zenoness property, and is easily met (e.g., if no
transition has an earliest firing time of 0). The example of Figure 4 does not
guarantee time progress as according to the semantics of STPNs, this net allows
an arbitrary number of occurrences of transition t1 to fire at date 0. However,550

such specification can be considered as ill-formed. Let us consider our motivating
examples: in a production cell, the same kind of processing by a tool necessarily
takes time, and conveying an item from a tool to another cannot either be
instantaneous. Similarly, in train networks, some time must elapse between two
consecutive arrivals of a train at a station, as well as between two consecutive555

arrivals/departures of the same train. Hence, real-life systems ensure properties
that are often stronger than this time progress property. Many STPNs modeling
real-life cases contain exclusively transitions with rational intervals of the form
[a, b] or [a,∞), where a > 0. An interesting consequence of time progress is
that any execution of duration ∆ of an STPN that guarantees time progress560

is a sequence of at most |T | · d∆
δ e transitions. It means that for most of usual

systems that run for a predetermined period (e.g., a metro network operates
from 05:00 to 01:00), it is sufficient to consider behaviors of a model up to a
bounded horizon.

As in processes, unfoldings will contain occurrences of transitions firings565

(a set of events E), and occurrences of places fillings (a set of conditions B).
We associate to each event e ∈ E positive real valued variables doe(e), dof(e)
and θ(e) that respectively define the enabling, firability and effective firing
date of the occurrence of transition tr(e) represented by event e. Similarly, we
associate to each condition b positive real valued variables dob(b) and dod(b)570

that respectively represent the date of birth of the token in place pl(b), and the
date at which the token in place pl(b) is consumed. We denote by var(E,B) the
set of variables

⋃
e∈E doe(e)∪dof(e)∪θ(e)∪

⋃
b∈B dob(b)∪dod(b) (with values in

R≥0). A constraint over var(E,B) is a boolean combination of atoms of the form
x ./ y, where x ∈ var(E,B), ./ ∈{<,>,≤,≥} and y is either a variable from575

var(E,B) or a constant value. A set of constraints C over a set of variables V is
satisfiable iff there exists at least one valuation v : V → R such that replacing
each occurrence of each variable x by its valuation v(x) yields a tautology. We
denote by Sol(C) the set of valuations that satisfy C.

Definition 8 (unfolding). A (structural) unfolding of an STPN N is a pair580

U = 〈E,B〉 where E is a set of events and B a set of conditions.

Unfoldings can be seen as processes with branching. As for processes, each
event e ∈ E is a pair e = 〈•e, tr(e)〉 where •e ⊆ B is the set of predecessor
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conditions of e (the conditions needed for e to occur). A condition b ∈ B is
a pair b = 〈•b, pl(b)〉 where •b ⊆ E is the predecessor of b, i.e., the event that585

created condition b. We assume a dummy event ⊥ that represents the origin of
the initial conditions in an unfolding. Function •(), ()•, pl() and tr() keep the
same meaning as for time processes. The main difference between processes
and unfoldings is that conditions may have several successor events. Using
relations ≺ and � as defined for processes, we define the causal past of e ∈ E590

as ↑ e = {e′ ∈ E | e′ � e}. A set of events E′ ⊆ E is causally closed iff
∀e ∈ E′, ↑ e ⊆ E′. This notion extends to conditions. Two events e, e′ are in
conflict, and write e]′e, iff •e ∩•e′ 6= ∅. A set of events E′ ⊆ E is conflict free if
it does not contain conflicting pairs of events. Two events e, e′ are competing iff
tr(e)•∩ tr(e′)• 6= ∅ (they fill a common place).595

Definition 9 (pre-processes of an unfolding). A pre-process of a finite un-
folding U = 〈E,B〉 is a pair 〈E′, B′〉 such that E′ ⊆ E is a maximal (i.e., there
is no larger pre-process containing E′, B′), causally closed and conflict free set
of events, and B′ = •E′ ∪ E′•. PE(U) denotes the set of pre-processes of U .

Unfolding an STPN up to depth K is performed inductively, without con-600

sidering time. We will then use this structure to find processes. Timing issues
will be considered through addition of constraints on occurrence dates of events.
Unfoldings can be built inductively, following the procedure proposed for in-
stance in [5] and recalled in Appendix B. When building U0, . . . ,UK , each step
k adds new events at depth k and their postset to the preceding unfolding605

Uk−1. The construction starts with the initial unfolding U0 = 〈∅, B0〉 where
B0 = {〈⊥, p〉 | p ∈ m0}.

The structural unfolding of an STPN does not consider timing issues nor
blockings. Hence, an (untimed) pre-process of PE(UK) needs not be the un-
timed version of a time process obtained from a word in L(N ). Indeed, urgent610

transitions can forbid firing of other conflicting transitions. Similarly, blockings
prevent an event from occurring as long as a condition in its postset is filled.
They may even prevent events in a pre-process from being executed if a needed
place is never freed. However, time processes of a net N can be built from
processes of its untimed unfolding. We will show later that, once constrained,615

time processes of N are only prefixes of pre-processes in PE(UK) with associated
timing function that satisfy requirement on dates that only depend on the con-
sidered pre-process. We re-introduce time in unfoldings by attaching constraints
to events and conditions of pre-processes. Let UK = 〈EK , BK〉 be the unfolding
of an STPN N up to depth K, and let E ⊆ EK be a conflict free and causally620

closed set of events, and B = •E ∪E• (B is contained in BK). We define ΦE,B
as the set of constraints attached to events and conditions in E,B (i.e., defined
over set of variables var(E,B)), assuming that executions of N start at a fixed
date d0. Constraints in ΦE,B are set to guarantee:

• (net constraints): occurrence dates of events are compatible with the625

earliest and latest firing times of transitions in N ,
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• (causal precedence): if event e precedes event e′, then θ(e) ≤ θ(e′).

• (no overlapping conditions): if b, b′ represent occurrences of the same
place, then intervals [dob(b), dod(b)] and [dob(b′), dod(b′)] have at most one
common point,630

• (urgency): an urgent transition with empty postset fires if no other urgent
transition fires before; and, in particular, for every event e ∈ E, there is
no event that becomes firable and urgent before e.

Overall, ΦE,B is a boolean combination of inequalities. We do not detail its
construction here: except for the additional constraint on place occupancy due to635

blocking semantics, it is almost the solution proposed by [13]. Interested readers
can also find a complete description of the construction of ΦE,B in Appendix
C. We can now define symbolic processes, and show how instantiation of their
variables define time processes of N . Roughly speaking, a symbolic process
is a prefix of a pre-process of UK (it is hence a causal net) decorated with a640

satisfiable set of constraints on occurrence dates of events. Before formalizing
symbolic processes, let us highlight three important remarks. Remark 1: an
unfolding up to depth K misses some constraints on occurrence dates of events
due to blockings by conditions that do not belong to UK but would appear
in some larger unfolding UK′ , with K ′ > K. We will however show (Prop. 1645

and 2) that with time progress assumption, unfolding N up to a sufficient depth
guarantees that all constraints regarding events with θ(e) ≤ D are considered.
This allows to define symbolic processes representing the time processes of N
that are executable in less than D time units. Remark 2: unfoldings consider
depth of events, and not their dates. Hence, if a process contains an event e650

occurring at some date greater than d, and another event e′ that belongs to
the same pre-process and becomes urgent before date d, then e′ must belong
to the process, even if it lays at a greater depth than e. Remark 3: Every
pre-process 〈E,B〉 of UK equipped with constraint ΦE,B is not necessarily a
symbolic process. Indeed, some events in a pre-process might be competing655

for the same resource, and make ΦE,B unsatisfiable. Consider for instance the
STPN of Figure 6-a). Its unfolding is represented in b), and two of its (symbolic)
processes in c) and d). For readability, we have omitted constraints. One can
however notice that there exists no symbolic process containing two occurrences
of transition t3, because conditions p1

4 and p2
4 are maximal and represent the660

same place p4.

Definition 10 (prefixes of an unfolding). Let PP = 〈E,B〉 be a pre-process
of UK . A symbolic prefix of PP is a triple 〈E′, B′,ΦE′,B′〉 where E′ ⊆ E is a
causally closed set of elements contained in E, and B′ = •E′∪E′•. The constraint
ΦE′,B′ is the constraint that helps fulfilling net constraints, causality, overlapping665

and urgency constraints (see appendix Appendix C for exact definition).

Symbolic prefixes are causally closed parts of pre-processes, but their con-
straints inherited from the unfolding UK may not be satisfiable. Let SPP =
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Figure 6: An STPN with conflicts and blockings a), its symbolic unfolding b), and two of its
symbolic processes c) and d).

〈E′, B′,ΦE′,B′〉 be a symbolic prefix of pre-process PP = 〈E,B〉. We will say
that SPP is maximal w.r.t. urgent events firing iff no more event of PP have670

to belong to SPP. This property of SPP holds if every event f ∈ B′•∩ E that
could have become urgent before the last date of all events in E′ was prevented
from firing due to blocking. We show in Appendix C that this property of
symbolic prefixes can be verified as unsatisfiability of a property Φmax(f) for
every f ∈ B′•∩ E.675

Definition 11 (symbolic processes). A symbolic process of UK is a triple
Es = 〈E′, B′,ΦE′,B′〉 where 〈E′, B′,ΦE′,B′〉 is a symbolic prefix of some pre-
process PP = 〈E,B〉 of UK , ΦE′,B′ is satisfiable, and E′ is maximal w.r.t.
urgent events firing in PP.

A crux in the construction of symbolic processes of UK is to find appropriate680

maximal and causally closed sets of events with satisfiable constraints. This can
be costly: as illustrated by the example of Figure 6, satisfiability of constraints is
not monotonous: the constraints for processes in Fig 6−c) and d) are satisfiable.
However, adding one occurrence of transition t3 yields unsatisfiable constraints.
Satisfiability of a prefix of size n hence does not imply satisfiability of a larger685

prefix of size n + 1. The converse implication is also false: if a constraint
associated with a prefix of size n is not satisfiable, appending a new event may
introduce blockings that delay urgent transitions, yielding satisfiability of a
constraint on a prefix of size n+ 1. So, unsatisfiability of constraints cannot be
used as a criterion to stop incremental unfoldings construction.690

Definition 12 (executions of symbolic processes). Let Es = 〈E,B,ΦE,B〉
be a symbolic process of an unfolding UK . An execution of Es is a time process
TP = 〈E,B, θ〉 where θ is a solution for Φ. For a chosen θ, we denote by
Esθ = 〈E,B, θ〉 the time process obtained from Es. TP = 〈E,B, θ〉 is a time
process of UK if there exists a symbolic process Es = 〈E,B,Φ〉 of UK s.t. TP is695

an execution of Es.
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Informally, symbolic pre-processes select maximal conflict-free sets of events
in an unfolding. Symbolic processes extract executable prefixes from symbolic
pre-processes, and executions attach dates to events of symbolic processes to
obtain time processes. In the rest of the paper, we respectively denote by Es(UK)700

and by E(UK) the set of symbolic processes and time processes of UK .
We can now show that upon time progress hypothesis, unfoldings and their

symbolic processes capture the semantics of STPNs with blockings. Given an
STPN that guarantees time progress with a minimal elapsing of δ time units
between successive occurrences of every transition, and given a maximal date705

D, we want to build an unfolding UD of N that contains all events that might
be executed before D, but also all places and events which may impact firing
dates of these events. We can show that UD is finite and that its processes are
of depth at most H = dD−d0δ e · |T |.

Let b = 〈e, p〉 be a condition of an unfolding Un obtained at step n. Let710

block(b) be the set of conditions that may occur in the same process as b, represent
the same place, and are not predecessors or successors of b in any unfolding Un+k

obtained from Un. Clearly, dates of birth and death of conditions in block(b)
may influence the date of birth and death of b, or even prevent b from appearing
in the same process as some conditions in block(b). However, in general, block(b)715

need not be finite, and at step n, block(b) is not fully contained in a pre-process
of Un. Fortunately, upon time progress assumption, we can show that elements
of block(b) that can influence dob(b) appear in some bounded unfolding UK .

Proposition 1. Let N be a STPN guaranteeing time progress of δ time units
(between consecutive occurrences of each transition). For every date D ∈ R≥0720

and condition b in an unfolding Un, there exists K ≥ n s.t. {b′ ∈ block(b) |
dob(b′) ≤ D} is contained in UK .

This proposition means that if some event cannot occur at dof(e) due to a
blocking, i.e., dof(e) 6= θ(e), then one can discover all conditions that prevent
this firing from occurring in a bounded extension of the current unfolding.725

Proposition 2. Let N be a STPN guaranteeing time progress of δ time units.
The set of time processes executable by N in D time units are prefixes of time
processes of UK , with K = dDδ e · |T |

2 containing only events with date ≤ D.

4. Realizability of schedules

We can now address the question of realizability of a high-level description of730

operations (a schedule S) by a system (described by a STPN N ). Considered in
a purely boolean setting, this question can be rewritten as: is there an execution
of N that implements S ? In many cases, a positive answer to this question is
not sufficient: as STPNs are equipped with continuous probability distributions,
the probability of a particular execution TP = 〈E,B, θ〉 is always 0. A sensible735

way to address realizability is a quantitative approach requiring that the set of
executions of N implementing S has a positive probability. In this section, we

20



first formalize the notion of realization of a schedule by an execution, and define
boolean realizability. We then define probabilistic realizability, and show how an
under-approximation of the probability to realize a schedule can be computed740

using a transient tree construction [3].

4.1. Boolean realizability of schedules

First of all, the connection between high-level description of operations in S
and their implementation in N is defined via a realization function.

Definition 13 (realization function). A realization function for a schedule745

S and an STPN N is a map r : A → 2T that associates a subset of transitions
from T to each letter of A, and such that ∀a 6= a′ ∈ A, r(a) ∩ r(a′) = ∅.

A realization function describes which low-level actions implement a high-level
operation of a schedule. Each letter a from A can be interpreted as an operation
performed through the firing of any transition from the subset of transitions r(a).750

Allowing r(a) to be a subset of T provides some flexibility in the definition of
schedules: in a production cell, for example, a manufacturing step a for an item
can be implemented by different processes on different machines. Similarly, in a
train network, a departure of a train from a particular station in the schedule
can correspond to several departures using different tracks, or to departure with755

different speed profiles, which is encoded with several transitions in an STPN.
Realization functions hence relate actions in schedules to several transitions
in an STPN. The condition r(a) ∩ r(a′) = ∅ prevents ambiguity by enforcing
each transition to appear at most once in the image of r. Note that r(A) ⊆ T ,
that is the realization of a schedule may need many intermediate steps that760

are depicted in the low-level description of a system, but are not considered in
the high-level view provided by a schedule. This allows in particular to define
schedules that constrain dates for a subset of events, and leave dates of other
events free from any constraint. In the context of a train network, this allows for
the verification of realizability of schedules that focus on a subset of stations, e.g.,765

requiring a departure from a chosen station every x minutes during a normal
day of operation. We will call transitions that belong to r(A) realizations of A.

Definition 14 (embedding). Let S = 〈N,→, λ, C〉 be a schedule, Es = 〈E,B,Φ〉
be a symbolic process of N and r : A → 2T be a realization function. We say
that S embeds into Es (w.r.t. r and d) and write S ↪→ Es iff there exists an770

injective function ψ : N → E such that:



∀n ∈ N, tr
(
ψ(n)

)
∈ r
(
λ(n)

)
(embedding is consistent with labeling)

∀〈n, n′〉 ∈→, ψ(n) � ψ(n′) (causal precedence is respected)

@f ≤ ψ(min(n)), tr(f) ∈ r(A) (embedding starts on 1st compatible events)

∀e ≤ f ≤ g, e = ψ(n) ∧ g = ψ(n′′) ∧ tr(f) ∈ r(A) (embedding "misses"

⇒ ∃n′, f = ψ(n′) ∧ n→∗ n′ →∗ n′′ no compatible event)
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S embeds in Es iff there is a way to label every node n of S by a letter from
r
(
λ(n)

)
and obtain a structure that is contained in some restriction of a prefix

of Es to events that are realizations of actions from A and to a subset of its
causal ordering. This way, a process respects the ordering described in S, does775

not “forget” actions, and does not “insert” realizations that are not the image
by ψ of any high-level operation between two mapped realizations, or before the
image by ψ of minimal nodes in the schedule. Note that there can be several
ways to embed S into a process of N .

Definition 15 (realizability). Let d be a dating function for a schedule S =780

〈N,→, λ, C〉, r be a realization function. The pair (S, d) is realizable by Es =
〈E,B,Φ〉 (w.r.t. r) iff there exists an embedding ψ from S to Es, and furthermore,
Φψ,S,d = Φ∧

∧
n∈N θ

(
ψ(n)

)
= d(n) is satisfiable. (S, d) is realizable by N (w.r.t.

r and d) iff there exists a symbolic process Es such that S is realizable by Es.

Realizability of a schedule S = 〈N,→, λ, C〉 with constraints C stands for785

realizability of any of the dating functions d meeting constraints C. Very often,
we also address realizability of a schedule with respect to a fixed dating function d.
Letting Cψ denote the conjunction of inequalities obtained by replacing every
assignmant (i, j)→ v in map C by inequalities θ(ψ(nj))− θ(ψ(ni)) ≥ v, we will
say that S is realizable by Es (w.r.t. r) iff there exists an embedding ψ from S to Es790

and Φψ,S,C = Φ∧Cψ is satisfiable. Similarly, when nodes of schedules are attached
a precise date by a map d(.), we can define Cd = Cψ ∧

∧
n∈N θ(ψ(n)) = d(n),

and Φψ,S,d = Φ ∧ Cd. We write Es |= S when S is realizable by Es, and
N |= S when S is realizable by some symbolic process of N . Algorithm 1 in
appendix Appendix F computes the set ΨS,Es of embeddings of a schedule S795

in a process Es. If there exists an embedding ψ ∈ ΨS,Es from S to a symbolic
process Es, such that Φψ,S,C (resp. Φψ,S,d) is satisfiable, then S is realizable by
Es. Realizability hence consists in finding at least one symbolic process of N
with an appropriate embedding in ψ ∈ ΨS,Es . When a maximal occurrence date
D for operations in S is provided, and when N guarantees time progress, such a800

process is a process of unfolding UK (where K is the bound given in Prop. 2).
We can then compute the set of symbolic processes ES = {Es0 , Es1 , . . . , EsN−1} of
UK that embed S and similarly for each Esi ∈ ES , the set of possible embedding
functions Ψi = {ψi,0, ψi,1, . . . , ψi,Ni−1} for which constraint Φψ,S,C (resp. Φψ,S,d)
is satisfiable.805

To illustrate the construction of unfoldings and of processes, let us consider
the example of figure 7. This toy example depicts two train carousels: line 1
serves stations A, B and C, and line 2 serves stations D, B′ and C ′. Both
lines share a common track portion between stations B,C and B′, C ′, and line
1 uses two trains. The upper left picture shows the aspect of both lines and810

stations, and the bottom left figure a STPN model of this network (we do not
show distributions). Stations are represented by places labeled by station names,
and track portions between two stations by places labeled by pairs of letters
representing the connected stations (e.g., place CA represents the track from
C to A). Transitions consuming tokens from a station place represent trains815
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departures, and transitions consuming tokens from a track place are arrivals. A
possible required schedule (middle of the figure) is that one train leaves every
10 time units from station A on line 1, starting from date 10, and one train
leaves station B′ every 10 time units, but starting from date 15. Arrivals of
trains and departures from other stations are not represented, and are hence not820

constrained. Departures from A are nodes labeled by dA and departures from
B′ are nodes labeled by dB′ . The rightmost part of the figure is a structural
unfolding of the net. We set r(dA) = {t5} and r(dB′) = {t7}. Note that the
topmost occurrence of place OK, that plays the role of a boolean flag in a critical
section can be both consumed by occurrences t11 and t21 of transition t1, which825

is a standard conflict. Note also that events t14 and t24 output a token in place
A. Even if these events are not in conflict, due to non-blocking semantics, their
firing dates may influence one another. The way operations of the schedule inject
in a process of the net is symbolized by dotted lines. Notice that if t15 has to
fire at date 10, then according to intervals attached to transitions, t14 has to fire830

at date 5. This means that there exists a unique way to guarantee a departure
from station A at date 10, which is to sample the smallest trip durations from C
to A and the smallest possible dwell time at station A. The schedule of Figure 7
is hence realizable. However, the probability of occurrence of this schedule with
precise dates is obviously 0.835
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Figure 7: Realizability of a schedule for a metro network with two lines and a shared track.

4.2. Probabilistic Realizability

The example of Figure 7 shows that boolean realizability characterizes an
embedding that is consistent with time constraints, but not the probability to
realize a schedule. Consider the STPN of Figure 8. This net has two symbolic
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processes: Es1 in which transition t1 fires, and Es2 in which t2 fires. The probability840

of process Es1 is the probability that a value v1 sampled to assign a TTF for t1 is
smaller or equal to another value v2 sampled independently to assign a TTF for
t2. Clearly, the probability that v1 ≤ v2 is equal to the probability that v1 ∈ [0, 1]
(and is hence equal to 1). The probability of the second process Es2 is equal to
the probability that v1 ≥ v2, but the set of values allowing this inequality is845

restricted to a single point v1 = 1, v2 = 1. Conforming to continuous probability
distributions semantics, the probability of this point, and consequently the
probability of executing a time process that is consistent with constraints in Es2
is 0. A schedule S composed of a single node n with a realization function such
that r

(
λ(n)

)
= {t2} and a date d(n) = 1 are realizable according to Definition 14,850

but with null probability. Let us slightly change the example of Figure 8-a).
We now assign interval [0, 3] to transition t1 in the STPN and interval [1, 4]
to transition t2. We keep the same schedule S and realization function r, but
require that d(n) = 2. The probability that t2 fires from the initial marking is
equal to the probability that v1 ≥ v2, which is not null (we explain below and855

in Appendix H how to compute the probability of such domain and the joint
probability of v1, v2), and is equal to the joint probability of values of v1, v2 laying
in domain v1 ≥ v2 depicted by the Grey zone in Figure 8-b). However, within
this continuous domain of possible values, the probability to fire t2 exactly at
date 2 as required by dating function d is still null. Nevertheless, if t2 is allowed860

to fire at date 2 with some imprecision α, then the probability to realize the
expected schedule is equal to the integration of the joint probability distribution
over the domain where (v1 ≥ v2) ∧ (2−α ≤ v2 ≤ 2+α) (represented as a dashed
part in Figure 8-b), which can be strictly positive if distributions attached to t1
and t2 are properly set. Note that requiring dates to be implemented up to some865

imprecision does not necessarily increase the probability to realize a schedule: in
the example of Figure 8-a with intervals [0, 1] and [1, 2] the only way to realize
the schedule S mentioned before with date d(n) = 1 up to some imprecision is to
execute the unique time process in which t2 fires at date 1, and the probability
of this process is null. More generally, the probability to realize a schedule when870

the embedding relation leaves a single possible occurrence date for at least one
event in the chosen symbolic process is always null.

Boolean realizability is a first step to check that a schedule and an imple-
mentation are not totally orthogonal visions of a system. However, examples 7
and 8 demonstrate that it is not precise enough. They also show that boolean875

realizability up to imprecision still allows to consider sets of processes with null
probabilities as realizations of a schedule. An accurate notion of realizability
should require that schedules embed into symbolic processes of UK with strictly
positive probability and up to some admissible imprecision on dates of events,
bounded by some value α ∈ Q≥0. When a schedule is constrained by a precise880

map d(.), every operation x in a schedule should now be implemented by an
occurrence tji of a transition t at date θ(tji ) ∈ [max(d(x)− α, 0), d(x) + α]. Once
an injection ψ from a schedule S = 〈N,→, λ, C〉 to a symbolic process Es is found,
the constraint to obtain realizability of a dating function d up to imprecision
of α becomes: Φψ,S,d±α = Φ ∧

∧
n∈N max(d(n) − α, 0) ≤ θ(ψ(n)) ≤ d(n) + α.885
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One can similarly require constraints C in S to be realized up to imprecision
of α, that is, require that constraints of the form d(nj)− d(ni) ≥ v imposed by
map C are implemented in the low level net by a process satisfying a relaxed
constraint of the form θ(ψ(nj))− θ(ψ(ni)) ≥ v − α. From a practical point of
view, this notion of realization up to bounded imprecision is more natural than890

boolean realizability. Indeed, for systems such as train networks, one cannot
expect a schedule to be precisely realized (trains are subject to random delays),
but rather that differences between realized and scheduled dates are usually not
too important. To measure the probability of realizing a schedule, we define as
P(Es) the probability of the set of time processes of Es. When an embedding ψ895

from S to Es exists, we define as P(Es ∧ Sol(Φψ,S,d±α)) the probability of time
processes that are realizations of Es in which dates of events are solutions of
Φψ,S,d±α.
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t2

p3

[0, 1] [1, 2]

0 1 2 3 4
0

1

2

3

4

v1

v2

v1 = v2

Figure 8: a) An example STPN b) A domain for τ(t1), τ(t2) allowing firing of t2, assuming
I(t1) = [0, 3] and I(t2) = [1, 4].

Definition 16 (probabilistic realizability). Let d be a dating function with
maximal date D for a schedule S = 〈N,→, λ, C〉, r be a realization function.900

The pair (S, d) is realizable with non-null probability (w.r.t. r) up to imprecision
α iff there exists an embedding ψ of S into a symbolic process Es of UK such
that: P(Es ∧ Sol(Φψ,S,d±α)) > 0.

This definition requires that a symbolic process of N embeds S, and that
the probability that this process is executed and satisfies all timing constraints905

imposed by the STPN and by the dating function is strictly positive. We will
now show how to compute this probability using a transient execution tree, as
proposed in [3]. A transient execution tree is a tree which nodes are stochastic
state classes.

Definition 17 (transient stochastic state class). A transient stochastic state910

class (or class for short) of an STPN N is a tuple Σ = 〈M,C,D, blk, urg〉 where
M is a marking. For a given stochastic state class, we define a set of variables
XM with support C representing the possible TTFs of transitions enabled by
marking M s.t. for every xi in XM , the elimination of all other variables from C
yields a non-empty set of possible values that is different from {0}; D is a PDF915

over C, blk is a set of blocked transitions, and urg is a set of urgent transitions.

Roughly speaking, stochastic state classes are abstract representations of
markings, time domains for sampled values attached to enabled transitions, and
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of their distribution over the abstract domain. The notion of state class was
already used in [14, 15] to analyze time Petri nets, stochastic state class hence920

only add a probabilistic dimension. In a stochastic state class transitions that
are enabled but not blocked nor urgent are associated a time to fire. We will
denote by xi the variable describing the time to fire associated to a transition ti,
and by XM the set of all variables attached to enabled transitions in M . The
domain C can be described by a set of inequalities of the form xi − xj ./ v or925

xi ./ v with ./∈ {<,>,≤,≥,=} and v ∈ Q. It represents possible values for
TTFs attached to transitions. Similarly, the distribution D is a PDF defined on
R|XM | giving probability of values of xi1 , . . . , xi|XM | . When needed, we can also
include in XM a particular variable xage representing the time elapsed since the
beginning of an execution. The probability to fire a particular transition from a930

class and move to a successor class is computed as an integration over the time
domain allowing this transition to fire first. On the example of Figure 8 (with
intervals [0, 3] and [1, 4]), this corresponds to integration of a joint distribution
for values v1, v2 over the domain in Grey.

One can assume that the system under study starts from a known initial mark-935

ing M0 with initial known TTFs, represented as a point of R|XM0
|. The construc-

tion of the transient tree starts from stochastic state class (M0, C0, D0, blk0, urg0),
where C0 is a single point defining known TTFs, D0 associates probability 1 to
the single point in C0 and 0 to R|XM0

| \ C0.
Then, the transient tree is built by iterating a construction of successors for940

already found state classes. Let (M,C,D, blk, urg) be a state class such that
urg = ∅, and let ti be an enabled transition in this class. Then, one can compute
the domain defined by constraint C ′ = C ∧ {xi ≤ xj | xi 6= xj ∈ XM}, that
imposes that ti is the first transition to fire, i.e., it has the smallest TTF in the
state class. If C ′ is satisfiable, then ti is effectively firable, and one can compute945

the probability pi that ti fires first, and the successor class (Mi, Ci, Di, blki, urgi)
reached after firing ti. First of all, we have pi =

∫
C′
D(xi1 . . . xi|XM |), that is,

the probability of all values for XM in which xi is the smallest variable. The
successor class (Mi, Ci, Di, blki, urgi) is then obtained as follows:

• Mi is the marking M \•ti ∪ ti•. Sets blki, urgi can be updated as follows:950

a blocked transition remains blocked if it is enabled in Mi and its postset
is not freed by firing of ti. It can also become urgent if its postset is freed,
or be disabled if firing ti removes a token from its preset. Similarly, urgent
transitions can become blocked, remain urgent, or be disabled.

• We reuse the technique of [15] to compute Ci. We start from C ′. We first955

make a variable change of the form xj = xi + x′j (to consider the fact that
all TTFs are decreased by the value of xi). We then eliminate all variables
associated to transitions disabled by firing of ti (for instance using the
Fourier-Motzkin elimination method). Last, we add new constraints of the
form x′k ∈ I(tk), for every newly enabled transition tk. This represents the960

fact that a new TTF is sampled. Last, we rename all x′ks to xk to obtain
Ci.
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• Di is obtained in an almost similar way, using the procedure given
by [3]. We have already computed the probability pi to fire ti from
(M,C,D, blk, urg). As ti fires before any other transition from class965

(M,C,D, blk, urg) we first compute a new distribution Da defined over

C ′ such that Da(XM ) = D(XM )
p that conditions values of variables in

Xa
M = XM \ {xi} knowing that xi has the smallest value in XM . The next

step is to build the distribution of probabilities once xi is eliminated, i.e., a
distribution Db(Xa

M ) computed as Db(Xa
M ) =

∫maxi
mini

Da({xj + xi | i 6= j}),970

where mini is the minimal value of xi in C ′ and maxi its maximal value.
This integration is repeated for every variable attached to a transition
disabled by firing of ti. The last step consists in integrating the newly cre-
ated variable and their distribution to Db. Let XMi \XM = {xk1 . . . xkq},
where tk1 . . . tkq are newly enabled transitions. As the value of each xkj975

represent a new sampled TTF, it does not depend on former values of
variables, we have Di = Db · F(xk1) . . .F(xkq ). Di is defined over domain
Ci defining possible values of variables in XMi

.

The construction of a successor class when urg 6= ∅ follow similar lines,
i.e., consists in computing successor marking, domain and distribution. The980

main difference is that an urgent transition necessarily has a TTF equal to 0.
Futhermore, it may compete with other urgent transitions. The probability to
fire ti ∈ urg is hence pi =W(ti)

/∑
tj∈urgW(tj).

One can iteratively compute successors of stochastic state classes to obtain
a transient execution tree. As our STPN is bounded, the number of markings985

and domains that can be generated inductively at construction time is finite
(as proved by [14]). Urgent and blocked transitions are also finite subsets
of T . The distributions attached to transitions of STPNs are expolynomial
functions. Beyond their expressive power, expolynomial functions are closed
under projections, integrations, or multiplication. Further, (joint) distributions990

of clock values in a node can always be encoded as expolynomial functions. This
way, one can iteratively build a tree whose nodes contain markings, state classes
and expolynomial distributions over these classes. However, as shown in [3],
the number of distributions that can be iteratively computed need not be finite.
However, as time progress is guaranteed, one can limit the construction to a995

bounded horizon. In our case, we can be even more directive, and guide the tree
construction to match executions of a particular symbolic process Es. Indeed, we
can consider only executions of a tree that are executions of Es by remembering
at every step which transitions have been executed, and forbidding any transition
that is not among the possible next ones. Details on the construction of this1000

transient tree are provided in Appendix G.
As shown in [3], after this transient tree construction the (sum of) probabilities

attached to paths of the tree can be used to compute the probability of properties
such as safety of a system within a bounded horizon. In our case, the sum of
probabilities of all paths that end with the execution of a chosen symbolic1005

process gives the probability to realize this process. If this probability is not
null, then there is a positive probability to realize the considered schedule.
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Note that the computed value is only a lower bound for the exact probability
to realize a schedule: indeed there can be more than one process realizing a
schedule. However, computing the exact probability is rather involved, as distinct1010

realizations of a schedule are not necessarily independent.
Consider a transient tree that collects all symbolic executions of a particular

process Es. Each of its paths

ρ = (M0, C0, D0, blk0, urg0)
t1,p1−→ (M1, C1, D1, blk1, urg1)

. . .
tk,pk−→ (Mk, Ck, Dk, blkk, urgk)

defines a feasible set of executions of Es by N . The probability of execution ρ is
the product p1·p2 . . . pk. By summing up probabilities of all path of the transient
tree that are executions of Es, one obtains the probability of Es.

This immediately gives us an informal algorithm to check probabilistic1015

realizability of a schedule S with a maximal date by a STPN N (that guarantees
time progress). First, unfold N up to a depth K computed according to the
maximal date for the schedule. Find the set E of all processes of UK that embed
S. For each symbolic process Es ∈ E, compute the part of the transient tree
that corresponds to executions of Es in N . If the schedule imposes precise dates,1020

include in state classes a variable xage that remembers the time elapsed since the
beginning of an execution, and add the constraint xage ∈ [d(n)−α, d(n)+α] when
firing a transition implementing some node n of the schedule. Then check the
probability of each path ending on a node where all transitions of Es have been
executed. If one finds a path ρ in the transient tree with a complete execution1025

of Es and non-null probability pρ, then P(Es ∧ Sol(Φψ,S,d±α)) ≥ pρ > 0 and the
algorithm can stop and return a positive answer.

5. Use Case: realizability in a metro network

Is this section, we develop a complete case study: we consider realizability of a
particular schedule by a fleet of trains in a metro network. We show that one can1030

depict a metro network and a simple shunting mechanism with stochastic time
Petri nets, decide whether a particular schedule can be realized, and compute
the probability of its realization.

Urban train systems are usually composed of closed imbricated loops, and
the example developed below is a network of this kind, that is representative of1035

the architecture of many metro lines. In metro networks, trains travel at prede-
termined speed profiles following a predetermined itinerary. They move from a
station to another following a track. A network is hence not just a simple cycle:
it contains forks, junctions, etc. Such complex topologies can easily be captured
by the flow relations of a Petri net. Consider for instance the example network of1040

Figure 9. This network is composed of 7 stations sA, sB, sC, sD, sE, sF, sG and
bidirectional tracks. Each station hence has two platforms, one for each direction,
denoted respectivelyX andX for station sX. A train in the network can be sched-
uled to serve repeatedly platforms along trip A.B.C.D.E.F.G.Ḡ.F̄ .Ē.D̄.C̄.B̄.Ā,
or follow smaller loop trips A.B.C.D.D̄.C̄.B̄.Ā and D.E.F.G.Ḡ.F̄ .Ē.D̄. This1045
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situation is a frequent one in long circular metro lines connecting suburbs and
city centers. Indeed, in the mornings and evenings, it is more important to bring
commuters from their home to the city center than providing long trips along
the whole network.

We consider a setting where trains are isolated from one another via a so-1050

called fixed-block policy: track portions are reserved for one particular train.
This prevents trains from being too close from one another. Though this is not
the only nor the most efficient way to avoid collision, this mechanisms is used in
real systems 1. With such a fixed block policy, one can address a train network
at block level (i.e., attach a place to each portion of the network that can be1055

entered by at most one train), and model the effect of signaling systems that
avoid collision with a blocking semantics of nets.

The Petri net at the bottom part of Figure 9 can represent this network:
places are used to represent stations or tracks between stations, and transitions
model a possible move from a part of the network to a consecutive one. The1060

flow relation of this net is almost isomorphic to the original network.

A B C D E F G

A B C D E F G

PA PA,B PB PB,C PC PC,D PD PD,E PE PE,F PF PF,G PG

PG,G

PA PB,A PB PC,B PC PD,C PD PE,D PE PF,E PF PG,F PG

PA,A PD,D
PD,D

Figure 9: Modeling trains flows in a network with Petri nets

We will use the formalisms and the definition of realizability to give an answer
to the following questions:

• Given a particular schedule, is it realizable from a given configuration
of the net? Being able to answer this question allows to check whether1065

the accumulated delays of trains force rescheduling, especially to organize
trains passage at track junctions.

• From a given configuration of the network, what is the probability that all
trains in a fleet complete their trips within less than 39 minutes ?

1 https://en.wikipedia.org/wiki/Railway signalling]Fixed block
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t10

t11
PD,D

C1

•C2

•

C3

C4

Figure 10: A zoom on the central part of the network

Consider the example of Figure 10. This net provides more details on the1070

central part of the network of Figure 9. The network is decomposed into an
upper and lower part. In the upper part, trains circulate from right to left, with
places PDC , PED symbolizing track portions respectively between stations D,C
and E,D in this direction, and two places PE and PD symbolizing platforms at
stations E and D. Transitions t1, t2, t3 symbolize respectively a departure from1075

station D, an arrival at station D, and a departure from station E. Trains leave
this central part via transition tout,H .

Similarly, the lower part of the net of Figure 10 represents a part of the
network where trains circulate from left to right. It contains places PCD, PDE
symbolizing track portion between stations C,D and D,E. Places PC , PD, PE1080

symbolize respectively platforms at stations C,D,E. Transitions t4, t5, t6, t7
symbolize respectively departure from C, arrival in D, departure from D, and
arrival in E. Trains leave this central part via transition tout,L.

Transitions t8, t9, t10, t11 and places PDD, PDD are used to allow trains to
move from the upper part to the lower part, which is needed to perform small1085

loop trips. Last, places C1, C2 implement a flip-flop shunting mechanism to
direct one train over two leaving platform D towards platform D, and the other
towards platform C. Places C3, C4 play the same role to direct trains leaving
platform D towards D or E.

With a perfect timing of trains, this simple shunting mechanism suffices to1090

implement two crossing small loops in the network. Consider again the network
of Figure 10. There are four trains, represented by tokens. We will call train1

the train symbolized by a token in place PED, train2 the train symbolized by a
token in place PE , train3 the train symbolized by token in place PD and train4

the train represented by token in place PC .1095

Let us now associate durations and distributions to transitions. For the sake
of simplicity, we consider identical distributions for dwell, running times and
transfer from the upper to the lower part of the net. We consider interstation
distances of 2 kilometers, and trains running at an average commercial speed
of 35 km/h. That is, the sojourn time of a token in places PDC PED, PCD and1100
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PDE should be defined by a distribution with maximal probability around 205
seconds, with more probable delays than advance. We furthermore consider
that the distance needed to go from D to the track portion ED is 0.5 km,
but is performed at a speed of 20 km/h (similarly for moves from D to track
CD). Within this setting, sojourn time in places PDD and PDD should be a1105

distribution centered around 90 seconds. Last, we associate a dwell time to
every station. We choose arbitrarily a value of 50 seconds for the most probable
dwell time in the whole network. It is very frequent that trains get late at
stations due to passengers misbehavior. However, we consider that dwell time
cannot exceed 400 seconds. We hence associate to transitions t9, t10 (transfer)1110

the distribution f1 = 1.477 · 10−2 · (x − 45)5 · e−1.1·(x−45), defined only on
interval [85, 100]. We associate to transitions t2, t5, t7, tout,h (trips) distribution
f3 = 1.3413 · 10−3 · (x − 200)4.e−0.5·(x−200) defined only on interval [200, 220].

We last associate distribution f2 = 7.8125 · 10−3 · (x− 45)2 · e−0.25(̇x−45) defined
on interval [45, 400] to all other dwell transitions. The intervals associated to1115

transitions, and the shape of distributions are depicted on Figure 11.

4.2 15

0.21

x : transfer time

f1(x)

85 90 100 10 355

6.8 · 10−2

x : Dwell time

f2(x)

45 55 400

7.8 20

0.11

x : trip time

f3(x)

200 205 220

transition I(ti) ψ−1(ti) f(x)

t1 [45, 400] dD f2
t2 [200, 220] − f3
t3 [45, 400) dE f2
t4 [45, 400] dC f2
t5 [200, 220] − f3
t6 [45, 400] dD f2
t7 [200, 220] − f3
t8 [45, 400] dD f2
t9 [85, 100] − f1
t10 [85, 100] − f1
t11 [45, 400] dD f2
tout,H [45, 400] − f2
tout,L [45, 400] dE f2

Figure 11: Distributions

Ideally, the expected trajectory ot trains 1 and 2 go through stations D, D
and E, in this order. The trajectories of trains 3 and 4 go through stations D, D
and C. This can be represented by the schedule of Figure 12. As we only consider
departures from platforms, we associate to nodes of the schedule labels of the1120

form dX, where X is the name of a platform. We can now relate departures
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from stations in the schedule and concrete events in the net on Figure 10 using
a realization function r, such that r(dD) = {t1, t8}, r(dE) = {t3}, r(dC) = {t4},
r(dD) = {t6, t11}, r(dE) = {tout,L}. One can notice that there are two possible
ways to implement a departure from D or D.1125

Obviously, using the simple flip-flop shunting mechanism explained above,
such a schedule can be realized only if the order of trains in place PD is train 1,
train 3, train 2, train 4, and if the passage order in place PD is train 3, train 1,
train 4, train 2. Let us assume thatwe start from an initial configration where
trains 1 and 3 have a remaining trip duration of 10 seconds, that trains 2 is1130

delayed and cannot leave PE before 320 seconds, that train 2 is delayed and
cannot leave PC before 300 seconds. This initial configuration of the network
can be easily encoded by attaching adequate times to fire to enabled transitions
t2, t3, t11, t4. Considering the schedules, one can safely add the constraint that all
trips are performed after 2300 time units. As the interval attached to transitions1135

all have lower bounds greater than 45, and as the net has 13 transitions, all
timed processes of the net in Figure 10 embedding the schedule of Figure 12
in less than 2300 time units appear in an unfolding UK of depth at most
K = d 2300

45 e · 132 = 8788. Note however that if trains behave as expected, all
trains modeled in the example of Figure 10 will eventually leave this part of the1140

network after a finite time, and hence unfolding should stop much earlier due
to lack of appendable transitions. Yet, even without this a priori information,
as dwells and running consume time, this allows to represent the behavior
of the network with an unfolding of bounded depth. Then, from the initial
configuration, there exists time processes satisfying all time constraints due to1145

dwell and running times. Figure 13 is an example of such process. As usual,
conditions are represented by circles and events by squares. Due to lack of
space, we do not give all constraints attached to this process. They will contain
constraints on event variables of the form:

doe(t12) = 0
dof(t12) = doe(t12) + 10
dof(t12) ≤ θ(t12)
....[
θ(t13), θ(t32)

]
∩
[
θ(t110), θ(t22)

]
= ∅

....

We indicate with red numbers associated with events a possible dating1150

function d. One can verify that for any ordered pair of events e ≤ e′, we
have d(e) < d(e′), that sojourn times in places are compatible with dwell and
running times, and that for any pair of conditions P iX , P jX with j 6= i we have[
d
(•(P iX)

)
, d
(
(P iX)•

)]
∩
[
d
(
•(P jX)

)
, d
(

(P jX)•
)]

= ∅.
The time process of Figure 13 shows a possible realization of the schedule1155

in Figure 12. As we are dealing with continuous probabilities the probability
of realizing exactly this process with the specified dates is 0. However, one can
easily notice that all dates indicated on this process can be shifted by several
time units. Indeed, as dates are not discrete values, there is an infinite number
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n1 : dDtrain1 n2 : dD n3 : dE

n4 : dEtrain2 n5 : dD n6 : dD n7 : dE

n8 : dDtrain3 n9 : dD

n10 : dCtrain4 n11 : dD n12 : dD

Figure 12: A possible schedule for trains departures from initial configuration in Figure 10
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Figure 13: A witness for realizability of schedule in Figure 12
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of time processes with the same conditions and events but with different timing1160

functions. This defines a class C of time processes realizing our schedule with a
non-null probability P(C). Note that the probability of realizing the schedule
is greater than the probability P(C) of executing a time process from this class,
as there could be more than one way of realizing the schedule. The value P(C)
can be computed by construction of a transient execution tree, starting from the1165

initial configuration, and in which nodes are of the form (Mi, Ci, Di), where Mi is
a marking, Ci represents possible values of TTFs attached to enabled transitions,
and Di the probability distribution with positive values on the domain Ci defined
this way.

An execution of a time process from C necessarily starts from the initial1170

configuration given above, i.e, from node (M0, C0, D0, blk0, urg0), with M0 =
{PE , PED, PC , PD}, blk0 = ∅,urg0 = ∅. For each enabled transition ti, we define
by xi the variable symbolizing possible values of TTF (remaining time to fire)
of ti. We hence have C0 = {x2 = 10; x3 = 320; x4 = 300; x11 = 10}, i.e. C0 is a
point in R4

≥0. The distribution D0 associates probability 1 to the single point1175

in C0. From this situation, two events can occur: either t2 fires after 10 time
units, or t11 fires after 10 time units. As both events are enabled at the same
date, the probability to fire each one is defined according to weights attached to
transitions. If we assume that t2, t11 have the same weight, so the probability to
fire t2 from (M0, C0, D0) is 0.5.1180

Let us consider the effect of firing t2 at date 10: it affects marking, and
remaining TTFs. After firing t2 the possible configurations of the net are
encoded by a node (M1, C1, D1, blk1, urg1) where M1 = {PE , PD, PC , PD},
blk0 = ∅,urg1 = {t11}. Upon firing of t2, transition t8 becomes enabled,
and a new time to fire represented by variable x8 is sampled. Hence the1185

possible values for TTFs are depicted by the constraints in class C1 = {x3 =
310;x4 = 290; 45 ≤ x8 ≤ 400}. The distribution D1 attached to this class is
D1(x3, x4, x8) = f2(x8) if (x3, x4, x8, x11) ∈ C1, and 0 otherwise.

From this class, transition t11 is urgent and has to fire immediately, with
probability 1 yielding a new marking, and sampling of a new value for newly1190

enabled transition t10, and a new node (M2, C2, D2, blk2, urg2) with M2 =
{PE , PD, PC , PDD}, blk2 = ∅, urg2 = ∅. A new value for TTF of transi-
tion t10 is sampled, yielding class C2 = {x3 = 310;x4 = 290; 45 ≤ x8 ≤
400; 85 ≤ x10 ≤ 100}, and distribution D2 such that D2(x3, x4, x8, x10} =
f2(x8).f1(x10) if (x3, x4, x8, x10) ∈ C2, and 0 otherwise.1195

The next classes that can appear are more complex, and computing them
is more involved. Assume that transition t8 fires from a configuration of class
C2. This means in particular that t8 is the transition with the smallest TTF,
that is x8 is smaller than x3, x4, x10. One can easily check that some values for
x3, x4, x8, x10 satisfy C ′2 = C2 ∪ {x8 ≤ x3;x8 ≤ x4;x8 ≤ x10}. This additional1200

constraint has to be considered, both to compute the probability of firing
t8 and to compute the new class reached after firing t8. The class obtained
after t8 is (M3, C3, D3, blk3, urg3) and is computed as follows. First M3 =
{PE , PDD, PC , PDD}. Then, the new set of constraints is obtained using the
standard construction of state classes:1205
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• start from C ′2 = C2 ∪ {x8 ≤ x3;x8 ≤ x4;x8 ≤ x10}.

• do a variable substitution of the form xi = x8 + x′i for all variables. This
substitution allows to propagate the fact that new values for x3, x4, x10

are decreased by the value of x8.

• eliminate all variables related to disabled transitions (using the Fourier-1210

Motzkin method). In our case, only x8 must be eliminated.

• add inequation(s) related to newly enabled transition(s). In our case, as t9
becomes enabled, this amounts to inserting constraint 85 ≤ x9 ≤ 100.

• rename all x′i into xi

The class C3 obtained by substitution and elimination from C ′2 is C3 =1215

{x3 − x4 = 20; 0 ≤ x3 ≤ 265; 0 ≤ x4 ≤ 245; 0 ≤ x10 ≤ 55; 210 ≤ x3 − x10 ≤
225; 190 ≤ x4 − x10 ≤ 205; 85 ≤ x9 ≤ 100}.

Let us now consider distribution D3. We can compute the probability p of
firing transition t8 from node (M2, C2, D2) as the integration over all possible
values of vector x3, x4, x8, x10 over C ′2, i.e.

p =

∫
C′2

D2(x3, x4, x8, x10) =

∫ 100

45

∫ 100

x8

f2(x8)f1(x10)dx10dx8

This value can be approximated to 0.171499, i.e., firing of t8 is not the
most probable event in (M2, C2, D2, blk2, urg2). We can now build D3, using
the procedure given by [3]. As t8 fires before any other transition from class1220

(M2, C2, D2) we first compute a new distribution Da
2 defined over C ′2 such that

Da
2(x3, x4, x8, x10) = D2(x3,x4,x8,x10)

p . The next step is to build the distribution of

probabilities once x8 is eliminated, i.e. a distribution Db
2(x3, x4, x10) computed

as Db
2(x3, x4, x10) =

∫ 100

45
Da

2(x3 + x8, x4 + x8, x8, x10 + x8). In general, this
integration is repeated for every variable attached to a disabled transition, but1225

in the current case, only x8 needs to be projected away. The last step consists in
integrating the newly created variable x9 and its distribution to Db

2. As the value
of x9 does not depend on former values of x3, x4, x10, we have D3 = Db

2.f1(x9),
defined over a domain C3 for variables x3, x4, x9, x10.

We can repeat this process for all transitions that are firable from any1230

node to build a transient execution tree. At the end of the construction, we
can distinguish a set PT of paths of the tree that end after execution of all
events appearing in the process of Figure 13. We can associate to each of these
paths ρ ∈ PT a probability pρ that is the product of probabilities of each
transition in ρ. Last, the probability P(C) to execute the process of Figure 13 is1235

P(C) =
∑
ρ∈PT pρ.

One of the key points in this technique in to integrate over variables domains.

Recall that
∫ b
a
α · xn · e−λ·x = −α · λ

∫ b
a
xn · −1

λ e
−λ·x = −α · λ([xn · e−λ·x]ba −∫ b

a
nxn−1 · e−λ·x). Hence, probabilities can be computed exactly through an

iterative process.1240
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Let us now show how to ensure that an event n represented in a sched-
ule occur at a fixed date d(n) ± α. As shown in [3], it is sufficient to add
to state classes a variable xage initially set to 0, and that is incremented by
the value of every variable xi at every state class updated resulting from the
firing of a transition ti. In other words, in every class, variable xage describes1245

possible value for the time that has elapsed since the beginning of the execu-
tion of a process. When an event of a process representing occurrence of a
node n (i.e, such that ψ(n) = e which date must be d(n) up to imprecision α,
it suffices to add to the domains of the newly computed state class the con-
straint that d(n)− α ≤ xage ≤ d(n) + α. Integration follow the same principles1250

as before, but over domains with one additional dimension. For instance, if
we impose that node n1 in the schedule of Figure 12 is executed at a date
60± 10, is suffices to maintain variable xage during construction of states classes
(M0, C0, D0, blk0, urg0), (M1, C1, D1, blk1, urg1), (M2, C2, D2, blk2, urg2) as de-
fined above, and to impose during the construction of state class C3 the additional1255

constraint that 50 ≤ xage ≤ 70. Similarly, completing a schedule S within a
maximal amount of time ∆ amounts to imposing constraint d(n) ≤ ∆ at every
maximal node n of S. This means refining state classes reached by firing transi-
tions representing these maximal node with constraint xage ≤ ∆. Answering our
second question on the use case then amounts to checking for every process that1260

embeds S and every final path in the associated transient tree that constraint
xage ≤ (39 ∗ 60) allows firing at least one transition reaching a final node (i.e.
where the schedule is completely executed) with positive probability.

6. Related work

We have addressed realizability of partially ordered timed schedules by timed1265

and stochastic concurrent systems with safety requirements. The model used to
represent systems such as production systems or metro networks is a variant of
STPNs. Petri nets have met a lot of interest for modeling manufacturing systems
(see [16] for a survey). They are also popular to represent train and metro
networks (see for instance [17, 18]), as their flow relation mimics the physical1270

architecture of the network. Realizability in a timed setting was formerly
addressed as a timed game problem [19], with a boolean answer. The objective
in this work is to check whether a player in a timed game has a strategy to ensure
satisfaction of a formula written in a timed logic called Metric Interval Temporal
Logic. This work could be used to answer a boolean realization question, by1275

translating a schedule to a formula, but in a fully interleaved setting, as sequential
formulae cannot differentiate interleaved and concurrent actions. Furthermore,
this logic does not address randomness in systems and hence cannot quantify
realizability.

A standard approach to study behaviors and performance of train or metro1280

networks is to rely on simulation with very precise dedicated models [20, 21, 22].
Another frequent approach in train systems is to address realizability as a
timetable construction problem. The literature on timetabling or rescheduling
is prolific, one can read [23] for a survey. Timetabling questions are often
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addressed with high-level descriptions such as graphs and constraints, and solved1285

as a constraint satisfaction or as an optimization problem. In [1] the input of
the problem is given as an alternative graph (that can be seen as some kind
of unfolding of a systems’s behavior, decorated with time constraints). The
solutions proposed in [1] use a branch and bound algorithm to return an optimal
schedule for the next 2 hours of operation of a train network, but do not consider1290

randomness. Note however that this algorithm is efficient enough to be used
online to guide decisions of a scheduling system. Some authors consider flexible
solutions to achieve more robust timetables [24, 25], but the key question of
whether schedules are realizable with sufficiently high probability is usually not
considered in the literature. Stability of timetables in an environment with1295

random perturbations was considered in [26]: a schedule is considered as an
immutable ordering on trains, and delays are modeled as probability distributions.
Reliability of a given timetable (with fixed dates) is then defined via probability
measures (probability that a given number of trains gets late by more than
a fixed threshold. . . ). In a variant of the problem, [27] proposes a notion of1300

robustness in scheduling: a timetable is said to be robust if it is able to absorb
small random delays by possibly applying recovery solutions. Note however that
considering realizability through timetables, solutions only consider constraints
on the possible dates of events listed in the timetable, but may not integrate
constraints originating from the network itself. The notion of realizability that1305

we have proposed considers low-level realization of schedules, and hence differs
from (robust) timetable construction problem.

Realizability is also close to diagnosis. Given a log (a partial observation
of a run of a system), and a model for this system, diagnosis aims at finding
all possible runs of the model of the system whose partial observation complies1310

with the log. Considering a log as a schedule, the ability to compute a diagnosis
implies realizability of this high-level log by the model. Diagnosis was addressed
for stochastic Petri nets in [28]. In this work, the likelihood of a process that
complies with an observation is evaluated, and time is seen as a sequence of
discrete instants. Diagnosis was addressed for parameterized Petri nets in [6].1315

The proposed solution unfolds a parameterized Petri net to find explanations
for an observed log. Time Petri nets can be considered as a particular case of
this parameterized model. [29] proposes temporal patterns called chronicles that
represent possible evolutions of an observed system. A chronicle is a set of events,
linked together by time constraints. The diagnosis framework explains stream1320

of time-stamped events as combinations of chronicles. Assembling chronicles
is some kind of timed unfolding. However, event streams are not a concurrent
model, and chronicles extraction does not consider randomness.

Schedulability can also be seen as conformance of an expected behavior (the
schedule) to an implementation (the STPN model). Conformance was defined1325

as a timed input/output conformance relation (tIOCO) relation between timed
input/output automata in [30]. More precisely, timed automaton A1 is in tIOCO
relation with timed automaton A2 iff after some timed word, the set of outputs
produced by A1 is included in the outputs produced by A2. This relation cannot
be verified in general (as inclusion of timed automata languages is not decidable),1330
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but can be tested. Boolean realizability can be seen as some kind of conformance
test. Note however that tIOCO is defined for an interleaved timed model without
probabilities.

Several models of time have been proposed for timed concurrency models, and
especially for Petri nets. Without claiming for exhaustiveness, one can cite at1335

least time Petri nets [31] (TPNs for short), timed Petri nets (see for instance [32]),
and stochastic time Petri nets [3]. Time Petri nets associate a rational time
interval I(t) = [l, u] or I(t) = [l,∞) to every transition t in the system. The
semantics of time Petri nets considers that a clock is attached to every transition,
and reset every time the transition becomes enabled. A transition can fire only1340

if its clock’s value lays within the interval I(t). A particularity of this model is
that time is not allowed to progress when a clock xt reaches the upper bound of
interval I(t). This phenomenon is called urgency, and allows to model mandatory
limits for execution dates. This is of particular interest to handle requirements
such as: ’A train has to leave at most 10 seconds after a departure order was1345

given’. Though time Petri nets are a powerful formalism, with time concurrency
and urgency, they miss blockings and stochasticity.

The second well-known timed variant of Petri nets is called timed Petri nets.
In this model, markings associate a set of real values to places, and flow relations
from places to transitions are constrained by intervals. Tokens are hence not1350

blind tokens as in TPNs but rather ages: a newly created token has age 0, and
a transition t can fire iff every place p in its preset contains a token satisfying
the constraint attached to p and t. A drawback of this model is that transition
firing is not urgent: a transition that can fire is not forced to fire, and once
tokens in a place become too old to satisfy a constraint allowing them to leave1355

the place, they can be forgotten (or not considered). A natural assumption is
that trains are modeled as tokens. However, discarding tokens amounts to losing
trains, which is an undesirable feature for the systems we consider. Hence, in the
context of train systems, urgency seems to be an unavoidable feature. Solution
to integrate urgency in timed Petri nets have been proposed [33]. Though there1360

must be way to avoid losses in timed Petri nets with adequate extensions, we
did not follow this approach and used a model with urgency.

A symbolic framework to unfold time Petri nets was already proposed in [6, 7].
As in our setting, this framework builds an untimed unfolding, and for every
process a set of constraints attached to events occurrence dates. An untimed1365

process has a timed concretization if its set of constraints is satisfiable. A
nice property of this framework is that it is monotonous: if a process has an
unsatisfiable set of constraints, then any larger process that also has unsatisfiable
constraints. The blocking semantics brings additional constraints on firing
dates of transitions that fill a common place. Due to this constraint, process1370

construction is not monotonous anymore. This makes processes and unfolding
constructions much harder, as there is no stopping criterion based on constraint
satisfaction, and one has to rely on bound for the depth of unfoldings guaranteed
by time progress.

The model that we use to represent timed concurrent systems is a variant1375

of the stochastic time Petri nets already proposed by [3]. The original
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model does not consider blocking semantics, but defines a transient analysis
technique. These techniques have been implemented in the ORIS tool [34], and
allow for computation of the probability of some events. Working with a blocking
semantics does not change the syntax of STPNs, but of course affects the legal1380

runs. Interestingly, blocking semantics has no impact on the transient analysis
techniques proposed. Indeed, during the construction of a transient tree, the
blocking semantics will only impact the fact that a transition is firable or not, but
not the construction of accessible state classes: the construction of a successor
stochastic state class in a transient tree only depends on the initial state class1385

considered, on the fired transition, and on timed intervals attached to the newly
enabled transitions. Hence, techniques and proof of [3] are fully applicable to
our setting. Note however that ORIS gives means to analyze a stochastic net
with a logic [35] that can express bounds on the probability that the marking of
the STPN satisfies a goal predicate φ2 at some time in an interval [a, b] without1390

violating a safety predicate φ1 in previous states. Goal and safety predicates
φ1, φ2 are properties of markings. This logic cannot describe realizability of
schedules, for two reasons: first, it is some kind of liveness property, and second,
temporal logic of this form cannot check for existence of causal dependencies
such as the ones appearing in example of Figure 12. The approach proposed in1395

our paper first selects the possible realizations of a schedule, and then computes
their probability. Note however that once a process that realizes a schedule
has been identified, this process could be transformed into an adequate acyclic
STPN, and the ORIS tool could be used to compute its probability.

7. Conclusion1400

This work has addressed the question of realizability of a schedule by a
detailed and low-level specification. The technique is the following: 1) given a
schedule S and an STPN N , first build an unfolding UK up to a depth K that
depends on the maximal date appearing in schedule S. Then, 2) find symbolic
processes of UK that embed S. The next step 3) consists in checking satisfiability1405

of combinations of linear inequalities derived from the considered processes. For
boolean realizability, it is sufficient to compute the symbolic processes and then
get a positive answer at step 3 for one of them to return a positive answer.
Indeed, satisfiability of a system of inequalities for at least one process of N
yields existence of a time process compatible with S, and hence realizability. In1410

a probabilistic setting, answering the realizability question needs an additional
step 4) to build a transient execution tree and compute the probabilities of sets
of time processes described by realizable symbolic processes. Again, probabilistic
realizability holds as soon as one symbolic process of UK embedding S and
realizable in the boolean sense has a strictly positive probability.1415

Unfolding, embedding, constraint satisfaction and probability computation
are currently rather distinct parts of the proposed method. A first question
is whether some steps can be factorized. In an untimed setting, embedding
verification and unfolding can be done jointly: one can stop a branch of unfolding
as soon as a schedule does not embed in the pre-process built on this branch. We1420
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have developed an unfolding tool inspired from [5] for untimed Petri nets that
computes an unfolding containing all processes (and only them) that embed the
untimed structure of a schedule S. This means that one can factorize unfolding
and embedding of untimed schedules. This is however not sufficient, as an
untimed process must admit a timing function θ that is compatible with the1425

constraints originating from the low-level net and from the schedule to be a
realization of a schedule S. Usually, unfolding can be stopped as soon as some
criterion is met (completeness for construction of finite prefixes [4, 5], satisfaction
of a property. . . ). However, as shown in Section 3, due to blocking semantics,
satisfiability of constraints is not monotonous w.r.t. the size of unfoldings, and1430

hence cannot be used as stopping criterion during unfolding.
A second question is of course complexity of the approach. Even when guided

by embedding of schedules, the size of unfoldings can grow exponentially with
their depth. This remark also applies to symbolic processes and to their con-
straints. The constraints that appear in each symbolic process can be simplified1435

to refer only to event variables, but this results only in a linear gain in the
number of used variables. One can however notice that atoms in constraints
are simple binary inequalities. If a process contains no blocking place, its con-
straints are simple sets of linear inequalities that can be checked with polynomial
algorithms [36]. However, due to blocking semantics, constraints also contain1440

disjunctions. As soon as blockings appear, one cannot avoid combinatorial ex-
plosion, as solving the considered systems with disjunctions amounts to choosing
an ordering for conflicting places occupancy. We hence have to face a possible
exponential blowup in the depth of the unfolding during the construction of UK
at step 1), followed by a possible exponential blowup in the number of possible1445

conflicts to check satisfiability of each set of constraints in symbolic processes of
UK .

The cost of the algorithm needed to compute realization probability for
processes is also an issue. We use the transient tree construction of [3], that builds
a symbolic but interleaved representation of a process. This is obviously very1450

costly an may impose an additional exponential blowup in the worst cases. We
are currently investigating ways to evaluate probabilities of symbolic processes
in a non-interleaved setting, may be at the cost of under-approximation of
realization probabilities. In the current setting, this is not a real problem: one can
remark that for efficiency reasons, the algorithm proposed to check probabilistic1455

realizability stops as soon as a symbolic process with probability greater than
0 is found. From a practical point of view, we do not yet know whether the
approach can be used to solve automatically case studies of important sizes. One
can notice however that the important factor to reduce the computational cost
of realizability is to master the size of unfoldings, processes, and the number1460

blockings. Mastering the size of unfoldings means in particular working with a
reasonable depth, and avoiding branchings. This can be achieved by providing
sufficiently precise schedules, which limits the number of conflicts and hence the
number of branches in the unfolding. Precise schedules also limit the number
of possible embeddings. Giving a reasonable value for the maximal date of1465

event implementing actions in a schedule is also a way to limit the depth and
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hence the size of unfoldings. One can notice that when considering realizability
from a practical point of view, the probability of each process decreases with its
size. probabilistic realizability holds as soon as a witness process with strictly
positive probability is found, but for large processes this realizability is witnessed1470

by a process with very low probability. On the other hand, computing the
exact realization probability of very deep unfoldings will probably be too time
consuming. We think that a sensible approach is to work with schedules of
reasonable sizes, that shall be realized within a bounded duration. This might
be sufficient to discover that a planning is not realizable anymore starting from1475

the current configuration of a system.
We believe that our method applies to several types of systems with concurrent

elements, random environment, and where some events are constrained by time.
This covers most of manufacturing or transport systems. Note however that
as unfoldings grow fast, a key ingredient to compute answers to realizability1480

questions is to keep a reasonable growth of non-determinism w.r.t. elapsed time.
As for now, the framework proposed in this paper is not yet fully implemented.
The distributions f1, f2, f3 provided in our case study have been designed using
a simple prototype tool that allows for the design, composition, projection and
integration of expolynomial functions. Integrations during the construction1485

of state classes in our uses case were performed using Matlab. We also have
developed a schedule guided unfolding tool to build pre-processes that embed
a schedule. The remaining steps that need to be considered to have a fully
operational software is to provide means to solve the constraint satisfaction
questions related to a symbolic processes, and to compute the probability of1490

the set of processes it represents. For the constraint satisfaction issue, we can
rely on standard solvers such as Z3. For the computation of probabilities of a
symbolic process, we plan to use the ORIS tool [34]. However, as probabilistic
realizability can be answered by providing a strictly positive lower bound, we
think that this leaves room for abstraction techniques, and possibly for other1495

ad-hoc algorithms working with non-interleaved representations of processes to
approximate their probability.

As future work, we would like to extend our realizability verification frame-
work to prove more properties. For instance, it is interesting to prove that a
schedule can be realized while ensuring that the overall sum of delays w.r.t.1500

the expected schedule does not exceed some threshold, or to associate costs to
realizations symbolizing for instance energy consumption, and to impose bounds
on the cost of realization.
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Appendix A. Construction of time processes

The time process TPu obtained from a timed word u = 〈t1, d1〉〈t2, d2〉 . . . 〈tk, dk〉 ∈1595

L(N ) is built inductively as follows. We assume a dummy initial event ⊥ that
initializes the initial contents of places according to m0. We start from the initial
process TP0 = 〈B0, E0, θ0〉 with a set of conditions B0 = {(p,⊥) | p ∈ m0}, a
set of events E0 = {⊥}, and a function θ0 : {⊥} → {0}.

Let TPu,i = 〈Bi, Ei, θi〉 be the time process built after i steps for the prefix1600

〈t1, d1〉 . . . 〈ti, di〉 of u, and let 〈t, di+1〉 be the (i+ 1)th entry of u. We denote by
last(p,Ei, Bi) the last occurrence of place p in TPu,i, i.e., the only condition b =
〈p, e〉 with an empty postset. Then, we have Ei+1 = Ei ∪ {e}, where e = 〈t,X〉
with X = {b | b = last(p,Ei, Bi) ∧ p ∈ •t} and Bi+1 = Bi ∪ {〈p, e〉 | p ∈ t•}. We
also set θ(e) = di+1. The construction ends with TPu = TPu,|u|.1605

Appendix B. Structural unfolding of a STPN

We say that a condition b ∈ B is maximal in U = 〈E,B〉 or in a pre-process
of U when it has no successor event (b•= ∅), and denote the set of maximal
conditions of B by max(B). As for time processes construction, given a finite
pre-process 〈E′, B′〉 ∈ PE(U), and a place p of the considered STPN, we denote1610

by last(p,E′, B′) the maximal occurrences of place p w.r.t. ≺ in 〈E′, B′〉. Pre-
processes of an unfolding are conflict free sets of events and conditions. They
represent potential processes (executions) of N when timing constraints are
forgotten. A cut of a pre-process is an unordered set of conditions. As this set of
conditions originates from a pre-process, conditions in a cut have no conflicting1615

events in their causal past. They represent place contents that can be consumed
by the next firable transitions at some point in an execution. We denote by
Cuts(E,B) the set of cuts of pre-process 〈E,B〉. Unfolding of a Petri net simply
consists in successively appending transitions to already built processes, i.e. to
cuts of these processes.1620

Structural unfolding: Following [5], we inductively build unfoldings U0, . . . ,UK .
Each step k adds new events at depth k and their postset to the preceding
unfolding Uk−1. We start with the initial unfolding U0 = 〈∅, B0〉 where
B0 = {〈⊥, p〉 | p ∈ m0}. Each induction step that builds Uk+1 from Uk
adds new events and conditions to Uk as follows. Letting Uk = 〈Ek, Bk〉 be1625

the unfolding obtained at step k, we have Uk+1 = 〈Ek ∪ Ê, Bk ∪ B̂〉 where
Ê , {〈B, t〉 ∈ (2Bk× T ) \ Ek | ∃〈X,Y 〉 ∈ PE(Uk), B ⊆ Cuts(X,Y ),•t = pl(B)},
and B̂ , {〈e, p〉 ∈ Ê × T | e = 〈B, t〉 ∈ Ê ∧ p ∈ t•}. Intuitively, Ê adds an occur-
rence of a transition if its preset is contained in the set of conditions representing
the last occurrences of places contained in some pre-process of Uk, and B̂ adds1630

the conditions produced by Ê.

Appendix C. Constraints to reintroduce time in processes

Let UK = 〈EK , BK〉 be the unfolding of an STPN N up to depth K, and let
E ⊆ EK be a conflict free and causally closed set of events, and B = •E ∪ E•
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(B is contained in BK). We define ΦE,B as the set of constraints attached1635

to events and conditions in E,B, assuming that executions of N start at a
fixed date d0. Constraints must be set to guarantee that occurrence dates of
events are compatible with the earliest and latest firing times of transitions
in N , and that urgency or blocking is never violated. Let us first define the
constraints associated with each condition b = 〈e, p〉. Recalling that variable1640

dob(b) represents the date at which condition b is created, ΦE,B must impose
that for every b ∈ B0, dob(b) = d0.

For all other conditions b = 〈e, p〉, as the date of birth is exactly the occurrence
date of e, we set dob(b) = θ(e) for every b = 〈e, p〉. Despite this equality, we will
use both variables θ(e) and dob(b) for readability reasons. Recall that dod(b)1645

is a variable that designates the date at which a place is emptied by some
transition firing, dod(b) is hence the occurrence date of an event that has b as
predecessor. Within a conflict free set of events, this event is unique. In the
considered subset of conditions B, several conditions may represent fillings of
the same place, and B can hence be partitioned into B1 ]B2 ] · · · ]B|P |, where1650

conditions in Bi represent fillings of place pi. Due to blocking semantics, all
conditions in a particular subset Bi = {bi,1, bi,2, . . . , bi,k} must have disjoint
existence dates, that is for every j, j′ ∈ {1, 2, . . . , k} with j 6= j′, the intersection
between [dob(bi,j), dod(bi,j)] and [dob(bi,j′), dod(bi,j′)] is either empty, or limited
to a single value. This constraint can be encoded by the disjunction:1655

no-overlap(bi,j , bi,j′) = dod(bi,j) ≤ dob(bi,j′) ∨ dod(bi,j′) ≤ dob(bi,j) if bi,j
• 6= ∅ ∧ bi,j′• 6= ∅,

dod(bi,j) ≤ dob(bi,j′) if bi,j
• 6= ∅ ∧ bi,j′•= ∅,

dod(bi,j′) ≤ dob(bi,j) otherwise.
Note that if bj � bj′ , then the constraint among events and transitions imme-

diately ensures dob(bj,i) ≤ dod(bj,i) ≤ dob(bj′,i) ≤ dod(bj′,i). However, we need
to add a consistency constraint for every pair of concurrent conditions bi,j , bi,j′

that belong to the same Bi. Hence, calling I(bi,j , E,B) the set of conditions that1660

represent the same place as bi,j and are concurrent with bi,j in 〈E,B〉, we have to
ensure the constraint non-blocking(bi,j) =

∧
bi,j′∈I(bi,j ,E,B) no-overlap(bi,j , bi,j′).

In words, condition bi,j does not hold during the validity dates of any concurrent
condition representing the same place. In particular, a time process of N cannot
contain two maximal conditions with the same place.1665

Let us now consider the constraints attached to events. An event e =
〈B, t〉 is an occurrence of a firing of transition t that needs conditions in B to
be fulfilled to become enabled. Calling doe(e) the date of enabling of e, we
necessarily have doe(e) = max{dob(b) | b ∈ B}. Event e is firable at least eft(t)
time units, and at most lft(t) time units after being enabled. We hence have1670

doe(e)+eft(t) ≤ dof(e) ≤ doe(e)+ lft(t). However, execution of e does not always
occur immediately when e is firable. Execution of e occurs after e is firable,
as soon as the places filled by e are empty, i.e., e occurs at a date θ(e) that
guarantees that no place in t• is occupied. This is guaranteed by attaching to
every event e the constraints θ(e) = dob(b1), θ(e) = dob(b2), . . . , θ(e) = dob(bk),1675

where {b1, b2, . . . bk} = e•, and constraints non-blocking(b1), non-blocking(b2), . . . ,
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non-blocking(bk). Last, as semantics of STPNs is urgent, once firable, e has to fire
at the earliest possible date. This is encoded by the constraint θ(e) = min{x ∈
R≥0 | x /∈ ]dob(b), dod(b)[ for some b ∈

⋃
I(bi)∧ x ≥ dof(e)}. Figure C.14 shows

the effect of blocking and possible free firing dates for some event with a condition1680

b in its postset. The top of the figure is a part of a pre-process, with conditions
b, b0, b1, b2 referring to the same place p1. Suppose that values of variables
[dob(bi) and dod(bi)] for i ∈ 0, 1, 2 are already known. The situation is depicted
by the drawing at the bottom of Figure C.14. Horizontal lines represent real
lines, and line portion between brackets represent intervals [dob(bi), dod(bi)] for1685

i ∈ 0, 1, 2. According to the considered pre-process, we have I(b) = {b0, b1, b2}.
Then [dob(b), dod(b)] have to be fully inscribed in one of these thick segments of
the Figure. An event with b in its postset (as event e in the pre-process at the
top of the Figure) can occur only at dates contained in these thick segments.
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1b0
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1b1
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Figure C.14: Constraints on dates of birth of tokens in a shared place.

Written differently,

θ(e) =

{
dof(e) if

∧
b∈I(b1)∪...I(bk) dof(e) ≤ dob(b), and

min{dod(b) | ∀b′ ∈
⋃
bi∈e
•I(bi), dod(b) /∈ ]dob(b′), dod(b′)[} otherwise.

This formula can be translated in boolean combinations of inequalities over1690

variables of var(E,B). Similarly, event e = 〈B, t〉 must occur before all its
conflicting events. If an event e′ in conflict with e is executed, at least one
condition in B is consumed, and e cannot occur in a time process containing
e′. We hence need the additional constraint

∧
e′]e notMoreUrg(e, e′) to guarantee
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that there exists no other event that is forced to occur before e due to urgency.1695

We define notMoreUrg(e, e′) as the following constraint:
notMoreUrg(e, e′) = θ(e) ≥ doe(e′)+lft(tr(e′))⇒ tiled(e, e′)∨

∨
e′′||e preempts(e′, e′′)

where tiled(e, e′) = free(e′) ∩ [doe(e′) + lft(tr(e′)), θ(e)] = ∅, e′′||e refers to
events that are concurrent with e in the considered set of events E, free(e′) =
R≥0 \ {[dob(b), dod(b)] | ∃b′ ∈ e′•, b ∈ I(b′)} is the set of intervals in which1700

places attached to conditions in e′• are empty, and preempts(e′, e′′) = θ(e′′) ≤
min(]doe(e′) + lft(tr(e′)), θ(e)[ ∩ free(e′)) means e′′ disabled e′ by consuming a
condition in •e′′.

Constraint notMoreUrg(e, e′) means that if e′ is in conflict with e, then at
least one condition in •e′ is consumed before e′ can fire, or if e′ becomes firable1705

before e fires, the urgent firing of e′ is delayed by blockings so that e can occur.
As for constraint attached to blockings, notMoreUrg(e, e′) can be expressed as a
boolean combination of inequalities. One can also notice that notMoreUrg(e, e′)
can be expressed without referring to variables attached to event e′ nor e′•, as
doe(e′) = max

bi∈
•
e′

dob(bi) and the intersection of I(b) and e′• is void.1710

For causally closed sets of events and conditions E ∪ B contained in some
pre-process of UK , the constraint ΦE,B applying on events and conditions of
E ∪B is now defined as ΦE,B =

∧
x∈E∪B ΦE,B(x) where:

∀b ∈ B,ΦE,B(b) = non-blocking(b)∧


dob(b) = d0 if b ∈ B0, and b is maximal,
dob(b) = d0 ∧ dob(b) ≤ dod(b) if b ∈ B0,
dob(b) = θ(•b) if b /∈ B0 and b is maximal,
dob(b) = θ(•b) ∧ dob(b) ≤ dod(b) otherwise.

∀e ∈ E,ΦE,B(e) =



doe(e) = max
b∈•e dob(b)

∧ doe(e) + eft(tr(e)) ≤ dof(e) ≤ doe(e) + lft(tr(e))

∧ dof(e) ≤ θ(e) ∧
∧
b∈•e dod(b) = θ(e)

∧
∧
b∈e• θ(e) = dob(b)

∧
∧
e′]e notMoreUrg(e, e′)

1715

Let us now address maximality of symbolic prefixes wrt urgent events firing.
Let SPP = 〈E′, B′,ΦE′,B′〉 be a symbolic prefix of pre-process PP = 〈E,B〉.
Symbolic process SPP is maximal w.r.t urgent events firing iff no more event
of PP have to belong to SPP. This property of SPP holds if every event
f ∈ B′•∩ E that could have become urgent before the last date of all events1720

in E′ was prevented from firing due to blocking. This property prefixes can be
verified as a property Φmax(f) that have to be satisfied for every f ∈ B′•∩ E.
Let Cf = pl−1(f•)∩B′ denote the set of conditions of B′ whose place appears in
the postset of f . Then, SPP is maximal iff for every f ∈ B′•∩ E, the following
constraint is not satisfiable.1725

Φmax(f) =


ΦE′,B′

∧ θ(f) ≤ maxe′∈E′ θ(e
′)
(
f fires before the last event in E’

)
∧ eft(f) + max

b∈•f dob(b) ≤ θ(f) (f is urgent)

∧
∨
X∈2Cf maxx∈X dod(x) ≤ θ(f) ≤ minx∈Cf\X dob(x)

(f is not blocked for the whole duration of the process)
Intuitively, Φmax(f) means that f , that is not in the symbolic process,
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becomes urgent, is not blocked by conditions in B′, and has to fire before the
execution of the last event in E′. If Φmax(f) is satisfiable, then f should appear
in the process.1730

Appendix D. Proof of proposition 1

Proposition 1. Let N be a STPN guaranteeing time progress of δ time units
(between consecutive occurrences of each transition). For every date D ∈ R≥0

and condition b in an unfolding Un, there exists K ≥ n s.t. {b′ ∈ block(b) |
dob(b′) ≤ D} is contained in UK .1735

Proof : Consider a pre-process PP of Un, which depth is more than dDδ e.|T |
events. Every event of the unfolding appended at depth i consumes conditions
that were created at depth j < i, and at least one condition that was produced
at step i of the unfolding. Hence, for every event en and bn condition created
at depth n, there exists a sequence b0 < e1 < b1 < · · · < en < bn of events1740

and conditions of increasing depth (and also increasing dates). With the time
progress assumption, we know that every consecutive pair of events representing
the same transition occurs at lest at dates that differ by δ. Hence, an event
created at depth n has an occurrence date of at least δ.bn/|T |c. The occurrence
date of an event created at depth greater than D

δ .|T | is hence greater than D.1745

The number of events and conditions created at step n and appearing in the
same pre-process of Un is finite (as creating an event uses exclusively at least
one condition of the preceding step). It is hence sufficient to unfold a net up to
depth D

δ .|T | to obtain the (finite) set of conditions that refer to the same place
as some condition b before a given date D. �1750

Appendix E. Proof of Proposition 2

Proposition 2. Let N be a STPN guaranteeing time progress of δ time units.
The set of time processes executable by N in D time units are prefixes of time
processes of UK , with K = dDδ e · |T | containing only events with date ≤ D.
Proof : We will show inclusion of the set of processes in the two directions.1755

First of all, we define an ordering on symbolic processes. Let Es = 〈E,B,Φ〉 and
Es′ = 〈E′, B′,Φ′〉 be two symbolic processes. We will say that Es v Es′ iff there
exists an event e′ such that E′ = E ∪ {e′}, B′ = B ∪ e′•, and Φ = Φ′|var(E,B). �

Lemma 1. Let Es be a symbolic process of unfolding UK , starting from m0, d0,
that is satisfiable and complete. Let θ be one of its solutions guaranteeing1760

∀e ∈ E, θ(e) ≤ D. Then, there exists a sequence Es,0 = 〈E0, B0,Φ0〉 v Es,1 =
〈E1, B1,Φ1〉 · · · v Es of symbolic processes of UK such that E0 = ∅, B0 =
{〈⊥, p〉 | p ∈ m0} Φ0 = {θ(⊥) = d0 ∧

∧
b∈B0

dob(b) = d0} and θ is a solution for

every Es,i and θ(ei) ≤ θ(ei + 1).
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Proof : We can show this property by induction on the size of prefixes of1765

Es. The base hypothesis is straightforward, taking the sequence with only one
symbolic process Es,0 without events. Suppose that this property is satisfied
for symbolic processes up to size n, and consider a satisfiable and complete
symbolic process Es,n+1 of size n+ 1. Let θn+1 denote a solution for this process.
A growing sequence from Es,0 to Es,n+1 exists.In this sequence, the difference1770

between Es,n+1 and Es,n is a single event e that is maximal in Es,n+1 w.r.t.
ordering on events �, and such that θ(e) ≥ θ(x) for every event x in Es,n+1 \{e},
and θ(e) ≥ dob(b) for every b in Es,n+1 \{e}. Let En, Bn denote the set of events
in Es,n+1 \ {e}. Let us denote by Φn+1|En,Bn the restriction of Φn+1 to variables
attached to events and conditions En, Bn. One has to remove variables θ(e),1775

dod(b) for every b ∈ •e, and dob(b) for every b ∈ e•using an elimination technique
such as Fourier-Motzkin. Using the properties of elimination, θ satisfies Φn+1

if and only if the restriction of θ to var(En, Bn) satisfies Φn+1|En,Bn . However,
the restriction of θ is exactly θn, and as θ(e), dod(b) for b ∈ e•, and dod(b) for
b ∈ •e are all greater than variables in var(En, Bn), the elimination of variables1780

is simply a projection on atoms that do not contain variables related to e, and
Φn+1|En,Bn = Φn. �

Lemma 2. Given a symbolic process Es of UK , one of its solutions θ, and an
ordering Es,0 = 〈E0, B0,Φ0〉 v Es,1 = 〈E1, B1,Φ1〉 · · · v Es as above, then the
word uEs,θ = 〈t1, θ(e1)〉 . . . 〈t|E|, θ(e|E|)〉 is a timed word of L(N ).1785

Proof : Again we can prove this lemma by induction. The base case is obvious,
as the empty word ε is a timed word of L(N ). Let us suppose that the property
is satisfied up to n, that is for every process En of size n and solution θn meeting
all constraints of En, there exists an increasing sequence of prefixes of En such
that the word associated with this sequence is a timed word of L(N ).1790

Let us now consider a time process En+1 with n + 1 events and one of its
solutions θn+1. As in Lemma 1, one can find an event en+1 and a process En
such that En and En+1 only differ by addition of this single event. There exists
a timed word un = 〈e1, θn+1(e1)〉 . . . 〈en, θn+1(en)〉 ∈ L(N ) corresponding to En.
This word may lead the net to any configurations in a set Confn with identical1795

markings, but distinct times to fire attached to transitions. However, as we
know that θn+1 meets all constraints of En+1, there exists a configuration in
Confn whose times to fire allow firing of en+1 at date θ(en+1), and un+1 =
un.〈en+1, θ(en+1)〉 ∈ L(N ). �

Note that assuming time progress, the dates attached to an event of a process1800

of UK that occur at a date smaller than D cannot be further constrained by
addition of constraints coming from events that are not in UK . The two lemmas
above hence allow to conclude that for a given symbolic process Es of unfolding
UK , in which one considers events that occur before date D, and for each solution
of Es, we have Esθ = TPuEs,θ for some word uEs,θ ∈ L(N ). Hence, the set of1805

time processes of UK whose events occur before D is contained in the set of
time processes TP (L≤D(N )). All time processes of some pre-process of UK (and
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hence all time processes of unfolding UK) can be built from a timed word that is
executable by N in less than D time units, and are hence time processes of N .

We now have to prove the converse direction, i.e., every time process associated1810

with a word u ∈ L≤D(N ) is a time process of UK .

Lemma 3. Let u ∈ L≤D(N ). Then, TP (u) is a time process of UK .

Proof : We proceed by induction on the size of words. First, for the empty
words, the time process with only initial conditions is clearly a time process
of UK . Let us now assume that for every un = 〈e1, θ(e1)〉 . . . 〈en, θ(en)〉 ∈1815

L≤D(N ) of length n, TP (un) is a time process of UK . Let us consider a word
un+1 = 〈e1, θ(e1)〉 . . . 〈en, θ(en)〉.〈en+1, θ(en+1)〉 ∈ L≤D(N ). One can build a
time process Eu for u = 〈e1, θ(e1)〉 . . . 〈en, θ(en)〉. Clearly, as un+1 ∈ L≤D(N ),
word u leads from marking m0 to a marking that enables en+1. Let ep1 , . . . , epk
denote the k events that produce the tokens that are consumed by en+1. If1820

event en+1 is a firing of some transition t that occurs exactly when its time to
fire has expired, θ(en+1) meets the constraint eft(t) + max{θ(epi)} ≤ θ(en+1) ≤
lft(t) + max{θ(epi)}. In any case, we have eft(t) + max{θ(epi)} ≤ θ(en+1)
(which is the only constraint w.r.t predecessors imposed by constraint in the
unfolding. Similarly, let eb1 , . . . ebq denote the last events of u that free places in1825

which t outputs some tokens (and hence may have blocked the execution of t
before θ(en+1)). We have θ(en+1) meets the constraint max({θ(ebi)}) ≤ θ(en+1).
Hence, any event that had to occur before θ(en+1) (due to urgency, causality,
or blockings) also appears in Eu. Hence, θ witnesses satisfiability of a set of
constraints over occurrence dates of events e1, . . . , en, and one can safely append1830

en+1 = (B, t) to maximal places of Eu, and obtain a symbolic prefix Eun+1

(satisfiable, conflict free and complete). It now remains to show that Eun+1 is a
symbolic process of UK . As θ(en+1) ≤ D, en+1 appears in the unfolding of N at
depth at most D

δ , which is lower than K = dDδ e · |T |. Hence, Eun+1
is an causally

closed set of events that also contains all mandatory urgent transition firings1835

and place unblockings whose set of constraints is satisfiable, and contained in
UK , i.e., it is a symbolic process of UK . �

Appendix F. Algorithm to compute embeddings of a schedule in a
process

Finding the set of embedding functions Ψ = {ψ0, ψ1, . . . , ψk} that satisfy the1840

conditions of definition 14 is achieved building iteratively injective functions
meeting the embedding requirements, by matching at every step minimal yet
unexplored nodes of S with minimal unmatched nodes of Es. This construction
is depicted in Algorithm 1. We will define an embedding function f as a set
pairs of the form 〈n, e〉, interpreted as f(n) = e. We define in particular the1845

empty embedding f⊥, that is undefined for every node of N , and will be used as
starting point of the algorithm. For a given function f , the function f ∪ 〈n, e〉
is the function that associates e to node n, and f(n′) to every other node
n′ ∈ domain(f).
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Algorithm 1: Computation of embeddings of a schedule in a symbolic
process

input: a schedule S = 〈N,→, λ, C〉, a symb. process E = 〈E,B,Φ〉;
Ψ := ∅; // the set of solutions is initially empty

F := {f⊥}; // the exploration starts from the undefined map

while F 6= ∅ do
choose f ∈ F ;

MinS,f := min
→

(
N \ domain(f)

)
;

if MinS,f = ∅ then ; // all nodes of S have an image in E
Ψ := Ψ ∪ {f}; // f is an embedding

else
F := F \ {f}; // we will explore extensions of partial

embedding f

MinE,f := min
�

(
E \ image(f)

)
;

Found := false;
while MinS,f 6= ∅ ∧ Found = false do

choose n ∈ MinS,f ;
MinS,f := MinS,f \ {n};
cand := {e ∈ MinE,f | tr(e) ∈ r

(
λ(n)

)
∧ ∀n′ ∈ dpred

→
(n), f(n′) �

e};
if Cand 6= ∅ then

F := F ∪
⋃
e∈Cand{f ∪ 〈n, e〉}; // update f with pairs

〈n, e〉 that meet the matching criteria and add the

new functions to candidate embeddings

Found := true;

end

end

end

end
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Appendix G. Stochastic state class tree1850

In this part of the appendix, we detail how to build a stochastic state class
tree for a particular process of a stochastic Petri net with blocking semantics.

Definition 18 (transient stochastic state class tree). A transient stochas-
tic state class tree for an STPN N (that we shall call tree, for short) is a directed
acyclic graph S = 〈V, ◦→ ∪•→〉 where vertices in V are classes, edges in ◦→1855

represent firing transitions after (symbolically) elapsing time, and edges in •→
represent firings of urgent transitions. Every vertex in the tree has only one
predecessor except for the root of the tree, denoted v0, that has no predecessor.
Edges carry probabilistic informations on transitions firings and the sum of
probabilities of all edges leaving the same vertex is equal to 1.1860

The construction of a tree starts from the initial class Σ0 (with marking
m0, a domain C0 for the TTFs of transitions enabled in m0 and all other
components defined accordingly, see appendix E) and inductively computes

edges and reachable classes. Edges Σ
t,µ−→ Σ′ from a class Σ to a successor class

Σ′ are labeled by a transition name t and by the probability µ to fire t from Σ,1865

and are of two forms:

Firing after elapsing time: A move Σ
ti,µi◦→ Σ′ from Σ = 〈m,C,D, blk, urg〉

to Σ′ = 〈m′, C ′, D′, blk′, urg′〉, achievable with probability µi, consists in firing
transition ti after symbolically elapsing its TTF. Such a move is only allowed
if urg = ∅ and the TTF τi of ti is less than or equal to TTFs of all other1870

transitions that could fire from Σ. The time domain Ci from which ti can fire
is hence Ci = C ∩

⋂
xj∈XM {xi ≤ xj}, and the probability of firing ti from Σ is

µi =
∫
Ci
D. We have m′ = m−•ti + ti

•. The new domain C ′ and distribution
D′ are computed as for STPNs with non-blocking semantics: it is obtained by
advancing time, removing variables of disabled transitions and adding those of1875

newly enabled transitions [3], and then removing variables of transitions whose
domain is the singleton {0}. The domain of a single variable xi in a domain C
over several variables can be obtained by eliminating all variables but ci from C.
As soon as a variable has domain {0}, the time to fire of the associated transition
is necessarily zero, and the transition has to fire. It is then stored in the set1880

of urgent transitions if it is not blocked, and in the set of blocked transitions
otherwise. The set blk′ is obtained by removing from blk transitions that were
disabled by firing of ti and transitions that are not blocked anymore in m′ thanks
to the places freed by firing of ti (they become urgent), and adding transitions
which are enabled in m′ with a firing domain in C ′ that is {0}. Finally, the1885

set urg′ contains all enabled transitions that became urgent when firing ti, i.e.,
transitions with firing domain {0} among enabled transitions, and formerly
blocked transitions unblocked by ti.
Firing urgent transitions: In STPNs semantics, when more than one tran-
sition is firable from a configuration, their weights are used to compute the1890

probability of firing each transition. This case can occur because of blocking
semantics: an STPN can keep several transitions blocked, and firing a transition
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can also unlock several of them at the same time (all unblocked transitions
become urgent). When a class Σ has urgent transitions (urg 6= ∅), only moves of

the form Σ
ti,µi•→ Σ′ are allowed. They consist in firing a transition ti among urgent1895

transitions in urg with probability µi = W(tk)
/∑

tj∈urgW(tj). Components

m′, C ′ and D′ of the successor class are computed as for timed moves, with the
only difference that no time elapses before the firing of ti. Set blk′ is obtained
by removing from blk transitions that are unlocked or disabled by the firing of
ti and adding those that become blocked in m′, and urg’ contains transitions1900

from urg that were not disabled by firing of ti and transitions from blk that
were unblocked when firing ti.
Computing the probability of a process Es:

Transient trees are a priori infinite, but very often, one can work with a
bounded horizon. This is our case when evaluating the probability of realization1905

in UK . Let Ψi = {ψi,0, ψi,1, . . . , ψi,n−1} denote all possible embeddings of a
schedule S into a symbolic process Esi of N . We denote by P(Φψi,j ,d±α) the
probability that N executes a time process Esi and realizes S within a precision
of ±α when ψi,j is the embedding of S in Esi . We adapt the tree construction to
consider only Esi and embedding ψi,j , and compute P(Esi ∧Φψi,j ,d±α). We build a1910

tree whose vertices of the form 〈Σ, S〉 memorize a class and a suffix of Esi not yet

executed. We start from vertex 〈Σ0, Esi 〉. We create an edge 〈Σ, S〉 tk,µk−−−→ (Σ′, S′)
representing firing of a transition tk if there is a minimal event e in the remaining
suffix of Esi , and tr(e) = tk. S′ is the new suffix obtained by removing e from
S. Σ′ is the successor class obtained after firing this transition from Σ. Edges1915

are built as before in the tree, but with an additional constraint: edges with
label tk, µk and components m, C, D, blk, urg of classes are built with the
additional requirement that when creating an edge from an event e that is in
the image of ψi,j , the firing time domain is restricted to impose that e occurs in
the time interval Ik = [max(0, d(ψ−1

i,j (e))− α), d(ψ−1
i,j (e)) + α]. In this case, the1920

probability of firing tk = tr(e) becomes µk =
∫
Ck ∩C′k D, where C ′k is the part

of C in which τk − τage (the firing date for e) belongs to Ik. We stop developing
a branch of the tree at vertices whose suffix does not contain events that are
images of nodes in S via ψi,j . The construction ends with a tree Si,j,α.

Transient tree Si,j,α measures the probability of solutions and of occur-1925

rence of a particular process. The probability P(Esi ∧ Φψi,j ,α) is computed as
P(Esi ∧ Φψi,j ,α) =

∑
ρ∈Path(Si,j,α) P(ρ) where Path(Si,j,α) is the set of paths

from 〈Σ0, Esi 〉 to a leaf of Si,j,α, and the probability P(ρ) of a path ρ =

Σ0
ti,µi−−−→ . . .

tl−1,µl−1−−−−−−→ Σl that start at Σ0 and end on a leaf Σl is the product
Πi∈{0,...,l−1}µi. As soon as P(Esi ∧ Φψi,j ,α) > 0, S has a non-null probabil-1930

ity to be realized (with a tolerance of ±α). Noticing that different embed-
dings yield disjoint paths in their respective transient stochastic state class
trees, the probability for a schedule to be realized by a process is hence
P(Esi |= S) =

∑
ψi,j∈Ψi

P(Esi ∧ Φψi,j ,α).

Finally, denoting by E(PP, S) the symbolic processes of a pre-process PP1935

that embed S, the probability P(N |= S) is greater than max{P(Esi ∧ Φψi,j ,α) |
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PP ∈ PE(UK) ∧ Esi ∈ E(PP, S)}. It is difficult to obtain more than a lower
bound for realization, as symbolic processes of E(PP, S) might have overlapping
executions.

Appendix H. Derivation of components of successor class1940

We hereafter provide details on how to compute components C ′ and D′ of

a class Σ′ obtained from a class Σ through a transition
ti,µi◦→ . Derivation of

components m′, blk′ and urg′ has already been covered and need not further
explanations.

We shall use the following notations:1945

• given a time domain C delimiting the possible values of a set of variables
XM = {x0, x1, . . . , xN−1}, we will denote by C ↓xi the projection of C
that eliminates variable xi from XM . The elimination is done via the
Fourier-Motzkin method detailed in Appendix Appendix I;

• given a vector x
¯

= 〈x0, x1, . . . , xN−1〉, we denote by x
¯
\ xi the vector x

¯
1950

from which variable xi is removed, with i ∈ {0, 1, . . . , N − 1};

• the addition of a scalar x0 to each element of a vector x
¯

= 〈x1, x2, . . . , xn〉
is simply written x

¯
+ x0.

Probability of firing: A transition ti can fire from class Σ iff ti is enabled by
m and no postset place of ti is occupied; that is ∀p ∈ t•,m(p) = 0. We also need
its TTF xi to be less than or equal to TTFs of all variables in XM ; transition ti
will then fire from Σ with probability µi, with:

µi =

∫
Ci
D

Ci is the time domain from which ti shall fire with all its TTF less than or
equal to every variable in XM .

Ci = C ∩
⋂

xj∈XM

{xi ≤ xj}

Precedence condition: The assumption that ti fires before any other transition
adds conditions on the time vector and thus leads to a new random variable Xa

M

distributed over Ci according to the following conditional PDF:

Da = D
/
µi

Time elapsing and elimination: According to the semantics of STPNs, when
ti fires, TTFs of activated transitions are decreased by the value of the TTF of ti,
namely τ i. This yields a new random variable Xb

M = Xa
M − xi distributed over
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the domain Cb = Ci ↓xi in which the variable attached to the fired transition ti
is eliminated. The PDF of the new multivariate random variable Xb

M is then:

Db =

∫ Maxi

Mini
Da

where Mini and Maxi denote the bounds of the support of variable τ i.
Disabling: If the firing of ti disables a transition tj , variable xj has to be
eliminated from the time vector, yielding a new vector Xc

M = Xb
M \xj distributed

over Cc = Cb ↓xj with PDF:

Dc =

∫ Maxj

Minj
Db

The same procedure is repeated for every disabled transition by the firing of1955

ti. Let Xc∗
M , Cc∗ and Dc∗ then respectively denote the resulting time vector,

domain and PDF.
Newly enabling: If the firing of ti enables a transition tk, with PDF ftk over
[eft(tk), lft(tk)], then the new time vector, that we denote by Xd

M ′ , shall include an
additional component xk and shall be distributed over Cd = Cc∗×[eft(tk), lft(tk)]
according to the PDF:

Dd = Dc∗ × ftk(xk)

The same procedure is similarly repeated for every newly enabled transition to
finally obtain the PDF of the successor class Σ′.

Appendix I. Fourier–Motzkin elimination method1960

The Fourier–Motzkin elimination method is an algorithm for eliminating
variables from a system of linear inequalities. Let φ be a system of linear
inequalities with variables x1, x2, . . . , xr where xr is the variable to be removed.

φ can be written as φ+ ∧ φ− ∧ φ∅ where φ− =
m∧
i=1

−xr ≤ bi −
r−1∑
k=1

aikxk and

φ+ =
n∧
i=1

xr ≤ bi −
r−1∑
k=1

aikxk are the sets of inequality where the coefficients of

xr are respectively negative and positive, and φ∅ is the inequality subsystem
in which xr does not appear. Eliminating the variable xr from φ refers to the
creation of another system of inequality in which xr does not appear and which
has the same solutions over the remaining variables. The original system can be
written as

max
i=1,...,m

(−bi +

r−1∑
k=1

aikxk) ≤ xr ≤ min
i=1,...,n

(bi −
r−1∑
k=1

aikxk) ∧ φ∅

Which, by eliminating xr, gives

max
i=1,...,m

(−bi +

r−1∑
k=1

aikxk) ≤ min
i=1,...,n

(bi −
r−1∑
k=1

aikxk) ∧ φ∅
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example: Let φ be the following system of linear inequalities:

φ =



α1 ≤ x1 ≤ β1

α2 ≤ x2 ≤ β2

α3 ≤ x3 ≤ β3

−γ21 ≤ x1 − x2 ≤ γ12

−γ31 ≤ x1 − x3 ≤ γ13

−γ32 ≤ x2 − x3 ≤ γ23

Suppose that we want to eliminate the variable x1. We start by identifying φ∅,
the subsystem of inequality in which x1 doesn’t appear, as follows:

φ =



α1 ≤ x1 ≤ β1

−γ21 ≤ x1 − x2 ≤ γ12

−γ31 ≤ x1 − x3 ≤ γ13

α2 ≤ x2 ≤ β2

α3 ≤ x3 ≤ β3

−γ32 ≤ x2 − x3 ≤ γ23

 = φ∅

We then isolate x1 by rewriting the inequality left, as follows:

φ =


α1 ≤ x1 ≤ β1

x2 − γ21 ≤ x1 ≤ x2 + γ12

x3 − γ31 ≤ x1 ≤ x3 + γ13

φ∅

One can easily see that an equivalent solution of this system is the one where x1

is bounded with the maximum value of its left bounds and the minimum of its
right bounds in the system of inequality; adding to that φ∅.

φ ⇐⇒ max(α1, x2 − γ21, x3 − γ31) ≤ x1 ≤ min(β1, x2 + γ12,≤ x3 + γ13) ∧ φ∅

Finally, eliminating x1 consists in saying that the left bound is inferior or equal
to the right bound and we get the following:

φ′ ⇐⇒ max(α1, x2 − γ21, x3 − γ31) ≤ min(β1, x2 + γ12,≤ x3 + γ13) ∧ φ∅
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