
HAL Id: hal-01654656
https://hal.inria.fr/hal-01654656

Submitted on 4 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

INDICES: Exploiting Edge Resources for
Performance-aware Cloud-hosted Services

Shashank Shekhar, Ajay Chhokra, Anirban Bhattacharjee, Guillaume Aupy,
Aniruddha Gokhale

To cite this version:
Shashank Shekhar, Ajay Chhokra, Anirban Bhattacharjee, Guillaume Aupy, Aniruddha Gokhale.
INDICES: Exploiting Edge Resources for Performance-aware Cloud-hosted Services. ICFEC 2017 -
1st IEEE International Conference on Fog and Edge Computing, May 2017, Madrid, Spain. pp.1-6.
�hal-01654656�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132779386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01654656
https://hal.archives-ouvertes.fr

INDICES: Exploiting Edge Resources for
Performance-aware Cloud-hosted Services

Shashank Shekhar∗, Ajay Dev Chhokra∗, Anirban Bhattacharjee∗, Guillaume Aupy†, Aniruddha Gokhale∗
∗Vanderbilt University, Nashville, TN 37235, USA and †INRIA & Université de Bordeaux, France

∗ Email: {shashank.shekhar,ajay.d.chhokra,anirban.bhattacharjee,a.gokhale}@vanderbilt.edu and †guillaume.aupy@inria.fr

Abstract—Despite the known benefits of hosting cloud-based
services, the longer and often unpredictable end-to-end network
latencies between the end user and the cloud can be detrimental
to the response time requirements of the interactive cloud-hosted
applications. Existing efforts that exploit edge/fog technology to
migrate services closer to clients in order to improve response
times do not fully resolve this problem as they do not focus on
performance and interference issues at the migrated locations.
This paper proposes INDICES framework that addresses these
limitations by providing a novel solution that determines when
and to which MDC a service should be migrated to and thus
provides the desired performance. Empirical results validating
our claims are presented using a setup comprising a centralized
cloud and MDCs composed of heterogeneous hardware.

Index Terms—Cloud Computing, Cloud latency, Micro Data
Center, Cloudlet, Edge Computing, Fog Computing, Performance
Interference, Resource Management.

I. INTRODUCTION

Although hosting interactive applications in the cloud may
be economically attractive and sometimes even necessary,
particularly for applications such as cognitive assistance and
online gaming, real-world experiments have shown that the
latencies experienced by geographically distributed users of
interactive services may be on the order of hundreds of
milliseconds [1] which may not be acceptable to users [2].
For any cloud-hosted interactive application, the dominant
factors that affect the round trip latencies are the network
delay between the client and the cloud, particularly the round-
trip delay between the nearest access point of the client and
the cloud, and the time it takes to serve the client request.
Thus, any improvement in round trip latencies must focus on
reducing the network delays and the server processing time.

Fog computing in the form of cloudlets [3] or Micro
Data Centers (MDCs) [4] have emerged as one of the key
mechanisms to manage and bound the transit latency by
supporting cloud-based services closer to the clients. MDCs1

can be viewed as “a data center in a box,” which act as the
middle tier in the emerging “Edge–Fog–Cloud” hierarchy.

Most efforts to date in exploiting fog/edge resources have
focused on cyber foraging, where tasks are offloaded from
mobile devices to the cloud/MDCs for faster execution and
to conserve resources on the mobile endpoints [5]. Whatever
small number of prior efforts on moving tasks from the central

1In the rest of the paper, we will use the term MDC to represent
all emerging mechanisms, such as Cloudlets, Micro Datacenters (MDCs),
Locavore infrastructures, etc.

clouds to the MDCs exists have either (a) not considered the
resulting application performance because these efforts tend to
overlook server overloading within MDCs. This in fact may
worsen the user experience as compared to that of a traditional
cloud-hosted interactive service, or (b) make very simplistic
assumptions regarding their performance models.

In this paper, we address the performance-aware cloud to
MDC service migration problem. Our approach accounts for a
fundamental system property called performance interference,
which otherwise is often overlooked. Performance interference
is an inherent property of any virtualized system that is caused
by co-located applications contending for resources thereby
leading to performance degradation [6], [7]. Specifically, we
focus on a “just-in-time and performance-aware” service mi-
gration approach for moving cloud-based interactive services
hosted in the centralized cloud data center to a MDC.

A number of challenges including the heterogeneity in the
hardware, and difficulty in measuring performance interfer-
ences and other system and network performance metrics
must be overcome. We address these challenges in the context
of providing a ubiquitous deployment approach that spans
the cloud-edge spectrum. Our solution is called INDICES
(INtelligent Deployment for ubIquitous Cloud and Edge
Services) framework, which codifies our algorithms for on-
line performance monitoring, performance prediction, network
performance measurements, server selection and application
migration from the cloud to the fog. This paper focuses only
on the key ideas and experimental validation; a more detailed
explanation appears in [8].

The rest of the paper is organized as follows: Section II
compares related work with our work; Section III provides
details about INDICES including its underlying system model
and assumptions, the problem formulation, and details of
its implementation; Section IV presents empirical proof that
validates our claims; and finally Section V presents concluding
remarks alluding to lessons learned and future work.

II. RELATED WORK

In this section we compare and contrast INDICES with
related work along three dimensions: network latency-based
server selection, performance interference-based server selec-
tion and performance-aware edge computing. Unlike our work,
our survey has found that existing works seldom consider all
dimensions holistically.

A. Network Latency-based Server Selection

DONAR [9] addresses the global replica selection problem
using a decentralized, selection algorithm where the under-
lying protocol solves an optimization problem that takes into
account client performance and server load. Dealer [10] targets
geo-distributed, multi-tier and interactive applications to meet
their stringent deadline constraints by monitoring individual
component replicas and their communication latencies, and
selects the combination that provides the best performance.
Kwon et al. [11] applied network latency profiling and re-
dundancy for cloud server selection while suggesting using
cloudlets. We contend that these efforts consider simplistic
models of server workload and their impact on performance,
and do not cater to edge resource management.

B. Performance Interference-aware Server Selection

Paragon [6] identified the sources of interference that impact
application performance and developed micro benchmarks for
heterogeneous hardware. The system benchmarks applications
and classifies them to find collocation patterns for scheduling.
SMiTe [12] designed rulers for estimating sensitivity and
degree of contention between applications when they are
collocated. Bubble-Flux [13] assures QoS for latency-sensitive
applications by dynamic interference profiling of shared hard-
ware resources and collocating latency-sensitive applications
with batch applications. These works, however, do not apply
to virtualized data centers where the hypervisor places its own
overhead on the resources and impacts performance.

Our prior work [7] designed a performance interference-
aware resource management framework that benchmarks ap-
plications residing in virtual machines and applies a neural
network-based regression mechanism that estimates a server’s
performance interference level. However, hardware hetero-
geneity and per application performance were not considered.

Heracles [14] mitigates performance interference issues for
latency-sensitive applications by partitioning different shared
resources. However, partitioning for resources, such as mem-
ory bandwidth is still not available, and moreover, cache
partitioning is only available on newer hardware which cannot
be applied to existing hardware.

C. Performance-aware Edge Computing

Fesehaye et al. [15] described a design to select between
cloudlets and central cloud server for interactive mobile cloud
applications based on the number of hops, mobility and
latency. SEGUE [16] is an edge cloud migration decision
system that applies state-based Markov Decision Process
(MDP) model incorporating network and server states. Both
the approaches have not been evaluated on real systems and
the results are only simulation-based.

III. PROBLEM FORMULATION AND DESIGN OF INDICES

The INDICES framework is geared towards platform-as-a-
service (PaaS) cloud providers, who seek to meet service level
objectives (SLOs) of soft real-time applications such as online
gaming, augmented reality, virtual desktop etc, by improving

application response times. To that end they exploit micro data
centers. INDICES must fulfill two primary responsibilities:
determining which users are experiencing SLO violations, and
making decisions to migrate the impacted application from
CDC to apt MDC host.

A. INDICES Architecture and Application Model

Figure 1 depicts our architecture for INDICES that consists
of a centralized data center CDC, owned by a PaaS cloud
provider. The CDC is connected to a group of micro data
centers (MDCs), M = {m1,m2, ..,mn}. These MDCs are
deployed at the edge, and are either owned by the CDC
provider or leased from an edge-based third party MDC
provider. A leased MDC is assumed to be exclusively under
the control of the that CDC provider.2

Global Manager
(gm)

H
igh Latency

Centralized Data
Center

Low LatencyMicro Data Center
m1

lm1 lm2

Micro Data Center
m3

lm3

Micro Data Center
mn

lm4

Location
Manager (lm)

. . .

Non Compute
Node

Compute
Node

Fig. 1. Architectural Model of INDICES

The CDC contains a global manager gm, which is respon-
sible for detecting and mitigating global SLO violations. We
assume that for all m ∈M , there exist links to the CDC with
a backhaul bandwidth of bm. Each MDC m comprises a set
of compute servers, Hm, that can be allocated to the CDC for
its operations at a specified cost. One of the hosts from Hm

or a specially designated MDC host acts as the local manager
(lmm) for that MDC and is responsible for data collection,
performance estimation, latency measurements and MDC-level
decision making. This decision-making logic is deployed at the
MDC by the CDC provider.

For this work, we consider a set Apps of latency-sensitive
applications that can be collaborative or single user and
interactive or streaming in nature. Each application a ∈ Apps
is initially deployed in a CDC, with Ua number of users
and is assumed to be containerized inside a virtual machine
(VM). We assume that for a collaborative application a, its
users are located in proximity of each other where they incur
similar round trip latencies, e.g., in a collaborative educational
application [17].

2Sharing of MDCs across different CDC providers is a dimension of our
future work.

Each application a can be hosted on any active host in CDC,
η ∈ H , where H is the set of all active hosts that provide
virtualization using a hypervisor or virtual machine monitor
(VMM). We let eeda represent the expected execution duration
for which the application will be used by the end-user clients.
An interactive or streaming application comprises multiple
individual interactions between the user and the application.
Each interactive or streaming step of a is assumed to take an
estimated execution time eeta,η on host η; for collaborative
applications, it indicates the time needed for all users to have
completed that step. Finally, for all users u ∈ Ua, let ela,η,u
represent the estimated round-trip network latency and φa be
the application-defined bounds on acceptable response time
for each interactive step of the application.

Formally, the SLO for each application a hosted on host η
can be characterized by:

eeta,η + max
u∈Ua

(ela,η,u) ≤ φa (1)

Over time, a subset PA from the set of applications Apps
are identified by the system as suffering from performance
degradation such that each application p ∈ PA has a subset
of one or more users, U ′p ⊆ Up experiencing SLO violations.
SLO violation can be noticed either by the client-side instru-
mentation capability included with the “app” that the user
installs or via a predictive capability used by the CDC based
on user profile and location.

Our objective is thus to minimize the SLO violations, which
is achieved by identifying and migrating application p to a
MDC host h ∈ Hm that will provide significantly improved
performance. Since any application migration will involve
state transfer, we assume that application p has the snapshot
of current state which has to be transferred as part of the
migration over the backhaul network from CDC to MDC
m. Moreover, cip,h is the initialization cost of the migrated
application p on host hm before the application can start
processing requests on the MDC host. However, once the user-
specific state has been transferred, there is minimal interaction
between the CDC-based server and the MDC-based server for
the remainder of the functioning of application p. For this
paper we do not consider further consolidation of resources
where applications migrate back to the CDC. The transfer cost
transferp,h incurred while transferring application p from
CDC to host h of a MDC, and associated constraint are defined
in the following equations:

transferp,h =
sp
bm

+ cip,h (2)

transferp,h � eedp (3)

where, bm is the backhaul bandwidth, sp is the size of the
snapshot of the application’s state, and eedp is the remaining
expected execution duration of application p’s usage by the
client. Equation 3 is a necessary condition for the motivation
to use the edge and our solution to be relevant. To ensure that
Equation 3 holds, we do not require transferring entire images
of the VM and its containers. Instead, we use a layered file

system architecture at the MDC that is pre-populated with base
images used at the CDC. This assumption is realistic because
we surmise that a MDC is either owned entirely or leased
exclusively by a CDC provider. We also ensure Equation 3
holds by considering δp as a tolerance percentage value for
the application user before (s)he starts to observe the improved
response time:

transferp,h/eedp ≤ δp (4)

Finally, another critical issue we must account for is that any
migration of a new application from CDC to a MDC should
not violate the SLOs of existing applications in that MDC. To
capture this aspect, let Jh represent the set of all applications
currently running on a MDC host h, eetj,h be the estimated
execution time for each application j ∈ Jh, which must be
updated when we make a decision to migrate p to the same
host, and elj,h,u be their corresponding measured round-trip
network latency. These quantities must satisfy:

∀j ∈ Jh, eetj,h + max
u∈Uj

(elj,h,u) ≤ φj (5)

B. Performance Estimation: Problem and Challenges

The performance of an application depends on several
factors including the workload, the hardware hosting platform,
and co-located applications that cause performance interfer-
ence [6], [7]. Below we describe their role in the performance
estimation problem:

1) Workload Estimation: For the cloud-hosted interactive
applications of interest to us, we assume that the workload
variation is not significant within a single user session with
the service. However, different sessions may have different
workloads, for example, in an image processing application,
the quality and hence the size of the captured and relayed
image may vary for different client mobile devices. Thus,
we consider each workload as a different application setting,
which is reflected in the application response time.

2) Heterogeneity: Our CDC and MDCs consist of heteroge-
neous hardware and hence each application’s performance can
vary significantly from one hardware platform to another [6].
Therefore, we need an accurate benchmark of performance for
each hardware platform.

3) Performance Interference: Although hypervisors/VMMs
provide a high degree of security, fault, and environment
isolation, the level of isolation is inadequate when it comes to
performance isolation for the following reasons:

• Presence of non-partitionable shared resources: On-chip
resources including cache spaces, cache and DRAM
bandwidths, and interconnect networks are difficult to
partition [18]. Although, Intel has introduced Cache Al-
location Technology [19] to partition the last level cache
(LLC), it is still not widely used and cannot be applied
to older generation servers. The load imposed on these
shared resources by one application is detrimental to all
the cache- and memory-sensitive applications [20].

• Resource overbooking: Resource overbooking is com-
mon in cloud data centers, which precludes strict CPU
reservations and can lead to lower level caches (L1
and L2) getting shared. Overbooking beyond the server
capacity can lead to significant performance issues for
the applications.

C. Cost Estimation and Objective Formulation

The objective of the framework is to assure the SLOs for
all the identified applications p ∈ PA while minimizing
the overall deployment cost. Each MDC host h involves a
monetary allocation cost as it is either leased or could be
leased to other providers if owned by the centralized cloud. In
addition, the running servers have operational costs, such as
need for power and cooling. Thus, the provider wants to use
as few MDC servers as possible and hence the deployment
cost depends on the duration for which the MDC server is on.
This cost T̃h for deploying p ∈ PAh applications on host h
is the extra duration for which the server has to be turned on
and can be represented as:

T̃h =

0, if max
p∈PAh

(eedp) < max
j∈Jh

(eedj),

max
p∈PAh

(eedp)−max
j∈Jh

(eedj), otherwise

(6)
We define a constant αh denoting the cost of powering

on the MDC server, and constant βh denoting the cost for
transferring the state to host h. Their values depend on the
host h and its corresponding MDC. The cost for deployment
on host h is thus defined as:

C(h) = αh ∗ T̃h + βh ∗
∑

p∈PAh

transferp,h (7)

The optimization problem we solve for this research can
then be formulated as:

minimize
h∈H

∑
C(h)

subject to eetp,h + max
u∈Up

(elp,h,u) ≤ φp,

∀j ∈ Jh, eetj,h + max
u∈Uj

(elj,h,u),

transferp,h/eedp ≤ δp

(8)

D. INDICES Design

Given the scale of the system, a centralized approach to per-
formance prediction and cost estimation for every application
hosted in the CDC/MDC and its clients is infeasible. Thus, we
take a hierarchical approach where individual MDCs with their
local managers and the global manager of the CDC participate
in a two-level decision making as shown in Figure 1. The
details of the architecture and the solution to the problem
described above are available in [8].

IV. EXPERIMENTAL VALIDATION

We now present results of evaluating INDICES in the
context of a latency sensitive application.

A. Experimental Setup

Table I illustrates the hardware platforms and their counts
used in our experiments. The CDC uses Openstack cloud
OS version 12.0.2 where the guests receive their own public
IP addresses. The MDC servers are managed directly by
libvirt virtualization APIs and the guests communicate via port
forwarding on the host. Each machine has Ubuntu 14.04.03
64-bit OS, QEMU-KVM hypervisor version 2.3.0 and libvirt
version 1.2.16. Guests are configured with 2 GB memory, 10
GB disk, Ubuntu 14.04.03 64-bit OS and either 1 or 2 VCPUs.
Since we are not concerned with VM migration within a CDC,
we do not depict the CDC heterogeneity.

TABLE I
SERVER ARCHITECTURES

Conf Hardware
Model

sockets/cores/
threads/GHz

L1/L2/L3
Cache (KB)

Mem Type/
MHz/GB Count

A i7 870 1/4/2/2.93 32/256/8192 DDR3/1333/16 2

B Xeon
W3530 1/4/2/2.8 32/256/8192 DDR3/1333/6 1

C Core2Duo
Q9550 1/4/1/2.83 32/6144/- DDR2/800/8 1

D Opteron
4170HE 2/6/1/2.1 64/512/5118 DDR3/1333/32 9

We use PARSEC and Splash-2 benchmarks [21] to generate
the training data. To preclude profiling every new application
on all the hardware, we need some training data. PARSEC
targets Chip-Multiprocessors composing virtualized data cen-
ters, and provides a rich set of applications with different
instruction mix, cache and memory utilization, needed for
stressing different system subcomponents. We selected 20 tests
from the benchmarks for data generation and validation. Due
to lack of access to servers in different geographical regions,
we used the network emulation tool, netem, and hierarchy
token bucket based traffic control, tc-htb, for emulating the
desired network latencies and bandwidth among the client,
CDC and different MDCs.

B. Application Use Case

Our use case is an image processing application that per-
forms feature detection, e.g., facial recognition in computer
vision. We use the well-known Scale Invariant Feature Trans-
form (SIFT) [22] to find the scale and rotation independent fea-
tures. The client-side interface of the application continuously
streams frames from a video or a web camera at a fixed rate of
a frame per 200 milliseconds. The video resolution is 640x360
pixels and average frame size is 56 KB. The server comprises
a Python-based application that receives frames over a TCP
socket, processes it, and responds with the identified features
along with the processing time. The client expects to receive
a response within this duration, implying that 200 ms is the
deadline for the application. Although our use case considers
the performance for a single client connected to the cloud-
hosted application, it can easily be extended to multiple clients
residing in a similar latency region.

When the image processing application is submitted for
hosting in our cloud, we execute it on different hardware

platforms in isolation to find its base execution times. For
hardware platforms A,B,C,D defined in Table I, the base ex-
ecution times, eeta, were measured to be 86, 91, 146, 157 ms,
respectively. Table II displays the emulated ping latency ela
from this client to CDC or different MDCs in the same region
as the client. The table also lists their server composition, and
the measured 95th percentile network latency while sending
TCP/IP and HTTP post requests of 56 KB size and receiving
a response of size less than 1 KB. The expected duration for
which the client needs to perform the image processing, eeda,
was set as 1 hour and the SLO was set to 95%.

TABLE II
CDC AND MDC SET UP FOR USE CASE (SECTION IV-B)

Conf Distance Ping Latency
(±20%) ms

TCP la-
tency(ms)

HTTP la-
tency(ms) Servers

1 1 hop <1 2 6 1C + 1D
2 2 hops 5 14 28 1A + 2D
3 Multi hops 20 54 96 1B + 2D
4 Multi hops 30 76 142 1A + 3D
5 Central 50 127 220 1D

C. Evaluating the Performance Estimation Model

We first benchmarked our use case application on hardware
platform D in order to develop its performance estimators. The
threshold to discern applications with similar interference per-
formance profile was set to 10% error. However, as illustrated
in Figure 2, none of the existing applications met the criteria.
Thus, we decided not to use any of the existing estimators for
the use case application and benchmarked the application on
all hardware configurations to develop its estimators. Figure 2
confirms that the estimation errors were high for all the
hardware types requiring us to develop its estimators. We also
found that the mean absolute percentage estimation error for
our use case application to be less than 4% on all the platforms
with low standard deviations as depicted in Figure 3. We can
also account for this estimation error in our response time
constraint (Equation 1) for stricter SLO adherence.

parse
c.s

waptio
ns

parse
c.b

lacksch
oles

parse
c.d

edup

parse
c.f

reqmine

parse
c.b

odytra
ck

parse
c.f

erre
t

parse
c.f

luidanim
ate

Application

0

5

10

15

20

25

30

35

M
e
a
n
 A

b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r Config A

Config B

Config C

Config D

Fig. 2. Estimation of SIFT Profile Similarity with Parsec Benchmark

A B C D
Hardware Configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
e
a
n
 A

b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r

Fig. 3. SIFT Application Performance Estimation Error

D. Evaluating the Server Selection Algorithm

We compare our server selection algorithm results against
two approaches: server selection algorithms based on mini-
mum number of hops and least loaded server (among reachable
MDCs). From Table II we observe that the minimum hop is 1.
There are 2 servers in the minimum hop MDC 1 with hardware
configuration types C and D. We create interference load on
both the servers but ensured that the total load on the server
does not exceed its capacity in terms of memory and vCPUs to
eliminate unrealistic performance deteriorations. For the least-
loaded server algorithm, we considered the server with least
existing allocated resources, i.e. containing only a single VM.
We did not consider a server with no existing load as it results
in acquiring a new server and thus causes additional cost to
the service provider. We found the server of hardware type D
with MDC configuration 4 to be least loaded.

Applying SLO from Equation 1, INDICES found 2 servers
of type A and D from MDC 2 and one server of type B from
MDC 3 to be suitable for which we plot their response times
for eeda of one hour. Figure 4 displays the comparison of
each of the suitable servers found by INDICES against the
least loaded server. We observe that in this scenario, the least
loaded server had 100% SLO violation because of network
latency. However, the servers found by INDICES met their
deadline 100%, 99.38% and 98.94%, respectively, which was
well over the target SLO of 95%. Also, the minimum hop
servers met the deadline only 66.64% and 60.64% of times
due to performance interference shown in Figure 5.

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

0

100

200

300

400

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Least loaded

CDC

INDICES 2D

INDICES 2A

INDICES 3B

SLO

Fig. 4. INDICES vs Least Loaded

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

50

100

150

200

250

300

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Min hop D

Min hop A

INDICES 2A

SLO

Fig. 5. INDICES vs Minimum Hop

V. CONCLUSIONS

This paper presents a deployment approach that exploits
the available edge/fog resources in the form of micro data
centers, which are used to migrate cloud-hosted applications
closer to the clients so that their response times are improved.
In doing so, our algorithm ensures that existing edge-deployed
services are not unduly impacted in terms of their performance
nor are the operational and management costs for the cloud
provider overly affected. These objectives are met using an
optimization problem, which is solved using a two-level co-
operative and online process between system-level artifacts we
have developed and deployed at both the micro data centers
and centralized cloud data center. Our experimental results
evaluating our framework called INDICES support our claims.

This work has provided deep insights that require further
research. Some of these include the need for readily available
benchmarks, better approaches to collecting measurements,
workload consolidation across MDCs and CDCs, revenue
generation and energy saving issues, and MDCs that are shared
across different CDC providers. Going forward, we will also
expand on our assumptions and limitations such as trust,
security, workload variations and user mobility.

All scripts, source code, and experimental results for IN-
DICES are available for download from https://github.com/
shekharshank/indices.

ACKNOWLEDGMENTS

This work is supported in part by the AFOSR DDDAS
FA9550-13-1-0227 and NSF US Ignite CNS 1531079. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of AFOSR and NSF.

REFERENCES

[1] Y. A. Wang, C. Huang, J. Li, and K. W. Ross, “Estimating the perfor-
mance of hypothetical cloud service deployments: A measurement-based
approach,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp.
2372–2380.

[2] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “Gaming in
the clouds: Qoe and the users perspective,” Mathematical and Computer
Modelling, vol. 57, no. 11, pp. 2883–2894, 2013.

[3] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case
for VM-Based Cloudlets in Mobile Computing,” Pervasive Computing,
IEEE, vol. 8, no. 4, pp. 14–23, 2009.

[4] V. Bahl, “Cloud 2020: Emergence of micro data centers (cloudlets) for
latency sensitive computing (keynote),” Middleware 2015, 2015.

[5] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya,
“A context sensitive offloading scheme for mobile cloud computing
service,” in Cloud Computing (CLOUD), 2015 IEEE 8th International
Conference on. IEEE, 2015, pp. 869–876.

[6] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in ACM SIGPLAN Notices, vol. 48, no. 4.
ACM, 2013, pp. 77–88.

[7] F. Caglar, S. Shekhar, A. Gokhale, and X. Koutsoukos, “An Intelligent,
Performance Interference-aware Resource Management Scheme for IoT
Cloud Backends,” in 1st IEEE International Conference on Internet-
of-Things: Design and Implementation. Berlin, Germany: IEEE, Apr.
2016, pp. 95–105.

[8] S. Shekhar, A. Chhokra, A. Bhattacharjee, G. Aupy, and
A. Gokhale, “INDICES: Exploiting Edge Resources for
Performance-aware Cloud-hosted Services,” Vanderbilt University,
Institute for Software Integrated Systems, Nashville, TN,
USA, Tech. Rep. ISIS-17-102, Feb. 2017. [Online]. Available:
http://www.isis.vanderbilt.edu/sites/default/files/indices.pdf

[9] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford, “Donar:
decentralized server selection for cloud services,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 4, pp. 231–242, 2010.

[10] M. Hajjat, D. Maltz, S. Rao, K. Sripanidkulchai et al., “Dealer:
application-aware request splitting for interactive cloud applications,” in
8th international conference on Emerging networking experiments and
technologies. ACM, 2012, pp. 157–168.

[11] M. Kwon, Z. Dou, W. Heinzelman, T. Soyata, H. Ba, and J. Shi, “Use of
network latency profiling and redundancy for cloud server selection,” in
2014 IEEE 7th International Conference on Cloud Computing. IEEE,
2014, pp. 826–832.

[12] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “Smite: Precise
qos prediction on real-system smt processors to improve utilization in
warehouse scale computers,” in 47th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2014, pp.
406–418.

[13] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online
qos management for increased utilization in warehouse scale computers,”
in ACM SIGARCH Computer Architecture News, vol. 41, no. 3. ACM,
2013, pp. 607–618.

[14] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Improving resource efficiency at scale with heracles,” ACM Transac-
tions on Computer Systems (TOCS), vol. 34, no. 2, p. 6, 2016.

[15] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of cloudlets
on interactive mobile cloud applications,” in Enterprise Distributed
Object Computing Conference (EDOC), 2012 IEEE 16th International.
IEEE, 2012, pp. 123–132.

[16] W. Zhang, Y. Hu, Y. Zhang, and D. Raychaudhuri, “Segue: Quality of
service aware edge cloud service migration,” in 8th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2016.

[17] F. Caglar, S. Shekhar, A. Gokhale, S. Basu, T. Rafi, J. Kinnebrew,
and G. Biswas, “Cloud-hosted Simulation-as-a-Service for High School
STEM Education,” Elsevier Simulation Modelling Practice and Theory:
Special Issue on Cloud Simulation, vol. 58, no. 2, pp. 255–273,
Nov. 2015. [Online]. Available: http://dx.doi.org/10.1016/j.simpat.2015.
06.006

[18] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta: quan-
tifying effects of shared on-chip resource interference for consolidated
virtual machines,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing. ACM, 2011, p. 22.

[19] “Cache allocation technology improves real-time performance,”
http://www.intel.com/content/www/us/en/communications/
cache-allocation-technology-white-paper.html.

[20] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in 44th annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2011, pp. 248–259.

[21] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
characterization and architectural implications,” in 17th international
conference on Parallel architectures and compilation techniques. ACM,
2008, pp. 72–81.

[22] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

