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Abstract—The performance of computer networks relies on
how bandwidth is shared among different flows. Fair resource
allocation is a challenging problem particularly when the flows
evolve over time. To address this issue, bandwidth sharing
techniques that quickly react to the traffic fluctuations are
of interest, especially in large scale settings with hundreds of
nodes and thousands of flows. In this context, we propose a
distributed algorithm based on the Alternating Direction Method
of Multipliers (ADMM) that tackles the fair resource allocation
problem in a distributed SDN control architecture. Our ADMM-
based algorithm continuously generates a sequence of resource
allocation solutions converging to the fair allocation while al-
ways remaining feasible, a property that standard primal-dual
decomposition methods often lack. Thanks to the distribution of
all computer intensive operations, we demonstrate that we can
handle large instances in real-time.

Index Terms—Software-Defined Networking; Fair Resource
Allocation; Alternating Direction Method of Multipliers; α-
Fairness; Distributed Algorithms; Distributed SDN Control
Plane.

I. INTRODUCTION

Software Defined Networking (SDN) technologies are rad-
ically transforming network architectures by offloading the
control plane (e.g., routing, resource allocation) to powerful
remote platforms that gather and keep a local or global view
of the network status in real-time and push consistent config-
uration updates to the network equipment. The computation
power of SDN controllers fosters the development of a new
generation of control plane architecture that uses compute-
intensive operations. Initial design of SDN architectures [24]
had envisioned the use of one central controller. However,
for obvious scalability and resiliency reasons, the industry
has quickly realized that the SDN control plane needs to be
partially distributed in large network scenarios [11]. Hence,
although logically centralized, in practice the control plane
may consist of multiple controllers each in charge of a SDN
domain of the network and operating together, in a flat [22]
or hierarchical [7] architecture.

In this paper, we study the problem of computing a globally
fair (in the sense of α-fairness defined by Mo and Walrand
in [16], see Section III) resource allocation in a distributed
SDN scenario, where the control plane is distributed over
several domain controllers. In this context, flows transiting
in the network typically correspond to traffic aggregates of
a customer or a class of customers. We consider the traffic
engineering use case where the size of flows evolves over time
and the bandwidth reserved to each of them has to be quickly
adjusted towards the novel fair solution.

In distributed SDN architectures, each controller has full
information about its own domain. Moreover, it can commu-
nicate with adjacent peer controllers and/or with a central,
upper-layer controller entity. However, exchanges between
controllers are expensive in terms of communication delay and
overhead [20]. This technological limitation translates directly
into an algorithmic constraint: distributed algorithms for SDN
have a limited budget in terms number of iterations to reach
convergence.

A second crucial property for any distributed algorithm for
SDN is responsiveness. In fact, the network state may be
affected by abrupt changes, e.g., flow size variation, flow ar-
rival/departure, link/node congestion. In this case, convergence
for the previous network state may not even be attained when
a change occurs in the system. For this reason, it is often
preferable to have a quick access to a good quality solution
rather than a provably asymptotically optimal solution with
poor convergence rate. Hence, it is crucial that the resource
allocation computed by a distributed algorithm is feasible, thus
implementable, at any iteration.

To recap, we identify two main requirements for a dis-
tributed algorithm for fair resource allocation, namely i) con-
verging to a “good” fair solution in a small number of
iterations and ii) producing feasible solutions at all iterations.

We claim that none of the current methods that allocate
resources in an SDN scenario is able to achieve the two
aforementioned goals at the same time. Local mechanisms
such as Auto-Bandwidth [18] have been proposed to greedily
and distributedly adjust the allocated bandwidth to support
time-varying IP traffic in Multi Protocol Label Switching
(MPLS) networks. Auto-Bandwidth successfully tackles goal
ii) but not i), as it neither ensures fairness nor optimizes
resources globally. Also, classic primal-dual algorithms have
been proposed to solve the α-fair resource allocation problem
in distributed SDN scenarios, as in [15]. However, primal-dual
algorithms are known to fail at providing feasible solutions at
any iteration step, thus they fail at achieving goal ii).

Recently in the optimization research community, the Al-
ternating Direction Method of Multipliers (ADMM) [3] has
captured the attention for its separability and fast conver-
gence properties. We claim that ADMM offers new and yet
unexploited possibilities to tackle concurrently the goals i),
ii). Indeed, in this paper we show how ADMM serves our
purposes, by allowing all controllers to handle their own
domains simultaneously, while still converging to a global
optimum in the fashion of a general distributed consensus



problem.
Main contributions: We develop an ADMM-based method
(FD-ADMM, Algorithm 2) for the α-fair resource allocation
problem over a distributed SDN control plane. It iteratively
produces resource allocations that converge to the α-fair
optimal allocation. Heavy computations, requiring projections
on polytopes, can be massively parallelized on a link-by-link
basis (Algorithm 2, line 7) in each domain. This yields a
convergence rate that does not depend on the partitioning of
the network into domains.

We show that our FD-ADMM algorithm can function in
real-time, as i) close-to-optimal solutions are available since
the very first iterations and ii) feasible allocations are available
at all iterations (Proposition 1), a property that standard
primal-dual decomposition methods generally lack. This per-
mits to adjust within up to a few milliseconds the bandwidth
of flows that evolve quickly and need immediate response.
Moreover, we show how to achieve a near-optimal conver-
gence rate by providing an explicit and adaptive tuning for
the FD-ADMM penalty parameter (Scheme 1).

Finally, we benchmark FD-ADMM with the State-of-
the-Art (SoA) approach for computing α-fair resource
allocations in distributed scenarios in [15], which is based
on the Lagrangian dual splitting method. We show that our
algorithm outperforms the SoA in terms of convergence
rate, feasibility preservation and hence, overall, real-time
responsiveness.

The remainder of this paper is organized as follows. Sec-
tion II surveys the related work around the fair resource
allocation problem. Section III formulates the α-fair resource
allocation problem and presents the basic centralized appli-
cation of ADMM. Section IV introduces FD-ADMM, our
distributed ADMM-based algorithm that benefits from the
distribution of SDN controllers over multiple domains. FD-
ADMM is based on a reformulation of the problem in the
fashion of a general distributed consensus problem. Section V
discusses on a near-optimal tuning of the penalty parameter
in FD-ADMM. Section VI provides simulations that validate
our approach and finally, Section VII concludes the paper.

For the sake of conciseness, we deferred some of our proofs
to the technical report in [1].

II. RELATED WORK

The concept of fair resource allocation has been a central
topic in networking. Particularly, max-min fairness1 has been
the classic resource sharing principle [2] and has been studied
extensively. The concept of proportional fairness and its
weighted variants were introduced in [10]. Later, a spectrum of
fairness metrics including the two former ones was introduced
by Mo and Walrand in [16] as the family of α-fair utility
functions.

Some early notable works on max-min fairness include
[4], where the authors propose an asynchronous distributed
algorithm that communicates explicitly with the sources and
pays some overhead in exchange for more robustness and

1A resource allocation strategy is said to be max-min fair if no route can
increase its allocation while remaining feasible without penalizing another
route that has a smaller or equal allocation

faster convergence. Later in [21], a distributed algorithm is
defined for the weighted variant of max-min fair resource
allocation problem in MPLS networks, based on the well-
known property that an allocation is max-min fair if and only
if each Label-Switched Path (LSP) either admits a bottleneck
link amongst its used links or meets its maximal bandwidth
requirement (see Definition 4 there of a bottleneck link). The
problem of Network Utility Maximization (NUM) was also
addressed with standard decomposition methods that could
give efficient and very simple algorithms based on gradient
ascent schemes performing their update rules in parallel. In
this context, Voice [25], then McCormick et al. [15], tackle
the α-fair resource allocation problem with a gradient descent
applied to the dual of the problem.

In these works, no mention is made on the potential (in fact,
systematic) feasibility violation of the sequences generated
by those algorithms, which is a crucial matter in distributed
SDN settings. Regarding this topic, the authors of [12]
employ damping techniques to avoid transient infeasibility
while reaching the max-min fair point, but cannot guarantee
feasibility at all times, especially in dynamic settings. Also
motivated by this, more recently the authors of [23] provide a
feasibility preserving version of Kelly’s methodology in [10].
Their algorithm introduces a slave that gives at each (master)
iteration an optimal solution of a weighted proportionally fair
resource allocation problem that is explicitly addressed in only
the two cases of polymatroidal and flow aggregating networks.
In fact, our paper contributes to this problem by proposing an
efficient real-time version of the slave process, for any topol-
ogy, preserving feasibility at each (slave) iteration. Amongst
approximative approaches, one can quote the very recent work
[14] where a multiplicative approximation for α 6= 1 and
additive approximation for α = 1 is provably obtained in
poly-logarithmic time in the problem parameters. Moreover,
starting from any point, the algorithm reaches feasibility within
poly-logarithmic time and remains feasible forever after. The
algorithm described in our paper solves the problem optimally
and reaches feasibility as from the first iteration from any
starting point.

The work around ADMM is currently flourishing. The O( 1
n )

best known convergence rate of ADMM [8] failed to explain
its empirical fast convergence until very recently, for instance
in [6], where global linear convergence rates are established
in four scenarios of the strongly convex case. ADMM is
also well-known for its performance that highly depends on
the parameter tuning, namely, the penalty parameter ρ (or
reciprocal penalty parameter λ = 1/ρ) in the augmented
Lagrangian formulation (see Section III-B below). An effective
use of this class of algorithms cannot be decoupled from an
accurate parameter tuning, as convergence can be extremely
slow otherwise. Thus, in the same paper [6], the authors
provide a linear convergence proof that yields a convergence
rate in a closed form that can be optimized with respect to
the problem parameters. Therefore, thanks to these works,
we derive in our paper a near-optimal tuning of ADMM for
the α-fair resource allocation problem. Several papers use
the distributivity of ADMM to design efficient distributed
algorithms solving consensus formulations for e.g. model
predictive control [17] and resource allocation in wireless



virtual networks [13] but do not address this fundamental
detail.

To the best of our knowledge, we are the first to show how
ADMM can help designing real-time distributed algorithms for
computing α-fair resource allocations in distributed settings.
We are also the first to exhibit a near-optimal convergence
rate of ADMM in this situation with our reciprocal penalty
parameter adaptation scheme.

III. FAIR RESOURCE ALLOCATION PROBLEM

In this section, we reformulate the α-fair resource allocation
problem as a convex optimization problem. Then, we start
off with our algorithm design by presenting C-ADMM, an
algorithm that solves our problem in a centralized fashion and
that will be helpful to design our distributed algorithm.

A. Problem reformulation
Let R be a set of connection requests over a network with

a set J of capacitated links. Each link j ∈ J has a total
capacity of Cj ∈ R+. Each request r is represented by a
route containing a subset of J that, without any confusion, we
still denote as r. With some abuse of notation, we write j ∈ r
or r ∈ j to say that link j belongs to the route r, or route r
goes through link j, respectively. Given the set of requests and
their corresponding utility function fr, the network allocates
bandwidth to all the requests in order to maximize the overall
utility f =

⊕
r fr, while satisfying feasibility, i.e., the link

capacity constraints. Denote by xr the capacity allocated to
route r, and let x = (xr)r∈R. Then, we have the classic
capacity constraint in matricial form:

Ax ≤ C (1)

where A = (ajr)jr is the link-route incidence binary matrix:

ajr =

{
1 if j ∈ r
0 otherwise.

Our aim is to compute an α-fair capacity allocation x:

max
x≥0,Ax≤C

fα(x) (2)

where the α-fair utility function fα is defined according to
the Mo and Walrand’s classic characterization in [16], that we
report below.

Definition 1 ((w,α)-fairness, [16]). Let F ⊂ Rn
+ be a non-

empty feasible set not reduced to {0}. Let w ∈ Rn
+ and x∗ ∈

F . We say that x∗ is (w,α)-fair (or simply α-fair when there
is no confusion on w) if the following holds:

∀r ∈ [1, n], x∗r > 0 and ∀x ∈ F,
n∑
r=1

wr
xr − x∗r
x∗αr

≤ 0.

Equivalently, x∗ is (w,α)-fair if, and only if x∗ maximizes
the α-fair utility function fα defined over F − {0}:

fα(x) =

n∑
r=1

fαr (xr),

where fαr (xr) =

{
wr

x1−α
r

1−α , α 6= 1,
wr log(xr), α = 1.

The success of α-fairness is due to its generality: in fact, for
α = 0, 1, 2,∞ it is equivalent to max-throughput, proportional
fairness, min-delay, and max-min fairness, respectively. We
observe that the α-fair utility functions are non-decreasing,
strictly concave, non-identically equal to −∞, and upper semi-
continuous. It is well-known that under these conditions, the
function fα admits a unique maximizer over any convex
closed non-empty set.

From now on, we adopt the convex optimization termi-
nology. Define for each r ∈ R the convex cost function
gr : xr 7→ gr(xr) := −fr(xr). Then, g :=

⊕
r gr = −fα

is a convex closed proper2 function over R
|R|
+ . Let us in-

troduce ι as the indicator function of the convex closed set
{Ax ≤ C, x ≥ 0}x:

ι(x) =

{
0 if Ax ≤ C
∞, otherwise.

Then our α-fair problem can equivalently be formulated as the
following convex program:

min
x,z

∑
r∈R

gr(xr) + ι(z), (3)

s.t. x− z = 0. (4)

B. ADMM as an augmented Lagrangian splitting
Let us begin by recalling to the reader the basic principles

of the Alternating Direction Method of Multipliers (ADMM),
applied to our α-fair problem. To this aim, the augmented
Lagrangian with penalty λ−1 > 0 for problem (3-4) writes3

Lλ−1(x, z, u) = g(x) + ι(z) + uT(x− z) +
1

2λ
||x− z||2 (5)

where u is the vector of Lagrange multipliers. The method of
multipliers consists in the following update rules, where the
superscript k denotes an iteration count:

(xk+1, zk+1) = arg min
x,z

Lλ−1(x, z, uk) (M1)

uk+1 = uk +
1

λ
(xk+1 − zk+1). (M2)

The main idea in alternating directions is in fact to decouple
the variables (x, z) in the optimization stage M1: instead of
a global optimization over (x, z), we only optimize Lλ−1

with respect to the variable x, then, given the new update
of x, we optimize Lλ−1 with respect to z. Before stating the
corresponding update rules of ADMM, let us first remind the
following Fact.

Fact 1 ([3]). Let h : Rn → R̄ = R ∪ {∞} be a closed
proper convex function. The set dom(h) denotes the domain
of h, that is the set upon which h takes real values. Assume
dom(h) 6= ∅. Then, the following facts hold:

(i) For u ∈ Rn, λ ∈ R∗+, the minimization problem

u∗λ = arg min
x

{
h(x) +

1

2λ
||u− x||2

}
2closed stands for lower semi-continuous and proper means non-identically

equal to ∞
3aTb is the Euclidean product of a and b and || · || the Euclidean norm.



admits a unique solution. The (λ-scaled) proximal oper-
ator of h is the well-defined map proxλh : u→ u∗λ.

(ii) Assume that h takes the form h(x, y) = h1(x) +
h2(y), for (x, y) ∈ Rp × Rn−p (write h = h1

⊕
h2)

where h1, h2 are both closed, proper and convex.
Then, for (u, v) ∈ Rp × Rn−p, proxλh(u, v) =(
proxλh1

(u),proxλh2
(v)
)
.

(iii) Assume that h is the indicator function of a closed convex
non-empty set F . Then PF := proxλh is the Euclidean
projection onto F .

The definition of a proximal operator being set, a straight-
forward calculus shows that we have:

∀x, u arg min
z

Lλ−1(x, z, u) = proxλι(x+ λu)

∀z, u arg min
x

Lλ−1(x, z, u) = proxλg(x− λu).

ADMM can thus be expressed in the proximal (λ-scaled) form,
which we refer to as Centralized ADMM (C-ADMM).

Algorithm 1 Centralized ADMM (C-ADMM)

Input: Initial values z, v
1: while a suitable termination condition is not met do
2: x← proxλg(z − v)
3: z ← P (x+ v)
4: v ← v + x− z
5: end while

In Algorithm 1, P = proxλι is the projection on {Ax ≤
C, x ≥ 0}x, and v = λu the λ-scaled dual variable. Now, the
first step of Algorithm 1 (line 2) can be separated thanks to
the separability property of the objective function, see Fact 1.
In fact, g is fully separable, as g(x) =

∑
gr(xr). Thus, the

proximal update of line 2 takes the trivially parallelized form:

∀r xk+1
r = proxλgr (z

k
r − ukr ) (6)

such that each local variable xr can be computed separately.
Through expression (6), we are thus able to provide an

efficient update rule for x, provided that the separate proximal
computations are inexpensive. However, two main issues arise.
Main issues with C-ADMM: a) First, an update of the
variable z in line 3 of Algorithm 1 requires full knowledge of
the projection mapping, which in turn requires full information
on the capacity set of the network. Thus, this global update
rule represents an important limiting factor to the design of a
fully distributed algorithm, which is our main design interest
here to follow the distribution of SDN control planes.

b) Moreover, although the convergence of C-ADMM may
only require some tens of iterations (see Section VI for further
details), it may be slow in terms of computation time due the
successive application of a projection algorithm that would
not scale with respect to the problem size. This also gives rise
to a double loop algorithm where each iteration requires the
convergence of an inner process that can be time-consuming.
Indeed, computing the projection of a generic point onto a
closed convex non-empty polyhedron is in general non-trivial.
Hence, for general polyhedra, one has to operate alternate

projections, summon quadratic programming solvers or use
iterative algorithms such as the one in [9].

We address issues a,b) in the next section, where we propose
FD-ADMM, a distributed version of C-ADMM.

IV. THE GENERAL CONSENSUS FORM OF ADMM: AN
EFFICIENT DISTRIBUTED ALGORITHM DESIGN

In this section, we show how to alleviate the cost of
the global projection sub-routine in C-ADMM (line 3) by
decomposing the formulation with respect to the network links
of each SDN domain in the fashion of a consensus problem,
and present FD-ADMM. As stated at end of Section III, the
global knowledge of the topology and the computational effort
required by the projection step (line 3) of C-ADMM are not
affordable in the distributed SDN control plane. Thus, the
decomposition permits to respect the locality of the different
domain controllers that now handle the projections link by link
efficiently and in parallel. The decomposition into domains can
be orchestrated by the SDN architect without any constraint.
Unavoidably though, domains will need to exchange informa-
tion as routes may traverse different domains.

A. Preliminaries

We organize the network into several domains Jp, p =
1 . . . P such that (Jp)p forms a partition of the set of links
J . Let Rp be the set of routes traversing the domain Jp via
some link j ∈ Jp. More formally, Rp = {r ∈ R : ∃ j ∈
Jp s.t. j ∈ r}. Hence, (Rp)p forms a covering of R. Let ιj
denote the indicator function for link j ∈ Jp, i.e.,

ιj(x) =

{
0 if

∑
r∈j xr ≤ Cj

∞ otherwise. (7)

Also, let us define Sj := dom(ιj). Thus, for each j ∈ J , Sj
is the (convex, closed) capacity set of the link j. Finally, for
j ∈ J and z ∈ RR, PROJECTION(j, z) denotes the Euclidean
projection of z onto Sj .

B. Consensus form

We can now reformulate our objective to a fully separable
form. For ease of notation, the variable x will be written z0 and
we define R0 = R. We also define an additional variable, z̃r,
that will represent the consensus value of z0r found for each
route r over all the domains handling the route r. We write
Ir = {q ∈ [0, P ] r ∈ Rq} to design the set of domain indices
(including index 0) which r belongs to. In the same fashion
as in Section III-B, we plug the feasibility constraints into the
objective. Each constraint being now handled separately, we
can formulate Problem (3), (4) as follows:

min
∑
r∈R

gr(z0r) +
∑
j∈J

ιj(z0). (8)

In order to obtain a separable objective and fully benefit
from the separability property in Fact 1, we artificially create
a copy of the variable z0 for each link j. This variable will
be handled by the unique domain Jp containing j. For each
j, let zj ∈ R|R| be the copy of z0 for link j.

Creating a complete copy of all the variables for each
domain is, nevertheless, of no use. Each domain indeed only



needs information and manipulation over the only variables
associated with the routes that they handle completely (the
route is included in the domain’s links) or partially (the
route meets other domains). Now, ιj actually depends only
on the sub-variable (zj)Rj

def
= (zjr)r∈Rj . We erase all the

information that is irrelevant to region Jp: zj ∈ RRj . We can
thus write the objective as follows:

minG(z) =
∑
r∈R

gr(z0r) +
∑
j∈J

ιj((zj)Rj ). (9)

To sum up, we have artificially separated the objective
function by creating a minimal number of copies of the primal
variable z0 in order to fully distribute the problem. Now,
instead of a global resource allocation variable, several copies
of the variable account for how its value is perceived by each
link of each domain. To enforce an intra- (local) and inter-
(global) domain consistent value of the appropriate allocation,
consensus constraints are added to the problem. This new
formulation can be interpreted as a multi-agent consensus
problem formulation where route r has cost gr, and link j
has cost ιj . As we separated the global objective on purpose,
the separability property of the proximal operator thus gives
the following:

proxλG(u) =
(
(proxλgr (u0r))r, (PROJECTION(j, uj))j

)
.

These considerations permit next to write our final distributed
consensus model where each agent only has access to local
information.

C. Fast Distributed ADMM
We can finally distribute ADMM by putting into practice

the tricks described in the previous section. Then, the general
consensus form of the problem can be expressed as follows.

min
∑
r∈R

gr(z0r) +
∑
j∈J

ιj(zj) (10)

zjr = zlr ∀r ∈ Rj ∩Rl ∀j, l ∈ {0} ∪ J (11)

where zj = (zjr)r∈Rj ∈ R
|Rj |
+ . By applying ADMM to this

formulation and using again Fact 1 we obtain, after some
simplification, Algorithm 2 (Fast Distributed (FD)-ADMM).
To update the consensus variables z̃r, we exploit the fact that
the Euclidean projection of a point y ∈ Rn onto the diagonal is
simply its average 1

n

∑
yi1. Hence, if I denotes the indicator

function of the feasible set (11), we have:

∀r ∈ R proxλI(u)r =
1

|Jr|+ 1

(∑
l∈r

ulr + u0r

)
.

This yields the simple update rules at lines 4 and 104.
Notably, even in the distributed case, each domain p can
compute at each iteration a globally feasible allocation z∗r
for each of the routes r ∈ Rp (see Proposition 1).
Communication among domain controllers: In FD-ADMM,
only domains that do share a route together have to com-
municate. The communication procedures among the domain

4These updates rules are also simplified using the straightforward fact that
the sum

∑
l∈r ulr is constant. It can thus be fixed to 0 by initialization.

Algorithm 2 Fast Distributed ADMM (FD-ADMM)

1: procedure OF DOMAIN p
Input: Reciprocal penalty parameter λ, (gr)r∈Rp

2: RECEIVE zqr, z∗qr ∀q ∈ Ir ∀r ∈ Rp
3: ENFORCE z∗r = minq∈Ir z∗qr ∀r ∈ Rp
4: z̃r ← 1

|Jr|+1

(∑
q∈Ir zqr + z0r

)
∀r ∈ Rp

5: for j ∈ Jp ∪ {0} do
6: ujr ← ujr + zjr − z̃r ∀r ∈ Rj
7: zj ← PROJECTION(j, z̃ − uj)
8: end for
9: z0r ← proxλgr (z̃r − u0r) ∀r ∈ Rp

10: SEND zpr =
∑
j∈Jr∩Jp zjr and z∗pr = minj∈Jp zjr

to domains q ∈ Ir ∀r ∈ Rp
11: end procedure

controllers are described at lines 2 and 10. In these steps, the
domains gather from and broadcast to adjacent domains the
sole information related to routes that they share in common.
In particular, domains are blind to routes that do not traverse
them, and can keep their internal routes secret from others.
In details, after each iteration of the algorithm, each domain
Jp receives the minimal information from other domains such
that Jp is still able to compute a local value zpr and a locally
feasible value z∗pr. Next, Jp send them back to neighboring
domains Ir that r traverses.

Communication overhead: In terms of overhead, we can
easily evaluate the number of floats transmitted between each
domain at each iteration. At each communication, domain
Jp must transmit zpr and z∗pr for each r ∈ Rp to each
other domain that r traverses. The variable z0 does not need
to be centralized or transmitted between controllers. Each
domain controller may actually have a copy z0 and perform
the (low-cost) computation of their update rule (see line 9
in Algorithm 2) locally. Hence, domain p transmits in total
2
∑
q 6=p |Rp∩Rq| floats to the set of its peers. As a comparison,

in a distributed implementation of the algorithm given in [15]
and stated in Section VI, each domain p transmits in total∑
q 6=p |{j ∈ Jp,∃r ∈ Rq s.t. j ∈ r}| floats to the set of its

peers, which is bounded by (P − 1)|Jp| as |R| grows.
Feasibility preservation: A potential drawback of the dis-
tributed approach is the potential feasibility violation by the
iterate z̃k. However, we have the following positive result.

Proposition 1. FD-ADMM provides a sequence of feasible
points that converges to the optimum.

Proof. Consider the iteration number k and drop the super-
script k for lightness. For any link j, we have by line 7 of Al-
gorithm 2 that zj is feasible in link j. That is,

∑
r∈j zjr ≤ Cj .

Define z∗r = minj∈Jr zjr. Then, for each link j:∑
r∈j

z∗r ≤
∑
r∈j

zjr ≤ Cj . (12)

Thus, no capacity is violated by the allocation z∗r. At the
optimum, the consensus is reached. Thus (zk∗r)k is a feasible
sequence that converges to the optimum.



The number z∗r introduced in Proposition 1 above in fact
corresponds to the introduced variable of the same name
FD-ADMM. Thus, in a certain way, for sufficiently loaded
and communicating domains (i.e. the |Rp ∩ Rq| are large
enough) we sacrifice some overhead (counted on a per iteration
basis) compared to standard dual methods, but in exchange for
anytime feasibility, a major feature that dual methods do not
generically provide.

V. IMPLEMENTATION AND ALGORITHM TUNING

In this section, we discuss two major points in the design
of FD-ADMM. First, we precise and justify the choice of the
procedure PROJECTION, in line 7 of FD-ADMM Algorithm 2.
Next, we derive an explicit adaptive update of the reciprocal
penalty parameter λ that permits to accelerate the convergence
of FD-ADMM on any instance.

A. Projection procedure: A discussion
In Section IV, we advocated a link-wise separation of the

formulation because it is non-trivial to project an arbitrary
point onto an arbitrary closed convex polyhedron. However,
the projection onto the sets Sj (see Section IV-A) can be
done with an exact method with a complexity dominated by
the one of sorting a list of the size of its dimension. In
average, sorting a list of length q is done in O(q log q). Hence,
by operating instead a link-by-link projection, the controllers
save a huge amount of time by providing an (generically
infeasible) approximate projection point zpr and deriving a
locally feasible allocation z∗pr (see Algorithm 2 line 10).
Although the quality of the global iterate z∗ may be altered
by further distribution of the projection, the point is quickly
generated. Paradoxically enough, FD-ADMM therefore fully
adapts to any network distribution into domains because it
functions by link, regardless of the network partition into
domains. The algorithm we use for PROJECTION in FD-
ADMM is presented for instance in [5] in which the authors
also give a correctness proof and performance demonstration.
It permits to provide an efficient update for each domain Jp.

B. Estimating the optimal parameter λ
It is well-known that the reciprocal penalty parameter λ

highly conditions the convergence speed of ADMM. An
inaccurate tuning can indeed lead to a very slow convergence.
For appropriate problems, it is possible to use a result proven
in [6] to compute an optimal reciprocal penalty parameter, that
we here report. It will help us tune FD-ADMM to optimize
its convergence performance5.

Theorem 1 ([6]). Assume that the following problem:

minF (x) +G(z) (M)
s.t. Mx− Pz = 0

has a saddle point, and both objective functions are convex.
Assume that M has full row rank, and that F is σ-strongly
convex and has a L-Lipschitz gradient. Then, the sequence of

5We recall that a differentiable function f : Rn → R̄ is strongly convex
with modulus σ if (∇f(x) − ∇f(y))T(x − y) ≥ σ||x − y||2, ∀x, y ∈
dom(f). Moreover, f is Lipschitz with modulus L if |f(x)−f(y)| ≤ L|x−
y|, ∀x, y ∈ dom(f).

iterates (primal and dual concatenated) of ADMM converges
linearly with rate (1 + δ)−1, where6

δ = 2

(
||M ||2

λσ
+

Lλ

λmin(MTM)

)−1
and 1

λ is the penalty parameter in the augmented Lagrangian
form (see Section III-B).

The following result directly follows.

Corollary 1. The optimal reciprocal penalty parameter is

λ∗ =

√
||M ||2λmin(MTM)

σL
.

In order to be able to apply Corollary 1, we still need
to express the coefficients of interest σ, Ld. Due to page
limitation, we defer their calculus to [1] and we here report
the result.

Fact 2. The function g =
⊕

r gr is σ-strongly convex and has
Ld-Lipschitz gradient with:

σ = αmin
r

wr

Bα+1
r

, Ld = αmax
r

wr

dα+1
r

on any compact subset of dom(g) of the form Kd = {x ≥
d,Ax ≤ C}, for d� 0, and Br = minj∈r Cj .

Unfortunately, Corollary 1 cannot be directly applied to our
general consensus formulation. Indeed, its matricial formula-
tion does not provide a full-row rank matrix M . The problem
which the Theorem 1 applies to is actually the original,
centralized one in (3-4). Therefore, we will derive a reciprocal
penalty parameter selection for the centralized problem, and
use it as a tool to estimate a satisfactory parameter for FD-
ADMM.

However, the last difficulty we encounter in choosing the
optimal reciprocal penalty parameter is to correctly evaluate
the Lipschitz modulus. Unfortunately, ∇g is not Lipschitz on
the feasibility set, because of the singularity of each gr at 0.
In order to circumvent this problem, we introduce the classic
concept of disagreement point d, according to bargaining
theory terminology. A disagreement point d represents the
minimal values for an allocation of each route. This allows
to reduce the feasibility set to a compact subset of the form
Kd, d� 0, on which ∇g is now Lipschitz. The disagreement
point can be naturally defined as the feasible point z∗ at the
first iteration. Generically, there is no a priori guarantee that
the set Kz∗ contains the optimum, but, we remark that at
least in the first iterations, the use of z∗ provides a good
approximation of the best reciprocal penalty parameter. The
analytical evaluation of this phenomenon goes beyond the
scope of this paper and we keep it for future work.

Thus, finally, we update λ in an adaptive fashion in the
beginning of the algorithm with the help of those points.
We found empirically that operating such update only at
the initial steps of FD-ADMM and then fixing λ for the
rest of the execution provides a good performance in terms
of convergence speed. In the next section, we describe this

6λmin is the smallest eigenvalue of a positive matrix, and ||M || is the
operator norm



Fig. 1: C-ADMM against FD-ADMM: execution time and iteration count.

typical phenomenon in Figure 2. In all our simulations, we use
the simple following update scheme to estimate the optimal
penalty parameter at each execution of the algorithm.

Scheme 1 (Reciprocal Penalty Adaptation). Set threshold τ .
At all iterations below τ , denote by p the last output of
a feasible point. Then, choose the new reciprocal penalty
parameter as:

λ∗ =
1

α

(
min
r∈R

wr

Bα+1
r

max
r∈R

wr

pα+1
r

)− 1
2

.

After τ iterations, do not update λ.

In our numerical evaluations we will set τ = 30. Thus, FD-
ADMM is now fully tuned and we are ready to demonstrate
its performance in the next section, in terms of convergence
speed in real-time scenarios.

VI. PERFORMANCE ANALYSIS

We now evaluate numerically FD-ADMM in terms of its
convergence properties. More specifically, in Section VI-A
we compare the performance of FD-ADMM and C-ADMM
in offline scenarios where the optimum is desired. In Section
VI-B we evaluate FD-ADMM in real-time scenarios, where
good and feasible solutions are needed on-the-fly as weights
wr vary over time. In order to benchmark the transient
properties of FD-ADMM we use the standard Lagrangian dual
decomposition approach (LAGR) for single-path routing in
[25, 15, 19], that we recall in Algorithm 3. We here assume
that domain controllers operate in synchronous mode. In this
case, the decomposition into domains has no impact on FD-
ADMM performance, as projection is on a link-basis. All
simulations are made for the proportional fairness objective
functions (α = 1). We used the proximal operation formu-
las found in [3]. The algorithms under investigation were
evaluated using BT’s 21 CN network topology7, containing
106 nodes and 474 links. The requests were generated by
computing the shortest path between randomly chosen sources
and destinations.

7We would like to thank the authors of [15] for their willingness to share
the BT 21 CN topology dataset.

Fig. 2: Convergence rate of FD-ADMM vs. reciprocal penalty param-
eter. The adaptive approximation demonstrates sufficient accuracy.

A. Algorithm design

Evaluating the alleviation of the compute-intensive parts
of C-ADMM was a key concern to motivate and validate
the distribution to FD-ADMM. To this aim, we show in
Figure 1 the computation time and iteration count for those two
algorithms on small instances for a number of requests ranging
from 1 to 200. The centralized projection in C-ADMM is
executed using the variation of Hildreth’s projection algorithm
on general polyhedra in [9]. When convergence is desired, a
precise stopping criterion for FD-ADMM is available, as the
optimality gap can be upper-bounded by the primal and dual
residuals, see [3]. In our case, evaluating those residuals results
in computing the absolute variation of two consecutive values

Algorithm 3 Lagrangian-based gradient descent (LAGR)

Input: Initial positive values uj
while a suitable termination condition is not met do

xr ← arg max
x≥0

{fr(x)− x
∑
j:j∈r uj)} ∀r

uj = uj − uj
2Cj

(Cj −
∑
r:j∈r xr) ∀j

end while



Fig. 3: Iteration count for FD-ADMM vs the mean link load (average
value of the |Rj |).

of z̃, and the consensus accuracy8 maxr∈R,j∈r |zjr − z̃r|.
This is a first advantage for FD-ADMM implementation as
no robust stopping criterion is available for standard gradient
descent. When an optimality gap is computed, we thus con-
sider a 10−6-approximation by FD-ADMM as the reference
for all tested algorithms. In Figure 2, we illustrated, on a small
instance with 200 requests, the number of iterations of FD-
ADMM to reach convergence for a various number of the
parameter values, in order to evaluate our adaptive scheme’s
accuracy with respect to the empirically best found parameter.
It shows that our approximation of λ∗ is fairly satisfactory.
In Figure 1, FD-ADMM shows that distributing the consensus
over the links exchanges several more iterations for a reduction
of the compute time by two orders of magnitude for small
instances. Hence, the distribution does not seem to cost too
much convergence rate. Not surprisingly, the use of a central
projection sub-routine makes C-ADMM impossible to scale.
The convergence criterion used in Figures 1 and 3 is modest
(10−1). Finally, we plotted a notable behavior of FD-ADMM
in Figure 3. One can imagine a link between the convergence
rate and the mean link load, i.e., 1

[J|
∑
|Rj |. This conjecture

requires further investigation that we keep for future work.

B. Comparison against Lagrangian method

We now compare the proposed FD-ADMM algorithm
against the classic LAGR Algorithm 3, see [25, 15, 19]. To
this aim we perform two experiments, in real-time and static
scenarios, respectively.

We start by evaluating the real-time responsiveness of FD-
ADMM by considering a small scenario where 200 routes are
established and the weights (wtr)r∈R,t∈0...T vary over discrete
time t, following the formula:

wt+1
r ∈ [(1− a)wtr, (1 + a)wtr] a ∈ [0, 1],

where at each event t, wtr is chosen uniformly within the
above interval in which a determines the amplitude of the
weight variation. In Figure 4 we illustrated the average op-
timality gap of the two algorithms achieved over 20 events

8One can choose any other norm in
⊕

R|Rj |.

Fig. 4: Average optimality gap E[gap] vs. the variation amplitude a.

with 10 iterations between each event. We observe that FD-
ADMM outperforms LAGR in terms of optimality gap, al-
though the performance of both algorithms is fairly acceptable.
However, remarkably, FD-ADMM remains always feasible
whereas LAGR constantly violates the constraints as weights
wr change in real-time. Figure 5 shows the percentage of
constraints of the problem that are violated for each value
of the amplitude a. In fact, LAGR iteratively approaches
the fair resource allocation from the outside of the feasible
set. This drawback is commonly amended by projecting the
solution onto the feasible set. However, this is not doable in
our distributed setting, as projection requires costly on-the-
fly operations that require full topological information. For
such reasons, we claim that the standard LAGR algorithm is
not well suited for computing real-time fair allocations in a
distributed SDN setting.

In our last experiment we test the two algorithms under a
static scenario, where the weights wr do not vary over time and
LAGR has enough time to find at least one feasible solution.
In Figure 6 we compare the optimality gap of the best feasible
solutions found after 5 seconds runtime by FD-ADMM and
LAGR, for different instance sizes over BT topology. We
observe that FD-ADMM obtains a close-to-optimal feasible
solution for all the instance sizes (from 100 to 6000 requests),

Fig. 5: Average percentage of violated constraints E[v] by LAGR vs.
the variation amplitude a.



Fig. 6: Optimality gap of the best feasible point found after 5 seconds
runtime.

while LAGR is still far from the optimum especially when the
instance becomes large.

To recap, in this section we have demonstrated by exper-
imentation that FD-ADMM reacts quickly to unpredictable
network variations, while preserving the feasibility of the
solutions computed iteratively. We then claim that FD-ADMM
is a good candidate for real-time fair resource allocation in
distributed SDN scenarios.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the real-time fair resource
allocation problem in the context of a distributed SDN control
plane architecture. Our main contribution is the design of a
distributed algorithm that continuously generates a sequence
of feasible solutions and adapts to any partitioning of the
network into domains. We reformulated the α-fair resource
allocation problem in the fashion of a general consensus prob-
lem to derive the FD-ADMM algorithm. This algorithm can
be massively parallelized on several processors that manage
different regions of the network, hence fully benefiting from
the computing resources of SDN controllers in distributed
architectures. We also provided a strategy for a near-optimal
estimation of the penalty parameter of FD-ADMM that boosts
its convergence. Finally, we compared FD-ADMM to a stan-
dard dual Lagrangian decomposition method (LAGR) and
we demonstrated how the former is more adapted to a real-
time situation where bandwidth has to be adjusted on-the-fly.
In fact, FD-ADMM ensures a smaller optimality gap since
the very first iterations and, most importantly, it produces a
feasible fair allocation at all iterations.

As a next step, we envision to adapt our formulation to
the case where multiple candidate paths are available for each
request. Moreover, we plan to run FD-ADMM asynchronously
while still guarantying near-optimal convergence rate and
anytime feasibility.
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