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Abstract. ShEx (Shape Expressions) is a language for expressing con-
straints on RDF graphs. We consider the problem of SPARQL query con-
tainment in the presence of ShEx constraints. We first propose a sound
and complete procedure for the problem of containment with ShEx, con-
sidering several SPARQL fragments. Particularly our procedure consid-
ers OPTIONAL query patterns, that turns out to be an important frag-
ment to be studied with schemas. We then show the complexity bounds
of our problem with respect to the fragments considered. To the best of
our knowledge, this is the first work addressing SPARQL query contain-
ment in the presence of ShEx constraints.

1 Introduction

ShEx (or Shape Expressions) is intended to be an RDF constraint language [19].
It can be used to validate documents and communicate expected graph patterns.
Static analysis and query optimisation can make a considerable benefit from the
presence of schemas when used to infer satisfiability/unsatisfiabliity of queries
and relations between queries (such as containment and equivalence) by utilising
the additional information provided by the schemas.

In this work we investigate the SPARQL query containment with ShEx con-
straints. Given two SPARQL queries, and a set of ShEx constraints, our purpose
is to statically analyse such queries, namely determining the containment rela-
tion between them before being actually executed on the data.

For the fragments of SPARQL including OPTIONAL patterns, the contain-
ment of queries is normally investigated with the notion of subsumption [1]. A
solution mapping is a mapping from a set of variables to a set of values, thus
designating an answer for a query. A solution mapping σ1 is subsumed by an-
other solution mapping σ2 written as σ1 v σ2 if all the variables of σ1 are also in
σ2 and have the same mapping values. Given a set of mappings Ω1 (resembling a
SPARQL query solution), it is subsumed by another set of mappings Ω2 written
as Ω1 v Ω2 if for every σ1 ∈ Ω1 there exists σ2 ∈ Ω2 such that σ1 v σ2.

The consideration of ShEx constraints in query containment is important, be-
cause such constraints may affect the results of containment checking. Consider
the following two SPARQL query graph patterns:
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Q1: {?x :producer :p1 . ?x :feature "feature1"}
OPT {?x :feature "feature2" . ?x :expiryDate ?d}

Q2: {?x :producer ?y . ?x :feature "feature1"}
Without constraints, no containment relation holds between these two queries.

However, consider the following ShEx constraints defined for a 〈Product〉 node
type:

<Product> {
:name xsd:string ,

:expiryDate xsd:date ? ,

:producer @<Company> + ,

:feature xsd:string }
The previous ShEx shape definition means that a node of type “Product”

should have a name of type string, optionally have an expiry date, have at least
one producer which belongs to a another ShEx shape 〈Company〉, and have
exactly one feature of type string. Given that these ShEx constraints apply to
the data, we can deduce that a containment relation Q1 v Q2 holds between the
two queries. This is due to the constraint that a “feature” predicate is allowed to
occur only once, and thus in query Q1 the right hand side of the optional pattern
will never return results. In such case, we can deduce that the containment
relation Q1 v Q2 holds between the two queries.

There are several kinds of ShEx constraint violations that may lead to a new
conclusion about the containment of two queries. These include (1) cardinality
constraint violations, (2) basic data type constraint violations (like xsd:string,
xsd:data . . . ), and (3) ShEx type definition violations (like @〈Company〉 type).

Data on the web are getting larger, and distribution of data is getting more
applicable. Different data sources are often being managed by different author-
ities. The need of schemas becomes increasingly necessary in order to manage
the big amounts of data. While different sources in the same domain may share
the same vocabulary, their constraints on data may vary. While these slight dif-
ferences in data shapes may become a hassle for users to track individually, the
use of OPT patterns in SPARQL provides a way to ask for constraints that are
not necessarily applicable, and that is why the study of the optional fragment is
particularly interesting.

In this work we define a sound and complete procedure for containment of
SPARQL query fragments in the presence of a ShEx schema, based on the usage
of ShEx validators and query containment solvers that don’t consider any schema
constraints. We also study the complexity of the problem. The results vary from
NP-c to ΠP

2 -c according to the fragment considered. We also provide a higher
NEXP complexity bound for further fragment extensions (FILTERS, MINUS,
and property path patterns).

Paper Outline. In Sect. 2 we comment on the related works. In Sect. 3 we
introduce some preliminaries necessary for understanding the rest of the paper.
In Sect. 4 we define a query transformation function which is necessary for
the definition of the containment procedure. In Sect. 5 a sound and complete



containment procedure is given for different SPARQL fragments. In Sect. 6 we
derive complexity bounds of our problem. Finally, we conclude in Sect. 7.

2 Related Works

In [8], the authors proposed a schema language for edge-labeled data graphs
(like RDFs), and then studied the satisfiability of 3 different classes of query
languages (RPQs, NREs, and CRPQs) when such constraints are considered,
but this study did not include containment. In [10, 11] the authors studied static
analysis aspects of XPath using mu-calculus and Monadic Second-order Logic
respectively, then the authors provided in [12] a tool related to their studies.
XPath is a query language on tree structures while in our work SPARQL is
a query language on graphs, yet these works inspire our work for SPARQL
fragment extensions using logical formulas.

The work in [5] studied containment of PSPARQL, an extension of SPARQL
1.0 with paths and path constraints. In [14], the authors explored the complexity
of containment and evaluation problems for fragments of SPARQL 1.1 property
paths. The study in [18] provides complexity analysis for several fragments of
SPARQL. Additionally, in [16] the containment of well-designed OPT queries is
investigated. None of these works consider schemas in the study of containment.

The works in [4, 6, 7] study the containment problem with ontology languages
and entailment regimes (SHI, RDFS, OWL...). Ontology languages put con-
straints on data, like schemas, but also allows for entailment of implicit data
relations. The works on containment with ontology languages focus on entail-
ment regimes employed in these languages, but not on the fragments of SPARQL
with optional patterns which we want to consider.

For the works on ShEx, in [2, 20, 23] the expressiveness and validation com-
plexity of ShEx was studied. The work in [9] proposes an implementation of
shape expressions to RDF graphs.

With the deep static analysis of SPARQL queries - including containment -
on one side, and the emergence of schema languages for RDF (like ShEx) on the
other side, we find a value in investigating these targets in a common framework.

3 Definitions

3.1 SPARQL

SPARQL is an RDF query language and a W3C Recommendation, where RDF
is a directed, labeled graph data format for representing information in the web
[21, 15]. SPARQL contains capabilities for querying required and optional graph
patterns along with their conjunctions and disjunctions [22].

A SPARQL graph pattern is defined inductively from triple patterns. Given
disjoint infinite sets of IRIs - Internationalised Resource Identifiers - (I), blank
nodes (B), literals (L), and variables (V ), we define a triple pattern as an instance



of (I ∪B∪V )(I ∪V )(I ∪B∪L∪V ) denoted by IBV × IV × IBLV . A SPARQL
graph pattern q is defined inductively from triple patterns as follows:

q ::= t | q AND q′ | q UNION q′ | q OPT q′ | q MINUS q′ | q FILTER C
where t is a triple pattern and C is a condition or a conjunction and/or disjunc-
tion of conditions on variables.

In order to reference different SPARQL fragments later, we define them as
follows:

– BGP: This is the conjunctive fragment of SPARQL, i.e. the fragment that
only allows using the AND operator between triples.

– AND-OPT: The fragment of SPARQL allowing the AND and OPT oper-
ators only. We particularly consider the well-designed patterns within this
fragment (defined just after this list).

– AND-OPT-(UNION): The AND-OPT fragment extended with UNION on
the top level only (external).

– AND-OPT-(UNION)-FILTER: The AND-OPT-(UNION) fragment extended
with the FILTER operator. For this fragment we only consider filters that
are decidable for query satisfiability [24], which is a necessary requirement for
query containment, namely FILTER(bound,=, 6=c) and FILTER(bound, 6=
, 6=c). Where bound(?x) means that the variable ?x should be bound to a
value in the query results. =/ 6= are the equality/inequality relations be-
tween variables. 6=c is the inequality of variable with respect to a constant
belonging to I ∪ L.

– AND-OPT-(UNION)-PP: The AND-OPT-(UNION) fragment extended with
property path patterns from the SPARQL 1.1 syntax. These are regular ex-
pressions allowed in the predicate position.

– AND-OPT-(UNION)-MINUS: The AND-OPT-(UNION) fragment extended
with the MINUS operator which puts constraints on situations that must not
occur in the results.

Well-Designed OPT Patterns. Well-designed OPT patterns define a class of
OPTIONAL patterns that have several desired properties [17], such as evaluation
performance advantages.

A query q is well-designed if for every subpattern q′ = (q1 OPT q2) of q and
every variable x occurring in q, it holds that: if x occurs inside q2 and outside
q′, then x also occurs inside q1.

It is also shown in [17] that any well-designed graph pattern can be equiva-
lently rewritten in the normal form:
(. . . (t1 AND . . . AND tk) OPT O1) OPT O2) . . . ) OPT On) where each ti is a
triple pattern, and each Oj has the same form (also in normal form).

These normal forms can be represented as pattern trees as described in [16].
For example, a query of the form ((P1 OPT (P11 OPT P111 OPT P112))OPT P12)OPT P13,
where each Pi is a BGP, can be represented as a pattern tree as follows:

In our work, we use pattern tree representations of the queries in order to
study their containment with ShEx.



P1

P11 P12 P13

P111 P112

Fig. 1. Pattern tree example

3.2 ShEx

ShEx (or Shape Expressions) is intended to be an RDF constraint language.
Logical operators in Shape Expressions such as grouping, conjunction, disjunc-
tion and cardinality constraints, are defined to make as closely as possible to
their counterparts in regular expressions and grammar languages like BNF [20].
Shape Expressions correlate an ordered pattern of pairs of predicate and object
classes (called NameClass and ValueClass) and logical operators against an un-
ordered set of edges in a graph. For example, 〈Shape1〉 is a definition of a shape
in ShEx, where a ShEx document contains definitions of several shapes.
<Shape1> {
ex:name xsd:string ,

ex:phone xsd:string }
In the previous example, ex:name and ex:phone are NameClasses and xsd:string

is a ValueClass. This definition means that for a node belonging to this shape
there must strictly exist the predicates ex:name and ex:phone, each once. The
objects corresponding to these predicates must be of type xsd:string.

Abstract Syntax of ShEx. Given a finite set of edge labels Σ and a finite
set of types Γ , we define a shape expression e over Σ × Γ as follows: e ::= ε |
Σ × Γ | e∗ | (e“|”e) | (e“‖”e), where “|” is a disjunction, “||” is an unordered
concatenation, and “∗” is an unordered Kleene star. This definition also allows us
to further define as macros e? (optional), e+ (positive closure), and (Σ×Γ )([m;n])

(interval from m to n), which are all parts of the ShEx syntax. In the sequel we
write (a, t) ∈ Σ × Γ simply as a :: t.

A shape expression schema (ShEx), or simply schema, is a tuple S = (Σ,Γ, δ),
where Σ is a finite set of edge labels, Γ is a finite set of types, and δ is a type
definition function that maps elements of Γ to shape expressions e over Σ × Γ .
If the δ is not defined for some type t ∈ Γ , the default definition is δ(t) = ε.

Semantics of ShEx. [20] Semantically, an RDF graph is valid against a ShEx
schema if it is possible to assign types to the nodes of the graph in a manner
that satisfies the type definitions of the schema.

We assume a fixed graph G = (V,E) which resembles an RDF graph, and a
fixed schema S = (Σ,Γ, δ). A typing of G w.r.t. S is a function λ : V → 2Γ that
associates with every node of G a set of types.



Next, the conditions that a typing needs to satisfy are identified. Given a
typing λ and a node n ∈ V we define the neighborhood-typing of n w.r.t. λ as
bag over Σ × 2Γ as neighborTypingλG(n) = {|a :: λ(m) | (n, a,m) ∈ E|}.

Now, λ is a valid typing of S on G if and only if every node satisfies the type
definitions of its associated type i.e., for every n ∈ V , neighborTypingλG(n) ∈
δ(t), for all t ∈ λ(n).

4 Query Transformation

Query transformation is a process in which we rewrite a query, where the re-
sulting query is equivalent to the original query given that the ShEx constraints
hold on the data sets. Two queries are considered to be equivalent if they always
give the same execution results.

The resulting query transformations defined in this section has several utili-
sations, namely for optimisation purposes, especially that they are equivalent to
and smaller than the original queries. We use them in this work particularly for
defining containment in Sect. 5.

Before defining the transformation procedures, we give some preliminary def-
initions.

Definition 1. Given a set of triple patterns P , RDF(P ) is a function that
yields a set of RDF triples by replacing each variable in P by a fresh IRI. The
replacement is unique for each variable name.

According to the previous definition, there always exists a homomorphism
from the triples graph of P to the triples graph of P ′ = RDF(P ). In fact, P ′ is
an RDF data set that can be validated against a ShEx schema.

Definition 2. Given two sets of RDF triples D1 and D2 and a ShEx schema
S, we say that D2 is a complement of D1 w.r.t. S, if:

1. D1 ⊆ D2

2. D2 is valid w.r.t. S

Definition 3. Given a ShEx schema S, the minimals discarding ShEx schema
of S is given by the function MIN 0(S), and is defined by replacing all minimal
cardinality constraints of S by zeros. (i.e. all cardinality constraints [m,n], +
and 1 respectively, are replaced with [0, n], ∗ and ? (optional) respectively).

4.1 BGP Transformation

Query transformation of a BGP query is based on the RDF document validation.
RDF validation against ShEx is defined with its NP-complete complexity in [23].

Definition 4 (Query Transformation). For a BGP SPARQL query Q and
a ShEx schema S, the query transformation function TS is defined as follows:

TS(Q) =

{
Q, if RDF(Q) is valid w.r.t. MIN 0(S)

empty query, otherwise



The validation againstMIN 0(S) is due to the fact that the query triples do
not catch the complete data structure. Indeed, queries by nature are just partial
representations of the constraints on the data that should be extracted.

4.2 AND-OPT Transformation

We extend the BGP transformation to a more interesting SPARQL fragment for
our problem, the AND-OPT fragment. The results in this case will be a modified
AND-OPT query that is equivalent to the original query, by applying two steps:
(1) Eliminating non-valid OPT patterns, and (2) replacing some OPT operators
with AND operators.

For the step (1), if we find out that some OPTIONAL pattern will never
return results due to the ShEx constraints, the new query that results from this
transformation is by omitting this OPTIONAL pattern.

Consider the following SPARQL query:
Q: {:p1 :producer ?y} OPT {:p1 :review ?z}
and the following ShEx schema (a minimals discarding ShEx schema):
<product> {
:name xsd:string ? ,

:expiryDate xsd:date ? ,

:producer @<company> * ,

:feature xsd:string ? }
We consider two RDF triple sets for validation against the ShEx schema,

{:p1 :producer :y} which is valid, and {:p1 :producer :y. :p1 :review :z}
- the optional pattern with its parent - which is not valid. As a result of this
validation step, we rewrite the query by removing the optional pattern which
corresponds to the RDF triple set which is not valid, and thus we get:
Q′: {:p1 :producer ?y}

For step (2), we check if it is possible to replace some OPT operators with
the AND operator. Considering the pattern tree representation of a query this
operation can be described by uniting two directly connected nodes into one
node, one of which is a child node, and the other is a parent node.

To show this by example, consider the following query:
Q: {?x :name ?n} OPT {?x :phone ?p}
and the following ShEx shape:
<Person> {
:name xsd:string ,

:phone xsd:string }
According to this ShEx shape definition, we know that :name and :phone will

always occur together. Thus the right hand side of the OPT pattern will always
occur with the left hand side of it. We therefore deduce that the previous query
Q is equivalent to another query Q′ without an OPT pattern.
Q: {?x :name ?n. ?x :phone ?p}

Two nodes in a query pattern tree must be merged into one node (the par-
ent node), if and only if the triples of the child node will necessarily return
results whenever the parent node returns results. We apply this check on every



pair of of parent-child nodes in the query pattern tree in order to get the final
transformation of the query.

The transformations described in the latter examples for the AND-OPT
SPARQL fragment are given formally in Definition 6.

Definition 5. Given a pattern tree P, and a node n of P , we define RP(n) to
be the union of the set of triples of n and the set of triple of all its parent nodes
up to the root node.

Definition 6 (Query Transformation). For an AND-OPT SPARQL query
Q, its pattern tree representation P, and a ShEx schema S, the query transfor-
mation function TS is defined by the following steps:

1. For each node n of P, if RP(n) is not valid w.r.t.MIN 0(S), then eliminate
n and all its descendants from P. Let P ′ be the new pattern tree after the
validation of all the nodes of P.

2. For each pair of nodes n1 and n2 of P ′, such that n1 is the parent of n2, if it
is necessary for every complement of RDF(n1) to include the RDF triples
of RDF(n2) according to S, then merge n1 and n2 into one node. Let P ′′

be the new pattern tree obtained.

We define TS(P) = P ′′.

4.3 AND-OPT-(UNION) Transformation

For the AND-OPT SPARQL fragment extended with UNION at the top level,
the same procedure can be applied on each UNION pattern separately.

5 Query Containment with ShEx

In this section we show how SPARQL query containment with ShEx can be done
by benefiting from the transformations of Sect. 4.

We first apply the transformation procedure on the two queries to be checked
for containment based on a given ShEx schema. The resulting transformations
are then checked for containment without considering the ShEx document using
query containment solvers as the one proposed in [18]. If the containment of the
query transformations hold, then the containment of the original queries with
the consideration of ShEx holds.

We briefly describe the containment procedure - without ShEx, displayed in
the following lemma taken from [16]. The lemma provides the necessary and suf-
ficient conditions for the deciding containment of a well-designed OPT SPARQL
queries. The conditions are formulated in terms of pattern trees.

Lemma 1. Consider two well-designed pattern trees T1 and T2 with roots r1 and
r2, respectively. Then T1 v T2 if and only if for every subtree T ′1 of T1 rooted at
r1, there exists a subtree T ′2 of T2 rooted at r2 such that:

1. vars(T ′1 ) ⊆ vars(T ′2 ) , and



2. there exists a homomorphism from the triples in T ′2 to the triples in T ′1 that
is the identity over vars(T ′1 ).

We notice that a pattern tree containment relation T1 v T2 also yields the
query containment corresponding to these pattern trees (lets say q1 v q2) [16].

Definition 7. Given two queries q1 and q2, we define the relation q1 vS q2 to
mean that q1 v q2 holds in the presence of a ShEx schema S.

Theorem 1. Given two queries q1 and q2, and their corresponding transforma-
tions q′1 and q′2 according to a ShEx schema S, the containment relation q1 vS q2
holds if and only if q′1 v q′2 holds.

Proof. The soundness of our procedure is evident from the fact that the trans-
formations are equivalent to the original queries in the presence of the ShEx con-
straints. We use the empty schema as a transformation, or we eliminate parts
of the queries only when we are sure that these parts will not return results
according to the given schema.

For the completeness of the procedure, we prove it according to the corre-
sponding fragment for each case.

1. For the BGP SPARQL fragment, assume we have two BGP queries q1 and
q2 and their corresponding transformations q′1 and q′2 according to a ShEx
schema S. For the completeness of the procedure, our purpose now is to
prove that if q′1 6v q′2, then q1 6vS q2. For the case where q′1 is an empty
query, q′1 v q′2 always holds, since the empty query is contained in every
other query, and therefore the assumption condition can never happen. For
the case where only q′2 is an empty query, that means that also q2 will never
return results due to a violation to the ShEx rules. No query can be contained
in a query that does not return results except the empty query, and since we
know that q1 may return results due to the absence of any ShEx violation,
then q1 6vS q2 always holds. The final case is when both q′1 and q′2 are kept
exactly the same as q1 and q2. In the latter case, if q′1 6v q′2, then there exists
no homomorphism from q′2 to q′1. Given that the triples of q′1 don’t violate
the ShEx schema rules, then there exists a data set D which is a complement
of RDF(q′1) w.r.t. S. BGP query solving is based on homomorphism from
the set of query triple patterns to the set of RDF triples ([22]). A solution
for q1 necessarily exists in the proposed data set since the homomorphism
exists by our proposal. Now we assume that the same solution also holds for
q2 and conclude a contradiction. If the same solution holds for q2, then there
exists a homomorphism from its triples patterns to D. Since all variables of
q1 are replaced with fresh IRIs, then a homomorphism is also necessary to
hold from the triple patterns of q′2 to the triple patterns of q′1, and thus we
conclude a contradiction because this homomorphism is a sufficient condition
for deriving that the containment q′1 v q′2 holds (condition from [18]).

2. For the AND-OPT SPARQL fragment, assume we have two AND-OPT
queries q1 and q2 and their corresponding transformations q′1 and q′2 ac-
cording to a ShEx schema S. We show that for a transformation q′ of any



query q as proposed in Sect. 4, the containment q′ v q always holds. This
follows from the fact that our transformation includes only elimination of
optional parts of the query and transformation of other optional conditions
into necessary conditions (transformation of OPT operators into AND op-
erators). Both of the transformations make the query more restrictive in the
meaning that it eliminates some solutions but never adds solutions to the
original query. Assume q′1 6v q′2, our purpose is to show that q1 6vS q2. Since
q′1 6v q′2, then for some subtree T ′1 of q′1, there doesn’t exist a subtree of q′2
with the homomorphism condition of Lemma 1. On the other hand, there
exists a data set D which is a complement of RDF(T ′1 ) w.r.t. S. A solution
for q′1 necessarily exists in D. If this solution is also a solution for q′2, and
thus for q2, then a homomorphism must hold from T ′2 of q′2 to the D, and
thus there exists a homomorphism from T ′2 to T ′1 , that necessarily doesn’t
hold due to the fact that q′1 6v q′2, and therefore a contradiction is derived.

3. For the AND-OPT-(UNION) SPARQL fragment, the same proof holds as
for the AND-OPT fragment, except that instead of proposing complement
data set that has a solution for q1, leading to a contradiction when assuming
it to have a solution for q2, we alternatively propose multiple data sets,
each corresponding to a top level UNION part of the query, and deriving a
contradiction for each of the proposed data sets. ut

6 Complexity

In this section we study the complexity of SPARQL query containment with
ShEx with respect to different SPARQL fragments.

We show that the complexity varies from NP-complete to ΠP
2 -complete for

the SPARQL fragments BGP, AND-OPT, and AND-OPT-(UNION). We also
extend these fragments to include filter, property path patterns, and the MINUS
operator whose containment problem is in the NEXP time complexity class, yet
this is not shown to be an upper bound.

6.1 SPARQL AND-(OPT)-(UNION) Fragments

Theorem 2. Containment with ShEx for the SPARQL BGP fragment is NP-
complete.

Proof. The complexity of containment of the SPARQL BGP fragment is NP-
complete [3]. In the presence of ShEx constraints, a sufficient procedure to check
containment is to first validate the BGP of each of the considered queries against
the ShEx document. RDF validation against ShEx is NP-complete. An invalid
query will return no results, and thus is contained in any other query. Otherwise,
the normal containment procedure (without ShEx) is applied. Then the BGP
fragment containment with ShEx is also in NP.

To show the NP-hardness of the problem, we argue that containment with
ShEx is at least as hard as containment without ShEx which is shown to be



NP-complete for the considered fragment. A reduction from the containment
problem to the containment with ShEx problem can be easily shown by assuming
an empty schema. ut

Theorem 3. Containment with ShEx for the well-designed OPT SPARQL frag-
ment is NP-complete.

Proof. In [18], the authors studied the problem of containment of well-designed
OPT SPARQL queries. The authors provide a procedure for solving the problem,
and show the complexity of the problem to be NP-complete for this fragment.

The procedure we follow for deciding query containment of this SPARQL
fragment with ShEx is based on both the query transformation described pre-
viously in this work, and the query containment procedures of [18]. Given two
SPARQL queries in the well designed OPT fragment, their containment with
ShEx can be decided by the two following steps:

1. Transform both queries. The results of these transformations are two new
queries equivalent to the original queries respectively.

2. The two new resulting queries from the first step are used as an input of
a general SPARQL containment solver (like the solver described in [18] for
this fragment).

Validation of an RDF document against a ShEx document is NP-complete
[23]. Step (1) of the procedure is a series of ShEx validations each of which is in
NP. The number of validation considered is polynomial since for a given query
pattern tree, the validation occurs on all possible branches, rather than subtrees.
While the number of subtrees is exponential in a pattern tree, the number of
branches is polynomial. As each branch is validated independently, so the result
of each branch validation doesn’t affect the ones of other branches. Step (2),
which is the query containment problem, is NP-complete for the well-designed
OPT fragment. Thus the complexity of containment with ShEx is in NP for this
fragment.

To show the NP-hardness of the problem, we argue that containment with
ShEx is at least as hard as containment without ShEx which is shown to be
NP-complete for the considered fragment. A reduction from the containment
problem to the containment with ShEx problem can be easily shown by assuming
an empty schema. ut

Theorem 4. Containment with ShEx for the well-designed OPT SPARQL frag-
ment extended with top level UNION is ΠP

2 -complete.

Proof. In [18], the authors also studied the problem of containment of the AND-
OPT-(UNION) fragment. The authors provide a procedure for solving the prob-
lem, and show the complexity of the problem to be ΠP

2 -complete.
The procedure we follow to for deciding query containment of this fragment

with ShEx is similar to the one followed for the AND-OPT fragment, except
that in step (2) we use the solver designed for the corresponding fragment. The
usage of such solver will rise the complexity to ΠP

2 .



To show the ΠP
2 -hardness of the problem, we argue that containment with

ShEx is at least as hard as containment without ShEx which is shown to be
ΠP

2 -complete for the considered fragment. A reduction from the containment
problem to the containment with ShEx problem can be easily shown by assuming
an empty schema. ut

6.2 SPARQL AND-OPT-(UNION)-FILTER/PP/MINUS Fragment

For extending the query containment problem with ShEx to the SPARQL frag-
ments including filters, property path patterns, and the MINUS operator, we
use an imitation of our procedures with first-order logic (FOL). The basic idea
is based on generating an FOL formula corresponding to our procedure and
checking its validity with existing FOL theorem provers.

We use a decidable fragment of FOL with only 2 variables, known as FOL2,
whose satisfiability (and thus validity) is NEXP-complete [13]. An advantage of
this method is that it allows to benefit from the highly optimised implementa-
tions of theorem provers.

A drawback of the problem solving with FOL is that the Kleene closure can
be expressed only on atomic ShEx rules, but not on compound rules, which
restricts the ShEx fragment allowed. We notice that we can avoid the Kleene
closure limitation by adopting the normal procedure and using FOL particularly
for the fragment extensions, and giving FOL validity feedback for the original
procedure which supports Kleene closure everywhere.

Table 1 summarises our complexity results for the containment problem stud-
ied for the different fragments.

Table 1. Containment complexity

SPARQL Fragment No ShEx ShEx-All

BGP [Chandra, 1977] NP-c NP-c
AND-OPT [Pichler, 2014] NP-c NP-c

AND-OPT-(UNION) [Pichler, 2014] ΠP
2 -c ΠP

2 -c
AND-OPT-(UNION)-Minus [FOL2] NEXP [FOL2] NEXP
AND-OPT-(UNION)-FILTER [FOL2] NEXP [FOL2] NEXP
AND-OPT-(UNION)-PP [FOL2] NEXP [FOL2] NEXP
AND-OPT-(UNION)-FILTER-PP-MINUS [FOL2] NEXP [FOL2] NEXP

We currently have two working implementation prototypes, one directly based
on the procedures described in this paper utilising existing ShEx validators and
containment solvers, and another implementation based on the FOL imitation of
the problem, with the drawback and advantages of each as mentioned previously.

7 Conclusion

In this paper we studied the problem of SPARQL query containment with ShEx
constraints, and the OPT patterns were shown to be particularly interesting



to this study, due to its flexibility with constraints and the absence of similar
studies in the literature. We showed how transformation of queries can be done
based on customised validation procedures. Then we proposed a procedure for
the problem of containment with ShEx, and the complexity related to the AND-
OPT SPARQL fragment was shown to be NP-complete, and that of the AND-
OPT SPARQL fragment extended with external UNION to be ΠP

2 -complete.
We finally mentioned that other fragment extensions can be adopted with FOL.

As a perspective for future work, we manage to adopt modified versions of the
same techniques provided in this work for query constructs other than the SE-
LECT. Other SPARQL constructs that can be adopted with further discussions
include INSERT, DELETE, and CONSTRUCT.
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16. Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. Static

analysis and optimization of semantic web queries. pages 89–100, 2012.
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