
HAL Id: hal-01652656
https://hal.inria.fr/hal-01652656

Submitted on 30 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling Disturbance and Awareness of Concurrent
Updates in a Collaborative Editor
Weihai Yu, Gérald Oster, Claudia-Lavinia Ignat

To cite this version:
Weihai Yu, Gérald Oster, Claudia-Lavinia Ignat. Handling Disturbance and Awareness of Concurrent
Updates in a Collaborative Editor. CDVE 2017 - 14th International Conference on Cooperative
Design, Visualization, and Engineering, Sep 2017, Mallorca, Spain. �hal-01652656�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132781004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01652656
https://hal.archives-ouvertes.fr


Handling Disturbance and Awareness
of Concurrent Updates in a Collaborative Editor

Weihai Yu1, Gérald Oster234, and Claudia-Lavinia Ignat234

1 University of Tromsø - The Arctic University of Norway
2 Inria, Villers-lès-Nancy, F-54600, France

3 Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, F-54506, France
4 CNRS, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, F-54506, France

Abstract. When people work collaboratively on a shared document, they have
two contradictory requirements on their editors that may affect the efficiency of
their work. On the one hand, they would like to know what other people are cur-
rently doing on a particular part of the document. On the other hand, they would
like to focus their attention on their own current work, with as little disturbance
from the concurrent activities as possible. We present some features that help the
user handle disturbance and awareness of concurrent updates. While collabora-
tively editing a shared document with other people, a user can create a focus re-
gion. The user can concentrate on the work in the region without being interfered
with the concurrent updates of the other people. Occasionally, the user can pre-
view the concurrent updates and select a number of these updates to be integrated
into the local copy. We have implemented a collaborative editing subsystem in
the GNU Emacs5 text editor with the described features.

Keywords: Data replication, concurrency control, CRDT.

1 Introduction

When people work collaboratively on a shared document or artifact, two contradictory
aspects may affect the efficiency of their work. On the one hand, a person would like
to know what the other people are currently doing with the document, so she can avoid
duplicating the same work or working unnecessarily on conflicting ideas. On the other
hand, the person would like to be as concentrated as possible on her current work with-
out the interference of concurrent work of other people, particularly when her current
work requires deep thinking and involvement.

One commonly applied practice is that people work independently (offline) on their
own copies of the document. They are able to concentrate completely on their work,
but have no idea what the other people are currently doing with the document. They
must use some additional communication channels, such as emails, to exchange their
copies of the document and get updated about the other people’s work. Then, they can
use some particular features of their editors, such as the “track changes” feature of Mi-
crosoft Word, or third-part tools, such as diff, to find out the particular updates made

5 https://www.gnu.org/software/emacs



by the other people. They should also be coordinated, again with additional communica-
tion channels, for other tasks, such as who is responsible for integrating the concurrent
updates in the following rounds. Without careful planning and coordination, they may
risk unnecessarily duplicating their efforts on overlapping or conflicting work.

Another possible practice, which is more and more applied lately, is that people
work simultaneously (online) on the shared document with a real-time collaborative
editor, such as Google Drive6. People can see immediately what other people are doing
with the document, so they can avoid duplicating their efforts. If several people are
working simultaneously on the same area of the document, even if for non-overlapping
or non-conflicting purposes, they can be easily distracted by concurrent updates of the
other people. Furthermore, allowing concurrent partial updates to be integrated in local
copies may cause other inconvenience such as compilation errors of software programs.

A middle ground is that people work on their own copies in isolation and are aware
of other people’s work at some specific time, such as at the time of saving the document
or committing the updates to a shared repository.

We present yet another possibility: people can work collaboratively on the same
document in such a way that they can limit the disturbance from other people’s concur-
rent updates and at the same time have an overview of the concurrent work, all these in
a controlled manner.

We have implemented support for collaborative editing in GNU Emacs, using CRDT
(Commutative Replicated Data Types) and supporting selective undo [16]. In this pa-
per, we present an experimental feature that lets the user handle the disturbance and
awareness of concurrent updates.

This paper is organized as follows. Section 2 gives a short review on our CRDT
approach to real-time collaborative editing [16]. Section 3 presents the new features for
handling disturbance and awareness through an example. Section 4 describes briefly
how we implemented the features in Emacs. Section 5 discusses related work. Finally,
Section 6 concludes.

2 Document view and CRDT model

With a collaborative editor, a document is concurrently updated from a number of peers
at different sites. Every peer consists of a view of the document, a model, a log of
operation history and several queues (Figure 1).

A peer concurrently receives local operations generated by the local user and remote
updates sent from other peers. Local user operations take immediate effect in the view.
The peer stores executed view operations in Qv and received remote updates in Qin.
During a synchronization cycle, it integrates the operations stored in Qv and Qin into
the model and shows the effects of integrated remote updates in the view. The peer
stores the integrated local operations in Qout . It also records the integrated local and
remote operations in the log. Later, it broadcasts the operations in Qout to other peers.

Every peer has a unique peer identifier pid. An operation originated at a peer has
a peer update number pun that is incremented with every integrated local operation.

6 https://drive.google.com



ins del

View
12A5678

Model

Log

undo
redo

render Qv

integrate

Qin

receive

Qout

broadcast

Qin′

1 2 34 A 56 78

Fig. 1. View, model and operations

Therefore, we can uniquely identify an operation with the pair (pid,pun). We use oppid
pun

to denote an operation op identified with (pid,pun).
A view is mainly a string of characters. A user can insert or delete sub-strings in the

view, and undo earlier integrated local or remote operations selected from the log.
A model materializes editing operations and relations among them. It consists of

layers of linked nodes that encapsulate characters. Conceptually, characters have unique
identifiers that are totally ordered. For two characters cl and cr, if cl .id < cr.id, then cl
appears to the left of cr.

Nodes at the lowest layer of a model represent insertions and contain inserted char-
acters. Nodes at higher layers represent deletions. That is, a higher-layer node (outer
node) deletes the corresponding characters in the lower-layer nodes (inner nodes).

A node contains the identifiers of its leftmost and rightmost characters. The identi-
fiers of the other characters (i.e. not at the edges of the node) are not explicitly repre-
sented in the model. An insertion node also contains a string of characters.

New operations may split existing nodes. Nodes of the same operation share an
op element as the operation’s descriptor. A descriptor contains, among other things,
information about undos, which influences the visibility of the characters.

There are three types of links among nodes: l-r links maintain the left-right character
order; opl-opr links connect nodes of the same operations; i-o links maintain the inner-
outer relations. The outermost nodes and the nodes inside the same outer node are linked
with l-r links. When the view and the model are synchronized, the view equals to the
concatenation of all visible characters of the outermost nodes through the l-r links.

Figure 2 shows an example with three peers. The upper part shows the operations
generated at the peers. The lower part shows the model snapshots at Peer 2. Nodes
of the same deletion are aligned horizontally. Nodes with dotted border are invisible.
Characters in light gray are invisible in the view.

Different peers can update the model concurrently. The model data structure is a
CRDT that has the following convergence property: when all peers have applied the
same set of updates, the states of the model at all peers converge.

We refer the interested readers to [16] for more details on the data structure and
algorithms on the model.



Peer 1

12345678

12345678

Peer 2
12345678

12345678

12345678

12345678

1234A5678

1234A5B678

1234XA5B678

1234XA5B678

Peer 3

12345678

1234X5678

ins2
1

del22
del23
undo2

4(del23)
ins2

5
ins2

6

ins3
1

del11

12345678

1. ins2
1

3412 5678

2. del22

1 2 34 56 78

3. del23

1 2 34 56 78

4. undo2
4

1 2 34 A 56 78

5. ins2
5

1 2 34 A 5 B 6 78

6. ins2
6

1 2 34 X A 5 B 6 78

7. ins3
1

1 2 3 4 X A 5 B 6 7 8

8. del11

Fig. 2. Examples of model updates

Materialization of editing operations in the model makes a number of tasks easier,
including support for selective undo and handling of operation dependencies [16], as
well as user friendliness features like display of operation history and selection of op-
erations to undo or redo, and preview of concurrent remote operations as described in
the following sections.

3 Handling disturbance and awareness of concurrent updates

Emacs has a feature called “narrowing” that allows the user to focus on a specific region
of the document, making the rest temporarily inaccessible. We think it is appropriate to
augment the narrowing feature with non-disturbance control for collaborative editing,
because when a user explicitly applies the narrowing, she signals the need to be focused
and concentrated. No disturbance from the concurrent updates of the other users is
clearly part of such concentration.

When a user narrows to a region while collaborating with other people, the editor
starts a focus region and enters a non-disturbance mode. No concurrent updates in the
region are immediately integrated.

While working in a focus region, the user may occasionally want to know what the
other people are working on in this region. By knowing other people’s work, she may



Screenshots:

1. initial 2. after local updates

3. preview of remote updates

4. final

1

2

3

4

Alice’s updates

Tom’s updatesneed more
manual work

Fig. 3. An example of collaborative editing with awareness of concurrent updates

be able to avoid duplicated work. She may even selectively integrate some concurrent
updates to adapt early to compatible updates performed by other people.

Figure 3 illustrates with an example the steps involved in working with a focus
region. Suppose three programmers, Bob, Alice and Tom, work concurrently on func-
tion fill() (in Emacs Lisp), which initially fills a segment of a list with a given item
(Step 1). The lower right part of the figure shows the layout of the screenshots of the
different steps performed by Bob.

Bob would like to generalize fill() to sequences (in Emacs Lisp, sequence is a
general type that includes list, vector etc.). He first narrows down to the function as a



focus region and works in the region without the disturbance of the concurrent updates
generated by Alice and Tom.

When Bob is almost done (Step 2), he takes a preview of concurrent updates (Step 3).
In the preview, every concurrent update is preceded with a leading dot. The color around
the leading dots indicates who performed the updates. Notice that we support composite
updates. For example, a text substitution consists of a deletion and an insertion; a global
substitution consists of multiple deletions and insertions. The character strings of the
updates are underlined. The insertion part of an update is displayed in blue and the dele-
tion part is in pink. The surrounding text of the updates is also displayed. This helps the
user recognize the context of the updates. Moreover, the editor keeps a mapping from
the displayed updates to their positions in the document. The user can traverse up and
down the updates in the preview. The current update is highlighted in yellow in the pre-
view. The cursor in the main document, i.e. the fill() body in our example, moves
accordingly. This helps the user further to localize the particular updates.

Bob noticed that Alice had capitalized two words in the doc-string and renamed
variable p to tail. Meanwhile, Tom had refactored the code. He added two lines to
deal with the default start and end positions in the list and moved the assignment of
variable n from the loop condition to the end of the loop body.

Bob can traverse through the concurrent updates and selectively integrate some of
them into the main document. In this particular example, he found that all updates
performed by Alice and Tom were compatible with his work and opted to integrate all
of them, which resulted in the fill() function as shown in Step 3. (Alternatively, Bob
may reject some of the concurrent updates. For example, he may reject the renaming of
variable p.)

Bob still had to do some manual work to get the final version as shown in Step 4.

4 Implementation

Emacs is a widely used open-source text editor. Emacs is also a run-time environment of
Emacs Lisp. This make Emacs very suitable for customization and extension. We have
earlier implemented the view and the CRDT model described in Section 2 in Emacs
Lisp [16]. We have also implemented support for selective undo and selection of updates
through a history view.

A focus region is marked with the identifiers (see Section 2) of the leftmost and the
rightmost characters of the region. To show a preview of the concurrent remote updates,
the peer integrates the updates stored in Qin and displays those in the focus region in
the history view. When the user accepts and rejects a number of selected updates, the
peer marks the accepted ones and undoes the rejected ones.

When the user exits the preview, the peer handles the the accepted and rejected (i.e.
undone) updates in the same way as it normally handles remote updates. For the updates
that are neither accepted nor rejected (i.e. the ones which the user wants to deal with
when she exits the focus region), the peer undoes them and inserts them in a new queue
Qin′ (Figure 1).

The next time the peer shows a preview of concurrent updates, it redoes the updates
in Qin′ and displays them, together with the new concurrent updates in Qin.



When the user exits the focus region, she must accept or reject all updates in Qin′ .

5 Related Work

Most of the existing collaborative editing work is based on operational transforma-
tion (OT) [2,11,12]. A local operation is performed immediately on the local replica of
a document; a remote operation is transformed and integrated in the local site based on
the positions of the existing and concurrent operations. A critical issue with OT is that,
it is hard to design correct operation transformation functions that is generally appli-
cable to various integration algorithms [6]. One common way to relax certain required
conditions for transformation functions is to enforce a global total order in which oper-
ations are transformed and integrated at all sites [14]. As a consequence, OT approaches
practically require the involvement of central servers.

Lately, there appear a new family of approaches to collaborative editing based on
commutative replication data types (CRDT) [1,7–9,13,15,16]. With CRDT, characters
of concurrent insertions are ordered based on the underlying data structure. One benefit
of CDRT is that different sites can integrate operations in different orders. Thus central
servers are not necessary.

To achieve the same features as presented in this paper in OT is non-trivial. For
example, for every remote operation, to detect whether it falls inside a focus region,
we must first transform the operation. To preview an operation and keep a mapping
to its position in the current document, we must also transform the operation. How-
ever, for these different purposes, we must transform the operations differently. With
CRDT, the effect of an integration is materialized in the data structure, which can be
used for different purposes, such as for selective undo [16] and for focus regions. To
detect whether a remote update falls inside a focus region, we only need to compare the
character identifiers of the operation and of the region.

Awareness during distributed collaboration has got wide attention for many years,
such as in the context of collaborative software development [3, 4, 10]. A recent study
suggests that “developers would appreciate having access to awareness information fre-
quently but not in real time; they have, however, diverse preferences regarding the level
of detail in which such information should be made available” [3]. Without the mech-
anisms for collaborative editing, tools typically provide information about concurrent
updates with coarse granularity, such as at a per-file level [10]. On the other hand, they
may take advantage of the capabilities of software development environments to detect
conflicts that are specific to programming languages or platforms [10].

In our previous work, we were able to provide similar awareness features as pre-
sented in this paper [4, 5]. Both [4] and [5] applied OT to localize concurrent remote
updates in the context of local document states. In [4], we combined OT with a cen-
tral version control repository. Because local and remote replicas share some common
base version of the document, we need only to maintain operation histories after the
base version. Thus the lengths of the operation histories are typically short and the OT
algorithms do not have a significant run-time overhead. In [5], we focused on provid-
ing awareness without compromising privacy. For the awareness part, we modeled the
document with a layered structure. The operation history of a document consisted of



multiple shorter sub-histories. In that way, we were able to overcome the performance
drawbacks of the OT algorithms. None of [4] and [5] supported disturbance avoidance,
since the focus was on awareness, rather than integration of concurrent updates.

6 Conclusion

We have presented some features for handling disturbance and awareness of concurrent
updates during collaborative editing. We implemented the features as part of our col-
laborative editing subsystem in GNU Emacs. Our implementation benefited from the
CRDT model that materializes the operations and their relations. We plan to evaluate
these features in real use scenarios and make improvements based on the evaluation.

References

1. L. André, S. Martin, G. Oster, and C.-L. Ignat. Supporting adaptable granularity of changes
for massive-scale collaborative editing. In CollaborateCom. IEEE, 2013.

2. C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In SIGMOD, pages
399–407. ACM, 1989.

3. H. Estler, M. Nordio, C. A. Furia, and B. Meyer. Awareness and merge conflicts in distributed
software development. In ICGSE, pages 26–35, 2014.

4. C. Ignat and G. Oster. Awareness of concurrent changes in distributed software development.
In CoopIS/DOA/ODBASE (1), pages 456–464, 2008.

5. C. Ignat, S. Papadopoulou, G. Oster, and M. C. Norrie. Providing awareness in multi-
synchronous collaboration without compromising privacy. In CSCW, pages 659–668, 2008.

6. A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Proving correctness of transformation
functions in real-time groupware. In ECSCW, pages 277–293, 2003.

7. G. Oster, P. Urso, P. Molli, and A. Imine. Data consistency for P2P collaborative editing. In
CSCW, pages 259–268. ACM, 2006.

8. N. M. Preguiça, J. M. Marquès, M. Shapiro, and M. Letia. A commutative replicated data
type for cooperative editing. In ICDCS, pages 395–403. IEEE Computer Society, 2009.

9. H.-G. Roh, M. Jeon, J. Kim, and J. Lee. Replicated abstract data types: Building blocks for
collaborative applications. J. Parallel Distrib. Comput., 71(3):354–368, 2011.

10. A. Sarma, D. F. Redmiles, and A. van der Hoek. Palantı́r: Early detection of development
conflicts arising from parallel code changes. IEEE Trans. Software Eng., 38(4):889–908,
2012.

11. C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence, causality preser-
vation, and intention preservation in real-time cooperative editing systems. ACM Trans.
Comput.-Hum. Interact., 5(1):63–108, 1998.

12. D. Sun and C. Sun. Context-based operational transformation in distributed collaborative
editing systems. IEEE Trans. Parallel Distrib. Syst., 20(10):1454–1470, 2009.

13. S. Weiss, P. Urso, and P. Molli. Logoot-undo: Distributed collaborative editing system on
P2P networks. IEEE Trans. Parallel Distrib. Syst., 21(8):1162–1174, 2010.

14. Y. Xu and C. Sun. Conditions and patterns for achieving convergence in OT-based co-editors.
IEEE Trans. Parallel Distrib. Syst., 27(3):695–709, 2016.

15. W. Yu. Supporting string-wise operations and selective undo for peer-to-peer group editing.
In GROUP, pages 226–237. ACM, 2014.

16. W. Yu, L. André, and C. Ignat. A CRDT supporting selective undo for collaborative text
editing. In DAIS, pages 193–206, 2015.


