-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Decomposition of Low Rank Multi-Symmetric Tensor

Jouhayna Harmouch, Bernard Mourrain, Houssam Khalil

» To cite this version:

Jouhayna Harmouch, Bernard Mourrain, Houssam Khalil. Decomposition of Low Rank Multi-
Symmetric Tensor. MACIS 2017 - 7th International Conference on Mathematical Aspects of Computer
and Information Sciences, Nov 2017, Vienna, Austria. pp.51-66, 10.1007/978-3-319-72453-9 4 . hal-

01648747v2
HAL Id: hal-01648747
https://hal.inria.fr /hal-01648747v2
Submitted on 30 Nov 2017
HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires

abroad, or from public or private research centers. publics ou privés.
Copyright


https://core.ac.uk/display/132781103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01648747v2
https://hal.archives-ouvertes.fr

Decomposition of Low Rank Multi-Symmetric Tensor

J. Harmouch®2® & B. Mourrain?®d & H. Khalil*

! Laboratory of mathematics and its applications LaMa-Lebanon,
Lebanese University, Beirut, Lebanon
houssam.khalil@ul.edu.lb
2 UCA, Inria, AROMATH, Sophia Antipolis, France
{jouhayna.harmouch,Bernard.Mourrain } @Qinria.fr

Abstract. We study the decomposition of a multi-symmetric tensor 7" as a sum of powers of product
of linear forms in correlation with the decomposition of its dual T as a weighted sum of evaluations.
We use the properties of the associated Artinian Gorenstein Algebra A, to compute the decomposition
of its dual T which is defined via a formal power series 7. We use the low rank decomposition of the
Hankel operator H, associated to the symbol 7 into a sum of indecomposable operators of low rank.
A basis of A, is chosen such that the multiplication by some variables is possible. We compute the
sub-coordinates of the evaluation points and their weights using the eigen-structure of multiplication
matrices. The new algorithm that we propose works for small rank. We give a theoretical generalized
approach of the method in n dimensional space. We show a numerical example of the decomposition of
a multi-linear tensor of rank 3 in 3 dimensional space.

1 Introduction

The decomposition of symmetric and multi-symmetric tensors has many applications in engineering disci-
plines such that signal processing [I1], scientific data analysis [9], [I8], statistics [I7], in bioinformatics and
spectroscopy [5], in neuroscience, in phylogenetic .... For instance, the study of symmetric tensor decom-
position gives an idea about the geometric structure of intersecting fibers in human brain using the Fibers
Orientation Fibers Function described in [12], ou[8] and [19]. The decomposition of multi symmetric tensors
of small rank appear in several other contexts, for learning latent variable models which are algebraic statis-
tics models. This is the case for the analysis of phylogenetic trees model described in [I5] or for the analysis
of contents of web pages model described in [I]. Here, the mixture model is a collection of all non-negative
probability tensors of low rank.

The tensor decomposition problem is also very interesting from an algebraic geometric point of view [10].
Important efforts have been developed over the last decades to better understand the theoretical aspects,
as well as the algorithmic aspects of this difficult problem. Some of the well-known decomposition methods
use local optimization techniques such Alternate Least Square, Gradient Descents, Quasi-Newton, ...to
minimize the error between the tensor and its decomposition. Some other approaches exploit the algebraic
structure associated to the tensor decomposition [4], [3]. Homotopy techniques have also been used recently
to compute such decomposition [2].

In this paper, we describe a direct method for the decomposition of multi-symmetric tensors, based on
simple linear algebra tools. The decomposition algorithm applies to tensors of low enough rank. We follow
the approach in [3] but directly apply numerically stable linear algebra tools on submatrices of the Hankel
matrices to recover the decomposition. In particular, we show how to recover directly the points and weights
from eigenvectors of multiplication operators of the quotient algebra associated to the decomposition. The
algorithm does not require the solution of polynomial equations. The proposed method extends the techniques
of [16] to more general tensors and to tensors of higher rank. It is closely connected to the multivariate Prony
method investigated in [14] and to the structured low rank decomposition of Hankel matrix [7].

A multi-linear tensor is in correspondence with a multilinear map from a product of vector spaces to the
coeflicient field. A tensor symmetric tensor is a tensor whose components stay invariant by any permutation of
indices. In the following, we study the general class of multi symmetric tensor decomposition problem, which



contains these two classes. We show the correlation between the dual of a tensor, formal power series and
then the Hankel matrices associated to them. We use the singular value decomposition of Hankel matrices to
compute the decomposition of a tensor of low rank. We exploit the properties of Artinian Gorenstein Algebra
to find out some multiplication matrices which help to know the eigen-structure of points associated to linear
forms and their weights. We slice variables into bunches of sub-variables and we adapt the description of
Artinian Gorenstein Algebra to this case. We adapt the method of decomposition of Hankel matrices of low
rank described in [7] to a decomposition of multi linear tensors method which is based on the decomposition
of a formal power series as a weighted sum of exponential described in [14]. The computation of multiplication
matrices depend on the dimension of tensor, and the number of given moments or coefficients. We describe the
algorithm in 3 dimensional space and we give its numerical implementation using MAPLE. This description
gives an idea about the constraints and difficulties of the problem in n dimensional space. We show a
numerical example of the decomposition of a tensor of rank 3 with order one in each bunch of 3 variables in
3 dimensional space.

Contributions. We study the decomposition of multi-linear tensor T as a sum of product of powers of
linear forms in correlation with the decomposition of its dual T as a weighted sum of evaluations. T is
defined via a formal power series 7 . We exploit the structure of the quotient algebra A, of the ring of
multivariate polynomials in bunches of sub-variables by the kernel of the Hankel operator H, associated to
7. We choose two bases A; and As of monomials such that all given moments of the tensor T appear in the
matrix H, associated to T in the bases A; and A; and we substitute zg by one. We compute the Singular
Value Decomposition of the Hankel matrix associated to a chosen truncated bases of A; and As such that the
multiplication of the matrix by one fixed variable is well defined. We exploit the eigen-structure properties
of multiplication operators to compute the sub-coordinates of points and their corresponding weights. We
show the constraints which arise from the computation of all multiplication matrices in higher dimension
spaces. We propose a new algorithm to compute the sub-coordinates of points using the eigenvalues of
multiplication matrices and their transpose. We deduce weights from eigenvectors of a linear combination of
multiplication matrices. This method is an adaptation of Structured Low Rank Decomposition of Multivariate
Hankel Matrices method proposed in [7] which is the generalization of Prony method. We give a numerical
interpretation of the decomposition of a multi-linear tensor of low rank in 3 dimensional space.

Structure of the paper. In the following section, we recall the definition of multi symmetric tensors of
rank r and the affine decomposition theory of them. In section [2] we recall some important properties of
Artinian Gorenstein Algebra that we adapt to solve the dual decomposition problem which is resumed by
the computation of points and their weights. In section [3], we give a theoretical approach of the multi linear
symmetric decomposition problem. In section [4 we propose a new algorithm to solve the decomposition
problem in 3 dimensional space. Finally, we give an implementation of our algorithm for one example using
MAPLE and we interpret the results.

2 Partial Symmetric Tensor Decomposition Problem

In this section we give the definition of a multi-symmetric tensor as a multi-homogeneous polynomial of
a different positive degree at each collection of variables. This polynomial can be defined as well as multi
symmetric array of coefficients. In the opposite, for a multi symmetric array of coefficients we can define
a multi-homogeneous polynomial and then deshomogenize it. We recall the definition of minimal affine
decomposition of a multi symmetric tensor as weighted sum of product of power of linear forms. We show
the relationship between the dual of deshomogenized tensor and the formal power series associated to it
using the apolar product. Then, after scaling by the linear form of the decomposition and multiplying the
weights by the scaling factor we deduce by linearity that the dual of the Tensor can be decomposed as a
weighted sum of evaluations.

Definition 1. Let (E;)1<j<k be a family of n; +1 dimensional vector spaces, each one of them is of basis x;
such that Ej = (x;) = (j,...,Zjn,)-

Definition 2. S% (E;) 1is the vector space of homogeneous polynomials in the variables x; of degree 0;.



Definition 3. S (E;) ® §8%2(F,) ® ... ® 8% (E}) is the vector space of multi-homogeneous polynomials of
degree §; in each subset of variables x; for j =1,...,k, an element [T'] of this vector space is called a multi
symmetric tensor. It is denoted hereafter as S°(F).

Definition 4. A multi symmetric tensor of S (E1) ® 8% (Ey) ®...® 8% (Ey) can be interpreted as a multi

symmetric array of coefficients [T] = [t

’ ’ . P
al,a;,-v-,ak] o' 15, such that each a; = (o, Josp;<n; is @ multi-index

a;eNniH
for1<j<k.
For a@ € N” with |a| < 4§, we denote & = (§ — |a,a1,...,a,). The multi symmetric tensor is defined as
[T] = [tal,&lwwg&k]kljlﬁéj .

aj eN"™j
Such tensor is identified with the multi-homogeneous polynomial

T(Xl,Xg,...,Xk) = Z t&17d27“_7dk(Xl)dl(XQ)&z ...(Xk)dk
|ov|=d;

_ ni+l
a;jeN"J

Ifwelet x;=1for j=1,...,k we get

T(X1, X9, X5) = 2 tagan,on () (X)L (%)™

lej|<;
a;eN"i
where x; = (2j,1,..,%jn,;) for j=1,...,k because of (x,;)% = (x;)% for j=1,....k.
A multilinear tensor is defined when |@;| = ¢; =1 for j = 1,...,k, then by abuse of notation we obtain

o [zj] =1 for some 0 < i; <n; and 0 elsewhere, so that the multi symmetric array associated to that tensor
is defined as [T] = [tilaiZwugik]OSijsnj
1<j<k

Given e; basis of E; for j = 1,...,k, the tensor [T] in the basis e; ® e2 ® ... ® e}, is equal to T =

Y 0<ir<ng iy in,....in€1,i1 ® €24, ®...® €y, , such a tensor can be identified with the multi-homogeneous poly-
0<io<no

OSik.STLk
nomial T(x1,Xa,...,Xk) = Y0gir<ny tiyin,...ix T1,i1 T2,y - - - Thyij, Decause of (x;)% =x;,;, for some 0 <i; <ny
OS’LQ_STLQ
0<ip<ny

and for all 1 <j<k.
The dual of the tensor is T*(y1,¥2, -, Yk) = Xogir<n Liyin,....ix Y1,i1 Y2,is - - - Yk iy Decause of (y;)% =y,

0<io<ns

OSik:Snk
for some 0 <i; <n; and for all 1 < j<k.

We denote Rj, 5,.,....5, the space obtained by the deshomogeneisation of elements in S? (E) by setting z; = 1

for j=1,...,k where R = C[x,,X,,...,X;] is the space of polynomials in the variables X; = (51,2 Tjn,)
forj=1,....k
Definition 5. The tensor decomposition problem of T(X1,Xs,...,Xk) is the decomposition of T as a sum
. R o1 02 Ok
of product of power of linear forms such that T'(x1,Xz, ..., X) = X1 wpltyly (x1)u?s (x2) ... 07’ (xk) where
Up,j(Xj) = Up,jTj + Up jaTj 1+ .o+ Upjn;Tjn; and
k
— — c_1(n+1
Uy = (Up,j,p; )0spy<n; = (Up,1,Up, 1,155 Up 1ing s Up 25 Up 2,15 -+ s Up 2imas e e - s Up,ky Up e, 15 - - > Up kg, ) € CZim(na+l)
1<j<k
is the coefficient vector associated to the linear forms w, j(x;) in the basis x; for j=1,... k.

Definition 6. The minimal number of terms in a decomposition of T(x) is called the rank of T.

We say that T'(x1,X2,...,X;) has an affine minimal decomposition of the previous form if w, ; # 0 for
p=1,....,rand j=1,...,k where r is the rank of T



Definition 7. For T = (tal,az,...,ak,)\a,-lséj € SO(E) we denote

o;eN"I
S sr\ L
Tal,ag,..‘,ak (T) = Tal,ag,“.7ak = ta11a25~~~,ak (Oéll) (azz) e (Oé);) . The dual Of the tensor
T(x1,%2,...,X;) € S°(E) is defined via the formal power series as
. aq ag ay,
T(Y17y2a"'7yk) =T (Y17YZ>~--aYk):Z|aj|56] Tay,az,...,ak (yofléfl (yég! (y&kzg where
o;eN"I

(yj)aj _ (yj7yj,17 o 7yj’nj)(()tj,()tjyl,...yaj‘nj) _ HZ;:O (yj’pj)ozj,pj forj=1,...k

Definition 8. For a polynomial p € R and a formal power series T € R*, we define the multiplication operator
* such that

p*'r:R—>(C
g+~ 7(p-q)

Definition 9. Let Ty (x1,Xa,...,%;) and Tr(x1,Xa,...,X) be two tensors of S°(E). The apolar product of
T1(X,,Xo,..., %) and To(Xy,X,,...,X;,) 45 defined as

(Ty(x), %9, %), Ta (%), Xg, -, X)) = zmjsij T oo T oo (0) where (0) = (2)(22) ... (%%).
a;eNT

Definition 10. The dual operator of a tensor is defined as

" (R§1g52»~~76k) - (R51,527~~,5k)* (1)
Ty = T7(T2) = (T(x), T2(x)) (2)

Lemma 1. By a generic change of coordinates in each E;, we may assume that u,; # 0 and that T has

an affine decomposition. Then by scaling u,(x) and multiplying w, by the d™ power of the scaling factor

we may assume that up ;=1 forp=1,...,r and j = 1,..., k. Thus the polynomial T(x) = ¥, _; w]',u;‘s(;) =
0 1 1)

Z;=1 wz,'u‘;),l 1(51)11;9,2 *(xq) - "u;;,k (%)

Proposition 1. The dual of the product of powers of linear forms u‘lSl ugz...ui"' is the evaluation e, at

u= (u17u27"'7uk)‘

Proof. For T =u'ul? ... ui’“ and any T” € Ry, s,....s,, we check that (T'(x),T”(x)) = T"(u). This shows that
T* coincides with the evaluation ey.

Thus if T'=Y, w; ufllufZ2 .. uf_’“k, then T coincides with the weighted sum of evalautions T = Y, w; €py,
on Rs, s,.....5,.- We reduce the decomposition problem of T" to the decomposition of T* as a weighted sum of
evaluations T = ), w; €py, -

2.1 Solving polynomial equations by eigenvector computation

We recall the definition of quotient algebra A of the ring of polynomials in a collection of variables x =
[X1,X2,...,X}] where x; = [X;,1,Xj2,...,X;n;] for j=1,...,k by an ideal I of multivariate polynomials. We
use eigen-structure properties of multiplication operators and their transpose in a chosen basis of A and its
dual to compute the x’s coordinates of points in the decomposition of the associated multi-linear tensor.

A quotient algebra A = C[x]/I is Artinian if it is of finite dimension over C. In the case of partial
symmetric tensor, the variables x and y are divided into bunches of sub-variables such that x = [x1, X2, ..., Xx]
and y = [y1,¥2,...,¥k]. Hereafter, in the case of multi-symmetric tensor the ideal I defines a finite number
of roots V(I) = {&1,8&0,...,&} ={£ e C" | VqgeI,q(€) =0} where n = Zle(nj +1) such that n; + 1 is the
dimension of each vector space spanned by x; and we have a decomposition of A as a sum of sub-algebras:

A=C[x]/I= A @ oA



where A, = ug, A ~ C[x]/Q, and @, is the primary component of I associated to the root &, € C". The
elements uy, ..., u, satisfy the relations

ugp(x) = ug, (x), gu&)(x) =1.

The polynomials ug,,...,ue, are called idempotents of A. The dimension of A, is the multiplicity of the
point &,. For more details, see [6][Chap. 4].
For g € C[x], the multiplication operator M, is defined by

Myg:A-> A
h > My(h) =gh.

The transpose M of the multiplication operator M, is

MDA > A
Ao MI(A) = Ao M, =g A,

The main property that we will use to recover the roots is the following [6][Thm. 4.23]:
Proposition 2. Let I be an ideal of C[x] and suppose that V(I) = {&1,&2,...,&}. Then

— for all g € A, the eigenvalues of M, and My are the values g(§1),...,9(&) of the polynomial g at the
roots with multiplicities p, = dim A,,.
— The eigenvectors common to all Mg with g € A are - up to a scalar - the evaluations eg,, ..., e ,.

If B = {b1,...,b.} is a basis of A, then the coefficient vector of the evaluation e¢, in the dual basis of
Bis [(e5p|bj)]563 = [b;(&)]p=1..r = B(&p). The previous proposition says that if M, is the matrix of M, in
the basis B of A, then

M;B(fp) = g(fp) B(gp)-

If moreover the basis B contains the monomials 1,21 1,21 2,...,21,,, then the common eigenvectors of M
are of the form v, =¢[1,€,1,1,...,&p,1,n,,-..] and the x’s coordinates of the root &, can be computed from
the coeflicients of v, by taking the ratio of the coefficients of the monomials 1 1,...,%1,,, by the coefficient
of 1: {514, = ""’/;711:1 Thus computing the common eigenvectors of all the matrices M for g € A yield the
x’s coordinates of the roots & (p=1,...,7).

In practice, it is enough to compute the common eigenvectors of M;M, cee M:Zl,nl , since Vg € C[x1], M; =
g(M;M, ey M;Ml ). Therefore, the common eigenvectors M;M, ey M;m are also eigenvectors of any M.

The multiplicity structure, that is the dual Q; of each primary component @, of I, also called the inverse
system of the point £, can be deduced by linear algebra tools (see e.g. [13]).

In the case of simple roots, we have the following property [6][Chap. 4]:

Proposition 3. If the roots {£1,62,...,&} of I are simple (i.e. p, = dim Ay, = 1) then we have the following:

—u={ug,...,ug. } is a basis of A.

— The polynomials ug,, ..., ue, are interpolation polynomials at the roots &,: ug, (&) =14ip=qandO
otherwise.

— The matriz of Mg in the basis u is the diagonal matriz diag(g(§1),...,9(&)).

r

This proposition tells us that if g is separating the roots, i.e. g(§,) # g(&,) for p # ¢, then the eigenvectors of
My are, up to a scalar, interpolation polynomials at the roots.



2.2 Artinian Gorenstein algebra of a multivariate Hankel operator

In this section, we detail the construction of the quotient algebra A, by the kernel I of the Hankel operator
H. associated to the dual of the tensor 7. We compute a basis of A, such that the submatrix associated to
it has a maximal non-zero minor of a truncated matrix of H,. We recall how to compute the multiplication
matrices in this associated basis and its dual using some shifted submatrices of H,. We notice that not all of
them are easy to compute. We benefit from properties of generalized eigenvalues of multiplication matrices
by 3's to compute the x’s coordinates of points. We show how to use the generalized eigenvectors of the
multiplication matrices to compute the weights.

We associate to a Hankel operator H.,, the quotient A, = C[x]/I, of the polynomial ring C[x] modulo
the kernel I = {p e C[x] | Vg € R, (7| pq) =0} of H,. We check that I, is an ideal of C[x], so that A, is an
algebra.

As A, = C[x]/I; ~ img H,, the operator H is of finite rank r, if and only if, A, is Artinian of dimension
dimc A, =7r .

A quotient algebra A is called Gorenstein if its dual A* = Homc(A,C) is a free A-module generated by
one element.

In our context, we have the following equivalent properties [14]:

— 7= Z;;l wp(y)eg, (y) with w, € Cly], £, € C" and Z;’:l p(wp) =r where n = Z?zl(nj +1),

— H, is of rank r,
— A, is an Artinian Gorenstein algebra of dimension r.

Another property that will be helpful to determine a basis of A, is the following:
Lemma 2. Let B ={by,...,b.}, B'={V},...,b.} c C[x]. If the matriz HE-B" = ({7[bpbl)) 1<p.q<r 18 invertible,
then B and B’ are linearly independent in A..

By this Lemma, bases of A, can be computed by identifying non-zero minors of maximal size of the
matrix of H,.

Proposition 4. Let B, B’ be basis of A, and g € C[x]. We have

HB,B' _ (MgB)THf’B, - vaB’Mf/. (3)

g*T

where MgB (resp. Mf) is the matriz of the multiplication by g in the basis B (resp. B') of A.
We deduce the following property:

Proposition 5. Let 7(y) = ¥,_; wp(y)ee, (y) with w, € Cl[y] ~ {0} and &, € C" distinct and let B, B be
bases of A.. We have the following properties:

~ For g e Clx], My = (HPP)HLP , (MJ) = Hyo? (HPP)™

— For g € C[x], the generalized eigenvalues of (Hﬁ’f 7Hf_g’Bl) are g(&p) with multiplicity p, = p(wp),
p=1,...,r.

3 T . B,B' 17B,B' B,B'\-1
The generalized eigenvectors common to all (Hyyy ,HZ7") for g € C[x] are - up to a scalar - (H7"" )™ B(&p),
p=1...,7r.

Proof. The two first points are direct consequences of Propositions [ and The third point is also a
consequence of Proposition 2, since the coordinate vector of the evaluation eg¢, in the dual basis of B is
B(&y) forp=1,...,r.

This proposition shows that the matrices of multiplication by an element ¢ in A, and thus the roots
{&1,...,&} and their multiplicity structure, can be computed from truncated Hankel matrices, provided

we can determine bases B, B’ of A,. In practice, it is enough to compute the generalize/d eigenvectorls
common to (Hfl’ﬁ,”,Hf’B,) for i, = 1,...,m1 to recover the roots. As Hfl”ilﬂ = gia BB o gBea B
the decomposition can be computed from sub-matrices of Hf’BH or H7l.3+*B’ where B* = Bux; 1 BU---Uzy , B,
B"=B'uz11B' vz, B



3 Multilinear Tensor Decomposition Problem

In this section, we analyze the easiest case of multi symmetric tensor where it is of degree one at each
bunch of sub-variables. Our goal is to decompose 7 which is equal to T* as a weigthed sum of evaluations
by computing the eigen-structure of A, which is based on the computation of multiplication operators. We
simplify notations by using subscripts of variables and coefficients instead of multi-index exponents. We
compute the truncated Singular Value Decomposition of a generic linear combination of a shifted Hankel
matrices by the first collection of variables. By linearity and properties of the multiplication operators by
one variable described in section 2, we deduce the multiplication operators by more complex variables which
could be used to compute weights and points.

We choose two monomial bases By and Bs indexing respectively rows and columns of the Hankel matrix
Hfj’Bz associated to the tensor 7, such that the set of monomials { B * Baxj,;,0<14; <nj,1<j <k} span
the set of deshomogenized polynomials Rs, s,.....5, -

The matrix of the truncated Hankel operator in the basis By and the dual basis Bs is

B1,By _
HT* = [til’i2v~7ik]05?15n1 .

OSZgSﬂz
0<ip<ny
. . . B1.B x1,,*B1,B
The Hankel matrix associated to the tensor x;, * T* is defined as Hy;, = H 72, = Hp,n ot =
iq

[ta+5]aea:1 B, BBy’ all the elements of the matrix are divisible in x1 ;, and of degree ¢.
Vi1 >

For example, the Hankel matrix associated to x1 * T in the monomials basis B; and By is denoted by
Hy. Let A(x1) = Ag+A1Z11 +...+ Ay, &1, is a linear form with generic chosen coefficients \;,, i1 =0, ...,n1,
we build a linear combination of Hj ;,,41 =0,...,n; such that Hy = 2?11:0 i, Hy i, we compute the singular
value decomposition of it.

Computing the singular value decomposition of Hy, we obtain

Hy=USVT

where S is the diagonal matrix of all singular values of H, arranged in a decreasing order, U is an unitary
matrix whose columns are the left singular vectors of Hy, V is an unitary matrix whose columns are the
right singular vectors of Hy. We denote by U" the hermitian transpose of U and V the conjugate of V. We
denote by U, and V, the truncated matrices of the first » columns of U and V and S, the diagonal matrix
of the first r rows and r columns of S.

We denote By = (1,211,...,%1n,) and Ba = (1,25 1,..., Tk, ). Let u; = [1L047i]0l€§1 and v = [Uﬁ,j]ﬁeEQ
be respectively the i and j*™® columns of U" and V. We denote by u;(x1) = u] UF and v;(x;) = va.Vr the
corresponding polynomials. The bases formed by these first  polynomials are denoted U} := (u;(X1))i=1,....r
and V. := (vj(x1))j=1,....r- We will also denote by U} (resp. V) the corresponding coefficient matrix, formed
by the first rows (resp. columns) of U" (resp. V). We denote by S, the diagonal matrix of the first » rows
and columns of S, formed by the first r singular values.

We denote by Hjy ,Hj ;, and ﬁg the matrices obtained by the truncated singular value decomposition of
Hy ,H;, and H, respectively.

We have the following property

HY, = (MY, ) Hy = HG MY

T1,iq *T
; _ B _
where Mgril (resp. M;/lf_l) is the multiplication matrix by z; ;, in the basis U (resp. V) and M,Xlr_ o 18
s K3 o ) . i1
the multiplication matrix by x1,, * T in the basis V,. Then by linearity, we obtain Hj = X' A\, H{ ;, =

1C - i1=0 Liy
roni . Vi _ rasVnr
HO Zi1=0 A“Mxl‘il =T ~ HO M)\(xl)*T'

Then (H7)™ = (MY

)\(xl)*T)’l(H{;)’1 so multiplying by the first equation we get

gr\-1rrr _ V, 12V, _ V.
(Ho) Hl,i1 = (M)\(xl)*T) MIl,il*T - M(Il,il/)‘(xl))*T



We compute the eigenvalues and the eigenvectors of the multiplication matrices M in order

i1 [A(x1))+T
to obtain the weights and the points of the decomposition.

3.1 Algorithm

We describe now the algorithm to recover the sum T7*(x,y,2) = ¥, Wpeu,(X,y,2), wp € Cx {0}, u, €

(Czlil(””l), from the moments of degree at most one at each bunch of coordinates (t; j r)o<i<n, of the formal
0<j<
0<kzny

power series. To simplify, we change notations to better understand the nine dimensional multivariate space

seen as three dimensional space. We only use 3 bunches of variables such that = ;, by x; and z2;, by y; and
x3,45 DY 2.

Algorithm 3.1: Decomposition of polynomial-exponential series with constant weights

Input: the moments (t; ; r)o<i<n, of T~.

0<j<ng
0<k<ns
1. Compute the monomial sets A; = (z;y;)o<i<n, and Az = (29,21, ...,2n,) and substitute the z,yo and
0<j<nsg
zo by 1 to define By and Bs.
2. Compute the Hankel matrix HEVB2 - [ti.j.k]o<icn, for the monomial sets By and Bs.
0<j<
bz
3. Compute the singular value decomposition of HJTB,}’B2 =USVT where By = (1,x1,...,z,,) and
By = (1,21,...,2n,) with singular values s3 > s > -+ > s, 2 0.

4. Determine its numerical rank, that is, the largest integer r such that S—T > €.

5. Form the multiplication matrices by y; in the basis V., MZ r=S71U, ”Hf i’fﬁV where H 31*,7113*2 is the

Hankel matrix associated to y; » T™ for j =1,...,ns.
6. Compute the eigenvectors v, of Z 2l MV such that |I;|<1,5=1,...,n2 and for each p=1,...,7 do
the following;:
— The y's coordinates of the u, are the eigenvalues of the multiplication matrices by y;. Use the
formula MVTVP =upo;Vp forp=1,...,7and j=1,...,n2 and deduce the up 2 ;.

— Write the matrix H., 51,52 i the basis of interpolation polynomials(ie. the eigenvectors v,) and use

the corresponding matrlx T to compute the z’s coordinates. Divide the k*P row on the first row of
the matrix 7 to obtain the values of up 3 for p=1,...,rand k=1,...,n

— The z's coordinates of u, are computed using the eigenvectors of the transpose of the matrix MZ
They -are up to scalar- the evaluations, they are represented by vectors of the form

vy = ip[l,up 11,5 Up 1 n, |- Compute vy as the p' column of the transpose of the inverse of the
. 1 .
matrix V = [v,...,v,] forpzl,...,randdeduceup71,i:v[Z[Jr]]frp 1,...,randi=1,...,n1.

— Compute wy = %

Output: 7 €N, w, € C\(0), u, € CZL3=1("”1), p=1,...,r such that T*(x,y,2) = X,-; Wpeu,(X,y,2z) up
to degree one at each bunch of coordinates.

The cost of the SVD computation is in O(s®) where s > r is the maximal size of the Hankel matrix Hy
and r the rank of the decomposition. The computation of each multiplication matrice is in O(r?) and the
eigencomputation is in O(r®). This yields a complexity bound in O(s® + nr?) for the complete algorithm,
where n = max(ni,ne,ng) is a bound on the dimension of the spaces. This complexity bound extends to the
decomposition of general multi-symmetric tensors, provided r = rank Hy.



4 Example

In this section, we illustrate the decomposition algorithm on a multi-linear tensor of degree one at each
bunch of 3 variables and of rank 3.

If§=1foralll=1,...,k, k>1and n; =n,let k=3, n =n=2,r =3 and § =1 then we have
x = (2o, 21,22), ¥ = (Y0,y1,y2) and z = (29, 21, 22). For

aeN? |al=1=a=(1),(0,1),(0,1) = x* =2;,i=0,...,2

BeN |Bl=1=F=(1),(0,1),(0,1) >y’ =y;,j=0,...,2

FeN3 |§|l=1=75=(1),(0,1),(0,1) = 27 = 2.,k =0,...,2

The multi symmetric tensor is defined by a multi symmetric array of coefficients such that ta, 5,4 =15 5 5 =

tijr thenT(x,y,2z) = 285@% i kY2, = 0.4461757334x01020-0.2262004083 20y 21 +0.442703174020 Y0 22—
<j<

0.2756785277a?0y12’0+0.106S1k2s§18550moy1Z1—0.3100164212x0y122—0.1209490221:60112204-0.1465160338;603/221—
0.1169341103x0y222—-0.012399306492 1 0 20—0.0518933098121 1o 21 +0.0180356442211 Y9 29—0.01336683543 21 y1 20+
0.02632784503x1y121—0.0259820962621 Y1 22—0.319526361221 y220+0.093116050227; Y221 —0.1116610246 21 yo 29—
0.1460187051 2910 20+0.0655722384825y0 21 —0.1734312692 910 22+0.101014592622y; 20—0.0574307856 191, 21 +
0.1238292801x2y1 22 — 0.1485221955x 21220 + 0.0323141576222y221 — 0.376925099¢ — 2z2y222.
Let @ = yo = 20 = 1 then T'(x,y, 2) = ¥1<ic2 i j ;Y 2k
- 1<5<2 =J
1<k<2
Then the tensor decomposition problem is T(x,y,2) = ¥,-; wplp1(X)uy 2(y)u, 3(z). Given all the moments

of degree at most one at each bunch of coordinates (%; ; 1) o<i<2,
0<<2
0<k<2

We create two sets A; = (xdyg)wzl = (z3y;)osi<2 and Ay = (27)15121 = (2r)o<ke2 SO that
|B|=1 0<75<2

A1 = (2oYo, ToY1, ToY2, T1Y0, T1Y1, T1Y2, T2Yo, T2y1, T2y2) and Ag = (20, 21, 22).

For xg = yo = 20 = 1 then By = (1,y1,Y2, %1, T1Y1, T2, T2y1, Toy2) and Bs = (1,21, 20), the Hankel matrix
associated to the tensor in the monomial basis B; and B, is

1 y1 y2 1 21y1 Tiy2 T2 Tay1 Ty

BB v | to t1 t2 to1 to2 Ti1 ti2 T2 tz,zE
T* = — A —

a+B+yllal=1 T to,1 1,1 t2,1 to,1,1 To,2,1 t1,1,1 t1,2,1 T2,1,1 t221 R
-1
‘|§,\|:1 to2ti2t22 t12 to2,2t1,1,2 81,22 t2,1,2 T22,2k2
1 Y1 Y2 T1 T1Y1 T1Y2 T2 Toy1 Ty

= -0.2262004 0.1612318 0.1465160 0.05189330 0.02632784 0.09311605 0.06557223 0.05743078 0.03231415

0.4461757 0.2756785 0.1209490 0.01239930 0.01336683 0.3195263 0.14601870 0.1010145 0.1485221‘|
0.4427031 0.3100164 0.1169341 .01803564 0.02598209 0.1116610 0.1734312 0.1238292 0.00376925

All the entries of this matrix are known, we choose B = (1,21,72) and By = (1,21, 25) to be able to
multiply by 1 and to compute the multiplication matrix. Computing the singular value decomposition of
Hﬁj’Bz, we obtain

1 z1 x2 1 1 T2

_ to t1 ta 0.4461757 -0.01239930 -0.1460187
HPPP2=USVT =4y 1, tmEl :l—0.2262004 ~0.05189330 0.06557223l
0.4427031 0.01803564 -0.1734312

to2 t1,2 t22ke

where S is the diagonal matrix of all singular values of H?,}’BZ arranged in a decreasing order, U is an

. . . B.,B . . .
unitary matrix whose columns are the left singular vectors of H;.'”?, V is an unitary matrix whose columns



are the right singular vectors of H?}’BZ. We denote by U" the Hermitian transpose of U and V' the conjugate
of V.

Let v; = [Va,i]
by vi(x) = v] U} and w,;(z) = w;VT the corresponding polynomials. The bases formed by these first r
polynomials are denoted U/ := (v;(x))i<1,..» and V. := (wj(2))j=1,....r- We will also denote by U} (resp. V.
the corresponding coefficient matrix, formed by the first rows (resp. columns) of U" (resp. V). We denote
by S, the diagonal matrix of the first r rows and columns of S, formed by the first r singular values. To
compute the multiplication matrices sz " and My‘; " we need to compute the following matrices

ocB, and w; = [wg ;] 5, be respectively the i*" and j* columns of U" and V. We denote

Y1 Y11 2291 Y1 Yyi1x1 T2Y1
— _ Ttoq tig taq 1 [-0.2756785 —0.01336683 0.1010145
Hyoope :ltom ti1a t271,1‘|21 =l 0.1612318 0.02632784 —0.05743078]
to12ti1o ta1adz [-0.3100164 -0.02598209 0.1238292
Y2  Y2x1 T2Y2 Y2 Y21 T2y
. Ttoo tis tan 1 [-0.1209490 —0.3195263 -0.1485221
Hyope =lt0,271 t1o1 taon |2 :l 0.1465160 0.09311605 0.03231415]
to2o t1o0 tasalz 101169341 —0.1116610 ~0.00376925

V. _ a-1rmprBi1,Ba1r V. _ a-17mrB1,B277 :
Then we compute M, = S UH, 72V, and My,» = S;UPH,p2 Vo, and the eigenvectors vy, of

2321 leij“ such that |l;| < 1,7 =1,...,2. To recover the points u, € C"** for p=1,...,r of the form

[Up,1,1] 71
Up,1,2 | T2
Up,2,1 | Y1
Uy S up22|y2
Up,3,1 | 21
-Up73’2- 292
We do the following:
In general we have My'r v; = w;ji,vi, for i = 1,...,7, j = 1,...,k, i; = 1,,n; so in this case we get
o _
M;{Tvp = Up21Vp and M;grvp =up22Vy for p=1,...,3 so we compute up 21 and up22 for p=1,...,3. So
that we get
Upa1 = [—0.746329870878 -0.293761776025 —0.304898408788]
Up 22 = [1.40328849510 -0.336304368405 —3.59031087599] .
The eigenvectors vy, € (1,z1,x2) for p=1,...,3 are up to a scalar the interpolation polynomials at the roots

so that if the dual of the tensor has an affine decomposition T (x,y,z) = ¥, wpeu, (X,y,2) then T*(v,) =
ZZT)=1 wpeup(vp) = ApWp, I*(Zlvp) = Z;:l Wpeu, (21Vp) = Apwplp 31 and I*(Z2Vp) = Z;=1 Wpeup(z2vp) =
Apwplip 3.2, for p=1,...,3. Then the values of u, 31 and u, 32 for p=1,...,3 come from the computation of

the matrix:
V1 V2 v3 U1 V2 U3

T*(Ul) T*(UQ) T*(Ug) 1 /\1QJ1 /\QLUQ )\3Ld3 1
T = T*(z1v1) T*(z102) T (2103) |21 [ Mwiu1,31 Aowatio 31 Azwsus 3.1 |21

T*(29v1) T (22v2) T (22v3)d 22 LA iwiui 3,2 Aowattn 3.2 Aswsus 321 22

10



Therefore the value of uy 31 (resp. up 32) comes from the ratio of the second row (resp. the third row) and
the first row of the matrix for p=1,...,3. So that we get

Up3,1 = [—0.655842579065 0.0321233423462 -0.520955291 ]
Up3,2 = [1.24749588143 0.403506877499 0.242728128570] .

The common eigenvectors of all (MZ ") -are up to scalar- the evaluations, they are represented by

vectors of the form v = u,[1,up 1,1,Up,1,2] in the dual basis of By = (1,71, 72) then the computation of the
coordinates of u, 1,1 and u, 1 2 come from the eigenvectors of the transpose of multiplication operators which

are obtained by transposing the inverse of the matrix V of vectors of MZ r for 7 = 1,...,2, therefore the
value of uy, 1,1 (resp. up1,2) comes from the ratio of the second element of v, (resp. the third element) and
the first element of it, so that

Up,1,1 = [0.114279629148 -1.08600705528 1.23814628617]
Up,1,2 = [—0.405714894278 -0.567603220082 0.873482418287] .

Notice that the computation of wy,,p = 1,...,3 can be done using the following formula w, = i}T*(‘l‘l'f’))
P P
if v, € (1,21, 22) then v, = a, + w1b, + x2¢, and vy = pp[1,up1,1,up12] € ((1,21,22))", so that v,(u,) =

— * 3 3 9
ap +Up 1,10y +Up 1 2¢p = (Vy|Vy), the computation gives

since

w = (Wp)1gper = [0.318579752246 0.08897389360312 0.0386220875736]
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