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Industrial context: combustion chamber cooling 
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Different wall cooling approaches 

 

 

  

  

  

 

 

Film cooling 

P 

 No local perturbation of the flow  

 

 Modest cooling efficiency 

 

P 

Double wall 

 Easy to manufacture 

 

 Short protection length 

P  

Multiperforations  High cooling efficiency over the perforated 

plate  

 

 Important flow rate (~30% of total air supplied 

to the chamber) 

Hot gases ( 2200K) Cooling air ( 600K) 

Industrial context: combustion chamber cooling 
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Combustion chamber cooling through multiperforated surfaces « effusion 

cooling » 

Canonical configuration 

Air 

Fuel 
Flame 

Hot gases 

Effusion cooling 

Crossflow (hot gases) 

Secondary flow (cold gases) 

Grazing waves Normal waves 

Industrial context: combustion chamber cooling 
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 Radial 

Acoustic sources 

 Combustion noise (up to 80dB) 

 Thermoacoustic instabilities (up to 140dB) 

 Mechanical vibrations 

 … 

 Acoustic modes: 

 Longitudinal 

 Azimuthal  

Wave types: 

 Steady (all modes)  

 Propagating (azimuthal modes essentially)  

Industrial context: combustion chamber cooling 
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Illustration of a turbulent reacting flow with turbulence and 

deterministic motion obtained on the ORACLES test facility 

(Nguyen et al., 2009) 

Exposure time: 1/50 s Exposure time: 1/2000 s 
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Low Mach flows: a better insight about the major players with  an 
asymptotic expansion  of the governing equations  

Pascal Bruel – Universidad Nacional de Córdoba – 30 March 2017 



9 

(0)
(0) (0)

(1) (0)
(0)

(2) (1)
(1)

(0) (0) (

If one proceeds similarly as before, the zeroth, first and second order equations yields:

Continuity

0 ( , )

.( ) 0

.( ) 0

Momentum

0

t

t

t

p p p


 



 




 





  



 
 

 

 
 

 

  

x

u

u

 

 

 0)

(0) (0)
(1) (1)

(0)

(1) (0)
(0) (2)

( )

( 1

( ( 1
.( ) .

Re

t

)
p p

) )
p

t



  

 






 
    

 

 
     

 

u u

u u
u u

 

  

Low Mach flows: a better insight about the major players with  an 
asymptotic expansion  of the governing equations  

Pascal Bruel – Universidad Nacional de Córdoba – 30 March 2017 



10 

(0)

(1) (0)
(0) (0) (0)

(2) (1)
(1) (1) (1)

(0) (0) (0)

(0)

Energy equation

( )
0

( ) ( )
.( ) .( ) ( )

1 Pr Re

( ) ( )
.( ) .( ) ( )

1 Pr Re

State equations

( , ) ( , ) ( )

( ) ( 1

E

E E
H T q

t

E E
H T q

t

t x T t x p t

p t





  
  

 

  
  

 










  
  

  

  
  

  



 

   

   

u

u

(0))( ) ( )E t

Low Mach flows: a better insight about the major players with  an 
asymptotic expansion  of the governing equations  

Pascal Bruel – Universidad Nacional de Córdoba – 31 March 2017 



11 

(1) (0)
(0) (0) (0) (0)

(0)

The first order energy equation can be also expressed as:
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over acoustic time 
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of

the   leading order of the heat release rate.

Low Mach flows: a better insight about the major players with  an 
asymptotic expansion  of the governing equations  
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" Examples of experiments: 

- Frick and Roshko (1994), Kelso et al. (1996), Smith and Mungal (1998), 

Gustafsson (2001), M’Closkey et al. (2001), Most (2007), Michel (2010), Ali 

(2010),…. 

 

 

Flow structure: 

 

 

Effusion cooling: The related canonical flow is the jet in 
cross flow  (JICF) 

 Four coherent structures 
 Shear-layer (Kelvin-Helmoltz vortices) 

 Horseshoe vortices 

 Wake vortices 

 Counter rotating vortex pair (CVP) 

Freely adapted from Frick and Roshko (1994) 

Wake vortices 

Horseshoe vortex 

12 
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Short term objective:  

– Providing an experimental database with forcing and 
relevant conditions: non circular hole geometry and non 
conformal jet exit section with an acoustic forcing of the 
crossflow. This experimental database is meant to be 
first for RANS/DNS/LES assessment.  

 

Long term objective :  

– improving the understanding of the effect of the 
presence of the forcing may have on the unsteadiness 
of adiabatic cooling efficiency. Identifying optimal hole 
shapes (if any) compatible with the existing 
manufacturing process. 
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From a real combustor to a baseline lab configuration: the 
test bench MAVERIC 

Pascal Bruel – Universidad Nacional de Córdoba – 30 March 2017 



 

 

 

" With the acoustic forcing system 

 

 

 Setting-up of automatic displacement system for optic measurement tools.  

 Laser Doppler Velocimetry (LDV) & Phase-Locked Particle image 

Velocimetry (PIV) measurements 

 

Analysis of test 
bench acoustic 

response 

Development of data acquisition 

system and forcing system 

(LABVIEW) 

MAVERIC test bench: 2013 Version 2  

(2013) 

Multiperforated  

plate 

Pressure loss 

plate 

Crossflow 

Secondary flow 

Speaker 

14 

From a real combustor to a baseline lab configuration: the 
test bench MAVERIC 
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" Pressure drop between lower and upper channel [10 – 140] Pa 

" Main stream Reynolds number [2000 – 35000] 

" Jet Reynolds number [1200 – 9000] 

F1 

 
Inlet section. Upper 

channel. 
Microphone 

insertion ports 

C0 

C1 

 
C2 

 

Outlet section. 
Upper channel. 

Microphone 
insertion port 

D1 

 

Test section Multiperforated Plate 

Speaker 

location 

Centrifugal 

fans 

Acoustic 

insertion tube 

From a real combustor to a baseline lab configuration: the 
test bench MAVERIC 
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Acoustic forcing: Experimental evidence of the flow 

response. 
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Acoustic forcing: Experimental evidence of the flow 

response. 
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VISUALIZATION TO GET A FLAVOUR OF THE  JICF  (1-HOLE PLATE WITH FORCING @146 HZ) 

18 

Acoustic forcing: Experimental evidence of the flow 

response. 
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KIAI database - AF-CV-12R-60-146-24 , central jet of  rows 3 and 5: phase 

average time variation incorporating four phase locked averages (0°, 90 °, 

180° and 270°, (statistics over 600 images per phase angle). 

Examples of extraction of the jets’ coherent motion:  

19 

Acoustic forcing: Experimental evidence of the flow 

response. 
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KIAI database - AF-CV-12R-15-146-24 , central jet of rows 3 and 5: examples of 

extraction of the jet coherent motion: phase average time variation incorporating 

four  phase locked averages (0°, 90 °, 180° and 270°, (statistics over 600 images 

per phase angle). 

 

If the relative intensity of the forcing is inscreased by reducing 

the mean pressure drop  from 60 Pa to 15 Pa  

Acoustic forcing: Experimental evidence of the flow 

response. 
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Low Mach flow simulations : AUSM-IT, a 

discrete flux scheme for a low order FV 

colocated method 
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Together with proper initial and boundary conditions 

The continuous system of PDE’s: Euler equations 
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Context and simplifying assumptions 

Cell centered finite volume method with variables’ co-
location on the domain 

1 , oordinate system celli N

i iD V c Ox




 1and normal basis .B  e Dual mesh cell 

1e

iV

1 1

2
i

n e
1 1

2
i

 n e

       

-3 / 2i 1i  1/ 2i  i 1/ 2i  3/ 2i 1i 

xO 

Primal mesh cell 
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Expression of the fluxes at the interfaces: momentum equation 

   
 

       

1

1 1 1 1 1

1/2 1/2 1/2 1/2
1/2 1/2

Consider a first order Euler implicit time discretization.

 Thus,  the discrete system at time ( 1)  reads as:

 

n

n n n n n n

i i i i i i
i i

t n t

t
u u uu uu p p

x x
   



    

   
 

  

     
 

So, expressions for the transporting velocities and the face 
pressure have to be derived. To handle this for the 
transporting velocity, there is broadly speaking two different 
alternatives: 
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Expression of the fluxes at the interfaces 

 
1. Either you assume that the transporting velocity is given a 

dynamical meaning and so consider that it satisfies an 
evolution equation obtained by discretizing the continuous 
momentum equation on the dual mesh  this is the starting 
point of the momentum  interpolation method, 
 

2. Or you solve a Riemann problem derived from the 
charateristics system written at the interface between two 
adjacent control volumes (Godunov type schemes) . 
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For the flux of momentum, let's re-write it formally as :
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transporting and that is the velocity. On the ground of the sole 

discretization on the primal cell,   can be thought of as  

an interpolated quantity based on the cell based values . 

 , 1 1 1
11/2 ,n n n

i iiu Interp u u   
 We shall denote it by .  
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Momentum interpolation method 
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i iu u  
 

 Then we make the following approximations:

1) The transporting velocity is treated explicitly in 

time so 

 An upwind first order expression in space is retained 

for the transport
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Momentum interpolation method 
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Momentum interpolation method 
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Momentum interpolation method: primal mesh view 
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Momentum interpolation method: dual mesh equation 
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Momentum interpolation method:  

relating primal and dual cells quantities 
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Momentum interpolation method: the final expression of the 

primal cell face velocity  

   
1 1 1 1 1 1
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Momentum interpolation method: example of results for a 2D 

pulse simulations (second order discretization, from Moguen et 

al., 2012) 
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FL number : 20
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Evolution of the momentum interpolation method for low Mach 

number Riemann problem  (from Moguen et al., 2015a) 

Dispersion 
Effect ! 
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Evolution of the momentum interpolation method for low Mach 

number Riemann problem  (from Moguen et al., JCP, 2015a) 

Centering 
the velocity 
in the face 

velocity 
expression 
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Using the momentum interpolation as a guide to improve a 
Godunov type scheme (from Moguen et al., JCP, 2015b) for low 
Mach number 

Mimicking the form obtained when 

using the momentum interpolation 

method 

Focus 2 - Low Mach flux scheme: from AUSM+up to AUSM-IT  

(Liou, 2006) 

(Moguen et al.,  2015a) 
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Beneficial effect: the correct low Mach asymptotic behavior at the 
discrete level is recovered.  

Focus 2 - Low Mach flux scheme: from AUSM+up to AUSM-IT  
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Focus 2 - Low Mach flux scheme: from AUSM+up to AUSM-IT  

The discrete (at first order) acoustic energy level is 

conserved with AUSM-IT 

38 
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Focus 2 - Low Mach flux scheme: from AUSM+up to AUSM-IT  

The discrete (at first order) acoustic energy level is 

conserved with AUSM-IT 
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Behavior of AUSM+-up for propagating wave (inlet velocity 
forcing): evidence of a quite strong dissipation 
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Focus 2 - Low Mach flux scheme: from AUSM+up to AUSM-IT  

Behavior with AUSM-IT for the same propagating wave 
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Low Mach turbulent flow unsteady simulation: ATCBC, a 

proposal for the boundary condition prescription. 
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Option A - Modeling, discretizing, solving (most widely used) 

 Step A-1 Turbulence modeling 

 Reynolds Averaged Navier-Stokes (RANS) - Unconditional NS ensemble 
averaging (temporal filtering over all time scales of fluctuations if ergodicity 
property is fulfilled). The resulting solution is a steady  averaged solution. 

 Unsteady Reynolds Averaged Navier Stokes (URANS) - Ensemble 
conditional averaging at a continuously varied given phase angle of a 
coherent mono-harmonic motion, artificially introduced (forcing) or 
naturally present in the flow. The unsteadiness is that of conditionnally 
averaged fields (Phase locking). This is directly related to the triple 
decomposition  proposed by Hussain and Reynolds (JFM, 1971). 

 Large-eddy simulations (LES)  - NS space (most of the time) filtering 
with a compact filter. The resulting 3D instantaneous (filtered) flow fields 
realizations are unsteady. 
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Brief recap: simulations of turbulent flows 
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Option A (continued):  

 Step A-2 Discretization 

 Finite differences, finite volumes, finite elements, high performance 
computing strategy (LES),  method of solution (explicit, implicit), mesh 
generation (structured vs unstructured) management issues (related to 
HPC) . 

o Step A-3 Simulation 

 Run, collect, post-process and analyze the results. 
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Brief recap: simulations of turbulent flows 
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  Option B - Discretizing, solving i.e. DNS (3D, used for simple geometries and 
not too high a turbulent Reynolds number): 

o Step B-1 Discretization  

Finite differences, finite volumes, finite elements, spectral methods, high 
performance computing strategy (unavoidable),  method of solution (explicit, 
implicit), mesh generation (structured vs unstructured)  and management issues 
(related to HPC). 

o Step B-2 Simulation 

 Run, collect (a real issue !!), post-process and analyze the results. 

 

This is the purpose of the AeroSol Library developed by the Cagire 
team (in partnership with Cardamon Inria team) 

Brief recap: simulations of turbulent flows 
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Prescribing boundary conditions for low Mach flow simulations  

To determine the number of physical boundary conditions to be 
imposed, the guide is the wave pattern system analysis at the 
considered boundary. The sign of the eigenvalues of the Euler flux 
jacobian matrix and their multiplicity order is the guide (Poinsot and Lele, 
1992) 

Flow direction 

u+c 

u 
u 
u 

u+c 

u 
u 
u 

u-c u-c 
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Flow direction 

Prescribing boundary conditions for low Mach flow simulations 

Number of physical boundary 
conditions @inlet for inert NS 

(Practically: 4 imposed) 
A  possible set is: 

 
 
 
 
 
 

If needed, p is extrapolated from 
the interior domain. 

Number of physical 
boundary conditions 
@outlet for inert NS, 

(Practically 4 imposed) 
1 Euler like + 3 viscous 

A possible set: 
Static pressure imposed 

@infinity  and three viscous 
conditions  (zero normal 

derivative of            and of 
the normal heat flux) 

2

( ) '( )

( ) 0 '( )

( ) 0 '( )

1
(1 )

2
t s

u t u u t

v t v t

w t w t

T T M


 

 

 


  

The combinations are numerous, see Poinsot and Lele (JCP, 1992) for 
more details about well posedness vs implementation feedback 

x 

y 

z 

,xy xz 
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Approach: choice of the triple decomposition proposed by 

Hussain and Reynolds  (1970)  

' ''( ) ( ) ( )p su t u t u t 

' '

' '

Question: how can u ( ) and u ( ) be generated ?

( ) is deterministic so it is quite easy, but u ( ) is not.

p s

p s

t t

u t t

' '(assuming that 0)p su u 

At the inlet, how to generate ''( , ), ( , ), '( , ) ?u x t v x t w x t
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Precursor simulation: perform a separate simulation and store the results in a plane that 

will be used to feed the  current simulation (computationaly expansive, simple geometries 

only) 

Recycling on the fly:  select a plane at some downstream section in the current simulation 

and regularly reinject the (scaled) values at the inlet (Simple geometries, absence of 

strong pressure gradients, pb with recycling frequency for aeroacoustics). 

Synthetic turbulence generation (STG): white noise,  stochastic differential equations, 

digital filtering, synthetic eddy method (the artificial nature of turbulence leads to long 

adaptation length, but can be improved). 

Volumic forcing: add a force in the momentum equation (efficient when combined with 

STG) 

Vortex generating devices: simple but provide quite long adaptation length. 

 

(See Shur et al., Flow Turbulence and Combustion 93:63-92 (2014) and the references 

therein for a more complete  overview ) 

At the inlet, how to generate              ? ' ( , )su x t
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 Example of choice of STG: the synthetic eddy method 

Eddy method (SEM):  direct injection at the inlet plane of analytically 

defined structures that reproduce to some extent the  coherent structures of 

the turbulent flow. 
 

 

 

 

 

 

 

 

 

 

References  

SEM Basic form: (Jarrin et al., Int. J. Heat Fluid Fl., 2006), (Jarrin, PhD of the 

University of Manchester, 2008), (Jarrin et al., Int. J. Heat Fluid Fl., 2009) 

SEM for wall-bounded flows: (Pamiès et al., Phys. Fluids, 2009) 

Divergence free SEM (Poletto et al., Flow, Turbulence and Combustion, 2013)  

 

 (from Poletto et al. 

FTC, 2013) 
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Experiment – simulation: example of connection to develop 
unsteady inlet BC for DNS with the SEM (inlet of MAVERIC rig) 

Measurements:  provide some of 
the targeted values for the SEM 
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Consider a one-dimensional flow governed by the Euler equation 
for simplicity, thus the temporal rates of change of the wave 
amplitudes are given by: 

1

2 2

3

1
( )( )    upstream travelling acoustic wave

1
( )       entropy wave

1
( )( ) downstream travelling acoustic wave

x x

x x

x x

L v c p v
c

L v p
c

L v c p v
c







    

   

    

Incoprorating a STG approach into a compressible  
Euler solver: the ATCBC method at a subsonic inlet (Moguen et al., 2014)  
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Incoprorating a STG approach into a compressible  
Euler solver: the ATCBC method at a subsonic inlet  

These Li’s satisfy the following LODI system at the inlet: 

1 3 2

3 1

1 3

( + )   = 0  (1a)
2

1
( ) = 0        (1b)

2

( ) = 0    (1c)
2

t

t

t

L L L
c

v L L

c
p L L






  

  

  

Subsonic inlet (1D): Two Li’s have to be imposed. 
Main hypothesis (H1) behind the ATCBC method to avoid reflection: at 
the inlet, the gap (if any) between the targeted velocity v† coming from the 
STG process and the current one v is solely attributed to the upstream 
travelling acoustic wave. 
 Methodology to check the proposal coherence at low Mach: two-scale 
asymptotic analysis of the LODI system. 
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Incoprorating a STG approach into a compressible solver: the ATCBC method 
at a subsonic inlet 

From (1b), H1 is enforced by assuming that:  

†

1

1
( ) (0 ) = 0      

2
t v v L   

which is achieved by imposing that: †

32 =       tv L 

The remaining boundary condition is derived by 1) assuming a frozen 
turbulence hypothesis (H2) and 2) asymptotically expanding L2 which 
finally yields L2 =0 (at order -1 and 0). 
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Example of different tests when setting-up the ATCBC method 

Harmonic 
inlet signal 

Harmonic 
inlet signal + 
a STG signal 
(Non linear 

Langevin 
equation) 
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