
HAL Id: hal-01650160
https://hal.inria.fr/hal-01650160

Submitted on 28 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sketched Clustering via Hybrid Approximate Message
Passing

Evan Byrne, Rémi Gribonval, Philip Schniter

To cite this version:
Evan Byrne, Rémi Gribonval, Philip Schniter. Sketched Clustering via Hybrid Approximate Mes-
sage Passing. Asilomar Conference on Signals, Systems, and Computers, Oct 2017, Pacific Grove,
California, United States. �hal-01650160�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132783139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01650160
https://hal.archives-ouvertes.fr

Sketched Clustering via Hybrid Approximate Message Passing

Evan Byrne,∗ Rémi Gribonval,† and Philip Schniter,∗
∗Dept. of ECE, The Ohio State Univ., Columbus, OH, 43210, USA. (byrne.133@osu.edu, schniter.1@osu.edu)

†Univ Rennes, Inria, CNRS, IRISA, France. (remi.gribonval@inria.fr)

Abstract—In sketched clustering, the dataset is first sketched
down to a vector of modest size, from which the cluster centers
are subsequently extracted. The goal is to perform clustering
more efficiently than with methods that operate on the full
training data, such as k-means++. For the sketching methodology
recently proposed by Keriven, Gribonval, et al., which can be
interpreted as a random sampling of the empirical character-
istic function, we propose a cluster recovery algorithm based
on simplified hybrid generalized approximate message passing
(SHyGAMP). Numerical experiments suggest that our approach
is more efficient than the state-of-the-art sketched clustering
algorithms (in both computational and sample complexity) and
more efficient than k-means++ in certain regimes.

I. INTRODUCTION

Given a dataset X ! [x1, . . . ,xT] ∈ RN×T comprising
T feature vectors of dimension N , the standard clustering
problem is to find K centroids C ! [c1, . . . , cK] ∈ RN×K

that minimize the sum of squared errors (SSE)

SSE(X,C) !
T∑

t=1

min
k

∥xt − ck∥
2
2. (1)

Finding the optimal C is an NP-hard problem [1]. Thus, many
heuristic approaches have been proposed, with one of the most
popular being the k-means algorithm [2], [3]. Because k-means
can get trapped in bad local minima, many robust variants
have been proposed. One of the best known is k-means++

[4], which uses a careful random initialization procedure to
yield solutions with SSE that are on average ≤ 8(lnK + 2)
times the minimal SSE. But even with k-means++, many
random re-initializations may be required to find a near-
optimal clustering. For each initialization, the computational
complexity of k-means++ scales as O(TKNI), with I the
number of iterations, which can be prohibitive for large T .

A. Sketched Clustering

In sketched clustering [5], [6], the dataset is first sketched
down to a vector y with M ≪ TN components, from which
the cluster centers are subsequently extracted. If the sketch
can be performed efficiently, then—since the cluster-extraction
complexity will be independent of T—there is a chance that
sketched clustering will be more efficient than direct clustering
methods like k-means++ when T is large.

∗E. Byrne and P. Schniter acknowledge support from NSF grant 1716388
and MIT Lincoln Labs.

The approach proposed in [5], [6] uses a sketch y !

[y1, . . . , yM]T of the form

ym =
1

T

T∑

t=1

exp(jwT
mxt) (2)

with randomly generated W ! [w1, . . . ,wM]T ∈ RM×N .
Note that ym in (2) can be interpreted as a sample of the
empirical characteristic function, i.e.,

φx(wm) =

∫

RN

px(x) exp(jw
T
mx) dx (3)

under the empirical distribution px(x) =
1
T

∑T
t=1 δ(x − xt).

Note that sketching X as y via (2) costs O(TMN) operations,
but it is easily parallelized.

For the recovery of cluster centers from y, the state-of-
the-art algorithm is compressed learning orthogonal matching

pursuit with replacement (CL-OMPR) [5], [6]. It aims to solve

argmin
C,α

M∑

m=1

∣∣∣∣ym −
K∑

k=1

αk exp(jw
T
mck)

∣∣∣∣
2

(4)

using a greedy heuristic inspired by the orthogonal matching

pursuit algorithm [7] popular in compressed sensing. With
M ≈ 10KN , CL-OMPR often attains SSEs similar to those
attained with k-means++, despite the lack of a direct link
between the problem formulations (1) and (4). CL-OMPR’s
computational complexity is O(MNK2), however, which can
be impractical when K is large. Thus, we seek a sketched
clustering scheme whose complexity grows linearly in K.

B. Contributions

For the recovery of the cluster centers from a sketch y
of the form given in (2), we propose compressive learning

via approximate message passing (CL-AMP). As we will see,
CL-AMP has a computational complexity of O(MNK) and
performs favorably to CL-OMPR in terms of both runtime and
sample complexity M . Furthermore, we find that CL-AMP
performs favorably to k-means++ in certain operating regimes.
CL-AMP can be understood as an application of the simplified

hybrid generalized approximate message passing (SHyGAMP)
framework [8] to sketched clustering. Further details will be
provided in the sequel.

II. COMPRESSIVE LEARNING VIA AMP

A. High-Dimensional Inference Framework

CL-AMP formulates cluster recovery as a high-dimensional
inference problem rather than as an optimization problem like

Copyright 2017 SS&C. Published in the Proceedings of the Asilomar Conference on Signals, Systems, and Computers, Oct. 29-Nov. 1, 2017, Pacific Grove, CA, USA.

(4). In particular, it assumes a Gaussian mixture model (GMM)

xt ∼
K∑

k=1

αkN (ck,Rk). (5)

where the GMM means are the cluster centers ck and the
GMM weights αk and covariances Rk are unknown.

Defining gm ! ∥wm∥ and w̃m ! wm/gm, so ∥w̃m∥ = 1,

ym =
1

T

T∑

t=1

exp(jwT
mxt) ≈ E{exp(jwT

mxt)} (6)

=
K∑

k=1

αk exp
(
jgm w̃

T
mck︸ ︷︷ ︸

! zmk

−g2m w̃
T
mRkw̃m︸ ︷︷ ︸
! τmk

/2
)
, (7)

where (6) holds under large T and (7) follows from the facts
that wT

mxt ∼
∑

k αkN (gmzmk, g2mτmk) and that E{ejx} =
ejz−τ/2 when x ∼ N (z, τ). For w̃m uniform on the sphere,

τmk
p
→ E{τmk} = tr(Rk)/N ! τk (8)

as N → ∞, as long as the peak-to-average eigenvalue ratio of
Rk remains bounded [9]. Thus, for zm ! [zm1, . . . , zmK]T,

py|z(ym|zm;α, τ) = δ

(
ym−

K∑

k=1

αk exp
(
jgmzmk−

g2mτk
2

))

(9)

with hyperparameters τ ! [τ1, . . . , τK]T, α ! [α1, . . . ,αK]T.
The cluster coordinates {cnk} are modeled as i.i.d. pc(c; ν),

where nominally pc(c; ν) = N (c; 0, ν) with large ν. Our main
objective is then to compute the conditional mean

Ĉ = E{C |y}, (10)

where the expectation is taken over

p(C|y) ∝
M∏

m=1

py|z(ym|wT
mC;α, τ)

K∏

k=1

N∏

n=1

pc(cnk; ν), (11)

while simultaneously learning the hyperparameters α, τ , ν.
Here and in the sequel, we format random variables in san-
serif font for clarity.

B. Approximate Message Passing

Exact computation of Ĉ in (10) is impractical due to the
form of py|z. One might consider approximate inference via the
sum-product algorithm (SPA), but even the SPA is intractable
due to the form of py|z. Given the presence of a large random
matrix W in the problem formulation, we instead proposed
to tackle approximate inference using approximate message

passing (AMP) [10]. In particular, we apply the simplified

hybrid generalized AMP (SHyGAMP) methodology from [8],
while simultaneously estimating α, τ , ν through expectation
maximization (EM). Some background on AMP methods will
now be provided to justify our approach.

The original AMP algorithm of Donoho, Maleki, and Mon-
tanari [10] was designed to estimate i.i.d. c under the standard
linear model (i.e., y = Wc + n with known W ∈ RM×N

and additive white Gaussian noise n). The generalized AMP
(GAMP) algorithm of Rangan [11] extended AMP to the
generalized linear model (i.e., y ∼ p(y|z) for z = Wc and

separable p(y|z) =
∏M

m=1 p(ym|zm)). Both AMP and GAMP
give accurate approximations of the SPA under large i.i.d. sub-
Gaussian W , while maintaining a computational complexity
of only O(MN). Furthermore, both can be rigorously ana-
lyzed via the state-evolution framework, which shows that they
are Bayes-optimal in certain regimes [12].

A limitation of AMP [10] and GAMP [11] is that they
cover only problems with i.i.d. estimand c and separable
likelihood p(y|z) =

∏M
m=1 p(ym|zm). Thus, Hybrid GAMP

(HyGAMP) [13] was developed to tackle problems with a
structured prior and/or likelihood. HyGAMP could be applied
to (10)-(11), but it requires computing and inverting O(N+M)
covariance matrices of dimension K at each iteration. The
SHyGAMP algorithm [8] is a simplification of HyGAMP
that uses diagonal covariance matrices to drastically reduce
complexity. As described in [8], SHyGAMP can be readily
combined with the EM algorithm for hyperparameter learning.

C. SHyGAMP

The SHyGAMP algorithm is summarized in Algorithm 1

using the language of Section II-A, assuming W̃ has unit-
norm rows. There, with some abuse of notation, we use cT

n

to denote the nth row of C (where previously we used ck to
denote the kth column of C). We also use P̂ ! [p̂1, . . . , p̂M]T,

Ẑ ! [ẑ1, . . . , ẑM]T, R̂ ! [r̂1, . . . , r̂N]T, ⊘ for component-
wise division, and ⊙ for componentwise multiplication.

At each iteration, lines 10-11 of Algorithm 1 compute an
approximation of the posterior mean and variance of {cnk}
using the “pseudo-measurements” r̂n = cn + vn, where vn

is treated as a typical realization of v ∼ N (0,Qr). Thus, the
approximate posterior pdf used in lines 10-11 is

pc|r(cn|r̂n;Q
r) =

pc(cn)N (cn; r̂n,Q
r)∫

pc(c′n)N (c′n; r̂n,Q
r) dc′n

. (12)

Similarly, lines 4-5 approximate the posterior mean and

covariance of zm ! CT
wm, which uses the pseudo-prior

zm ∼ N (p̂m,Qp) and hence the approximate posterior pdf

pz|y,p(zm|ym, p̂m;Qp)

=
py|z(ym|zm)N (zm; p̂m,Qp)∫

py|z(ym|z′
m)N (z′

m; p̂m,Qp) dz′
m

. (13)

Essentially, the SHyGAMP algorithm breaks an NK-
dimensional inference problem into M+N K-dimensional in-
ference problems involving an independent-Gaussian pseudo-
prior or pseudo-likelihood, evaluated iteratively. The resulting
computational complexity is O(MNK).

D. From SHyGAMP to CL-AMP

The SHyGAMP algorithm can be applied to many different
problems via appropriate choice of py|z and pc. To apply
SHyGAMP to sketched-clustering, we choose py|z and pc as
described in Section II-A. The principal remaining challenge
is to evaluate lines 4-5 of Algorithm 1.

Algorithm 1 SHyGAMP

Require: Measurements y, matrix W̃ with ∥W̃ ∥2F = M , pdfs pc|r and

pz|y,p from (12)-(13), initializations Ĉ = E{C}, qc
n = diag(cov{cn})

Ensure: Ŝ←0.

1: repeat
2: qp ← 1

N

∑N
n=1

qc
n

3: P̂ ← W̃ Ĉ − ŜDiag(qp)

4: qz
m ← diag

(
cov

{
zm

∣∣ ym,pm = p̂m; Diag(qp)
})
∀m

5: ẑm ← E
{

zm
∣∣ ym,pm = p̂m; Diag(qp)

}
∀m

6: qs ← 1⊘ qp −
(

1

M

∑M
m=1

qz
m

)
⊘ (qp ⊙ qp)

7: Ŝ ← (Ẑ − P̂)Diag(qp)−1

8: qr ← N
M

1⊘ qs

9: R̂← Ĉ + W̃ Ŝ
T
Diag(qr)

10: qc
n ← diag

(
cov

{
cn

∣∣ rn = r̂n; Diag(qr)
})
∀n

11: ĉn ← E
{

cn

∣∣ rn = r̂n; Diag(qr)
}
∀n

12: until Terminated

1) Inference of zm: For lines 4-5 of Algorithm 1, we would
like to compute the mean and variance

ẑmk = C−1
m

∫

RK

zmkpy|z(ym|zm)N
(
zm; p̂m,Qp

)
dzm (14)

qz
mk =

∫
RK (zmk−ẑmk)2py|z(ym|zm)N

(
zm; p̂m,Qp

)
dzm

Cm
,

(15)

where Cm =
∫
RK py|z(ym|zm)N

(
zm; p̂m,Qp

)
dzm. We pro-

pose approximations of ẑmk and qz
mk that are summarized be-

low; a full derivation has been omitted due to space limitations.
For the remainder of this section, we omit the subscripts m
and y|z to simplify the notation.

The main idea behind our approximation of ẑmk and qz
mk is

to define θk ! gzk and then apply the Gaussian approximation
(whose accuracy grows with K)

p
([

Re{y}
Im{y}

]∣∣∣θk
)
≈N

([
Re{y}
Im{y}

]
;βk

[
cos(θk)
sin(θk)

]
+ µk,Σk

)
(16)

to (9), where

µk =
∑

l ̸=k

αle
−g2(τk+[Qp]kk)/2

[
cos(gp̂l)
sin(gp̂l)

]
(17)

Σk =
1

2

∑

l ̸=k

β2
l

(
1− e−g2[Qp]ll

)

×
(
I − e−g2[Qp]ll

[
cos(2gp̂l) sin(2gp̂l)
sin(2gp̂l) − cos(2gp̂l)

])
(18)

βk = αk exp(−g2τk/2). (19)

Rewriting (16) as

p
(
β−1
k

[
Re{y}
Im{y}

] ∣∣∣θk
)

≈ N
([

cos(θk)
sin(θk)

]
;β−1

k

[
Re{y}
Im{y}

]
− β−1

k µk,β
−2
k Σk

)
, (20)

the right side of (20) can be recognized as being proportional
to the generalized von Mises (GvM) density [14] over θk ∈
[0, 2π). Under this GvM approximation, we have [14] that

p(y|θk) ∝ exp
(
κk cos(θk − ζk) + κ̄k cos[2(θk − ζ̄k)]

)
(21)

for parameters κk, κ̄k > 0 and ζk, ζ̄k ∈ [0, 2π) defined from
y, µk, Σk, and βk. In particular,

κk cos(ζk) = −
1

1− ρ2k

(
ρkν̄k
σkσ̄k

−
νk
σ2
k

)
(22)

κk sin(ζk) = −
1

1− ρ2k

(
ρkνk
σkσ̄k

−
ν̄k
σ̄2
k

)
(23)

κ̄k cos(2ζ̄k) = −
1

4(1− ρ2k)

(
1

σ2
k

−
1

σ̄2
k

)
(24)

κ̄k sin(2ζ̄k) =
ρk

2(1− ρ2k)σkσ̄k
, (25)

where
[
νk

ν̄k

]
! β−1

k

([
Re{y}
Im{y}

]
− µk

)
(26)

and
[

σ2

k ρkσkσ̄k

ρkσkσ̄k σ̄2

k

]
! β−2

k Σk. (27)

Given the SHyGAMP pseudo-prior zk ∼ N (p̂k, [Q
p]kk), the

posterior on θk takes the form

p(θk|y) ∝ N
(
θk; gp̂k, g

2[Qp]kk
)
p(y|θk) (28)

∝ exp

[
κk cos(θk − ζk) + κ̄k cos[2(θk − ζ̄k)]−

(θk − gp̂k)2

2g2[Qp]kk

]
.

We then face the task of computing E{θk|y} and E{θ2k|y}
under (28). Several methods could be applied here, such as
numerical integration. The method employed for the experi-
ments in Section III is based on the Laplace approximation
[15]. For this, we compute θ̂k,MAP ! argmaxθk ln p(θk|y)
using bisection and then approximate E{θk|y} ≈ θ̂k,MAP and

var{θk|y} ≈ − d2

dθk2 ln p(θk|y)
∣∣
θk=θ̂k,MAP

. Finally, we compute

ẑk = E{θk|y}/g and qz
k = var{θk|y}/g2.

2) Inference of cn: For lines 10-11 of Algorithm 1, recall
that pc(cn) = N (cn;0, νI). Thus pc|r is Gaussian and
the posterior mean and covariance of cn can be computed
straightforwardly as

Qc
n =

(
ν−1I + [Qr]−1

)−1
! Qc (29)

ĉn = Qc[Qr]−1r̂n (30)

Above, [Qr]−1 is simplified by the fact that Qr is diagonal.

E. Hyperparameter Tuning

The likelihood model py|z in (9) depends on the unknown
hyperparameters α and τ . Similarly, the prior pc depends on
the unknown variance ν. We propose to estimate these hyper-
parameters using a combination of expectation maximization

(EM) and SHyGAMP, as suggested in [8] and detailed—for
the simpler case of GAMP—in [16]. Extrapolating [16] to the
SHyGAMP case, we estimate α and τ via

{α̂, τ̂} = argmax
α≥0,αT1=1,τ>0

M∑

m=1

∫

RK

N (zm; ẑm,Diag(qz
m))

× ln p(ym|zm;α, τ) dzm (31)

at each SHyGAMP iteration, immediately after line 5 in
Algorithm 1. For tractability, we approximate the Dirac delta
in (9) by a Gaussian pdf with small variance ϵ > 0, giving

ln p(ym|zm;α, τ) ≈ −
1

ϵ

∣∣∣∣y −
K∑

k=1

αk exp
(
jgmzmk −

g2mτk
2

)∣∣∣∣
2

+ const. (32)

The resulting optimization problem (31) (which does not
depend on ϵ) can be straightforwardly solved using gradient
projection, since closed-form expressions for the objective and
its gradient exist.

III. NUMERICAL EXPERIMENTS

In this section, we present the results of two numerical
experiments used to test the performance of the CL-AMP,
CL-OMPR, and k-means++ algorithms. For k-means++, we
used the implementation provided by MATLAB and, for CL-
OMPR, we downloaded the MATLAB implementation from
[17] and enabled the “++” initialization method. CL-OMPR
and CL-AMP used the same sketch y, whose frequency
vectors W were drawn using the method described in [5].
For both experiments, the clusters were randomly drawn as
ck ∼ N (0N , 1.52K2/NIN), after which the training (and test)
data were drawn from the GMM (5) with weights αk = 1

K ∀k
and covariances Rk = IN∀k. For CL-OMPR and CL-AMP,
the runtimes reported include the time of computing the sketch.

A. SSE Minimization

In the first experiment, we test each algorithm’s ability to
minimize SSE on the training data, i.e., to solve the problem
(1). For each pair of (K,N) ∈ {(5, 100), (10, 50), (10, 100)},
10 trials were performed, where in each trial, a training dataset
was randomly generated with T = 104 samples. For cluster
recovery, k-means++ was invoked on this training dataset with
1 replicate (i.e., 1 run from a random initialization), while CL-
AMP and CL-OMPR were invoked using a sketch of length
M . Several values of M , logarithmically spaced in the interval
[KN, 10KN], were evaluated.

For each (K,N) pair under test, Figs. 1a, 1c, and 1e show
the median SSE of CL-AMP and CL-OMPR versus M/KN ,
with the error-bars showing the standard deviation. The median
SSE of k-means++ was superimposed on these figures as a
reference, although k-means++ has no dependence on M .
Likewise, Figs. 1b, 1d, and 1f show the corresponding median
runtime for CL-AMP and CL-OMPR vs M/KN , where again
the result for k-means++ was superimposed. Because a low
runtime is meaningless if the corresponding SSE is very high,
the runtime was not shown for CL-AMP or CL-OMPR when
its SSE was more than twice that of k-means++.

Figure 1 shows that CL-AMP achieved a low SSE with
fewer measurements M than CL-OMPR. In particular, CL-
AMP required M ≈ 3KN to minimize the SSE, while
CL-OMPR required M ≈ 10KN . Also, the minimum SSE
achieved by CL-AMP was in most cases lower than that of
k-means++ and CL-OMPR. As we will see in Fig. 2, the SSE

10
0

10
1

50

100

150

200

250

300

350

400

450

M
e
d
ia

n
S

S
E

M / KN

CL-AMP

CL-OMPR

k-means++

(a) K = 5, N = 100

10
0

10
1

10
-1

10
0

10
1

10
2

M
e
d
ia

n
T

im
e

[s
e
c]

M / KN

CL-AMP

CL-OMPR

k-means++

(b) K = 5, N = 100

10
0

10
1

50

100

150

200

M
e
d
ia

n
S

S
E

M / KN

CL-AMP

CL-OMPR

k-means++

(c) K = 10, N = 50

10
0

10
1

10
0

10
1

10
2

M
e
d
ia

n
T

im
e

[s
e
c]

M / KN

CL-AMP

CL-OMPR

k-means++

(d) K = 10, N = 50

10
0

10
1

100

150

200

250

300

350

400

M
e
d
ia

n
S

S
E

M / KN

CL-AMP

CL-OMPR

k-means++

(e) K = 10, N = 100

10
0

10
1

10
0

10
1

10
2

10
3

M
e
d
ia

n
T

im
e

[s
e
c]

M / KN

CL-AMP

CL-OMPR

k-means++

(f) K = 10, N = 100

Fig. 1: Median sum-squared error and runtime vs M/KN .

performance of k-means++ can be improved (at the expense
of runtime) by increasing the number of replicates. Figure 1
also shows that CL-AMP was an order of magnitude faster
than CL-OMPR for all (K,N,M) under test. Meanwhile, CL-
AMP was approximately one order-of-magnitude slower than
k-means++, although the SSE achieved by CL-AMP was often
lower. A direct SSE-vs-runtime comparison is given below.

B. Performance versus Runtime

The previous experiment demonstrated CL-AMP’s ability
to minimize SSE faster and with fewer measurements than
CL-OMPR. However, the comparison with k-means++ was
inconclusive: k-means++ was faster but achieved a worse
SSE in many cases. We now describe a different experiment
that aimed to evaluate clustering performance versus runtime.
For clustering performance, we consider both training SSE
and classification error on test data. For the latter, training
data is used for cluster recovery and the estimated clusters
are used for minimum-distance classification of test data. To
control the performance and computational complexity of k-
means++, we allowed multiple replicates as well as training-
data subsampling. Details are provided in the sequel.

We first drew K = 30 random centroids of dimension
N = 20 under the previously described GMM. Then we

10
1

10
2

10
3

10
4

20

21

22

23

24

25

26
M

e
d
ia

n
Tr

a
in

S
S

E

Median Time [sec]

CL-AMP

CL-OMPR

k-means++ (512)

k-means++ (1024)

k-means++ (2048)

k-means++ (4096)

Fig. 2: Training sum-squared error vs runtime. Each k-
means++ trace corresponds to a different number of replicates.

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

BER

M
e
d
ia

n
C

la
ss

ifi
ca

tio
n

E
rr

o
r

R
a
te

Median Time [sec]

CL-AMP

CL-OMPR

k-means++ (512)

k-means++ (1024)

k-means++ (2048)

k-means++ (4096)

Fig. 3: Classification error rate vs runtime. Each k-means++
trace corresponds to a different number of replicates.

generated T = 104 random training samples from this GMM.
To recover clusters, CL-AMP and CL-OMPR were applied
with sketch length M , while k-means++ was applied with
random subsampling of the training set and multiple replicates.
We tested several sketch lengths M ∈ [KN, 100KN], k-
means++ sampling rates ∈ [0.56, 1], and k-means++ replicates
∈ [512, 4096], all logarithmically spaced. Finally, the resulting
training-data SSE was evaluated using the full training dataset.

The quality of the estimated centroids was also evaluated by
computing the error-rate of minimum-distance classification
of a test dataset (of size Ttest = 5 × 106, drawn from the
same GMM as the training data). Here, we used the Hungarian
algorithm to assign labels to the estimated centroids.

Figure 2 shows median training SSE versus runtime over
10 trials for each algorithm under test, while Fig. 3 shows
the corresponding median test error rate versus runtime. In

each CL-AMP and CL-OMPR trace, the different datapoints
correspond to increasing values of sketch length M , while
in each k-means++ trace, the different datapoints correspond
to increasing sampling rates for a fixed number of replicates
(specified in the legend). Figure 3 shows the corresponding
classification error rate, computed on the test set, as well as
the Bayes (i.e., minimum possible) classification error rate.

Figures 2 and 3 tell a similar story: to achieve near-optimal
training-SSE or classification error-rate with this GMM, CL-
AMP (with properly adjusted M) requires less runtime than
CL-OMPR or any variation of k-means++. Note that CL-AMP
is easily “tuned” by choosing M ≈ 5KN , while k-means++
is much more difficult to tune: it is not clear how to choose the
best combination of subsampling rate and number-of-replicates
to achieve both low SSE and low runtime. Note also that the
implementation of k-means++ is highly optimized while that
of CL-AMP is not, so further improvements may be possible
by optimizing the implementation of CL-AMP.

REFERENCES

[1] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, “Clustering
large graphs via the singular value decomposition,” Mach. Learn.,
vol. 56, no. 1-3, pp. 9–33, 2004.

[2] H. Steinhaus, “Sur la division des corps matériels en parties,” Bull. Acad.
Polon. Sci., vol. 4, no. 12, pp. 801–804, 1956.

[3] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognition Letters, vol. 31, pp. 651–666, June 2010.

[4] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proc. ACM-SIAM Symp. Discrete Alg., pp. 1027–1035,
2007.

[5] N. Keriven, A. Bourrier, R. Gribonval, and P. Perez, “Sketching
for large-scale learning of mixture models,” Jun 2016. (found at
arXiv:1606.02838).

[6] N. Keriven, N. Tremblay, Y. Traonmilin, and R. Gribonval, “Compres-
sive k-means,” Oct 2016. (found at arXiv:1610.08738).

[7] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proc. Asilomar Conf. Signals Syst. Comput., (Pacific
Grove, CA), pp. 40–44, 1993.

[8] E. M. Byrne and P. Schniter, “Sparse multinomial logistic regression via
approximate message passing,” IEEE Trans. Signal Process., vol. 64,
no. 21, pp. 5485–5498, 2016.

[9] M. Rudelson and R. Vershynin, “Hanson-Wright inequality and sub-
Gaussian concentration,” Electron. Commun. Probab., vol. 18, no. 82,
pp. 1–9, 2013.

[10] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing al-
gorithms for compressed sensing,” Proc. Nat. Acad. Sci., vol. 106,
pp. 18914–18919, Nov. 2009.

[11] S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” in Proc. IEEE Int. Symp. Inform. Thy.,
pp. 2168–2172, Aug. 2011. (full version at arXiv:1010.5141).

[12] M. Bayati and A. Montanari, “The dynamics of message passing on
dense graphs, with applications to compressed sensing,” IEEE Trans.
Inform. Theory, vol. 57, pp. 764–785, Feb. 2011.

[13] S. Rangan, A. K. Fletcher, V. K. Goyal, E. Byrne, and P. Schniter,
“Hybrid approximate message passing,” IEEE Trans. Signal Process.,
vol. 65, no. 17, pp. 4577–4592, 2017.

[14] R. Gatto and S. R. Jammalamadaka, “The generalized von Mises
distribution,” Stat. Method., vol. 4, pp. 341–353, 2007.

[15] C. M. Bishop, Pattern Recognition and Machine Learning. New York:
Springer, 2007.

[16] J. P. Vila and P. Schniter, “Expectation-maximization Gaussian-mixture
approximate message passing,” IEEE Trans. Signal Process., vol. 61,
pp. 4658–4672, Oct. 2013.

[17] N. Keriven, N. Tremblay, and R. Gribonval, “SketchMLbox : a
Matlab toolbox for large-scale learning of mixture models,” 2016.
http://sketchml.gforge.inria.fr.

	Introduction
	Sketched Clustering
	Contributions

	Compressive Learning via AMP
	High-Dimensional Inference Framework
	Approximate Message Passing
	SHyGAMP
	From SHyGAMP to CL-AMP
	Inference of zm
	Inference of cn

	Hyperparameter Tuning

	Numerical Experiments
	SSE Minimization
	Performance versus Runtime

	References

