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Abstract. We study the decomposition of a multi-symmetric tensor T as a sum of powers of product
of linear forms in correlation with the decomposition of its dual T ∗ as a weighted sum of evaluations.
We use the properties of the associated Artinian Gorenstein Algebra Aτ to compute the decomposition
of its dual T ∗ which is defined via a formal power series τ . We use the low rank decomposition of the
Hankel operator Hτ associated to the symbol τ into a sum of indecomposable operators of low rank.
A basis of Aτ is chosen such that the multiplication by some variables is possible. We compute the
sub-coordinates of the evaluation points and their weights using the eigen-structure of multiplication
matrices. The new algorithm that we propose works for small rank. We give a theoretical generalized
approach of the method in n dimensional space. We show a numerical example of the decomposition of
a multi-linear tensor of rank 3 in 3 dimensional space.

1 Introduction

The decomposition of symmetric and multi-symmetric tensors has many applications in engineering disci-
plines such that signal processing [11], scientific data analysis [9], [18], statistics [17], in bioinformatics and
spectroscopy [5], in neuroscience, in phylogenetic .... For instance, the study of symmetric tensor decom-
position gives an idea about the geometric structure of intersecting fibers in human brain using the Fibers
Orientation Fibers Function described in [12], ou[8] and [19]. The decomposition of multi symmetric tensors
of small rank appear in several other contexts, for learning latent variable models which are algebraic statis-
tics models. This is the case for the analysis of phylogenetic trees model described in [15] or for the analysis
of contents of web pages model described in [1]. Here, the mixture model is a collection of all non-negative
probability tensors of low rank.

The tensor decomposition problem is also very interesting from an algebraic geometric point of view [10].
Important efforts have been developed over the last decades to better understand the theoretical aspects,
as well as the algorithmic aspects of this difficult problem. Some of the well-known decomposition methods
use local optimization techniques such Alternate Least Square, Gradient Descents, Quasi-Newton, . . . to
minimize the error between the tensor and its decomposition. Some other approaches exploit the algebraic
structure associated to the tensor decomposition [4], [3]. Homotopy techniques have also been used recently
to compute such decomposition [2].

In this paper, we describe a direct method for the decomposition of multi-symmetric tensors, based on
simple linear algebra tools. The decomposition algorithm applies to tensors of low enough rank. We follow
the approach in [3] but directly apply numerically stable linear algebra tools on submatrices of the Hankel
matrices to recover the decomposition. In particular, we show how to recover directly the points and weights
from eigenvectors of multiplication operators of the quotient algebra associated to the decomposition. The
algorithm does not require the solution of polynomial equations. The proposed method extends the techniques
of [16] to more general tensors and to tensors of higher rank. It is closely connected to the multivariate Prony
method investigated in [14] and to the structured low rank decomposition of Hankel matrix [7].

A multi-linear tensor is in correspondence with a multilinear map from a product of vector spaces to the
coefficient field. A tensor symmetric tensor is a tensor whose components stay invariant by any permutation of
indices. In the following, we study the general class of multi symmetric tensor decomposition problem, which



contains these two classes. We show the correlation between the dual of a tensor, formal power series and
then the Hankel matrices associated to them. We use the singular value decomposition of Hankel matrices to
compute the decomposition of a tensor of low rank. We exploit the properties of Artinian Gorenstein Algebra
to find out some multiplication matrices which help to know the eigen-structure of points associated to linear
forms and their weights. We slice variables into bunches of sub-variables and we adapt the description of
Artinian Gorenstein Algebra to this case. We adapt the method of decomposition of Hankel matrices of low
rank described in [7] to a decomposition of multi linear tensors method which is based on the decomposition
of a formal power series as a weighted sum of exponential described in [14]. The computation of multiplication
matrices depend on the dimension of tensor, and the number of given moments or coefficients. We describe the
algorithm in 3 dimensional space and we give its numerical implementation using MAPLE. This description
gives an idea about the constraints and difficulties of the problem in n dimensional space. We show a
numerical example of the decomposition of a tensor of rank 3 with order one in each bunch of 3 variables in
3 dimensional space.

Contributions. We study the decomposition of multi-linear tensor T as a sum of product of powers of
linear forms in correlation with the decomposition of its dual T ∗ as a weighted sum of evaluations. T ∗ is
defined via a formal power series τ . We exploit the structure of the quotient algebra Aτ of the ring of
multivariate polynomials in bunches of sub-variables by the kernel of the Hankel operator Hτ associated to
τ . We choose two bases A1 and A2 of monomials such that all given moments of the tensor T appear in the
matrix Hτ associated to T in the bases A1 and A2 and we substitute x0 by one. We compute the Singular
Value Decomposition of the Hankel matrix associated to a chosen truncated bases of A1 and A2 such that the
multiplication of the matrix by one fixed variable is well defined. We exploit the eigen-structure properties
of multiplication operators to compute the sub-coordinates of points and their corresponding weights. We
show the constraints which arise from the computation of all multiplication matrices in higher dimension
spaces. We propose a new algorithm to compute the sub-coordinates of points using the eigenvalues of
multiplication matrices and their transpose. We deduce weights from eigenvectors of a linear combination of
multiplication matrices. This method is an adaptation of Structured Low Rank Decomposition of Multivariate
Hankel Matrices method proposed in [7] which is the generalization of Prony method. We give a numerical
interpretation of the decomposition of a multi-linear tensor of low rank in 3 dimensional space.

Structure of the paper. In the following section, we recall the definition of multi symmetric tensors of
rank r and the affine decomposition theory of them. In section 2, we recall some important properties of
Artinian Gorenstein Algebra that we adapt to solve the dual decomposition problem which is resumed by
the computation of points and their weights. In section 3, we give a theoretical approach of the multi linear
symmetric decomposition problem. In section 4, we propose a new algorithm to solve the decomposition
problem in 3 dimensional space. Finally, we give an implementation of our algorithm for one example using
MAPLE and we interpret the results.

2 Partial Symmetric Tensor Decomposition Problem

In this section we give the definition of a multi-symmetric tensor as a multi-homogeneous polynomial of
a different positive degree at each collection of variables. This polynomial can be defined as well as multi
symmetric array of coefficients. In the opposite, for a multi symmetric array of coefficients we can define
a multi-homogeneous polynomial and then deshomogenize it. We recall the definition of minimal affine
decomposition of a multi symmetric tensor as weighted sum of product of power of linear forms. We show
the relationship between the dual of deshomogenized tensor and the formal power series associated to it
using the apolar product. Then, after scaling by the linear form of the decomposition and multiplying the
weights by the scaling factor we deduce by linearity that the dual of the Tensor can be decomposed as a
weighted sum of evaluations.

Definition 1. Let (Ej)1≤j≤k be a family of nj +1 dimensional vector spaces, each one of them is of basis xj
such that Ej = ⟨xj⟩ = ⟨xj , . . . , xj,nj ⟩.

Definition 2. Sδj(Ej) is the vector space of homogeneous polynomials in the variables xj of degree δj.
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Definition 3. Sδ1(E1) ⊗ S
δ2(E2) ⊗ . . . ⊗ S

δk(Ek) is the vector space of multi-homogeneous polynomials of
degree δj in each subset of variables xj for j = 1, . . . , k, an element [T ] of this vector space is called a multi
symmetric tensor. It is denoted hereafter as Sδ(E).

Definition 4. A multi symmetric tensor of Sδ1(E1)⊗S
δ2(E2)⊗ . . .⊗S

δk(Ek) can be interpreted as a multi

symmetric array of coefficients [T ] = [tα′1,α
′

2,...,α
′

k
]

∣α
′

j ∣=δj

α
′

j∈N
nj+1

such that each α
′

j = (α
′

j,pj
)0≤pj≤nj is a multi-index

for 1 ≤ j ≤ k.

For α ∈ Nn with ∣α∣ ≤ δ, we denote ᾱ = (δ − ∣α∣, α1, . . . , αn). The multi symmetric tensor is defined as
[T ] = [tᾱ1,ᾱ1,...,ᾱk] ∣αj ∣≤δj

αj∈Nnj
.

Such tensor is identified with the multi-homogeneous polynomial

T (x1,x2, . . . ,xk) = ∑
∣ᾱj ∣=δj
ᾱj∈Nnj+1

tᾱ1,ᾱ2,...,ᾱk(x1)
ᾱ1(x2)

ᾱ2 . . . (xk)
ᾱk

If we let xj = 1 for j = 1, . . . , k we get

T (x1,x2, . . . ,xk) = ∑
∣αj ∣≤δj
αj∈Nnj

tα1,α2,...,αk(x1)
α1(x2)

α2 . . . (xk)
αk

where xj = (xj,1, . . . , xj,nj) for j = 1, . . . , k because of (xj)
αj = (xj)

ᾱj for j = 1, . . . , k.
A multilinear tensor is defined when ∣ᾱj ∣ = δj = 1 for j = 1, . . . , k, then by abuse of notation we obtain

ᾱj[ij] = 1 for some 0 ≤ ij ≤ nj and 0 elsewhere, so that the multi symmetric array associated to that tensor
is defined as [T ] = [ti1,i2,...,ik]0≤ij≤nj

1≤j≤k

Given ej basis of Ej for j = 1, . . . , k, the tensor [T ] in the basis e1 ⊗ e2 ⊗ . . . ⊗ ek is equal to T =

∑0≤i1≤n1
0≤i2≤n2

⋮
0≤ik≤nk

ti1,i2,...,ike1,i1 ⊗ e2,i2 ⊗ . . .⊗ ek,ik , such a tensor can be identified with the multi-homogeneous poly-

nomial T (x1,x2, . . . ,xk) = ∑0≤i1≤n1
0≤i2≤n2

⋮
0≤ik≤nk

ti1,i2,...,ikx1,i1x2,i2 . . . xk,ik because of (xj)
ᾱj = xj,ij for some 0 ≤ ij ≤ nj

and for all 1 ≤ j ≤ k.
The dual of the tensor is T ∗(y1,y2, . . . ,yk) = ∑0≤i1≤n1

0≤i2≤n2
⋮

0≤ik≤nk

ti1,i2,...,iky1,i1y2,i2 . . . yk,ik because of (yj)
ᾱj = yj,ij

for some 0 ≤ ij ≤ nj and for all 1 ≤ j ≤ k.
We denoteRδ1,δ2,...,δk the space obtained by the deshomogeneisation of elements in Sδ(E) by setting xj = 1

for j = 1, . . . , k where R = C[x1,x2, . . . ,xk] is the space of polynomials in the variables xj = (xj,1, . . . , xj,nj)
for j = 1, . . . , k

Definition 5. The tensor decomposition problem of T (x1,x2, . . . ,xk) is the decomposition of T as a sum
of product of power of linear forms such that T (x1,x2, . . . ,xk) = ∑

r
p=1 ωpu

δ1
p,1(x1)u

δ2
p,2(x2) . . .u

δk
i,k(xk) where

up,j(xj) = up,jxj + up,j,1xj,1 + . . . + up,j,njxj,nj and

up = (up,j,pj)0≤pj≤nj
1≤j≤k

= (up,1, up,1,1, . . . , up,1,n1 , up,2, up,2,1, . . . , up,2,n2 , . . . . . . , up,k, up,k,1, . . . , up,k,nk) ∈ C∑
k
j=1(nj+1)

is the coefficient vector associated to the linear forms up,j(xj) in the basis xj for j = 1, . . . , k.

Definition 6. The minimal number of terms in a decomposition of T (x) is called the rank of T .

We say that T (x1,x2, . . . ,xk) has an affine minimal decomposition of the previous form if up,j ≠ 0 for
p = 1, . . . , r and j = 1, . . . , k where r is the rank of T .
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Definition 7. For T = (tα1,α2,...,αk) ∣αj ∣≤δj
αj∈Nnj

∈ Sδ(E) we denote

τα1,α2,...,αk(T ) = τα1,α2,...,αk = tα1,α2,...,αk(
δ1
α1

)
−1

(
δ2
α2

)
−1
. . . (δk

αk
)
−1

. The dual of the tensor

T (x1,x2, . . . ,xk) ∈ S
δ(E) is defined via the formal power series as

τ(y1,y2, . . . ,yk) = T
∗(y1,y2, . . . ,yk) = ∑ ∣αj ∣≤δj

αj∈Nnj
τα1,α2,...,αk

(y1)
ᾱ1

ᾱ1!
(y2)

ᾱ2

ᾱ2!
. . . (yk)

ᾱk

ᾱk!
where

(yj)
ᾱj = (yj , yj,1, . . . , yj,nj)

(αj ,αj,1,...,αj,nj ) = ∏
nj
pj=0 (yj,pj)

αj,pj for j = 1, . . . , k

Definition 8. For a polynomial p ∈ R and a formal power series τ ∈ R∗, we define the multiplication operator
∗ such that

p ∗ τ ∶ R → C
q ↦ τ(p.q)

Definition 9. Let T1(x1,x2, . . . ,xk) and T2(x1,x2, . . . ,xk) be two tensors of Sδ(E). The apolar product of
T1(x1,x2, . . . ,xk) and T2(x1,x2, . . . ,xk) is defined as

⟨T1(x1,x2, . . . ,xk), T2(x1,x2, . . . ,xk)⟩ = ∑ ∣αj ∣≤δj
αj∈Nnj

τ
(1)
α1,α2,...,αk τ̄

(2)
α1,α2,...,αk(

δ
α
) where (

δ
α
) = (

δ1
α1

)(
δ2
α2

) . . . (δk
αk

).

Definition 10. The dual operator of a tensor is defined as

T ∗ ∶ (Rδ1,δ2,...,δk) → (Rδ1,δ2,...,δk)
∗ (1)

T2 ↦ T ∗(T2) = ⟨T (x), T2(x)⟩ (2)

Lemma 1. By a generic change of coordinates in each Ej, we may assume that up,j ≠ 0 and that T has
an affine decomposition. Then by scaling up(x) and multiplying ωp by the dth power of the scaling factor

we may assume that up,j = 1 for p = 1, . . . , r and j = 1, . . . , k. Thus the polynomial T (x) = ∑
r
p=1 ω

′
pu

′
p
δ
(x) =

∑
r
p=1 ω

′
iu

′
p,1

δ1(x1)u
′
p,2

δ2(x2) . . .u
′
p,k

δk(xk)

Proposition 1. The dual of the product of powers of linear forms uδ11 uδ22 . . .uδkk is the evaluation eu at
u = (u1,u2, . . . ,uk).

Proof. For T = uδ11 uδ22 . . .uδkk and any T ′ ∈ Rδ1,δ2,...,δk , we check that ⟨T (x), T ′(x)⟩ = T ′(u). This shows that
T ∗ coincides with the evaluation eu.

Thus if T = ∑i ωi u
δ1
i,1u

δ2
i,2 . . .u

δk
i,k, then T ∗ coincides with the weighted sum of evalautions T ∗ = ∑i ωi ebui

on Rδ1,δ2,...,δk . We reduce the decomposition problem of T to the decomposition of T ∗ as a weighted sum of
evaluations T ∗ = ∑i ωi ebui .

2.1 Solving polynomial equations by eigenvector computation

We recall the definition of quotient algebra A of the ring of polynomials in a collection of variables x =

[x1,x2, . . . ,xk] where xj = [xj,1,xj,2, . . . ,xj,nj ] for j = 1, . . . , k by an ideal I of multivariate polynomials. We
use eigen-structure properties of multiplication operators and their transpose in a chosen basis of A and its
dual to compute the x’s coordinates of points in the decomposition of the associated multi-linear tensor.

A quotient algebra A = C[x]/I is Artinian if it is of finite dimension over C. In the case of partial
symmetric tensor, the variables x and y are divided into bunches of sub-variables such that x = [x1,x2, . . . ,xk]
and y = [y1,y2, . . . ,yk]. Hereafter, in the case of multi-symmetric tensor the ideal I defines a finite number
of roots V(I) = {ξ1, ξ2, . . . , ξr′} = {ξ ∈ Cn ∣ ∀q ∈ I, q(ξ) = 0} where n = ∑

k
j=1(nj + 1) such that nj + 1 is the

dimension of each vector space spanned by xj and we have a decomposition of A as a sum of sub-algebras:

A = C[x]/I = A1 ⊕⋯⊕Ar′
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where Ap = uξpA ∼ C[x]/Qp and Qp is the primary component of I associated to the root ξp ∈ Cn. The
elements u1, . . . ,ur′ satisfy the relations

u2
ξp(x) ≡ uξp(x),

r

∑
i=1

uξp(x) ≡ 1.

The polynomials uξ1 , . . . ,uξr′ are called idempotents of A. The dimension of Ap is the multiplicity of the
point ξp. For more details, see [6][Chap. 4].

For g ∈ C[x], the multiplication operator Mg is defined by

Mg ∶ A → A

h ↦Mg(h) = g h.

The transpose MT
g of the multiplication operator Mg is

MT
g ∶ A

∗ → A∗

Λ ↦MT
g(Λ) = Λ ○Mg = g ⋆Λ.

The main property that we will use to recover the roots is the following [6][Thm. 4.23]:

Proposition 2. Let I be an ideal of C[x] and suppose that V(I) = {ξ1, ξ2, . . . , ξr′}. Then

– for all g ∈ A, the eigenvalues of Mg and MT
g are the values g(ξ1), . . . , g(ξr′) of the polynomial g at the

roots with multiplicities µp = dimAp.

– The eigenvectors common to all MT
g with g ∈ A are - up to a scalar - the evaluations eξ1 , . . . ,eξr′ .

If B = {b1, . . . , br} is a basis of A, then the coefficient vector of the evaluation eξp in the dual basis of

B is [⟨eξp ∣bj⟩]β∈B = [bj(ξp)]p=1...r = B(ξp). The previous proposition says that if Mg is the matrix of Mg in

the basis B of A, then

M T

g B(ξp) = g(ξp)B(ξp).

If moreover the basis B contains the monomials 1, x1,1, x1,2, . . . , x1,n1 , then the common eigenvectors of M T
g

are of the form vp = c [1, ξp,1,1, . . . , ξp,1,n1 , . . .] and the x’s coordinates of the root ξp can be computed from
the coefficients of vp by taking the ratio of the coefficients of the monomials x1,1, . . . , x1,n1 by the coefficient
of 1: ξp,1,i1 =

vp,1,i1+1

vp,1,1
. Thus computing the common eigenvectors of all the matrices M T

g for g ∈ A yield the

x’s coordinates of the roots ξp (p = 1, . . . , r).

In practice, it is enough to compute the common eigenvectors of M T
x1,1

, . . . ,M T
x1,n1

, since ∀g ∈ C[x1],M
T
g =

g(M T
x1,1

, . . . ,M T
x1,n1

). Therefore, the common eigenvectors M T
x1,1

, . . . ,M T
x1,n1

are also eigenvectors of any M T
g .

The multiplicity structure, that is the dual Q⊥p of each primary component Qp of I, also called the inverse
system of the point ξp can be deduced by linear algebra tools (see e.g. [13]).

In the case of simple roots, we have the following property [6][Chap. 4]:

Proposition 3. If the roots {ξ1, ξ2, . . . , ξr} of I are simple (i.e. µp = dimAp = 1) then we have the following:

– u = {uξ1 , . . . ,uξr} is a basis of A.

– The polynomials uξ1 , . . . ,uξr are interpolation polynomials at the roots ξp: uξp(ξq) = 1 if p = q and 0
otherwise.

– The matrix of Mg in the basis u is the diagonal matrix diag(g(ξ1), . . . , g(ξr)).

This proposition tells us that if g is separating the roots, i.e. g(ξp) ≠ g(ξq) for p ≠ q, then the eigenvectors of
Mg are, up to a scalar, interpolation polynomials at the roots.

5



2.2 Artinian Gorenstein algebra of a multivariate Hankel operator

In this section, we detail the construction of the quotient algebra Aτ by the kernel Iτ of the Hankel operator
Hτ associated to the dual of the tensor T . We compute a basis of Aτ such that the submatrix associated to
it has a maximal non-zero minor of a truncated matrix of Hτ . We recall how to compute the multiplication
matrices in this associated basis and its dual using some shifted submatrices of Hτ . We notice that not all of
them are easy to compute. We benefit from properties of generalized eigenvalues of multiplication matrices
by y′s to compute the x’s coordinates of points. We show how to use the generalized eigenvectors of the
multiplication matrices to compute the weights.

We associate to a Hankel operator Hτ , the quotient Aτ = C[x]/Iτ of the polynomial ring C[x] modulo
the kernel Iτ = {p ∈ C[x] ∣ ∀q ∈ R, ⟨τ ∣ pq⟩ = 0} of Hτ . We check that Iτ is an ideal of C[x], so that Aτ is an
algebra.

As Aτ = C[x]/Iτ ∼ imgHτ , the operator Hτ is of finite rank r, if and only if, Aτ is Artinian of dimension
dimCAτ = r .

A quotient algebra A is called Gorenstein if its dual A∗ = HomC(A,C) is a free A-module generated by
one element.

In our context, we have the following equivalent properties [14]:

– τ = ∑
r′

p=1 ωp(y)eξp(y) with ωp ∈ C[y], ξp ∈ Cn and ∑
r′

p=1 µ(ωp) = r where n = ∑
k
j=1(nj + 1) ,

– Hτ is of rank r,
– Aτ is an Artinian Gorenstein algebra of dimension r.

Another property that will be helpful to determine a basis of Aτ is the following:

Lemma 2. Let B = {b1, . . . , br}, B′ = {b′1, . . . , b
′
r} ⊂ C[x]. If the matrix HB,B′

τ = (⟨τ ∣bpb
′
q⟩)1≤p,q≤r is invertible,

then B and B′ are linearly independent in Aτ .

By this Lemma, bases of Aτ can be computed by identifying non-zero minors of maximal size of the
matrix of Hτ .

Proposition 4. Let B,B′ be basis of Aτ and g ∈ C[x]. We have

HB,B′

g⋆τ = (MB
g )

THB,B′

τ =HB,B′

τ MB′

g . (3)

where MB
g (resp. MB′

g ) is the matrix of the multiplication by g in the basis B (resp. B′) of Aτ .

We deduce the following property:

Proposition 5. Let τ(y) = ∑
r
p=1 ωp(y)eξp(y) with ωp ∈ C[y] ∖ {0} and ξp ∈ Cn distinct and let B,B′ be

bases of Aτ . We have the following properties:

– For g ∈ C[x], MB′

g = (HB,B′

τ )−1HB,B′

g⋆τ , (MB
g )T =HB,B′

g⋆τ (HB,B′

τ )−1.

– For g ∈ C[x], the generalized eigenvalues of (HB,B′

g⋆τ ,HB,B′

τ ) are g(ξp) with multiplicity µp = µ(ωp),
p = 1, . . . , r.

– The generalized eigenvectors common to all (HB,B′

g⋆τ ,HB,B′

τ ) for g ∈ C[x] are - up to a scalar - (HB,B′

τ )−1B(ξp),
p = 1, . . . , r.

Proof. The two first points are direct consequences of Propositions 4 and 2. The third point is also a
consequence of Proposition 2, since the coordinate vector of the evaluation eξp in the dual basis of B is
B(ξp) for p = 1, . . . , r.

This proposition shows that the matrices of multiplication by an element g in A, and thus the roots
{ξ1, . . . , ξr} and their multiplicity structure, can be computed from truncated Hankel matrices, provided
we can determine bases B, B′ of Aτ . In practice, it is enough to compute the generalized eigenvectors

common to (HB,B′

x1,i1
⋆τ ,H

B,B′

τ ) for i1 = 1, . . . , n1 to recover the roots. As HB,B′

x1,i1
⋆τ = H

x1,i1
B,B′

τ = H
B,x1,i1

B′

τ ,

the decomposition can be computed from sub-matrices of HB,B′+

τ or HB+,B′

τ where B+ = B∪x1,1B∪⋯∪x1,n1B,
B′+ = B′ ∪ x1,1B

′ ∪⋯ ∪ x1,n1B
′.
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3 Multilinear Tensor Decomposition Problem

In this section, we analyze the easiest case of multi symmetric tensor where it is of degree one at each
bunch of sub-variables. Our goal is to decompose τ which is equal to T ∗ as a weigthed sum of evaluations
by computing the eigen-structure of Aτ which is based on the computation of multiplication operators. We
simplify notations by using subscripts of variables and coefficients instead of multi-index exponents. We
compute the truncated Singular Value Decomposition of a generic linear combination of a shifted Hankel
matrices by the first collection of variables. By linearity and properties of the multiplication operators by
one variable described in section 2, we deduce the multiplication operators by more complex variables which
could be used to compute weights and points.

We choose two monomial bases B1 and B2 indexing respectively rows and columns of the Hankel matrix
HB1,B2

T ∗ associated to the tensor T ∗, such that the set of monomials {B1 ∗B2xj,ij ,0 ≤ ij ≤ nj ,1 ≤ j ≤ k} span
the set of deshomogenized polynomials Rδ1,δ2,...,δk .

The matrix of the truncated Hankel operator in the basis B1 and the dual basis B2 is
HB1,B2

T ∗ = [ti1,i2,...,ik]0≤i1≤n1
0≤i2≤n2

⋮
0≤ik≤nk

.

The Hankel matrix associated to the tensor x1,i1 ∗ T
∗ is defined as H1,i1 = HB1,B2

x1,i1
∗T ∗ = H

x1,i1
∗B1,B2

T ∗ =

[tα+β]α∈x1,i1
∗B1,β∈B2

, all the elements of the matrix are divisible in x1,i1 and of degree δ.

For example, the Hankel matrix associated to x1 ∗ T
∗ in the monomials basis B1 and B2 is denoted by

H0. Let λ(x1) = λ0 +λ1x1,1 + . . .+λn1x1,n1 is a linear form with generic chosen coefficients λi1 , i1 = 0, . . . , n1,

we build a linear combination of H1,i1 , i1 = 0, . . . , n1 such that Ĥ0 = ∑
n1

i1=0 λi1H1,i1 we compute the singular
value decomposition of it.

Computing the singular value decomposition of Ĥ0, we obtain

Ĥ0 = USV
T

where S is the diagonal matrix of all singular values of Ĥ0 arranged in a decreasing order, U is an unitary
matrix whose columns are the left singular vectors of Ĥ0, V is an unitary matrix whose columns are the
right singular vectors of Ĥ0. We denote by UH the hermitian transpose of U and V the conjugate of V . We
denote by Ur and Vr the truncated matrices of the first r columns of U and V and Sr the diagonal matrix
of the first r rows and r columns of S.

We denote B1 = ⟨1, x1,1, . . . , x1,n1⟩ and B2 = ⟨1, xk,1, . . . , xk,nk⟩. Let ui = [uα,i]α∈B1
and vj = [vβ,j]β∈B2

be respectively the ith and jth columns of UH and V . We denote by ui(x1) = u
T

i U
H
r and vj(x1) = v

T

j V r the
corresponding polynomials. The bases formed by these first r polynomials are denoted UH

r ∶= (ui(x1))i=1,...,r

and V r ∶= (vj(x1))j=1,...,r. We will also denote by UH
r (resp. V r) the corresponding coefficient matrix, formed

by the first rows (resp. columns) of UH (resp. V ). We denote by Sr the diagonal matrix of the first r rows
and columns of S, formed by the first r singular values.

We denote by Hr
0 ,Hr

1,i1
and Ĥr

0 the matrices obtained by the truncated singular value decomposition of

H0 ,Hi1 and Ĥ0 respectively.
We have the following property

Hr
i1 = (M

UH
r

x1,i1
)
THr

0 =Hr
0M

V r
x1,i1

∗T

where M
UH
r

x1,i1
(resp. MV r

x1,i1
) is the multiplication matrix by x1,i1 in the basis UH

r (resp. V r) and MV r
x1,i1

∗T is

the multiplication matrix by x1,i1 ∗ T in the basis V r. Then by linearity, we obtain Ĥr
0 = ∑

n1

i1=0 λi1H
r
1,i1

=

Hr
0 ∑

n1

i1=0 λi1M
V r
x1,i1

∗T =Hr
0M

V r
λ(x1)∗T

.

Then (Ĥr
0)

−1 = (MV r
λ(x1)∗T

)−1(Hr
0)

−1 so multiplying by the first equation we get

(Ĥr
0)

−1Hr
1,i1 = (MV r

λ(x1)∗T
)
−1MV r

x1,i1
∗T =MV r

(x1,i1
/λ(x1))∗T
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We compute the eigenvalues and the eigenvectors of the multiplication matrices MV r
(x1,i1

/λ(x1))∗T
in order

to obtain the weights and the points of the decomposition.

3.1 Algorithm

We describe now the algorithm to recover the sum T ∗(x,y,z) = ∑
r
p=1 ωpeup(x,y,z), ωp ∈ C ∖ {0},up ∈

C∑
3
l=1(nl+1), from the moments of degree at most one at each bunch of coordinates (ti,j,k)0≤i≤n1

0≤j≤n2

0≤k≤n3

of the formal

power series. To simplify, we change notations to better understand the nine dimensional multivariate space
seen as three dimensional space. We only use 3 bunches of variables such that x1,i1 by xi and x2,i2 by yj and
x3,i3 by zk.

Algorithm 3.1: Decomposition of polynomial-exponential series with constant weights

Input: the moments (ti,j,k)0≤i≤n1
0≤j≤n2

0≤k≤n3

of T ∗.

1. Compute the monomial sets A1 = (xiyj)0≤i≤n1
0≤j≤n2

and A2 = (z0, z1, . . . , zn3) and substitute the x0, y0 and

z0 by 1 to define B1 and B2.
2. Compute the Hankel matrix HB1,B2

T ∗ = [ti,j,k]0≤i≤n1
0≤j≤n2

0≤k≤n3

for the monomial sets B1 and B2.

3. Compute the singular value decomposition of HB1,B2

T ∗ = USV T where B1 = ⟨1, x1, . . . , xn1⟩ and

B2 = ⟨1, z1, . . . , zn3⟩ with singular values s1 ≥ s2 ≥ ⋯ ≥ sm ≥ 0.
4. Determine its numerical rank, that is, the largest integer r such that sr

s1
≥ ε.

5. Form the multiplication matrices by yj in the basis V r, M
V r
yj = S−1

r UH
rH

B1,B2

yj∗T ∗
V r where HB1,B2

yj∗T ∗
is the

Hankel matrix associated to yj ⋆ T
∗ for j = 1, . . . , n2.

6. Compute the eigenvectors vp of ∑
n2

j=1 ljM
V r
yj such that ∣lj ∣ ≤ 1, j = 1, . . . , n2 and for each p = 1, . . . , r do

the following:
– The y′s coordinates of the up are the eigenvalues of the multiplication matrices by yj . Use the

formula MV r
yj vp = up,2,jvp for p = 1, . . . , r and j = 1, . . . , n2 and deduce the up,2,j .

– Write the matrix HB1,B2

T ∗ in the basis of interpolation polynomials(ie. the eigenvectors vp) and use
the corresponding matrix T to compute the z′s coordinates. Divide the kth row on the first row of
the matrix T to obtain the values of up,3,k for p = 1, . . . , r and k = 1, . . . , n3.

– The x′s coordinates of up are computed using the eigenvectors of the transpose of the matrix MV r
yj .

They -are up to scalar- the evaluations, they are represented by vectors of the form
v∗p = µp[1, up,1,1, . . . , up,1,n1]. Compute v∗p as the pth column of the transpose of the inverse of the

matrix V = [v1, . . . , vr] for p = 1, . . . , r and deduce up,1,i =
v∗p[i+1]

v∗p[1]
for p = 1, . . . , r and i = 1, . . . , n1.

– Compute ωp =
⟨T ∗∣vp⟩

vp(up)
.

Output: r ∈ N, ωp ∈ C/(0), up ∈ C∑
3
l=1(nl+1), p = 1, . . . , r such that T ∗(x,y,z) = ∑

r
p=1 ωpeup(x,y,z) up

to degree one at each bunch of coordinates.

The cost of the SVD computation is in O(s3) where s ≥ r is the maximal size of the Hankel matrix H0

and r the rank of the decomposition. The computation of each multiplication matrice is in O(r2) and the
eigencomputation is in O(r3). This yields a complexity bound in O(s3 + nr2) for the complete algorithm,
where n = max(n1, n2, n3) is a bound on the dimension of the spaces. This complexity bound extends to the
decomposition of general multi-symmetric tensors, provided r = rankH0.
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4 Example

In this section, we illustrate the decomposition algorithm on a multi-linear tensor of degree one at each
bunch of 3 variables and of rank 3.

If δl = 1 for all l = 1, . . . , k, k > 1 and nl = n, let k = 3, nl = n = 2, r = 3 and δl = 1 then we have
x = (x0, x1, x2), y = (y0, y1, y2) and z = (z0, z1, z2). For

ᾱ ∈ N3, ∣ᾱ∣ = 1⇒ ᾱ = (1), (0,1), (0,1) ⇒ xᾱ = xi, i = 0, . . . ,2

β̄ ∈ N3, ∣β̄∣ = 1⇒ β̄ = (1), (0,1), (0,1) ⇒ yβ̄ = yj , j = 0, . . . ,2
γ̄ ∈ N3, ∣γ̄∣ = 1⇒ γ̄ = (1), (0,1), (0,1) ⇒ zγ̄ = zk, k = 0, . . . ,2
The multi symmetric tensor is defined by a multi symmetric array of coefficients such that tα,β,γ ∶= tᾱ,β̄,γ̄ =
ti,j,k then T (x,y,z) = ∑0≤i≤2

0≤j≤2
0≤k≤2

ti,j,kxiyjzk = 0.4461757334x0y0z0−0.2262004083x0y0z1+0.4427031740x0y0z2−

0.2756785277x0y1z0+0.1612318550x0y1z1−0.3100164212x0y1z2−0.1209490221x0y2z0+0.1465160338x0y2z1−

0.1169341103x0y2z2−0.01239930649x1y0z0−0.05189330981x1y0z1+0.01803564422x1y0z2−0.01336683543x1y1z0+

0.02632784503x1y1z1−0.02598209626x1y1z2−0.3195263612x1y2z0+0.09311605022x1y2z1−0.1116610246x1y2z2−

0.1460187051x2y0z0+0.06557223848x2y0z1−0.1734312692x2y0z2+0.1010145926x2y1z0−0.05743078561x2y1z1+

0.1238292801x2y1z2 − 0.1485221955x2y2z0 + 0.03231415762x2y2z1 − 0.376925099e − 2x2y2z2.
Let x0 = y0 = z0 = 1 then T (x,y,z) = ∑1≤i≤2

1≤j≤2
1≤k≤2

ti,j,kxiyjzk

Then the tensor decomposition problem is T (x,y,z) = ∑
r
p=1 ωpup,1(x)up,2(y)up,3(z). Given all the moments

of degree at most one at each bunch of coordinates (ti,j,k)0≤i≤2
0≤j≤2
0≤k≤2

,

We create two sets A1 = (xᾱyβ̄)∣ᾱ∣=1
∣β̄∣=1

= (xiyj)0≤i≤2
0≤j≤2

and A2 = (zγ̄)∣γ̄∣=1 = (zk)0≤k≤2 so that

A1 = (x0y0, x0y1, x0y2, x1y0, x1y1, x1y2, x2y0, x2y1, x2y2) and A2 = (z0, z1, z2).
For x0 = y0 = z0 = 1 then B1 = (1, y1, y2, x1, x1y1, x2, x2y1, x2y2) and B2 = (1, z1, z2), the Hankel matrix

associated to the tensor in the monomial basis B1 and B2 is

HB1,B2

T ∗ = [tᾱ+β̄+γ̄]∣ᾱ∣=1
∣β̄∣=1
∣γ̄∣=1

=

1 y1 y2 x1 x1y1 x1y2 x2 x2y1 x2y2
⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

t0 t1 t2 t0,1 t0,2 t1,1 t1,2 t2,1 t2,2 1

t0,1 t1,1 t2,1 t0,1,1 t0,2,1 t1,1,1 t1,2,1 t2,1,1 t2,2,1 z1
t0,2 t1,2 t2,2 t1,2 t0,2,2 t1,1,2 t1,2,2 t2,1,2 t2,2,2 z2

=

1 y1 y2 x1 x1y1 x1y2 x2 x2y1 x2y2
⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

0.4461757 0.2756785 0.1209490 0.01239930 0.01336683 0.3195263 0.14601870 0.1010145 0.1485221
−0.2262004 0.1612318 0.1465160 0.05189330 0.02632784 0.09311605 0.06557223 0.05743078 0.03231415
0.4427031 0.3100164 0.1169341 .01803564 0.02598209 0.1116610 0.1734312 0.1238292 0.00376925

All the entries of this matrix are known, we choose B1 = ⟨1, x1, x2⟩ and B2 = ⟨1, z1, z2⟩ to be able to
multiply by y1 and to compute the multiplication matrix. Computing the singular value decomposition of

HB1,B2

T ∗ , we obtain

HB1,B2

T ∗ = USV T
=

1 x1 x2
⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

t0 t1 t2 1

t0,1 t1,1 t2,1 z1
t0,2 t1,2 t2,2 z2

=

1 x1 x2
⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

0.4461757 −0.01239930 −0.1460187
−0.2262004 −0.05189330 0.06557223
0.4427031 0.01803564 −0.1734312

where S is the diagonal matrix of all singular values of HB1,B2

T ∗ arranged in a decreasing order, U is an

unitary matrix whose columns are the left singular vectors of HB1,B2

T ∗ , V is an unitary matrix whose columns
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are the right singular vectors of HB1,B2

T ∗ . We denote by UH the Hermitian transpose of U and V the conjugate
of V .

Let vi = [vα,i]α∈B1
and wj = [wβ,j]β∈B2

be respectively the ith and jth columns of UH and V . We denote

by vi(x) = vT

i U
H
r and wj(z) = wT

j V r the corresponding polynomials. The bases formed by these first r

polynomials are denoted UH
r ∶= (vi(x))i=1,...,r and V r ∶= (wj(z))j=1,...,r. We will also denote by UH

r (resp. V r)
the corresponding coefficient matrix, formed by the first rows (resp. columns) of UH (resp. V ). We denote
by Sr the diagonal matrix of the first r rows and columns of S, formed by the first r singular values. To

compute the multiplication matrices MV r
y1

and MV r
y2

we need to compute the following matrices

HB1,B2

y1∗T ∗
=

y1 y1x1 x2y1
⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

t0,1 t1,1 t2,1 1

t0,1,1 t1,1,1 t2,1,1 z1
t0,1,2 t1,1,2 t2,1,2 z2

=

y1 y1x1 x2y1
⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

−0.2756785 −0.01336683 0.1010145
0.1612318 0.02632784 −0.05743078
−0.3100164 −0.02598209 0.1238292

HB1,B2

y2∗T ∗
=

y2 y2x1 x2y2
⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

t0,2 t1,2 t2,2 1

t0,2,1 t1,2,1 t2,2,1 z1
t0,2,2 t1,2,2 t2,2,2 z2

=

y2 y2x1 x2y2
⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

−0.1209490 −0.3195263 −0.1485221
0.1465160 0.09311605 0.03231415
−0.1169341 −0.1116610 −0.00376925

Then we compute MV r
y1

= S−1
r UH

rH
B1,B2

y1∗T ∗
V r and MV r

y2
= S−1

r UH
rH

B1,B2

y2∗T ∗
V r, and the eigenvectors vp of

∑
2
j=1 ljM

V r
yj such that ∣lj ∣ ≤ 1, j = 1, . . . ,2. To recover the points up ∈ Cn∗k for p = 1, . . . , r of the form

up =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

up,1,1 x1
up,1,2 x2

up,2,1 y1
up,2,2 y2

up,3,1 z1
up,3,2 z2

We do the following:

In general we have MV r
xj,ij

vi = ui,j,ijvi, for i = 1, . . . , r, j = 1, . . . , k, ij = 1, , nj so in this case we get

MV r
y1

vp = up,2,1vp and MV r
y2

vp = up,2,2vp for p = 1, . . . ,3 so we compute up,2,1 and up,2,2 for p = 1, . . . ,3. So
that we get

up,2,1 = [−0.746329870878 −0.293761776025 −0.304898408788]

up,2,2 = [1.40328849510 −0.336304368405 −3.59031087599] .

The eigenvectors vp ∈ ⟨1, x1, x2⟩ for p = 1, . . . ,3 are up to a scalar the interpolation polynomials at the roots
so that if the dual of the tensor has an affine decomposition T ∗(x,y,z) = ∑

r
p=1 ωpeup(x,y,z) then T ∗(vp) =

∑
r
p=1 ωpeup(vp) = λpωp, T

∗
(z1vp) = ∑

r
p=1 ωpeup(z1vp) = λpωpup,3,1 and T ∗(z2vp) = ∑

r
p=1 ωpeup(z2vp) =

λpωpup,3,2, for p = 1, . . . ,3. Then the values of up,3,1 and up,3,2 for p = 1, . . . ,3 come from the computation of
the matrix:

T =

v1 v2 v3
⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

T ∗(v1) T ∗(v2) T ∗(v3) 1

T ∗(z1v1) T
∗(z1v2) T

∗(z1v3) z1
T ∗(z2v1) T

∗(z2v2) T
∗(z2v3) z2

=

v1 v2 v3
⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

λ1ω1 λ2ω2 λ3ω3 1

λ1ω1u1,3,1 λ2ω2u2,3,1 λ3ω3u3,3,1 z1
λ1ω1u1,3,2 λ2ω2u2,3,2 λ3ω3u3,3,2 z2
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Therefore the value of up,3,1 (resp. up,3,2) comes from the ratio of the second row (resp. the third row) and
the first row of the matrix for p = 1, . . . ,3. So that we get

up,3,1 = [−0.655842579065 0.0321233423462 −0.520955291 ]

up,3,2 = [1.24749588143 0.403506877499 0.242728128570] .

The common eigenvectors of all (MV r
yj )T -are up to scalar- the evaluations, they are represented by

vectors of the form v∗p = µp[1, up,1,1, up,1,2] in the dual basis of B1 = ⟨1, x1, x2⟩ then the computation of the
coordinates of up,1,1 and up,1,2 come from the eigenvectors of the transpose of multiplication operators which

are obtained by transposing the inverse of the matrix V of vectors of MV r
yj for j = 1, . . . ,2, therefore the

value of up,1,1 (resp. up,1,2) comes from the ratio of the second element of v∗p (resp. the third element) and
the first element of it, so that

up,1,1 = [0.114279629148 −1.08600705528 1.23814628617]

up,1,2 = [−0.405714894278 −0.567603220082 0.873482418287] .

Notice that the computation of ωp, p = 1, . . . ,3 can be done using the following formula ωp =
⟨T ∗∣vp⟩

vp(up)
since

if vp ∈ ⟨1, x1, x2⟩ then vp = ap + x1bp + x2cp and v∗p = µp[1, up,1,1, up,1,2] ∈ (⟨1, x1, x2⟩)
∗, so that vp(up) =

ap + up,1,1bp + up,1,2cp = ⟨vp∣v
∗
p⟩, the computation gives

ω = (ωp)1≤p≤r = [0.318579752246 0.08897389360312 0.0386220875736]
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