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Piecewise-linear (PWL) canard dynamics
Simplifying singular perturbation theory in the canard
regime using piecewise-linear systems

Mathieu Desroches, Soledad Fernández-Garcı́a, Martin Krupa, Rafel Prohens, and
Antonio E. Teruel

Abstract In this chapter we gather recent results on piecewise-linear (PWL) slow-
fast dynamical systems in the canard regime. By focusing on minimal systems in
R2 (one slow and one fast variables) and R3 (two slow and one fast variables), we
prove the existence of (maximal) canard solutions and show that the main salient
features from smooth systems is preserved. We also highlight how the PWL setup
carries a level of simplification of singular perturbation theory in the canard regime,
which makes it more amenable to present it to various audiences at an introductory
level. Finally, we present a PWL version of Fenichel theorems about slow manifolds,
which are valid in the normally hyperbolic regime and in any dimension, which also
offers a simplified framework for such persistence results.

Key words: piecewise-linear systems, singularly perturbed systems, canard solu-
tion, slow manifolds

1 Introduction

Singularly perturbed systems of ordinary differential equations are written in stan-
dard form as
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ε ẋ = ε
dx
dt

= f(x,y,ε), ẏ =
dy
dt

= g(x,y,ε), (1)

where (x,y) ∈ Rq×Rs are the state variables, f and g are sufficiently smooth func-
tions and 0< ε� 1 is a small parameter. From the expression above, the coordinates
of x and y evolve with a different speed, provided that ε is small enough. Thus, the
coordinates of x are called fast variables, while the coordinates of y are called slow
variables. The time variable t is referred to as the slow time.

Changing the time t to the fast time τ = t/ε , system (1) is written as

x′ =
dx
dτ

= f(x,y,ε), y′ =
dy
dτ

= εg(x,y,ε). (2)

Systems (1) and (2) are differentiably equivalent and their phase portraits are the
same. Both dynamics exhibit an slow-fast explicit splitting. In this setting, systems
(1) and (2) are called slow-fast systems. Often, system (1) is referred to as the slow
system whereas system (2) is called the fast system.

Fenichel’s geometric theory [11] allows to analyse the dynamics of the perturbed
system (1) by combining the behaviour of the singular orbits, corresponding to the
limiting cases given by ε = 0. In particular, by setting ε = 0 in equations (1) and
(2), we get respectively the differential algebraic equation (DAE)

0 = f(x,y,0), ẏ = g(x,y,0), (3)

typically referred to as the slow subsystem or reduced problem, and the fast subsys-
tem or layer problem

x′ = f(x,y,0), y′ = 0. (4)

The reduced problem consists of an s-dimensional vector field defined on the
critical manifold S = {(x,y) ∈ Rq+s | f(x,y,0) = 0}, which is assumed to be an
s-dimensional manifold. Regarding the layer problem, its dynamical behaviour
takes place along q-dimensional fibers which are formed by considering y constant.
Hence, both limiting problems have dimension lower than that of the perturbed sys-
tem. Moreover, the critical manifold S plays a key role in both limiting problems :
it is the phase space of the reduced systems and it corresponds to singular points of
the layer problem. A singular point (x0,y0) ∈S is said to be normally hyperbolic
if the eigenvalues of the Jacobian matrix fx(x0,y0,0) have nonzero real part.

The flow of the reduced problem can be analysed by differentiating the equation
of the critical manifold S with respect to the slow time t, which yields

ẋ =±f−1
x fyg(x,y,0), ẏ = g(x,y,0), (5)

where fx (resp. fy) denotes the differential of f with respect to the fast (resp. slow)
variables. Then, system (5) is clearly singular at non-hyperbolic points (in particular
in the fold set F ), which can be remedied by rescaling time by a factor ±det(fx)
(owing to Kramer’s rule). This brings the so-called desingularised reduced system
(DRS)

ẋ = fyg(x,y,0), ẏ =±det(fx)g(x,y,0), (6)
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which by construction is regular everywhere including in the fold set, and has the
same orbits as the reduced system with simply an opposite direction along the re-
pelling sheet S r of the critical manifold.

Consider S0 ⊂S a compact set such that every point in S0 is a normally hyper-
bolic singular point. From Fenichel’s Theorems [11], the submanifold S0 persists
as a locally invariant slow manifold Sε , of the perturbed system (1) for every small
enough ε . Moreover, the restriction of the flow of the perturbed system (1) to the
slow manifold Sε is a small smooth perturbation of the flow of the reduced problem
(3). Fenichel also proved that there exists an invariant foliation with basis Sε with
the dynamics along each fiber being a small smooth perturbation of the flow of the
layer problem. See also Jones, [18], for a survey on geometric singular perturbation
theory (GSPT).

In Section 2, we show that these results apply when the assumption of smooth-
ness of the vector field is relaxed. In particular, we state a variant of Fenichel theo-
rem in the context of piecewise-linear slow-fast systems, with slow dynamics given
by a linear differential equation and a critical manifold given by the graph of a
piecewise linear (PWL) function. A key aspect of this result is that, due to the PWL
setting, explicit formulation are obtained for canonical linear slow manifolds.

Following Fenichel results, under normal hyperbolicity conditions, orbits of the
perturbed system (1) are composed by slow and fast segments. The former ones
evolving close to the flow defined over the slow manifold, while the latter ones
are following the flow defined over the fast fibers. A general question is: what does
remain of this dynamical behaviour when normal hyperbolicity is lost? in particular,
at points (x0,y0) ∈ S where the critical manifold is folded, that is, at which the
determinant of the Jacobian matrix fx(x0,y0,0) vanishes. Typically, when the critical
manifold S folds, then the fold set (a point or a curve in the most examples treated
here) separates branches with different stability properties. Consequently, attracting
(resp. repelling or saddle-type) branches of S perturb to attracting (resp. repelling
or saddle-type) slow manifolds S a

ε ( resp. S r
ε or S s

ε ). Then, in the vicinity of
the fold set of S , conditions can be obtained for slow manifolds with different
stability to connect, hence allowing for the existence of orbits which closely follow
an attracting slow manifold S a

ε , pass close to fold set of S , and subsequently follow
closely a repelling slow manifold, S r

ε . These orbits are called canards and they play
a crucial role in explaining complicated slow-fast dynamics organising the transition
between stationary and relaxation regimes in planar systems (see Section 3) or the
transition between different oscillatory regimes (see Sections 4).

The aforementioned conditions for slow manifolds with different stability to con-
nect, are obtained by the linear analysis of certain equilibria of the DRS (6), namely
those lying on the fold set F and hence satisfying det(fx) = 0. Such equilibria are
called folded singularities and they appear due to the (singular) time rescaling which
transforms (5) into (6). Note that folded singularities are not equilibria of the slow
flow. Therefore, depending on the local behaviour in a neighbourhood of the folded
singularity, trajectories starting on S a may cross them in finite time and continue
flowing along S r, which is a singular canard behaviour. These singular canards al-
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low for the existence of canard solutions in the original system for small enough
ε > 0; see Section 4 for details.

Seminal and classical papers on canards in planar systems are those of Benoı̂t et
al. [3], Dumortier and Roussarie [10], and Krupa and Szmolyan [21, 22]. Regard-
ing canards in higher- dimensional systems with (at least) two slow and one fast
variables, see [2, 4, 28]; a recent survey can be found in [8].

Singularly perturbed PWL systems exhibiting canard dynamics are considered
in Section 3 and 4 in the two and three dimensional cases with two slow variables,
respectively; a brief summary of initial results on an example of three-dimensional
case with two fast variables (in the context of bursting) is briefly mentioned in the
conclusion section. Through these examples one can conclude that the PWL frame-
work is able to reproduce all salient dynamical features present in the smooth case,
both qualitatively and quantitatively, while allowing for a substantial level of simpli-
fication. What is more, these examples also suggest elements that naturally appear
in the PWL setting and help revisiting unsettled questions from the smooth case. To
paraphrase M. Diener in [9], the natural biotope of canards is that of PWL vector
field. At least, it seemingly appears as the simplest environment in which one can
understand the essence of canard dynamics while dropping all unnecessary refine-
ments.

2 Canonical Fenichel slow manifolds

Under suitable conditions (most importantly, normal hyperbolicity of the unper-
turbed manifold), Fenichel theory guarantees the existence of slow manifolds per-
turbing from the critical manifold, when ε > 0 is sufficiently small. These slow
manifolds are locally invariant by the flow of the smooth system (1); however, just
like centre manifolds, Fenichel slow manifolds are not necessarily unique. A proof
of these results can be found in [18, 19].

In this section a version of Fenichel Theorem is stated in the context of slow-fast
PWL systems. In particular, we consider slow-fast PWL systems with s slow and 1
fast variables, of the form {

x′ =−|x|+ eT
1 y,

y′ = ε(ax+Ay+b), (7)

where A = (ai j)1≤i, j≤s is an s× s real matrix, e1 is the first element of the canonical
basis in Rs, a = (ai)

T
1≤i, j≤s and b = (bi)

T
1≤i, j≤s are vectors in Rs, and the superscript

T stands for the transposed vector. Note that system (7) is linear on each side of the
switching manifold {x = 0}.

The critical manifold associated with system (7) is S = {(x,y) : |x| = eT
1 y}. It

is formed by the union of the two s-dimensional manifolds
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Fig. 1 (Color) 3D representation of the critical manifold S of system (7). From the fast subsystem,
it can be noticed that the attracting branch of the critical manifold S a corresponds to the half plane
contained in the half space {x > 0}, the repelling branch of the critical manifold S r corresponds
to the half plane contained in the half space {x < 0}, and the fold manifold F corresponds to the
segment contained in the switching manifold {x = 0}.

y2

x

y1

F

S a
S r

S a = {(x,y) : x > 0, x = eT
1 y},

S r = {(x,y) : x < 0, x =−eT
1 y},

(8)

connected by the (s−1)-dimensional fold set F = {(0,y) : eT
1 y = 0}, see Figure 1

for a three-dimensional representation.
The critical manifold S is normally hyperbolic, except in the fold set F ; the

branch S a is attracting and the branch S r is repelling. Since the vector field de-
fined by (7) is smooth in each of the half–spaces {x > 0} and {x < 0} (it is linear),
Fenichel theory applies locally to each of these systems. Therefore compact sub-
manifolds of the two branches S a and S r persist under the flow of system (7) as
locally invariant slow manifolds for small enough ε > 0.

A strong gain of using the PWL setting is that one can prove the persistence of the
entire manifolds S a and S r as locally invariant slow manifolds, and not just com-
pact submanifolds; we denote these slow manifolds by S a

ε and S r
ε , respectively.

Since these manifolds are contained in the half-spaces where the system is linear,
their dynamical behaviour can be deduced from the spectra of the corresponding
matrices, that is,

B+
ε =

(
−1 eT

1
εa εA

)
and B−ε =

(
1 eT

1
εa εA

)
, (9)

respectively.
Following [27], we can obtain explicit equations for these slow manifolds by pro-

ceeding as follows. The spectrum of B±ε decomposes into two parts: one composed
by a real eigenvalue of O(1) and the other one formed by s eigenvalues (counted
with multiplicity) of O(ε). We consider the spectra of both B+

ε and B−ε simultane-
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Fig. 2 (Color) 3D representation of the attracting slow manifold S a
ε and the repelling slow mani-

fold S r
ε of system (7).

y2

x

y1

S r
ε

S a
ε

ously (see [27, Lemma 3]) and write the eigenvalues as

λ±1 =∓1+O(ε) and λ±k = β±k ε +O(ε2), k = 2, . . . ,s+1.

The eigenvalue λ±1 is responsible for the fast dynamics whereas the s eigenvalues
λ±k are responsible for the slow dynamics. Consequently, for small enough ε > 0
the slow dynamics in the half–space {x > 0} is restricted to the half-hyperplane
defined by the generalized eigenvectors associated with the eigenvalues {λ+

k }s+1
k=2.

From [27, Lemma 5], we conclude that the slow manifold in {x≥ 0} is given by the
half–hyperplane

S a
ε =

{
(x,y) ∈ Rn : x≥ 0, x = eT

1 (εA−λ+
1 I)−1

(
ε

λ+
1

b+y
)}

, (10)

see [27] for more details. As mentioned above, the fast dynamics in {x > 0} is
organized by the fast negative eigenvalue λ+

1 . Therefore, S a
ε is an attracting slow

manifold.
Similarly, the slow dynamics in the half–space {x < 0} is restricted to the half-

hyperplane defined by the generalized eigenvectors associated with the eigenvalues
{λ−k }s+1

k=2 and given by

S r
ε =

{
(x,y) ∈ Rn : x≤ 0, x = eT

1 (εA−λ−1 I)−1
(

ε
λ−1

b+y
)}

. (11)

In this case, the fast dynamics is organized by the positive eigenvalue λ−1 , and hence,
S r

ε is a repelling slow manifold.
A 3-dimensional representation of the slow manifolds is shown in Figure 2. The

slow manifolds in the 3-dimensional PWL system have been explicitly computed
in [26].
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One can prove that S a,r
ε are Fenichel slow manifolds and that they possess sim-

ilar properties as Fenichel slow manifolds in smooth systems. Therefore, one can
extend Fenichel’s theorem to the case of PWL system, as stated below; see [26, 27]
for a proof of this result.

Theorem 1 (Fenichel theorem for PWL systems). For ε > 0 and sufficiently small,
the manifolds S a,r

ε satisfy the following :

a) S a,r
ε is locally invariant under the flow of system (7).

b) The restriction of the flow of system (7) to S a,r
ε is a regular perturbation of the

flow of the reduced problem defined on the critical manifold S .
c) S r

ε is a repelling slow manifold and S a
ε is an attracting slow manifold.

d) Given a compact subset Ŝ a (resp. Ŝ r) of S a (resp. S r), there exists a compact
subset Ŝ a

ε (resp. Ŝ r
ε ) of the slow manifold S a

ε (resp. S r
ε ) which is diffeomorphic

to Ŝ a (resp. Ŝ r) such that dH(Ŝ a
ε ,Ŝ

a) = O(ε) (resp. dH(Ŝ r
ε ,Ŝ

r) = O(ε)),
where dH denotes the Hausdorff distance.

2.1 Simplification in the PWL setting

Contrary to the original Fenichel’s Theorem, Theorem 1 offers an explicit expres-
sion for S a,r

ε . These slow manifolds are canonical in the sense that they are uniquely
defined, they are the only linear slow manifolds as well as the only ones on which
the dynamics has no influence from the fast eigenvalues. In other words, solutions
on any other invariant manifold contain a component of the form et λ±1 . Hence, as
soon as this component becomes dominant, the orbit is not part of a slow manifold
any more. That is why all other (nonlinear) slow manifolds are only locally invari-
ant. Hence, S a,r

ε are canonically slow and, to a certain extent, they are the “best”
Fenichel manifolds that one can hope for in any singularly perturbed system.
This is a major difference with the smooth case and the existence of such unique
linear slow manifolds offers a key advantage. Indeed, their explicit equations (10)
and (11) are very useful to locate maximal canard solutions, which are specific or-
bits passing from the attracting slow manifold S a

ε to the repelling slow manifold
S r

ε ; see Sections 3 and 4 below and [6, 26, 27] for details.

2.2 A necessary perturbation to obtain canard dynamics

Within the PWL setup presented in the previous section, one can entirely reproduce
relaxation oscillations that are typical in van der Pol (VDP) type systems. One only
needs to consider in place of the cubic critical manifold of the VDP system, the
graph of a piecewise-linear function with three pieces; in other words, one approxi-
mates the quadratic fold points of the VDP critical manifold by corners. Then, relax-
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ation oscillations can be generated and their properties are perfectly similar to those
generated by the VDP system. Moreover, when the slow nullcline is non-vertical,
then the resulting PWL caricature of the VDP system is typically called the McKean
model and it has been thoroughly studied in the relaxation regime since the early
1970s [23]. In fact, the McKean model is a caricature of the so-called FitzHugh-
Nagumo model, which amounts to the VDP system where the slow nullcline is not
vertical and gives a simple phenomenological model of action potential generation
in neurons [15, 25]. However, when attempting to reproduce canard dynamics from
the VDP system, approximating the quadratic fold points of the associated critical
manifold by corners is not sufficient and a refinement is required in order to recover
the slow passage from the attracting side to the repelling side of the critical mani-
fold, as we explain below. Indeed, since the late 1990s with the work of Arima et
al. [1], it is known that three linearity zones are needed to approximate locally the
van der Pol system in order to get canard dynamics. In order words, the PWL criti-
cal manifold must locally have three segments in order to correctly approximate the
quadratic critical manifold of the van der Pol system and open the possibility for
canard cycles to appear.

We now consider the following slow-fast PWL systems,{
x′ =−|x|δδ + eT

1 y,
y′ = ε(ax+Ay+b), (12)

where the generalized absolute value function |x|δδ is defined as follows

|x|δδ =

−x− (m+1)δ− x≤−δ−,
mx −δ− ≤ x≤ δ+,
x+(m−1)δ+ δ+ ≤ x,

and δδ = (δ−,m,δ+) is a continuous function of ε such that δδ (0) = 0.
Since the function |x|0 coincides with the absolute value function, the layer and

the reduced problems associated with system (12) are identical to those associated
with system (7). Thus, the critical manifold S also coincides with that defined for
system (7).

For ε > 0 small enough, system (12) is a slow-fast PWL system, locally linear
in the three closed regions {x≤−δ−}, {−δ− ≤ x≤ δ+}, and {x≥ δ+}, which we
will refer to from now on as the left, central and right zones, respectively. Therefore,
the dynamics of system (12) in the lateral regions can be deduced from the spectra
of the matrices (9), whereas in the central region it is deduced from the spectrum of
the matrix

B0
ε =

(
m eT

1
εa εA

)
.

As previously shown, the slow behaviour in the lateral regions is reduced to linear
manifolds, which are defined by the eigenvectors associated with the slow eigenval-
ues. Therefore, the canonical slow manifolds in the lateral regions are parallel to
those defined in (10) and (11), namely we have
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S a
ε =

{
(x,y) ∈ Rn : x≥ δ+, x = eT

1 (εA−λ+
1 I)−1

(
ε

λ+
1

b+y
)
− (1−m)δ+

λ+
1

}
,

(13)

S r
ε =

{
(x,y) ∈ Rn : x≤−δ−, x = eT

1 (εA−λ−1 I)−1
(

ε
λ−1

b+y
)
− (1+m)δ−

λ−1

}
.

Note that the eigenvalue λ+
1 is the fast one in the right zone {x ≥ δ+} and the

eigenvalue λ−1 is the fast one in the left zone {x≤−δ−}.
Regarding the dynamics in the central region, every non zero eigenvalue of B0

ε is
O(εα), α ∈R. Hence, in order for the flight time in the central region not to diverge
to infinity as ε → 0, we assume that δ+ and δ− have greater order in ε than the
smaller non-zero eigenvalue. Recent work has allowed to refine the results from [1]
and find that the optimal of the central zone is O(

√
ε) [6].

Arima and co-authors have computed numerically small (so-called headless) ca-
nard cycles in a PWL approximation of the van der Pol system similar to (12) as
well as large canard cycles (so-called canards with head) in a four-zone system.
They gave arguments to justify the need for the three-piece critical manifold in or-
der to make sense of a repelling slow manifold and, hence, find canards. However,
they did not develop GSPT arguments proving the existence of canards in this planar
context and they did not investigate three-dimensional canard systems either. This
has been done more recently in [6, 13]. We summarise the results obtained in these
two papers in the next two sections, which will then be entirely focused on canards
in slow-fast PWL systems.

3 Canard explosion

Canard dynamics can be loosely described as a complicated mix of local passage
(near non-normally hyperbolic regions of the critical manifold) and global return
(or reinjection) mechanism, which allows for recurrent dynamics. Note that need
not be part of recurrent dynamics. Their main feature is this local passage and it is
well approximated by linear dynamics, as we shall see below. In the smooth case,
the dynamics during this local passage is organised by the Weber equation, obtained
(after a coupled of changes of variables) by linearising the system along the so-
called “weak canard” (axis of rotation for trajectories during this local passage).
It is interesting to notice that solutions to the Weber equation can be expressed in
terms of parabolic cylinder functions, while in the three-dimensional PWL slow-fast
system that we propose in Section 4, solutions in the central zone (approximating
the local passage) are organised by invariant cylinders. In this context, canard- in-
duced mixed-mode oscillations (MMOs, see Section 4) are a combination of small-
amplitude oscillations (SAOs) near a fold curve, a passage near a repelling slow
manifold and a global return that reinjects trajectory on an attracting slow manifold.
In this context, the SAO part can be purely explained by linear dynamics. As al-



10 M. Desroches, S Fernández-Garcı́a, M. Krupa, R. Prohens and A. E. Teruel

ready mentioned, generally speaking canards arise due to connections between an
attracting slow manifold and a repelling slow manifold. These are rare events and
the associated connecting orbits are called maximal canards; other canard solutions
exist in an exponentially small neighbourhood of maximal canards. It turns out that
connections between two such slow manifolds can be perfectly reproduced with
PWL systems, however with an additional linearity zone in between them so as to
make the passage and, hence, the connection possible. Therefore, by decomposing
the dynamics of canard systems in phase space into several linear zones, one cannot
only reproduce all canard phenomena —planar, three-dimensional, canard-induced
MMOs, canard-induced bursting trajectories, etc..— but also properly zoom into
these intricate dynamics and extract their essential features. Overall, one can say
that the PWL setup offers a simpler alternative to method of “geometric desingular-
isation” (blow-up) studied in smooth canard systems [10, 21, 22, 28]. To this extent,
the small zone in between the attracting region and the repelling region can be seen
(in a loose sense) as a blow-up of the corner that one would naturally use to approx-
imate, in the relaxation regime, the quadratic fold of the van der Pol oscillator with
a PWL system.

In this section, we summarise the results published in [13] about canard cycles
in planar slow-fast PWL systems. We consider the following planar version of sys-
tem (12) {

x′ =−|x|δδ + y,
y′ = ε(a− x), (14)

for the parameter vector

δδ =

(
ε

1−b
,−b,

ε
1+b

)
,

where |b|< 2
√

ε and a ∈ (−ε/(1−b),ε/(1+b)).
System (14) possesses exactly one equilibrium point which is in central zone

namely, pC = (a,−ab)T . The topological type of this equilibrium depends on pa-
rameter b : if b = 0, the equilibrium point pC is a center; If b < 0 (resp. b > 0) it is
a stable (resp. unstable) focus.

Using the method described in Section 2, we can compute the canonical slow
manifolds S a,r

ε associated with system (14) and obtain formulas equivalent to (13),
namely,

S a
ε =

{
(x,y) ∈ R2 : x≥ ε

1+b
, y =− ε

λ+
2
(x−a)+a− ε

}
,

(15)

S r
ε =

{
(x,y) ∈ R2 : x≤− ε

1−b
, y =− ε

λ−2
(x−a)−a− ε

}
.
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Fig. 3 (Color) (a) Continuum of canard periodic orbits bounded by the canonical slow mani-
folds S a,r

ε (adapted from [13, Figure 4]). (b) Stable (headless) canard limit cycle together with
the canonical slow manifolds and two trajectories approaching the canard cycle in forward time
(adapted from [13, Figure 5]).

Here λ+
2 < 0 and λ−2 > 0 are the slow eigenvalues of the matrices B+

ε and B−ε defin-
ing the lateral linear systems, equivalent to (9).

When parameters a and b are zero, system (14) is reversible with respect to the
involution x 7→ −x and the time change t 7→ −t. In such a case, the slow manifolds
S a,r

ε are also images of one another under this involution and this time change.
Therefore, they can connect by forming a maximal canard. The maximal canard
splits the phase plane into two regions: one region contains the equilibrium point
and is foliated by periodic orbits (see Figure 3), the other one is fully foliated by
unbounded orbits ( [13, Theorem 4.1]).

By perturbing this non-generic situation, it is possible to find a curve a = ã(b,ε)
in parameter space, with Taylor series expansion at b = 0 given by

a = ã(b,ε) =
(π

4
√

ε +O(ε)
)

b+O(b3), (16)

such that, the maximal canard orbit persists ( [13, Theorem 4.2 and Prop. 4.4]).
By breaking the connection that corresponds to the maximal canard, one can

prove the existence of a family of canard cycles in system (14), as stated below
(see [13, Theorems 4.3 and 4.5] for a proof).

Theorem 2. For each point (0,y0) with y0 > 0, there exists U ⊂ R2 containing
(b,ε) = (0,0), such that, for (b,ε) ∈ U ∩{ε > 0}, there exists a curve a(b,ε) in
parameter space, with the same first terms in its Taylor series expansion as ã(b,ε),
such that system (14) possesses a canard cycle passing through (0,y0). Moreover,
the family of canard limit cycles is asymptotically stable if b > 0 and unstable if
b < 0.

The main conclusion one can draw from the results stated so far is that canard
phenomena in the PWL framework and in the classical (smooth) context have very
similar features. In particular in the way they are born: a Hopf bifurcation in the
smooth case, and a two-zonal Hopf-like [16,17] bifurcation in the PWL case, which
occurs when the real equilibrium point enters the central zone from either of the
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Hopf-like bifurcation
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Fig. 4 (Color) (a) Bifurcation diagram for b > 0. Consider ε > 0 fixed and a > 0 in the rightmost
sector. By decreasing a, a Hopf-like bifurcation takes place, giving rise to a small stable limit cycle.
The limit cycle is growing as a decreases. When a reaches the grey-shaded region, the limit cycle
becomes a canard cycle. Along the leftmost line the family of canard cycles ends at a maximal
canard connection. (b) Explosive branch of limit cycles obtained by direct simulation when varying
parameter a for fixed ε = 0.1 and b = 0.009944. (adapted from [13, Figure 6]).

lateral zones, by suitably moving parameter a. If we then consider b = 2b̃
√

ε , then
we obtain the following :
− if b > 0, a two-zonal supercritical Hopf-like bifurcation takes place when the
equilibrium enters the central zone from the right, at

aR
H(b,ε) =

ε
1+b

= ε +O(ε3/2);

− if b < 0, a two-zonal subcritical Hopf-like bifurcation takes place when the equi-
librium enters the central zone from the left, at

aL
H(b,ε) =−

ε
1−b

=−ε +O(ε3/2).

In both cases, subsequently to the Hopf-like bifurcation, the amplitude of the two-
zonal limit cycle grows linearly in the two regions until it becomes a three-zonal
limit cycle. Then, the third linear system affects dramatically the dynamics and the
limit cycle starts to grow very rapidly, explosively (in terms of parameter variation),
as it becomes a canard. While a increases within an exponentially small range, the
amplitude of the canard cycle increases by an O(1) amount until the a-value where
the maximal canard occurs, ã(b,ε); see (16). Past the maximal canard, the limit
cycle disappears. Figure 4 presents the bifurcation diagram corresponding to the
case b > 0.
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4 Folded singularities and their canards

Canards have been also extensively studied in systems with more than one slow
and one fast variables. In particular, much is known about maximal canards in the
context of three-dimensional systems with two slow variables where they appear
through the presence of folded singularities, which are the equivalent to the 3D
setting of canard points in VDP type systems; see [2, 4, 8, 28]. This section presents
a summary of results recently published in [6] about folded singularities in 3D PWL
slow-fast systems.

We consider the following PWL slow-fast system x′ = |x|δδ − y,
y′ = ε(p1x+ p2z),
z′ = ε p3

(17)

which then corresponds to system (12) after the change of variable x 7→ −x and with

a =

(
−p1

0

)
, A =

(
0 p2
0 0

)
, b =

(
0
p3

)
,

and δδ = (δ ,0,δ ) for a given δ > 0.
Given that system (17) can be recasted as system (12) for suitable values of ma-

trix coefficients, we can readily apply the Fenichel analysis performed on this latter
system and conclude that system (17) possesses canonical Fenichel slow manifolds
S a,r

ε given by equations (13). Slow-fast systems of this form are minimal three-
dimensional systems with two slow variables displaying canard dynamics. Minimal
here means that the z-dynamics is a simple slow drift. Therefore system (17) can be
seen as a two-dimensional canard (VDP type) system where the parameter control-
ling the slow nullcline moves slowly. Such systems were first studied in [2] where
conditions for connections between attracting and repelling slow manifold, that is,
for maximal canards, were obtained in link with the presence of special points lo-
cated along the fold curve and called folded singularities. These special points arise
due to the existence of a non-normally hyperbolic set (the fold set) on the critical
manifold, and they are defined in the singular limit, from the flow of the reduced
system (3) (also referred to as the slow flow). Indeed, typical points on the fold set
are jump points in the sense that the slow flow is directed towards the fold set on
both sides (attracting and repelling) of such points without being defined at these
points; this is because the slow flow is typically singular on the fold set. When per-
turbing in ε > 0, these points give rise to relaxation dynamics. However, one can
find algebraic conditions for which points on the fold set at which the slow flow
is not singular and has the same direction on both sides, hence allowing for a pas-
sage from one side of the critical manifold to the other. These special points are
folded singularities (or folded equilibria) and they can be obtained as true equilibria
of the DRS (6), which has the same trajectories as the slow flow but with opposite
orientation on the repelling side; therefore, an equilibrium of the DRS corresponds
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to a point of the reduced system at which the slow flow crosses from S a to S r.
When switching on ε with a small-enough positive value, these points give rise to
canard dynamics : “true” canards if the trajectory goes from attracting to repelling
and “false” (or faux) canards when the trajectory goes in the opposite direction. De-
pending on the topological type of the equilibrium point of the DRS on the fold set,
one has folded equilibria of folded, saddle, focus, etc., type; see [8] for details on
folded singularities and associated maximal canards.

In order to find maximal canards due to folded singularities (essentially of node
and saddle type) in PWL slow-fast systems like (17), we first have to be more precise
on the size of δ relative to ε so as to match an important result from the smooth
case, namely that the number of maximal canards that exist for small enough ε
near a folded singularity, does not depend on the specific value of ε . In particular
in the folded-node scenario where multiple maximal canard can appear with both
segments along S a

ε and S r
ε and small-amplitude oscillations (SAOs) in the fold

region. The maximal number of SAO determines the type of canard solution and
does not depend upon the specific value of ε . By construction, the system that we
consider in the central zone is linear and the angular velocity is constant, hence the
number of oscillations that trajectories make in this zone is obtained by considering
the time it takes to go from one boundary of this zone to the other. This give a
formula involving both δ and ε and forces a particular relationship between the
two in order for this value to be independent of ε . Namely, δ has to scale like

√
ε;

more precisely, we find that δ has to be equal to π
√

ε for which the maximal rotation

number µ is then
p1
√

p1

|p2 p3|
. This is a key result as it fixes the optimal size of the central

zone in order to match results from the smooth case, that is, the optimal distance
between S a

ε and S r
ε in order to find connections (maximal canards) entirely similar

to those found in smooth slow-fast systems. We find that this optimal distance is
O(
√

ε), which interestingly agree with the well-known result from the smooth case
allowing to extend the Fenichel slow manifold up to a similar distance to the fold set
before establishing conditions for them to intersect along maximal canards (using
blow-up); see [4, 21, 28].

Once we have the correct scaling for the size of the central zone, we can obtain
conditions for maximal canards to exist in the folded-node and in the folded-saddle
cases, and verify that we have a complete similarity with these cases in smooth sys-
tems. This result is gathered in the following proposition, whose proofs are detailed
in [6].

Proposition 1. Consider system (17) with p3 > 0, δ = π
√

ε and ε small enough.
Assuming that different maximal canards have different flight times, the following
statements hold.

a) Maximal canards γ are reversible orbits.
b) If p1 > 0 and p2 < 0, for every integer k with 0≤ k ≤ [µ], where µ is the maxi-

mal rotation number, there exists a maximal canard γk intersecting the switching
plane {x=−δ} at pk = (−δ ,yk,zk) where
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Fig. 5 (Color) Canonical slow manifolds and selected maximal canards (only central segment
shown) with 0, 1, 2 and 3 SAOs in panels (a) to (d), respectively; γ0 is then the strong canard, and
γi the ith secondary canard (i = 1..3). Also shown are the switching planes at {x =±δ}. [modified
from [6, Figure 4.2]]

yk =−
((

k+
1
2

)
p2 p3√

p1
+ p1

)
πε

3
2 − p2 p3ε2 +O(ε

5
2 ),

zk =−
(

k+
1
2

)
p3√
p1

π
√

ε +O(ε).

(18)

Moreover, γk turns k times around the weak canard γw.
c) If p1 > 0 and p2 > 0, there exists a unique maximal canard γ0 intersecting the

switching plane at p0 = (−δ ,y0,z0) where the coordinates y0 and z0 satisfy equa-
tion (18) with k = 0.

d) If p1 < 0, there are no maximal canards.

This result establishes the existence of maximal canards near folded singularities
of system (17) that are qualitatively and quantitatively similar to those found in the
smooth case [8]. In the case of a folded saddle, only one maximal canard persists
for small enough ε > 0; near a folded node, many more do and, except for the
simplest one called the strong canard, all other maximal canards have SAOs in the
central zone and they are called secondary canards. In order to characterise these
maximal canards, one can write a series expansion in ε . However, we can exploit
the PWL structure a bit further and exhibit “selected” maximal canards by taking
special values of δ (within the correct scaling), each special δ -value giving rise to
one selected maximal canard for which the series expansion is exact and all terms
but the very first few vanish. We show four examples of such exact maximal canard
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solutions in Figure 5, for four specific values of δ selecting the strong canard and the
first three secondary canards, respectively. This is one more aspect of simplification
brought about by the PWL framework and that could potentially be exploited in
applications.

The above results enable a full comparison between three-dimensional smooth
and PWL slow-fast systems in terms of number and geometry of maximal canard
solutions near both folded-node and folded-saddle singularities. However, it does
not address the question of what are folded singularities in the PWL context, that is,
how to define them in systems (17). This was the other main result from [6], where
we introduce a strategy in order to identify the equivalent of folded singularities
for three-dimensional PWL slow-fast systems with two slow variables. In brief, the
main issue is to properly define the slow flow —for the ε = 0 limit of the fast-time
system obtained from (17) by a time rescaling as described in the introduction— and
exhibit conditions for singular trajectories passing from S a to S r, that is, singular
canards which all intersect at the folded singularity. The linearity zone in question
is of course the central zone, which we take to be of size δ = O(

√
ε) in order to

keep similar properties as in the smooth case. However, this implies that δ → 0 as
ε → 0 and therefore the central zone shrinks to the switching planes in the singular
limit, hiding information about the slow flow and, hence, about folded singularities.
In order to remedy this, we artificially keep the central zone open in the singular
limit and consider inside the ε→ 0 limit of the flow defined in there for ε > 0. This
limiting flow allows us to find conditions, depending on p1, p2 and p3, to obtain
singular phase portraits entirely compatible to those of smooth singular systems near
folded-node, folded-saddle and folded-saddle-node singularities, hence allowing to
define the equivalent of these points in the PWL context; see [6, Section 4.4] for
details.

Finally, we can also highlight the level of simplification brought by the PWL
setting in this three-dimensional context. As explained above, we can “select” exact
maximal canard solutions by appropriately choosing the value of δ within the cor-
rect scaling in ε . This offers almost for free maximal canards, of any type (strong
or secondary), with a simple and explicit time parametrisation only depending on
system parameters and ε . This is substantial gain from the smooth case, where no
such explicit canards are available. We anticipate that this could be of potential in
applications as maximal canards form boundaries between different activity regimes
and, hence, a direct analytical access to them could help to understand and control
such a dynamical system. Another gain obtained from the PWL setting in this three-
dimensional case is to be able to revisit unresolved questions from the smooth case.
As explained in [6], we could prove with very simple arguments that the so-called
“weak canard” associated with a folded node —a solution that plays the role of ro-
tation axis for secondary canards and whose existence as a maximal canard was not
proven in smooth system— is in fact not a maximal canard. Indeed, we can com-
pute explicitly the perturbation for small ε > 0 of the rotation axis defined in the
central zone (in which the dynamics in restricted to the cylindrical leaves of a foli-
ated structure) and verify that this trajectory enters the left zone at an O(ε) distance
to the canonical slow manifold, which makes it impossible for this trajectory to be
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Fig. 6 (Color) Robust MMO solution γ of the three-dimensional slow-fast PWL system (17) with
added linear terms in the z-equation and a fourth piece on the critical manifold, in order to ensure
a global return mechanism on top of the local passage through a folded node. Also shown are the
critical manifold S as well as the so-called weak canard (axis of rotation) γw. [modified from [6,
Figure 5.1]]

a maximal canard since for that to happen it would need to be exponentially close
to the canonical slow manifold. Given the total parallel of the canard structure in
system (17) compared to smooth minimal systems for folded nodes, we conjecture
that this result of the non-existence of this special trajectory as a maximal canard is
also valid in the smooth context. The second question that we could revisit from the
smooth concerns the possibility for SAOs near a folded-saddle singularity, which
was not reported in previous studies and has been developed in the smooth case in
an independent paper soon to appear in [24]. This result came naturally and easily
from the PWL setting.

As an opening towards future work, we close this section by mentioning the pos-
sibility for constructing robust MMO systems by using the local dynamics previous
defined and analysed, near folded nodes. It suffices to add a fourth linearity zone,
immediately to the left zone of system (17), that is, adding a fourth piece to the
previous critical manifold so that the new one has a corner line in the new switching
plane; see Figure 6 panel (a). This is because one only needs a relaxation segment
during the global return. Then, adding to the z-equation of system (17) suitable lin-
ear terms creates a global return mechanism that re-injects the trajectory near the
right attracting part of the critical manifold so that it can pass again near the folded
node while making SAOs. Direct simulation of this extended system indicated that
one indeed obtains an MMO limit cycle whose SAOs are organised by the folded
node. This is only a numerical example and we plan to prove the existence of such
MMOs as well as investigate their bifurcation structure in future work.
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5 Summary and perspective

In this chapter, we have presented a compendium of recent results on PWL slow-fast
systems displaying canard solutions, both in the planar and the three-dimensional
cases, with more general results on Fenichel slow manifolds, valid in any dimen-
sions. Our work [6, 13, 26, 27] summarised here demonstrates that one can recover
all essential results from the smooth case while gaining a substantial level of simpli-
fication in the way objects are defined and in their essential properties. This ground
work has allowed us to construct minimal slow-fast systems in the PWL setup pos-
sessing maximal canard solutions by using a mix of local passage near the equiva-
lent of the fold set and globally defined slow manifolds. These results can be used
to construct complex oscillations using PWL vector fields adequately designed. We
have shown the case of an MMO system with canard-induced behaviour in Fig-
ure 6. Another gain of the PWL setting is to be able to better control a given system
through a more quantitative knowledge of its dynamics, which we have applied
to a four-dimensional model of secreting neuron demonstrating the use of this ap-
proach [12,14]. We have also obtained preliminary results on canard-induced burst-
ing oscillations, that is, in the context of slow-fast systems with one slow and two
fast variables. In [5], we constructed minimal PWL slow-fast systems in order to
reproduce a spike-adding canard explosion and all salient features of square-wave
bursting organised by canard solutions [7]. Surprisingly, we proved that this sce-
nario could not be obtained in such a minimal setup with the assumption of continu-
ity of the vector field across all linearity zones. This is a first step into investigating
canard-induced complex oscillations of bursting type; ongoing and future work will
involve looking at other forms of bursting with PWL systems, in particular elliptic
bursting, whose understanding is a key stage towards studying canard phenomena
within fast oscillations, namely, torus canards [20]. This case is interesting given
that numerous questions are still open in the smooth case and, hence, where we be-
lieve that the PWL framework could once more prove useful with its simplification
power without altering the essential dynamics.
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3. Benoı̂t, E. and Callot, J. L. and Diener, F. and Diener, M.: Chasse au canard. Collect. Math.

32, 37–119 (1981)
4. Brøns, M., Krupa, M., Wechselberger, M.: Mixed mode oscillations due to the generalized

canard phenomenon. Fields Institute Communications 49, 39–63 (2006)
5. Desroches, M., Fernández-Garcı́a, S., Krupa, M.: Canards in a minimal piecewise-linear

square-wave burster. Chaos 26(7), 073,111 (2016)
6. Desroches, M., Guillamon, A., Ponce, E., Prohens, R., Rodrigues, S., Teruel, A.E.: Canards,

folded nodes, and mixed-mode oscillations in piecewise-linear slow-fast systems. SIAM Re-
view 58(4), 653–691 (2016)

7. Desroches, M., Kaper, T.J., Krupa, M.: Mixed-mode bursting oscillations: Dynamics created
by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos
23(4), 046,106 (2013)

8. Desroches, M. and Guckenheimer, J.M. and Krauskopf, B. and Kuehn, C. and Osinga H. M.
and Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Review
54, 211–288 (2012)

9. Diener, M.: The canard unchained or how fast/slow dynamical systems bifurcate. The Math-
ematical Intelligencer 6(3), 38–49 (1984)

10. Dumortier, F. and Roussarie, R. : Canards cycles and center manifolds. Mem. Amer. Math.
Soc. 557, 1131–1162 (1996)

11. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J.
Differential Equations 31, 53–98 (1979)

12. Fernández-Garcı́a, S., Desroches, M., Krupa, M., Clément, F.: A multiple time scale coupling
of piecewise linear oscillators. application to a neuroendocrine system. SIAM J. Appl. Dyn.
Syst. 14(2), 643–673 (2015)

13. Fernández-Garcı́a, S., Desroches, M., Krupa, M., Teruel, A.E.: Canard solutions in planar
piecewise linear systems with three zones. Dyn. Syst. A.I.J. 31, 173—197 (2016)

14. Fernández-Garcı́a, S., Krupa, M., Clément, F.: Mixed-mode oscillations in a piecewise linear
system with multiple time scale coupling. Phys. D 332, 9–22 (2016)

15. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane.
Biophys. J. 1(6), 445–466 (1961)

16. Freire, E. and Ponce E. and Rodrigo. F. and Torres, F.: Bifurcation sets of continuous piecewise
linear systems with two zones. J. Bifur. Chaos Appl. Sci. Engrg. 8, 2073–2097 (1998)

17. Freire, E. and Ponce E. and Torres, F.: Hopf-like bifurcations in planar piecewise linear sys-
tems. Publ. Mat. 41, 135–148 (1997)

18. Jones, C. K. R. T.: Geometric Singular Perturbation Theory. Springer Berlin/Heidelberg
(1995)

19. Kaper, T.: Systems theory for singular perturbation problems. In: Analyzing Multiscale Phe-
nomena Using Singular Perturbation Methods, R. E. O’Malley, Jr. and J. Cronin, editors, Pro-
ceedings of Symposia in Applied Mathematics, vol. 56, pp. 8–132. Amer. Math. Soc. (1999)

20. Kramer, M.A., Traub, R.D., Kopell, N.J.: New dynamics in cerebellar purkinje cells: torus
canards. Physical review letters 101(6), 068,103 (2008)

21. Krupa, M. and Szmolyan, P.: Extending geometric singular perturbation theory to nonhyper-
bolic points-fold and canard points in two dimensions. SIAM J. Math. Anal. 33, 286–314
(2001)

22. Krupa, M. and Szmolyan, P.: Relaxation oscillations and canard explosion. J. Differential
Equations 174, 312–368 (2001)

23. McKean, H.P.: Nagumo’s equation. Advances in Mathematics 4(3), 209–223 (1970)
24. Mitry, J., Wechselberger, M.: Faux canards. In revision (2017)



20 M. Desroches, S Fernández-Garcı́a, M. Krupa, R. Prohens and A. E. Teruel

25. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve
axon. Proc. IRE 50(10), 2061–2070 (1962)

26. Prohens, R., Teruel, A.E.: Canard trajectories in 3d piecewise linear systems. Discrete Contin.
Dyn. Syst. 33(3), 4595–4611 (2013)

27. Prohens, R., Teruel, A.E., Vich, C.: Slow-fast n-dimensional piecewise-linear differential sys-
tems. Journal of Differential Equations 260, 1865–1892 (2016)

28. Wechselberger, M. : Existence and bifurcation of canards in R3 in the case of a folded node.
SIAM J. Appl. Dyn. Syst. 4, 101–139 (2005)


