
HAL Id: hal-01652993
https://hal.inria.fr/hal-01652993

Submitted on 30 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pando: An Easy-to-Deploy P2P Volunteer Computing
Platform for the Web

Erick Lavoie, Laurie Hendren, Frédéric Desprez

To cite this version:
Erick Lavoie, Laurie Hendren, Frédéric Desprez. Pando: An Easy-to-Deploy P2P Volunteer Comput-
ing Platform for the Web. 2nd International Workshops on Foundations and Applications of Self*
Systems (FAS* W), IEEE, Sep 2017, Tucson, AZ, United States. �hal-01652993�

https://hal.inria.fr/hal-01652993
https://hal.archives-ouvertes.fr

Pando: An Easy-to-Deploy P2P Volunteer Computing Platform for the Web
Erick Lavoie, Laurie Hendren

McGill University, Montreal, Canada
erick.lavoie@mail.mcgill.ca

hendren@cs.mcgill.ca

Frédéric Desprez
INRIA Grenoble Rhône-Alpes, Grenoble, France

Frederic.Desprez@inria.fr

Motivation

Design Goals

Contributions

Related Work

Links and References

Design

Performance

f(x)
x0, x1, x2, … f(x0), f(x1), f(x2), …

f(x0), f(x1), f(x2), …
pull-lendStream

x0, x1, x2, …

Client

pull-limit pull-limit

Legend

OS Process

Bi-directional data stream

Uni-directional stream

module JavaScript module

Network boundary
(with possible
Network Address Translation)

Protocol Network protocol

Coordinator

pull-lendStream

pull-limit

Processor

pull-limit

WebRTC

Processor

pull-lendStream

Processor

f(x)

Bi-directional control stream

Pando-
Server

Pando-
Server

Public Server

WebRTC

Candidate

WebSocket WebSocket

WebRTC WebRTC

Clear Programming Model: Base the system on a programming model that is
clear and guides a correct implementation;

Easy Deployment: Make the system easy to deploy, both
for the project owner and the volunteers;

Usage of Existing Commodity Hardware: Use existing hardware including
workstations, laptops, tablets and mobile phones that individuals,
businesses, and universities already possess;

Scalability: Allow connecting at least a thousand volunteers;
Elasticity: Make the volunteer nodes available quickly;
Performance: Show a linear improvement in throughput compared to a

single processor;
Fault-tolerance: Tolerate individual nodes that suddenly disconnect or stop

answering.

Source Code Repository: https://github.com/elavoie/pando-computing
Demo/Teaser: https://www.youtube.com/watch?v=29ABvs3wNNI
Handbook: https://github.com/elavoie/pando-handbook
Reproduction Steps for Performance Experiments: https://github.com/elavoie/pando-
handbook#publication-specific-instructions-for-reproducing-experiments
 [1] Tomasz Fabisiak and Arkadiusz Danilecki. Browser-based harnessing of voluntary computational
power. Foundations of Computing and Decision Sciences, 42(1):3–42, 2017.
 [2] David Dias. browserCloud.js - A federated community cloud served by a P2P overlay network on
top of the web platform. Master’s thesis, Tecnico Lisboa, 2015.

Conclusion and Future Work

Usage
1. Write or generate a JavaScript function for processing (ex: process.js) using the

following conventions (supports NPM packages!):
var module.exports['/pando/1.0.0'] = function (x, cb) {

 // perform computation

 if (error) return cb(error)

 return cb(null, result)

}

2. Start Pando on a local laptop, desktop, or server:
generate-inputs | pando process.js [options] | process-outputs

 On startup, pando provides a url at which volunteers can connect with a web
browser;

3. Open the url in browser tabs on all compatible devices, one per core;
4. Share the url on social medias to invite friends to participate;

Components

Computation Model

A web-based volunteer computing approach that is simple to deploy, does
not require a dedicated server, and can leverage a wide variety of
existing end-user devices because code is executed in browsers;

 Open source implementations in JavaScript of stream abstractions, each
individually available through the Node Package Manager (NPM) for
reuse in other projects and that are easily composable with a growing
list of community developed pull-stream modules;

An open-source command-line tool (pando), compatible with Unix
pipelines that uses the stream abstractions as well as all scripts and
procedures to replicate our performance experiments on the Grid'5000
testbed.

Squaring Number Test Collatz Conjecture

Linear speedup when increasing the number of volunteers!
Scales up to at least a thousand browser tabs!

* Simulated computation time (computation
delayed to take 1 second), with up to 13
browser tabs/core

* Real computation time, 1 browser tab/core

Current volunteer platforms in use today (ex: BOINC platform) require a
significant amount of effort and money to deploy which limits the
volunteer computing approach to a few high-profile projects. Moreover,
the effort in installing a client a limits the number of participants.

The web platform now offers a combination of excellent execution
performance, security sandboxing, and standard communication
protocol including WebRTC (peer-to-peer browser communication), and
portability across many devices and operating systems, and requires no
installation of client software. Moreover, social medias enable the quick
mobilization of millions of users.

Those capabilities now enable the construction of newer and simpler
volunteer computing platforms that may tap into more devices than
ever, reach significantly more participants, and make the deployment
easy for smaller and even one-shot computation projects.

Three generations of projects, as surveyed by Fabisiak and Danilecki [1] over more than 40 articles on
browser-based voluntary computing published in over 20 years, to which we add a 4th generation:

1st Generation (90s and 2000s): Based on Java and Web Applet (requires installation of plugins)
2nd Generation (2007-2010): Based on JavaScript but really slow
3rd Generation (2010-2015): Based on JavaScript but now fast! (still require server)
4th Generation (2015-…): JavaScript + Peer-to-Peer communication (no server!), browserCloud.js [2], and

Pando

Presented Pando, a new volunteer computing platform designed to be easy to deploy and which does not
require a dedicated server and can be scaled to a thousand browser tabs for computation. This makes it
useful to leverage hardware investments already made in small- and medium-businesses and
university departments.

We will perform an in-depth evaluation of the performance of Pando, support more applications, optimize
the performance of single computation nodes, and explore various overlay topologies for applications
with more complex communication patterns during computation.

Acknowledgements

Easy to Deploy

Usage of Existing
Hardware

Clear and Simple
Programming Model

Quickly Scalable to a 1000
Browser Tabs

Automatic Recovery
from Disconnecting

Volunteers

Leverage all your (and your friend's!) devices to accelerate processing workflows with

Images from https://openclipart.com

