
HAL Id: hal-01655085
https://hal.inria.fr/hal-01655085

Submitted on 4 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some highlights on Source-to-Source Adjoint AD
Laurent Hascoët

To cite this version:
Laurent Hascoët. Some highlights on Source-to-Source Adjoint AD. NIPS 2017 - workshop The future
of gradient-based machine learning software & techniques, Dec 2017, Long Beach, Californie, United
States. pp.1-5. �hal-01655085�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132779038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01655085
https://hal.archives-ouvertes.fr

Some highlights on Source-to-Source Adjoint AD

Laurent Hascoët
Université Côte d’Azur, INRIA, France

laurent.hascoet@inria.fr

Abstract

Algorithmic Differentiation (AD) provides the analytic derivatives of functions
given as programs. Adjoint AD, which computes gradients, is similar to Back
Propagation for Machine Learning. AD researchers study strategies to overcome
the difficulties of adjoint AD, to get closer to its theoretical efficiency. To promote
fruitful exchanges between Back Propagation and adjoint AD, we present three of
these strategies and give our view of their interest and current status.

1 Adjoint AD models

Algorithmic Differentiation (AD) [9, 14] is one way to obtain the analytical derivatives of a vector
function F : X ∈ IRn 7→ Y ∈ IRm, when this function is provided as an algorithm. There are
other ways, such as differentiating the mathematical equations that the algorithm implements, if they
exist. For AD the algorithm is the function: its run-time sequence of instructions is a composition of
elementary functions that define the function. By applying the chain rule of calculus, AD builds a
new sequence of instructions and eventually a new algorithm that computes the desired derivatives.

Using AD, one can obtain first-order derivatives as well as higher-order or Taylor developments.
Being based on the chain rule, these derivatives are analytic, meaning exact up to machine precision
and free of the approximation errors that would result from other approaches, such as divided
differences Ẏ ' (F (X + h ∗ Ẋ)− F (X))/h. Yet their algorithmic cost remains similar to divided
differences, and even much cheaper in the case of gradients.

Focusing on first-order derivatives from now on, associativity of matrix multiplication implies that
the chain rule can be applied in various orders. Among those are two extremes:

• Derivative matrices can be multiplied forward, as the original program goes. This is called
the tangent mode of AD. One provides one (or several) initial direction vector Ẋ in the
input space of the program, and the tangent differentiated code progressively computes
the derivatives of every intermediate variable with respect to the inputs, along direction Ẋ .
Upon completion, the tangent code has computed into Ẏ the directional first-order derivative
of the result Y with respect to X , at the given point X and along the given direction Ẋ .
Notice that the divided differences approach is by essence tightly bound to tangent AD,
as it also goes from one given Ẋ to Ẏ . Complexity-wise and like divided differences, the
run-time of the tangent code is only a small multiple (1 to 3) of the original code. Computing
all first-order derivatives of this vector function F : IRn → IRm requires n runs of the
tangent code along the n vectors of the Cartesian basis of the input space.

• Derivative matrices can also be multiplied backwards. This is called the adjoint (or reverse)
mode of AD. Given one (or several) weighting Y in the output space, the adjoint differ-
entiated code progressively computes the derivatives of the scalar (Y |Y) with respect to
every intermediate variable, in the reverse of the original program execution order. Upon
completion, the adjoint code has computed into X the gradient with respect to X of the func-
tion (Y |F (X)). Divided differences are unable to emulate adjoint mode. Complexity-wise,

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

the run-time of the adjoint code is also a small multiple (slightly higher than for tangent
code, 5 to 10 in practice) of the original code. Computing all first-order derivatives of
F : IRn → IRm requires m runs of the adjoint code along the m vectors of the Cartesian
basis of the output space. Still, computing derivatives in reverse order poses additional
technical problems that we will discuss later.

It turns out that many applications actually require a gradient (m = 1) or more generally m� n. In
that case adjoint mode is remarkably more efficient than tangent mode or than divided differences
approximation. Primarily in view of applications such as gradient-based optimization or parameter
estimation, AD researchers have spent considerable effort in building efficent adjoint codes. In
Machine Learning, gradients are crucial for training neural networks, and “Back Propagation”,
a close cousin of adjoint AD, has been recognized as a key technology. To investigate fruitful
exchanges between Back Propagation and adjoint AD, we’d like to give here a few highlights on
adjoint AD technology, and more precisely about AD tools that provide the adjoint mode through
Source-to-Source Transformation (ST-AD).

There are many possible architectures to implement the backward computation of adjoint AD [5]. We
call them adjoint AD models. An AD tool will implement (at least) one of these models. We like to

Figure 1: Adjoint AD forward and backward sweeps

illustrate the model implemented by our
tool Tapenade [11] and also by Ope-
nAD [16] by figure 1: since the deriva-
tive propagation goes backwards, the ad-
joint code must first run the original code
to memorize the control flow that will be
used backwards. We show this “forward sweep” as a thick arrow to the right. Only then can derivative
computation start, retrieving control flow information on the way. We show this “backward sweep”
as a thick arrow to the left. Think of an original instruction and its derivative counterpart as aligned
vertically. The derivative of an instruction may in general need the values that are used by the original
instruction. If these needed values are overwritten by the sequel of the forward sweep, we must devise
a mechanism, symbolized by the few red arrows, to make them available again during the backward
sweep. In our model, this is basically done by storage. Other models exist that use recomputation [7],
that we will not discuss here for the sake of brevity. In figure 1, arrow thickness also symbolizes
storage and retrieval of these intermediate values. This is the bottleneck of adjoint AD, as this storage
grows linearly with the program run time. In the next sections we will discuss techniques that cope
with this issue: static Data-Flow analysis can reduce significantly the amount of storage needed, but
still growing linearly with run time. Checkpointing is a memory/recomputation tradeoff that can
make the storage grow only logarithmically with run time. In special cases such as Fixed-Point loops,
specialized techniques can also reduce this storage drastically.

Before that, we close this section with a contrast with AD models based on Operator-Overloading
(OO-AD). In OO-AD tools such as AdolC [17], dco [13], CoDiPack [1]. . . , the forward sweep
additionally records every executed instruction into a “tape”, in a format resembling three-address
code. The backward sweep doesn’t exist as a source any more. Rather, the tape is interpreted
backwards by a special program that computes the derivatives. The advantage is that the tape format
is easier to generate than it is to build the source of a reverse sweep, so that OO-AD can address more
sophisticated application languages such as C++. It takes extra run-time to write this tape and the
tape itself cannot be exposed to the compiler for optimization, however OO-AD tools are making
impressive progress to cope with that. The main drawback is that the tape is much larger than the
data recorded by ST-AD. Consequently the techniques in the next sections can be of value also for
OO-AD.

In the small world of AD, ST-AD and OO-AD are too often seen as opposed. This is bound to change.
To begin with an abstract remark, ST-AD can be viewed as OO-AD followed by Partial Evaluation.
Partial Evaluation applied to the backward tape interpretor, with parts of the tape considered as known
because they come from fixed parts of the source (think of Basic Blocks), ideally results in a code
that takes as input only the control flow decisions and the intermediate values, i.e. a backward sweep
of ST-AD. More pragmatically, sophisticated language constructs do not lend themselves to a purely
static transformation, and ST-AD must store more and more dynamic information such as pointer
base addresses, or corresponding ends of point-to-point message communication. Finally, ST-AD
and OO-AD can collaborate: ST-AD can preprocess a source in view of OO-AD, and OO-AD can
call ST-AD generated code for critical, computation-intensive sections.

2

2 Data-Flow Analysis

ST-AD tools use several data-flow analyses to produce simplified derivative code, that are indeed
classical forward propagation and backward slicing customized to the structure of these codes. The
most important are, in order of appearance during AD:

1. Activity: detects the variables that deserve a derivative at a given point. An active variables
must be Varied, i.e. its derivative is not structurally zero. This part of the analysis is
therefore a forward propagation of zero derivatives. An active variable must at the same
time be Useful, i.e. its derivative is used in the sequel. This part of the analysis is therefore
a backward slicing of unused derivatives. As Varied analysis is a forward propagation, some
OO-AD tools perform it too, in that case as a run-time Data-Flow Analysis.

2. Diff-Liveness: detects primal variables that are not needed for derivative computation,
although they may be used for the original, primal computation. This analysis is therefore a
backward slicing of unused primals in the forward sweep.

3. TBR: detects the primal variables that are never used in any derivative (e.g. they only appear
in linear expressions [10]). Their value need not be stored by the forward sweep. This
analysis can be seen as a backward slicing of store/restore of primals, in both sweeps.

These analyses face the same issues as any Data-Flow Analysis. Being undecidable, they must often
use conservative over-approximations. Arrays are always considered atomic, which is another source
of over-approximation. In particular, the deprecated coding style known as the “big work array”
considerably reduces the benefit of these analyses. On the other hand, to reduce approximation,
ST-AD tools make these analyses interprocedural, context-sensitive, and flow-sensitive. The price to
pay is that there is no “separate AD” in the fashion of separate compilation.

In theory, one could spare these analyses, and resort instead to aggressive optimisation by the
compiler [15]. However these analyses exploit knowledge of the structure of the adjoint code, that the
compiler is not aware of. In particular these analyses exploit the correspondence between a forward,
primal instruction and its derivative in the backward sweep. These two locations can be arbitrarily far
apart in the adjoint code, making peep hole or window-based optimizations fail.

Measurements with Tapenade on a dozen large test cases show that these analyses can improve
significantly runtime and storage size of adjoint codes, in a proportion that varies largely. Run-time is
reduced by 20 to 50%, with one outlier at 70%. Storage is reduced by 40 to 70%, with outliers at
0% and 92%. These improvements remain proportional: they are of limited help against the linear
growth of storage of intermediate values. To answer that, one must resort to checkpointing.

3 Checkpointing

Checkpointing is a memory/recomputation tradeoff illustrated by figure 2: on a given section C of the
code, the forward sweep stops storing data for the reverse sweep. In other words, what is run then is the{{ {U C D

Figure 2: Checkpointing: trading duplicate execution for
storage space

original code, represented by a thin ar-
row to the right. The adjoint code can
then resume until the backward sweep
reaches the checkpointed section. Then
C is executed forward again, with storage
(thick arrow), and the backward sweep
can then resume. The peak storage space
used for intermediates is thus reduced, at
the cost of duplicated execution. Dupli-
cate execution also requires some data (a
“snapshot”) to be stored immediately before the checkpointed section (black bullet) and restored
before its duplicate execution (white bullet). For well-chosen C, the size of the snapshot is much
smaller than that of the intermediate values that would be stored without checkpointing. Data-Flow
analysis helps us keep the snapshot small: only what is needed for the forward-then-backward sweeps
C of the checkpointed section C must be stored. Also only what is modified by C followed by D
must be stored. All in all the snapshot need not be bigger than use(C) ∩ (out(C) ∪ out(D)). Notice

3

also that out(D) is smaller or equal to out(D) thanks to restoration of intermediate values. Similarly
use(C) ⊆ use(C). We pushed this analysis slightly further in [4].

Checkpoints reach their full power when they are nested. One can check that the pattern of
figure 2 can be repeated recursively inside each forward-then-backward sequence. Ideally an
optimal checkpointing nesting will allow both peak storage size and number of repeated exe-
cutions to grow like the logarithm of the primal program run time. Even if the true optimal
checkpointing scheme has been demonstrated only on one particular code type [8], see figure 3,

0 62606056

5857

5651

545352

5145

49484746

4538

4342414039

3830

363534333231

3016

2827262524222219

20

19

16

17

160

141312111096

7

63

4

3

0

1

0

Figure 3: Optimal checkpointing scheme for a time-
stepping loop of 64 steps: 9 snapshots, 3 repetitions

sub-optimal checkpointing schemes can
be found for most programs, that are still
logarithmic. Obvious constraints apply:
both ends of a checkpointed section must
be in the same procedure, and in the same
control-flow context. The section must
also be “reentrant”, i.e. can be executed
twice with no harm, which is not granted
if the section allocates memory without
deallocating, or sends a message without
receiving it [12]. . .

In practice, logarithmic growth is not ex-
actly what is desired. The available memory only allows for a fixed maximum number of snapshots q.
It can be shown that the optimal checkpointing scheme then requires a number of repeated executions
that grows like the q−th root of the primal program run time, which is still acceptable in general.

In Tapenade, the default checkpointing scheme is to checkpoint each procedure call, except those
non-reentrant. The user has freedom to deactivate checkpointing of desired calls, and to define
additional checkpointed sections in the code.

4 Fixed-Point Iterations

Most code transformations can in general take advantage of additional semantic knowledge on parts
of the code. This is true for adjoint AD in several situations such as parallel loops (gather-scatter),
linear solvers. . . . We take here the example of Fixed-Point iterations. A Fixed-Point loop takes as
input a state z and parameters x. At each iteration, z is recomputed as z = φ(z, x) until z converges
up to some tolerance. The resulting, final z depends only on the parameters x. The input z is called
the initial guess and only influences the iteration number till convergence. Adjoint AD must exploit

until z converges:
z = φ(z, x)

...
end

z = φ(z, x)

t = z
until z converges:

z = z ∂φ/∂z + t

...
end
x = x+ z ∂φ/∂x

Figure 4: The Two-Phases adjoint of a Fixed-Point loop

the fact that the initial itera-
tions operate on an arbitrary, al-
most meaningless z, so that cor-
responding intermediate values
should not be stored. In fact, in
the “Two-Phases” adjoint [3], see
figure 4, only the intermediate
values of the last, converged it-
eration need be stored. On the
other hand these intermediate val-
ues will be used several times dur-
ing the backward sweep. This re-
quires a special stack mechanism
for repeated access, which can be
arranged easily.

Let’s conclude with an open question. When the Fixed-Point iteration is itself included in an iterative
control, it is often profitable to reuse the previous Fixed-Point as the initial guess of the next Fixed-
Point iteration. This is called a warm start. Since the backward sweep of the adjoint code reproduces
the same structure of nested iterative constructs, it should be possible to benefit also from a warm-start
effect. However, strict application of the algorithm of figure 4 does not exhibit this effect. Only after
a manual modification, poorly justified and unproved, could we retrieve a warm-start effect in the
adjoint. This deserves further study.

4

References
[1] T. Albring, M. Sagebaum, and N.R. Gauger. Development of a consistent discrete adjoint solver

in an evolving aerodynamic design framework. AIAA 2015-3240, 2015.

[2] A. Carle and M. Fagan. ADIFOR 3.0 overview. Technical Report CAAM-TR-00-02, Rice
University, 2000.

[3] B. Christianson. Reverse accumulation and implicit functions. Optimization Methods and
Software, 9(4):307–322, 1998.

[4] B. Dauvergne and L. Hascoët. The Data-Flow equations of checkpointing in reverse Automatic
Differentiation. In International Conference on Computational Science, ICCS 2006, Reading,
UK, 2006.

[5] M. Fagan, L. Hascoët, and J. Utke. Data representation alternatives in semantically aug-
mented numerical models. In 6th IEEE International Workshop on Source Code Analysis and
Manipulation, SCAM 2006, Philadelphia, PA, USA, 2006.

[6] R. Giering. Tangent linear and Adjoint Model Compiler, Users manual, 1997.
http://www.autodiff.com/tamc.

[7] R. Giering and T. Kaminski. Generating recomputations in reverse mode AD. In G. Corliss,
A. Griewank, C. Faure, L. Hascoët, and U. Naumann, editors, Automatic Differentiation of
Algorithms: From Simulation to Optimization, chapter 33, pages 283–291. Springer Verlag,
Heidelberg, 2002.

[8] A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse
Automatic Differentiation. Optimization Methods and Software, 1:35–54, 1992.

[9] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Number 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia, PA,
2nd edition, 2008.

[10] L. Hascoët, U. Naumann, and V. Pascual. TBR analysis in reverse mode Automatic Differen-
tiation. Future Generation Computer Systems – Special Issue on Automatic Differentiation,
2004.

[11] L. Hascoët and V. Pascual. The Tapenade Automatic Differentiation tool: Principles, Model,
and Specification. ACM Transactions On Mathematical Software, 39(3), 2013.

[12] L. Hascoët and J. Utke. Programming language features, usage patterns, and the efficiency of
generated adjoint code. Optimization Methods and Software, 31:885 – 903, 2016.

[13] J. Lotz, K. Leppkes, and U. Naumann. dco/c++ - derivative code by overloading in C++.
Technical report, Aachener Informatik-Berichte (AIB), 2011.

[14] U. Naumann. The Art of Differentiating Computer Programs: An Introduction to Algorithmic
Differentiation. Number 24 in Software, Environments, and Tools. SIAM, Philadelphia, PA,
2012.

[15] J.M. Siskind and B.A. Pearlmutter. Efficient implementation of a higher-order language with
built-in ad. In AD2016, Oxford, UK, 2016.

[16] J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wunsch.
OpenAD/F: A modular, open-source tool for Automatic Differentiation of Fortran codes. ACM
Transactions on Mathematical Software, 34(4):18:1–18:36, 2008.

[17] A. Walther and A. Griewank. Getting started with ADOL-C. In Naumann and Schenk,
editor, Combinatorial Scientific Computing, chapter 7, pages 181–202. Chapman-Hall CRC
Computational Science, 2012.

5

	Adjoint AD models
	Data-Flow Analysis
	Checkpointing
	Fixed-Point Iterations

