

## Pando: An Easy-to-Deploy P2P Volunteer Computing Platform for the Web

Erick Lavoie, Laurie Hendren, Frédéric Desprez

### ▶ To cite this version:

Erick Lavoie, Laurie Hendren, Frédéric Desprez. Pando: An Easy-to-Deploy P2P Volunteer Computing Platform for the Web. 2nd International Workshops on Foundations and Applications of Self\* Systems (FAS\* W), IEEE, Sep 2017, Tucson, AZ, United States. hal-01652993

## HAL Id: hal-01652993 https://hal.inria.fr/hal-01652993

Submitted on 30 Nov 2017

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## Motivation

- Current volunteer platforms in use today (ex: BOINC platform) require a significant amount of effort and money to deploy which limits the volunteer computing approach to a few high-profile projects. Moreover, the effort in installing a client a limits the number of participants.
- The web platform now offers a combination of excellent execution performance, security sandboxing, and standard communication protocol including WebRTC (peer-to-peer browser communication), and portability across many devices and operating systems, and requires no installation of client software. Moreover, social medias enable the quick mobilization of millions of users.
- Those capabilities now enable the construction of newer and simpler volunteer computing platforms that may tap into more devices than ever, reach significantly more participants, and make the deployment easy for smaller and even one-shot computation projects.

## Contributions

| A web-based volunteer computing approach that is simple to deploy, | d |
|--------------------------------------------------------------------|---|
| not require a dedicated server, and can leverage a wide variety of |   |
| existing end-user devices because code is executed in browsers:    |   |

- Open source implementations in JavaScript of stream abstractions, each individually available through the Node Package Manager (NPM) for reuse in other projects and that are easily composable with a growing list of community developed pull-stream modules;
- An open-source command-line tool (pando), compatible with Unix pipelines that uses the stream abstractions as well as all scripts and procedures to replicate our performance experiments on the Grid'5000 testbed.

# **Design Goals**

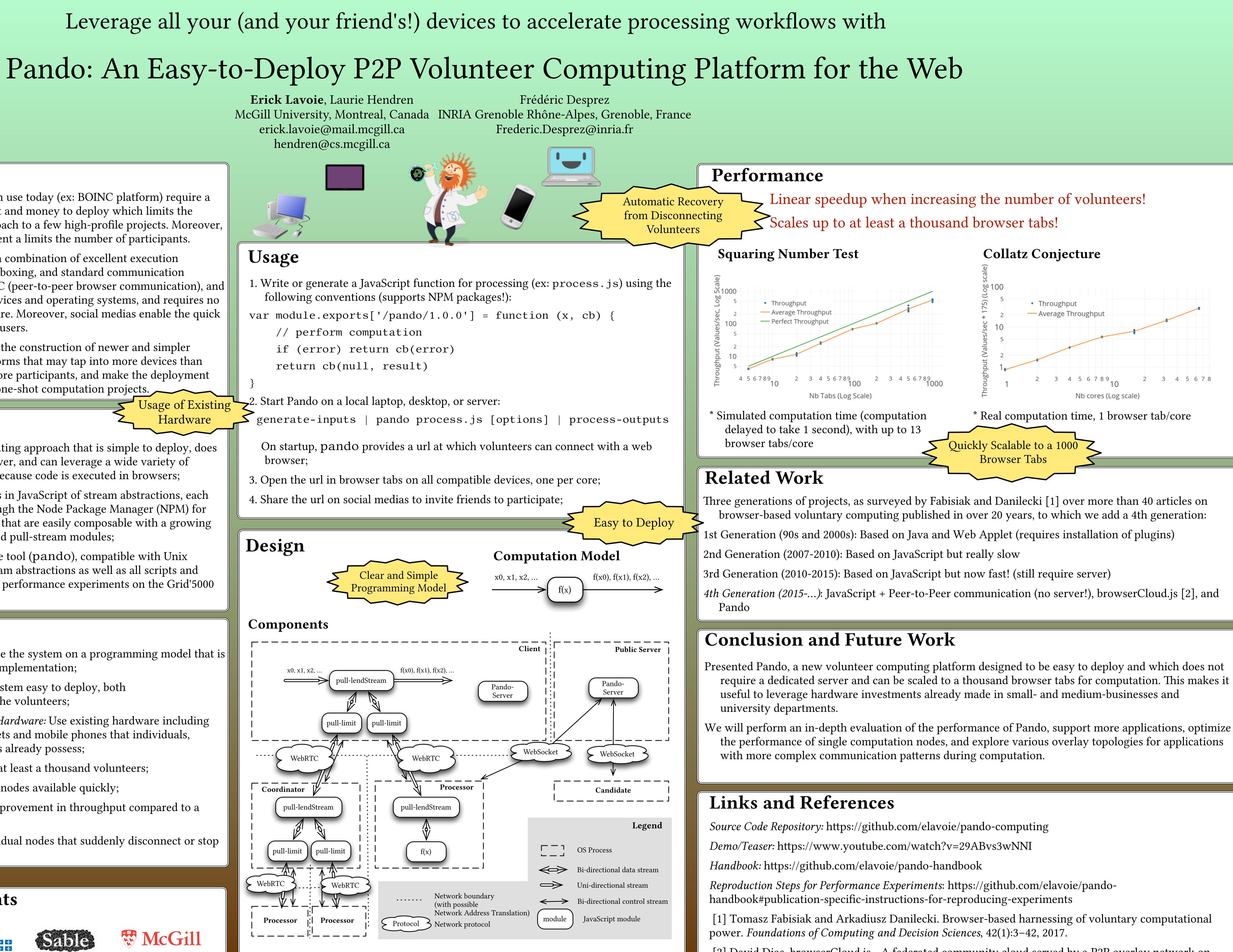
*Clear Programming Model:* Base the system on a programming model that is clear and guides a correct implementation;

- *Easy Deployment:* Make the system easy to deploy, both for the project owner and the volunteers;
- Usage of Existing Commodity Hardware: Use existing hardware including workstations, laptops, tablets and mobile phones that individuals, businesses, and universities already possess;

*Scalability*: Allow connecting at least a thousand volunteers;

*Elasticity*: Make the volunteer nodes available quickly;

*Performance*: Show a linear improvement in throughput compared to a single processor;


*Fault-tolerance*: Tolerate individual nodes that suddenly disconnect or stop answering.

# Acknowledgements









Images from https://openclipart.com

top of the web platform. Master's thesis, Tecnico Lisboa, 2015.

# **Collatz Conjecture** Throughput Average Throughput 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 Nb cores (Log scale) \* Real computation time, 1 browser tab/core Quickly Scalable to a 1000 Browser Tabs [2] David Dias. browserCloud.js - A federated community cloud served by a P2P overlay network on