
HAL Id: hal-01651940
https://hal.inria.fr/hal-01651940

Submitted on 29 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

marmoteCore: a Markov Modeling Platform
Alain Jean-Marie

To cite this version:
Alain Jean-Marie. marmoteCore: a Markov Modeling Platform. VALUETOOLS: Performance Eval-
uation Methodologies and Tools, Dec 2017, Venice, Italy. �10.1145/3150928.3150960�. �hal-01651940�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132781603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01651940
https://hal.archives-ouvertes.fr

marmoteCore: a Markov Modeling Platform

Alain Jean-Marie
Université Côte d’Azur – Inria

Alain.Jean-Marie@inria.fr

ABSTRACT

We present the marmoteCore software project, an open en-
vironment for modeling with Markov chains. This platform
aims at providing the general scientific user with tools for
creating Markov models and accessing the many solution al-
gorithms available for their analysis. We describe its object-
oriented architecture, some of its presently available features,
and we discuss through examples how existing software can
be interfaced with it.

CCS CONCEPTS

• Mathematics of computing → Markov processes;
Solvers; • Networks → Network performance modeling ;Net-
work performance analysis;

KEYWORDS

Markov modeling, software environment

ACM Reference Format:
Alain Jean-Marie. 2017. marmoteCore: a Markov Modeling Plat-

form. In Proceedings of 11th EAI International Conference on
Performance Evaluation Methodologies and Tools (VALUETOOLS

2017). ACM, New York, NY, USA, 6 pages. https://doi.org/10.

1145/3150928.3150960

1 INTRODUCTION

Modeling with Markov chains is an activity common to many
fields of science and engineering. Interacting particle systems
of Physics, genome evolution models of Biology, epidemic
models of Medicine, population models of Ecology, queuing
systems of Operations Research, Petri nets and stochastic
model checking formalisms, all those popular models are
based on Markov chains. Monte-Carlo simulation of Markov
chains are commonly used for producing samples of distribu-
tions of combinatorial objects, physical systems etc.

Despite this practical importance, there exists no software
environment providing the general scientific user with, at the
same time, a collection of ready-to-use well-known models

This research was funded by the French National Research Agency
under grant ANR-12-MONU-00019, project “MARMOTE” (MAR-
kovian MOdeling Tools and Environments), https://wiki.inria.fr/
MARMOTE/Welcome. The author is also affiliated to LIRMM, Uni-
versité de Montpellier/CNRS.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

VALUETOOLS 2017, December 5–7, 2017, Venice, Italy

© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6346-4/17/12.
https://doi.org/10.1145/3150928.3150960

and general modeling constructions and solution methods,
all accessible using an uniform programming interface.

marmoteCore is the prototype of such a platform. It con-
sists in a programming library1with an object-oriented point
of view, that allows programmers to create Markov models
and “solve” them by using many available algorithms. These
solvers are often embedded algorithms or applications writ-
ten by third parties. Another feature of the library is the
availability of ready-made Markov models of several levels
of generality, with adapted solution methods.

What is not marmoteCore. The intent of the project is
not to program anew all methods that already exist for cre-
ating or analyzing Markov chains. The idea is not either
to develop an integrated modeling and analysis tool: this
sort of functionality is offered by Workflow Management Sys-
tems (WMS, see Section 5.4) or integrated platforms such as
DTK.2

The purpose of this document is to demonstrate the poten-
tialities of marmoteCore’s architecture. This is not a program-
ming guide, yet several code excerpts will give a flavor of the
way programs are written with this library. Indeed, while still
being in development, marmoteCore is mature enough so as
to be usable in practice.

The paper is organized as follows. Section 2 presents the
general purpose and architecture of the software. Section 3
presents the core of the programmer’s interface. In Section 4
we describe the principal methods of analysis currently avail-
able. In Section 5, we discuss the way marmoteCore interacts
with existing scientific software. We conclude with our plans
for the future in Section 6.

Acknowledgment. The existence of marmoteCore owes a
lot to the contribution of Issam Rabhi, Emmanuel Hyon and
Hlib Mykhailenko. The author wishes to acknowledge their
contribution to the architecture and the code of the software.

2 MAIN CHARACTERISTICS

2.1 Background

The idea of providing users with software environments to
help them realize their modeling experiments is, of course,
not original. The most popular mathematical modeling envi-
ronments, such as Matlab, Scilab, Mathematica, Maple, R,
Sage, all provide packages with functions specialized to fami-
lies of models (e.g. Matlab’s SimuLink for system modeling),
or analysis techniques (e.g. statistical packages).

To this day however, there does not exist standard pack-
ages specifically devoted to modeling with discrete space

1Available at http://marmotecore.gforge.inria.fr.
2http://dtk.inria.fr/

https://doi.org/10.1145/3150928.3150960
https://doi.org/10.1145/3150928.3150960
https://wiki.inria.fr/MARMOTE/Welcome
https://wiki.inria.fr/MARMOTE/Welcome
https://doi.org/10.1145/3150928.3150960
http://marmotecore.gforge.inria.fr

VALUETOOLS 2017, December 5–7, 2017, Venice, Italy Alain Jean-Marie

Markov chains, considered as entities richer than simple ma-
trices. In the particular context of performance modeling,
the list of software maintained at [6] is typical of the fact
that there is a large variety of solutions techniques adapted
to specific models or families of models, but also that there is
no uniform presentation or unique access point to these tools,
that would help the newcomer to apply one to his/her needs.
On the other hand, analysis tools are sometimes presented
as “packaged” behind a graphical user interface, as were pio-
neers like GreatSPN, Tangram-II, and are modern tooks like
Java Modeling Tools, CosyVerif, OpenAlea, to name just a
few. In some cases, these tools and their advanced algorithms
can hardly be used outside of their application context.

We believe there is a need for libraries giving access to
efficient numerical algorithms at a lower programming level.

2.2 The general purpose of marmoteCore

The development of the marmoteCore software pursues sev-
eral objectives simultaneously. On the one hand, it aims at
providing to the general scientific user a “modeling environ-
ment” for Markovian systems. This environment should pro-
vide at the same time an access to basic models of the litera-
ture (an thus serve as a repository of models, together with
their “classical” results), and an access to state-of-the-art
solution algorithms. Through a programming interface, this
Markov user should be able to use marmoteCore’s library as
“routine” in a scientific project.

In the practice of Markov modeling for the performance
evaluation of concrete situations, it may happen that the
modeler defines a family of parametric models and develops
a specific experimental setup centered around this specific
family. In that case, modeling with the aid of a graphical
interface, or developing a set of ad-hoc scripts is convenient.
In other situations, and especially in other fields of science,
“solving” a Markov chain is just a subroutine in a much larger
process involving statistical estimation, learning, decisions,
etc. In those situations, providing solution methods through
an API is a requirement of the end user.

At a second level, the environment should also be useful
to Markov developers who are working on advanced solution
methods, be they generic or adapted to specific classes of
Markov models. marmoteCore will then be used as a library
of algorithms as well as benchmark cases, and will serve as
an experimental platform for comparing the performance of
methods. It would then be seen as some middleware, pro-
viding a communication between some generic scientific soft-
ware or some experiment management environment (e.g. a
WMS) and solution algorithms/programs.

In coping with these simultaneous objectives, the main
challenge is to produce a framework as open and flexible as
possible, in order to welcome software contributed by exter-
nal parties, while at the same time allowing the general user
to use their favorite modeling language/software.

2.3 Architectural choices

2.3.1 Object-oriented organization. The objectives of the
project make the choice of object-oriented programming al-
most obvious. Object-oriented languages give the possibility
of designing high-level abstractions for mathematical con-
cepts, representing objects with common properties. Yet,
through the mechanism of inheritance, the user has the flex-
ibility of controlling the implementation of specific instances
of the model. The organization of marmoteCore relies a lot
on hierarchies of models, and polymorphism. We illustrate
the power of this idea in Section 3.

We have chosen the C++ language, partly to ease up the in-
tegration of legacy code available in C or C++. The first phase
of the development, presented here, consisted in the devel-
opment of a solid code base demonstrating the potentialities
of the architecture. This choice is consistent with the longer-
term objectives of the project: in a second phase, we will
make the library available as packages, plugins or libraries
to other languages/ platforms. The most popular ones (R,
Python, Sage, ...) indeed all provide a way to incorporate
functions written in C++.

2.3.2 Separation between the core and packages through
wrapping. The idea that marmoteCore should provide a core
of objects and functionalities, and give access to more func-
tionalities through wrapping of packages, comes from the
following factors. On the one hand, there exists multiple in-
compatible data formats for models (typically, the matrix
representation of Markov generator) and results of analyses
(distributions, trajectories, etc.). On the other hand, there
exists a wealth of software programmed in a variety of lan-
guages, and it is out of question to re-program all these ap-
plications.

A solution is to provide a small number of high-level ab-
stractions that are common to any Markov model, and group
them into a “core” which can be seen as an exchange hub.
The core should be able to handle Markov models in vari-
ous formats and call solution methods from different sources.
This is done using three principal paradigms: (1) native pro-
gramming within the core, using marmoteCore objects; (2)
reusing methods already programmed, typically C or C++;
(3) wrapping of external calls to separate applications. The
latter usually consists in a) generating a file suitable for some
external application; b) execute this application through a
“system call”, directing the output to some other file; c) pars-
ing of results into marmoteCore. We explain in Section 5 how
these techniques are used concretely.

3 THE MARMOTECORE INTERFACE

The interface of marmoteCore is based on only four principal
abstractions: MarkovChain, TransitionStructure, Marmote-
Set and Distribution. These high-level classes are intended
to be specialized for specific purposes. We present now their
principal features: attributes and functionality, and give ex-
amples of this specialization.

marmoteCore: a Markov Modeling Platform VALUETOOLS 2017, December 5–7, 2017, Venice, Italy

timeType type ;

MarmoteSet* state space ;

TransitionStructure* generator ;

DiscreteDistribution* initDistribution ;

Figure 1: Attributes of the MarkovChain class

3.1 Class MarkovChain

Obviously, the class MarkovChain is the central one for a
Markov modeling software. Technically however, as it ap-
pears from Figure 1, it is just a container for the descriptive
elements: a state space, a transition structure and an initial
distribution. Those are described in the following sections.
The class has a large number of methods, which are reviewed
in Section 4.

3.1.1 Implementations: a hierarchy of Markov Chains. The
principal novelty and full potential of the software resides
in its organization in a hierarchy of concepts. Markov Chain
and Transition Structure objects in particular can be orga-
nized from the most specific to the most generic.

A target hierarchy for Markov chains in the marmoteCo-

re environment is displayed in Figure 2 (for continuous-time
chains: a similar hierarchy exists for discrete-time ones). It
illustrates the project to populate the environment with

• standard generic models from the theory, such as
– Markovian counting processes: Poisson processes, In-

terrupted Poisson processes (IPP), Markov-Modula-
ted Poisson processes (MMPP), Markov Additive
Processes, Galton-Watson models, Urn models;

– Standard Markov chains: two-state chains, random
walks (birth-death in continuous time) in one and
many dimensions, with constant or state-dependent
rates, etc.;

• classes of models with recognized structure such as
“Quasi-birth death” or “Poisson Systems” [1], etc.;

• models with specific scientific applications, including:
– nucleotide replacement models of Biology: Jukes-Can-

tor, Kimura, Felsenstein, Tamura-Nei, etc. [5];
– interacting particle models of Statistical Physics, like:
Asymmetric Exclusion Processes (ASEP), Contact
Processes, Ising systems, etc. [9];

– models from Stochastic Operations Research, includ-
ing Markov-modulated queues, Jackson and BCMP
networks, or G-Nets.

This proposal is by no means exhaustive, and can be
adapted to host more “high level” modeling paradigms (Sto-
chastic/Timed Petri Nets, Stochastic Automata Networks,
Stochastic Process Algebras) as well as “low level” models
with few parameters and strong structure stemming from
various fields: population models, epidemics, etc.

Figure 3 illustrates the use of polymorphism, that enables
to use, for some model in the hierarchy, methods that have
been attached to models higher in the hierarchy. In this
toy example, several ways of computing or approximating

the stationary distribution are used. This example also il-
lustrates that the same functionality can (and should) be
offered with several implementations.

3.2 Class MarmoteSet

The MarmoteSet class implements discrete sets of states, with
elementary objects such as integer intervals, and elementary
constructions such as Cartesian products and unions.

3.2.1 Functionalities. The principal methods of Marmote-
Set objects are represented in Figure 4.3

Methods Index() and DecodeState() provide the two-
way maps from possibly complex state spaces, represented
as vectors of numbers, to a linear numbering of states. They
are necessary since numerical methods usually involve the
manipulation of arrays with a standard numbering of en-
tries. In some sense, they are also sufficient to implement
functionalities using state spaces.

Methods FirstState() and NextState() respectively set
some state vector to the conventional “initial” state of the
set, and transform this state vector into the following state in
the conventional order. Together with IsFirst() which tests
equality of a state with the initial state, they are enough to
enumerate all states of some set, as shown in Figure 7.

3.2.2 Implementation. Currently implemented sets inclu-
de MarmoteInterval, the standard integer interval, Marmote-
Box, its multidimensional extension, BinarySequences, the
representation of {0, 1}N suitable for many models in com-
puter science and statistical physics, and more complex ge-
ometries such as Simplex and BinarySimplex.

3.3 Class TransitionStructure

The TransitionStructure class is an abstraction for the la-
beled state-to-state transitions that are common to discrete-
time and continuous-time Markov chains. The mathematical
representation of this concept is the matrix, with the usual
convention that origin states are rows and destination states
are columns.

3.3.1 Functionalities. The principal methods/functionali-
ties for this object are listed in Figure 5. There are basic
methods for constructing the structure: setting and accessing
the entries. A somewhat advanced access to the structure is
through method TransDistrib() which returns a probabil-
ity distribution over the destination states. It is particularly
useful for Monte-Carlo simulation.

Methods Uniformize() and Embed() provide the standard
ways for passing from continuous to discrete time.

Methods EvaluateMeasure() and EvaluateValue() rep-
resent respectively the action of the operator on row vectors
(usually, probability measures) and column vectors (usually,
rewards or weights of some sort, attached to states). These
correspond to left- and right- vector/matrix multiplications
in the matrix algebraic representation.

3In this figure and following ones, methods written in italics are vir-
tual and must be implemented in derived classes.

VALUETOOLS 2017, December 5–7, 2017, Venice, Italy Alain Jean-Marie

Queueing

Physics

Biology

PoissonSystem

Fensenstein81

MMPP

PoissonIPP

TwoStateJukesCantor69

Kimura80

HomogeneousQBD

GeneralMarkov

BirthDeathASEP

ContactProcess

IndependentOnOff

M/M/oo M/M/1

BCMP

Jackson

MMPP/M/1TamuraNei93 G−net

BMAP

MAP
QBD

MArP

Figure 2: Hierarchy of continuous-time Markov chains; arrows represent the “is a” relationship

// methods specific to the MC under study

Felsenstein81* c1 = new Felsenstein81(. . .);
Distribution* d[8];

d[1] = c1->StationaryDistribution();

d[2] = c1->SimulateChain(. . .)-->distribution();
// generic methods for MCs, called on same object

MarkovChain* c2 = static cast<MarkovChain*>(c1);

d[3] = c2->StationaryDistributionSOR();

d[4] = c2->StationaryDistributionGthLD();

d[5] = c2->ReplicateSamples Psi3(. . .);
d[6] = c2->SimulateChain(. . .)-->distribution();

Figure 3: Illustration of polymorphism for the call
to solution methods

// state-index conversions

void DecodeState (int index, int* buffer);

int Index (int* buffer);

// state space exploration

void FirstState(int* buffer);

void NextState(int* buffer);

bool IsFirst(int* buffer);

Figure 4: Minimal methods of the MarmoteSet class

3.3.2 Implementations. This class has currently several
implementations. The one that is dedicated to numerical
computation, uses a sparse matrix structure and consistently
is named SparseMatrix.

Other implementations are not based on the comprehen-
sive storage, for instance MultiDimHomTransition that rep-
resents the multi-dimensional birth/death transitions with
constant rates or probabilities. In the code excerpt in Fig-
ure 6 (for the 1-D case), no bounds on state numbers appear:
it is possible to represent this way processes on infinite state

timeType type()

// entry manipulation

double getEntry (int,int);

double setEntry (int,int);

double addToEntry(int,int);

// exploitation of the transition structure

DiscreteDistribution* TransDistrib (int);

// transformation of transition structures

TransitionStructure* Uniformize ();

TransitionStructure* Embed ();

// transition structure as an operator

void EvaluateMeasure (double*,double*);

void EvaluateValue (double*,double*);

Figure 5: Methods of a TransitionStructure

double BirthDeath::getEntry(int i, int j) {
if (i == j) return r ;

else if (i == j + 1) return p ;

else if (i == j - 1) return q ;

else return 0.0;

};

Figure 6: Implementation of an unbounded birth-
death transition structure

spaces. Some analysis methods, e.g. simulation, can work
with these objects. The “block transition” class, suitable for
modeling QBDs, currently being implemented, has also this
feature.

The class EventMixture is adapted to “event modeling”,
where elementary events, occuring at constant rates/probabili-
ties provoke elementary transitions (births, deaths, move-
ments, etc.). These are the basic elements for building many
complex models, in the view of Poisson Systems. They can
also be used to construct Markov decision models or Markov
games.

marmoteCore: a Markov Modeling Platform VALUETOOLS 2017, December 5–7, 2017, Venice, Italy

3.4 Class Distribution

The Distribution class implements classical attributes for
probability distributions, including the calculation of mo-
ments, Laplace transforms, and sampling of pseudo-random
values. The specific objects implemented in marmoteCore in-
clude the ubiquitous Dirac, Bernoulli, Geometric, Poisson
and Exponential distributions. The class DiscreteDistribu-
tion is adequate for generic distributions on state spaces.

4 ANALYSIS METHODS

We survey in this section some analysis and “solution” meth-
ods presently available in marmoteCore. Those are originally
present in existing software packages: the presentation also
serves for illustrating the way existing Markov software can
be integrated into the platform.

4.1 Structural Analysis

Structural analysis methods are related to the communica-
tion structure in the transition graph. They include Absor-

bingStates(), Recurrent/CommunicatingClasses(), which
compute state space decompositions into corresponding clas-
ses. Their results are used by IsIrreducible() and IsAcces-

sible(i,j), as well as Period(). The method SubChains()

extracts the set of independent MarkovChain objects corre-
sponding to recurrent classes of some Markov chain.

One implementation of these methods uses algorithms of
[8] (see also [12]) suitably modified to be parallelized on
multi-core machines when available. Another implementa-
tion uses the R markovchain package [11]. See also Sec-
tion 5.1. This illustrates again the possibility of having the
same functionality implemented with different algorithms.

4.2 Monte-Carlo simulation

The standard forward Monte-Carlo simulation is available
with the SimulateChain() method. The method includes
several controls for the printing of the trajectory and the
collection of empirical occupancy measures. Perfect sampling
of Markov chains using the method of Propp and Wilson
[10] is also available. This method is imported from the PSI
package [14], see also Section 5.2.

4.3 Steady-state distributions

One of the aims of the marmoteCore project is to give access
to several methods for solving the same problem, using a rel-
atively common interface. This is the case for the computa-
tion of (approximate) steady-state distributions for Markov
chains, the basic problem of the field.

In the current version, five methods are available for the
top-level class MarkovChain. One is the standard power meth-
od. Two provide an interface to the linear-algebraic meth-
ods GTH and SOR (see Stewart [12]): these are borrowed
from the XBorne package [4], see Section 5.3. The last one
is an interface to the functionality offered by the R package
markovchain already mentioned [11].

SparseMatrix* makeGenerator(AdHocStateSpace* sp, ...) {
SparseMatrix* gen=new SparseMatrix(sp->Cardinal());

int stateBuffer[5]; // this state space has 5 dims

sp->FirstState(stateBuffer);

int idx = 0;

do {
...

// destination state stored in nextBuffer

nextBuffer[0]=MIN(stateBuffer[0]+1,someBound);

...

gen->addToEntry(idx,sp->index(nextBuffer),someRate);

gen->addToEntry(idx,idx,-someRate);

...

sp->NextState(stateBuffer);

idx++;

} while (!sp->IsFirst(stateBuffer));

}

Figure 7: Generic way of constructing an infinitesi-
mal generator

In addition, the hierarchical organization of Markov mod-
els allows to derive specific methods for models with well-
known structure. This is the case for classes TwoState, Homo-
geneous1DBirthDeath (akaM/M/1/K), Homogeneous1DRan-
domWalk, Felsenstein81, representing (a partial list of) mod-
els for which the steady-state distribution can be found in
closed form. Abstraction allows to handle some infinite-state
models: for the infinite-state random walk and birth-death,
an object of type GeometricDistribution is returned by
StationaryDistribution().

4.4 Transient distributions

Computing transient distributions for general Markov mod-
els is a highly technical task and marmoteCore applies its
“reuse” philosophy to delegate it to specialized tools. Cur-
rently, the TransientDistribution() method of the top-
level MarkovChain uses the package described in [2].

Similarly to stationary distributions, closed form solutions
that exist can be implemented at lower levels of the hierarchy.
This is the case for Homogeneous1DRandomWalk, Homogeneous-
1DBirthDeath, Poisson, TwoState, Felsenstein81.

4.5 Hitting times

A method is provided to obtain (approximate) average hit-
ting times of an arbitrary subset of the state space, starting
from every initial state. Hitting time distributions can be
sampled using Monte-Carlo simulations. The exact value for
this distribution is returned for some elementary models, e.g.
currently: TwoState, Poisson, Felsenstein81.

5 INTEGRATION WITH EXISTING
SCIENTIFIC SOFTWARE

In this section, we explain how marmoteCore can (and does)
interface with existing software systems. Indeed, it is essen-
tial to the project that existing methods of analysis (solu-
tion algorithms, data assimilation and model construction,

VALUETOOLS 2017, December 5–7, 2017, Venice, Italy Alain Jean-Marie

e.g. [7], statistical analysis, ...) be accessible easily through
the programming interface. We explain through several ex-
amples that this idea works well. The functionalities of mar-
moteCore are limited only by the time needed to realize the
interfaces, and the accessibility of the software to be inte-
grated.

5.1 R

The case of R is particularly interesting because there ex-
ist two ways of interacting with it. One first way is through
wrapping (see Section 2.3), as for any external program. A
second, more intimate way, is to create an instance of R’s
execution engine inside the program, using the Rinside li-
brary. Instructions are passed to this engine, and results re-
covered as C++ objects. We have used this technique to wrap
some functionalities of the markovchain package [11] and
the transient probabilities solver [2]. The method Sample()

of the class PoissonDistribution also uses R: a validation
that the non-trivial statistical methods need not be reimple-
mented.

5.2 PSI

PSI, the Perfect SImulator, is a unix tool that provides a
simulation kernel for continuous- or discrete-time Markov
chains, based on backwards coupling [14]. For marmoteCore,
this represents the example of wrapping the call of external
applications. Markov matrices are written in the MARCA
format [12] suitable for executing the psi sample application
that generates exact samples of the stationary distribution.

5.3 XBorne

XBorne is a set of independent programs, written in C, for
building and transforming stochastic matrices, and comput-
ing bounds or exact results for their steady-state and tran-
sient distributions [4]. For marmoteCore, this is an example of
direct reuse of C code. Courtesy of the package’s maintain-
ers, applications from XBorne have been slightly modified
so as to provide their functionality through function calls.4

Communication of the Markov model is done through files,
although in principle the translation of data structures could
be performed. The methods SOR and GTH for computing
stationary distributions [12] are included this way in marmo-

teCore.

5.4 Workflow Management Systems

marmoteCore will ultimately offer a large variety of analysis
tools. The effective use of those features within a complex
experiment will probably be easier by interfacing marmote-

Core with a Workflow Management System (WMS).
We have experimented this possibility with a well-known

WMS: Kepler. The Kepler Project5 is an open source work-
flow application, designed to help scientists, for designing,
executing, reusing, evolving, archiving, and sharing scientific

4Technically: using extern "C" declarations.
5https://kepler-project.org/.

workflows. Kepler is a java-based application: it was neces-
sary to wrap our C++ code into it. FC2K (Fortran/C/C++ to
Kepler) is a tool which offer this functionality by generat-
ing a Kepler actor that executes a given C/C++ function or
Fortran routine via JNI (java native interface).

6 CONCLUSION AND FUTURE WORK

We have presented the general orientations of the marmote-

Core software project. These features are implemented in the
current release of the core, and are fully operational: marmo-
teCore has been used to realize numerical and simulation ex-
periments in [3, 13]. The current development plans include
the development of QBD-like formalisms, interfacing avail-
able QBD software. The extension of modeling capabilities
towards Markov Reward /Accumulation processes (MMPP,
MAP, MArP, aka Markov Arrival Processes, of Figure 2),
controlled Markov chains and Markov games is also foreseen.
Finally, we will start the second phase of the project with
the development of a Python interface.

REFERENCES
[1] P. Brémaud. 1999. Markov chains: Gibbs fields, Monte Carlo

simulation, and queues. Texts in Applied Mathematics, Vol. 31.
Springer, New York.

[2] L. Cerdà-Alabern. 2013. Closed form transient solution of con-
tinuous time Markov chains through uniformization. In Proc. 7th
Intl. Conf. on Perf. Evaluation Methodologies and Tools, VAL-
UETOOLS 2013. Torino, 263–272.

[3] I. Dimitriou, S. Alouf, and A. Jean-Marie. 2015. A Markovian
queueing system for modeling a smart green base station. In
Proc. 12th Europ. Works. on Perf. Engineering, EPEW 2015
(LNCS), Vol. 9272. Springer, Madrid, 3–18.

[4] J.-M. Fourneau, Y. Ait El Mahjoub, F. Quessette, and D.
Vekris. 2016. XBorne 2016: A Brief Introduction. In Proc. 31st
Intl. Symp. Computer and Information Sciences, ISCIS 2016.
Kraków, 134–141.

[5] N. Galtier, O. Gascuel, and A. Jean-Marie. 2005. Introduction to
Markov Models in Molecular Evolution. In Statistical Methods
in Molecular Evolution, R. Nielsen (Ed.). Springer, 45–62.

[6] M. Hlynka. 2017. List of queueing theory software. Technical
report. Univ. Windsor. http://web2.uwindsor.ca/math/hlynka/
qsoft.html retreived March 10, 2017.

[7] A.S. Horváth and M.S. Telek. 2002. PhFit: A General Phase-
Type Fitting Tool. In Computer Perf. Evaluation: Modelling
Techniques and Tools, TOOLS 2002 (LNCS), Vol. 2324. 82–91.

[8] J. P. Jarvis and D. R. Shier. 1996. Graph-theoretic analysis of
finite Markov chains. In Applied Mathematical Modeling: A Mul-
tidisciplinary Approach, D.R. Shier and K.T. Wallenius (Eds.).
CRC Press.

[9] T.M. Liggett. 1999. Stochastic interacting systems: contact,
voter and exclusion processes. Wiley.

[10] J.-G. Propp and D.B. Wilson. 1996. Exact Sampling with Cou-
pled Markov Chains and Applications to Statistical Mechanics.
Random Structures and Algorithms 9, 1-2 (1996), 223–252.

[11] G. A. Spedicato, T. S. Kang, S. B. Yalamanchi, and
D. Yadav. 2017. The markovchain Package: A Pack-
age for Easily Handling Discrete Markov Chains in
R. https://cran.r-project.org/web/packages/markovchain/
vignettes/an introduction to markovchain package.pdf retreived
October 11, 2017.

[12] W.J. Stewart. 1995. Introduction to the numerical Solution of
Markov Chains. Princeton University Press, New Jersey.

[13] A. Vallet, L. Chusseau, F. Phillippe, and A. Jean-Marie. 2017.
Semiconductor laser Markov models in the micro-canonical,
canonical and grand-canonical ensembles. In SigmaPhi 2017,
Intl. Conf. Statistical Physics. Corfu, 121.

[14] J.-M. Vincent. 2015. PSI, Perfect Simulator. Online. (2015).
http://psi.gforge.inria.fr/dokuwiki/doku.php

https://kepler-project.org/
http://web2.uwindsor.ca/math/hlynka/qsoft.html
http://web2.uwindsor.ca/math/hlynka/qsoft.html
https://cran.r-project.org/web/packages/markovchain/vignettes/an_introduction_to_markovchain_package.pdf
https://cran.r-project.org/web/packages/markovchain/vignettes/an_introduction_to_markovchain_package.pdf
http://psi.gforge.inria.fr/dokuwiki/doku.php

	Abstract
	1 Introduction
	2 Main characteristics
	2.1 Background
	2.2 The general purpose of marmoteCore
	2.3 Architectural choices

	3 The marmoteCore interface
	3.1 Class MarkovChain
	3.2 Class MarmoteSet
	3.3 Class TransitionStructure
	3.4 Class Distribution

	4 Analysis methods
	4.1 Structural Analysis
	4.2 Monte-Carlo simulation
	4.3 Steady-state distributions
	4.4 Transient distributions
	4.5 Hitting times

	5 Integration with existing scientific software
	5.1 R
	5.2 PSI
	5.3 XBorne
	5.4 Workflow Management Systems

	6 Conclusion and future work
	References

