
HAL Id: hal-01655459
https://hal.inria.fr/hal-01655459

Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Code Refinement: A Compiler Technique and
Extensions to Generate Self-Tuning Applications

Maxime Schmitt, Philippe Helluy, Cédric Bastoul

To cite this version:
Maxime Schmitt, Philippe Helluy, Cédric Bastoul. Adaptive Code Refinement: A Compiler Technique
and Extensions to Generate Self-Tuning Applications. HiPC 2017 - 24th International Conference on
High Performance Computing, Data, and Analytics, Dec 2017, Jaipur, India. pp.1-10. �hal-01655459�

https://hal.inria.fr/hal-01655459
https://hal.archives-ouvertes.fr

Adaptive Code Refinement: A Compiler Technique and

Extensions to Generate Self-Tuning Applications

Maxime Schmitt, Philippe Helluy and Cédric Bastoul

University of Strasbourg, Inria

Strasbourg, France

{max.schmitt,helluy,bastoul}@unistra.fr

Abstract—Compiler high-level automatic optimization and
parallelization techniques are well suited for some classes of
simulation or signal processing applications, however they usually
don’t take into account domain-specific knowledge nor the
possibility to change or to remove some computations to achieve
“good enough” results. Differently, production simulation and
signal processing codes have adaptive capabilities: they are
designed to compute precise results only where it matters if
the complete problem is not tractable or if computation time
must be short. In this paper, we present a new way to provide
adaptive capabilities to compute-intensive codes automatically.
It relies on domain-specific knowledge provided through special
pragmas by the programmer in the input code and on polyhedral
compilation techniques to continuously regenerate at runtime a
code that performs heavy computations only where it matters.
We present experimental results on several applications where
our strategy enables significant computation savings and speedup
while maintaining a good precision, with a minimal effort from
the programmer.

I. INTRODUCTION

A large range of compute-intensive applications are calcu-

lating approximate results. This is especially true for simula-

tion codes which are based on inherently imperfect models

that try to emulate as precisely as possible a real world

object or phenomenon. This is also true for signal processing

applications which are limited by the precision of, e.g., input

sensors or processing algorithms. Some other applications may

also compute approximate results for functional reasons, e.g.,

to meet a deadline such as in real-time video decoding, or

because the precise result is not tractable or valuable such

as late earthquake prediction, or simply because the user

needs a rough result to drive further precise investigations

such as in geophysics. For such applications, “ideal” naı̈ve

computation kernels, that would be convenient with an infinite

computation power, are often designed at first for algorithmic

tuning and debugging purposes. Then they are optimized to

a “production” version exploiting possible approximations to

scale to the actual problem size or to meet the deadline.

Translating an ideal code to a production code is complex,

time consuming, leads to less maintainable codes and must be

redone when a major change in the initial strategy arises. In

this paper, we present a new compiler technique that automates

the conversion from an ideal code to a version that exploits

approximations dynamically, by adjusting computations with

respect to the current state of the program. It aims at improving

both developer’s productivity and approximation’s quality.

State-of-the-art automatic optimization and parallelization

compiler techniques heavily rely on the polyhedral model

to manipulate computation-intensive kernels to aggressively

restructure them at the iteration level [1], [2], [3]. They are

usually based on exact, or over-approximated, data dependence

analysis to ensure that the optimization preserves the original

program semantics. Relaxed semantics models are possible,

e.g., to support commutativity to enable vectorization [4],

however all input code iterations are to be executed in the

optimized code. On the other hand, more aggressive techniques

to automatically compute approximations have been designed,

e.g., by ignoring some dependencies to enable paralleliza-

tion [5], by providing alternative implementations of some

code parts [6], or by skipping computations [7], [8]. In

our work, we investigate a new way, called Adaptive Code

Refinement (ACR), inspired by Adaptive Mesh Refinement [9],

a classical numerical analysis technique providing the ability

to dynamically tune a computational grid to achieve precise

computation only where it matters. We achieve this goal by

exploiting domain-specific information provided by the user, a

dynamic optimization strategy and state-of-the-art polyhedral

code generation techniques.

Our strategy is supported by high-level information pro-

vided by the user and a static-dynamic code generation

approach. First, we designed a set of pragmas to provide

the user with the means to express both static and dynamic

approximation-related information. It allows the user to focus

only on an “ideal” version of the computational kernels.

Those kernels can actually compile and run while ignoring

the pragmas, but they may only produce results in a reason-

able amount of time for small problems. The pragma set is

quickly described in Section II. Next, ACR uses polyhedral

code generation techniques to generate a code to compute

approximate results according to static information, with the

ability to regenerate itself according to the evolution of the

computed values and to pre-defined approximation strategies.

In a nutshell, ACR decomposes the computation space into a

grid and monitors specific values at the grid level. Depending

on their evolution, it will tune the computation precision onto

each grid cell to ensure complex computation is done only

where and when it matters. According to this monitoring, it

will (1) generate an optimized version of the code specific to

the current situation, (2) compile it dynamically and (3) switch

the execution to the new optimized code when it is ready.

Specific threads are devoted to monitoring and code generation

to minimize overhead. The continuous monitoring and code

generation process enables strong computation savings while

limiting accuracy loss. The process is depicted in Section III.

In Section IV we present a case study on an Eulerian

fluid simulation implementation which belongs to a class of

applications that are naturally well suited for our technique.

Experimental results on this case study and other benchmarks

from simulation and iterative algorithms are detailed in Sec-

tion V. The study shows empirical evidence that ACR allows

significant time and computation savings while maintaining

accuracy with minimal efforts from the programmer, even

compared to a hand-tuned version. Related work is presented

in section VI.

II. ACR PRAGMA SET

ACR offers a set of high-level pragmas that allow the

user to provide high-level, domain-specific approximation in-

formation. The ACR optimizing algorithm will exploit them

to automatically compute quality approximate results. ACR

pragmas are language extensions to be inserted before a

computational loop to compute approximations using either

alternative implementations to those provided inside the loop

or a reduced number of computations in some areas of

the computation space. The pragma set is divided into four

constructs:

1. The monitor construct specifies the data to monitor for

the dynamic optimization strategy and how the monitoring is

summarized for a complete cell. Its format is:

#pragma acr monitor(data[f(~ı)],summary[, filter])

where data is the data array to monitor (using the access

function f(~ı) of the iteration vector ~ı), summary specifies

how monitored values should be summarized into one value

at the cell level (using predefined policies, e.g., mean, max,

min, etc.) and filter is an optional function that may be used

to preprocess values being monitored (e.g., to classify them

into categories): the actual value used to drive the dynamic

optimization strategy will be filter(data).

2. The grid construct defines the granularity of the dy-

namic approximation strategy: the data space is decom-

posed into cells of a size equal to the specified grid value.

The monitoring as well as the approximation strategy will be

done at the cell-level granularity. Its format is:

#pragma acr grid(size)

where size is a constant number: if the computation space is

2-dimensional, the cell size will be size× size.

3. The strategy construct specifies in which conditions

which alternatives should be used for each cell. They may be

either static (specifying areas of the computation space where

to apply a given alternative) or dynamic (specifying which

alternative to use in a cell depending on the monitored value

or its evolution in that cell). Its format is:

#pragma acr strategy direct(value, alternative)

where value is a value that can be reported by a monitor for a

grid cell during execution and alternative is the alternative to

apply to a cell if the monitor reports that value for that cell.

An example of a static (compile time defined) strategy is:

#pragma acr strategy zone(area, alternative)

where area is a part of the computation space expressed using

set notations (e.g., {i | 0<=i<=3} to express the part of the

space where i is between 0 and 3) and alternative is the name

of an alternative defined with the alternative construct.

Many other strategies are possible, however describing the

complete set is out of the scope of this paper. All the

benchmarks presented in Section V use a dynamic strategy

with a set of direct links between dynamic monitored values

and alternative computations.

4. The alternative construct defines an alternative

computation to the one provided in the code. Its format is:

#pragma acr alternative name(type, effect)

where name is a user-defined strategy name and type specifies

the strategy type as follow:

1) parameter to keep the original code but with a new

parameter values to be defined in the effect field,

2) code to provide an alternative code block to be defined

in the effect field

3) zero compute to cut out the computation entirely

4) interface compute to only maintain computation at the

grid cell interface.

Fig. 1 shows an example on how this pragma set may

be used to specify approximate computation on a simplified

version of a loop of our case study, detailed in Section IV.

/ / Loop i t e r a t i n g o ve r f r a m e s o f t h e f l u i d s i m u l a t i o n
whi le (t r u e) {

. . .
/ / l i n s o l v e k e r n e l
#pragma a c r g r i d (1 0)
#pragma a c r m o n i t o r (d e n s i t y [i] [j] , max , f i l t e r)
#pragma a c r a l t e r n a t i v e low (p a r a m e t e r , MAX = 1)
#pragma a c r a l t e r n a t i v e medium (p a r a m e t e r , MAX = 4)
#pragma a c r a l t e r n a t i v e h i gh (p a r a m e t e r , MAX = 8)
#pragma a c r s t r a t e g y d i r e c t (1 , low)
#pragma a c r s t r a t e g y d i r e c t (2 , medium)
#pragma a c r s t r a t e g y d i r e c t (3 , h i gh)
f o r (k = 0 ; k < MAX; k ++)

f o r (i = 1 ; i <= N; i ++)
f o r (j = 1 ; j <= N; j ++)

l i n s o l v e c o m p u t a t i o n (k , i , j) ;
. . .

}

Fig. 1: Pseudo-code depicting the application of ACR to the

lin_solve kernel of the fluid simulation case study. Here,

the filter function returns in which range a given density

value is: near zero (1), medium (2) or high (3). The monitor

value for a cell corresponds to the maximum of all ranges

in the cell. This range is used to apply a different alternative

computation for each cell. In this example, the loop k will

iterate more or less depending on that range.

III. ADAPTIVE CODE REFINEMENT

Computational loops annotated with user-provided ACR

pragmas are candidates for approximate computation using

our approach. In such kernels, the rigid data-dependence

model used by compilers is explicitly relaxed and alternative

computation can be used to make the computation faster,

according to the user-defined strategy. This strategy may be

static, i.e., independent of the computed values in specific

areas of the computation space, or dynamic, i.e. dependent

on the monitored values in parts of the computation space

where no static strategy applies. ACR makes a strong use of

state-of-the-art polyhedral compilation techniques to generate

efficient codes computing approximations with good precision.

In particular we represent the computation space and its

cells as polyhedra in the same way polyhedral compilers

represent iteration domains [1], [2], [3], but we rely on a

less restrictive representation. The background details on the

polyhedral model, and our application domain are detailed

in Sections III-A. The ACR optimizing algorithm is based

on three main components. First it continuously evaluates a

“state grid” of the data space according to the user-defined

strategy as detailed in Section III-B. Second, it generates an

optimized code according to the state grid, as explained in

Section III-D. Finally, a runtime ensures the best version of the

code for both performance and accuracy is used. It is discussed

in Section III-E.

A. Background

The application domain of ACR corresponds to computa-

tional loop-based kernels such that the possible values of each

loop iterator can be modeled by a set of affine constraints on

that loop iterator, outer loop iterators and fixed parameters.

A simple and useful case corresponds to loops such that the

loop stride is a known constant and the loop bounds are linear

functions of the outer loop counters and fixed parameters.

The corresponding class of applications is a superset of the

polyhedral model [1] which fuels modern loop optimizers such

as in GCC [10] or LLVM [11]. The polyhedral model is an

algebraic representation of programs, complementary to, e.g.,

abstract syntax trees. It allows to achieve precise analyses

of the code and to apply aggressive loop transformations.

For a code to be raised to a polyhedral representation, all

loop bounds, branch conditions and subscript functions must

be affine expressions of outer loop iterators and constant

parameters. Despite these constraints, many computational

loops in scientific applications may be modeled through this

representation either directly [12] or relying on existing model

extensions [13], [14]. In our work, we consider only restric-

tions on the kernel loop bounds and on the subscript function

of the monitored data as provided in the monitor construct

(see Section II). Hence, we are able to deal with more general

loop bodies than the strict polyhedral model, where any kind

of data access is possible and data dependent conditions are

allowed as well.

The key polyhedral model property we are exploiting is the

ability to represent the iteration domain of a multidimensional

loop through a system of linear inequalities. This system

defines a polyhedron in a multidimensional space where each

integer point corresponds to an iteration of the loop. E.g., the

computation space of the lin_solve loop in Fig. 1 is:

Dlin solve(MAX,N) =

k

i

j

∣

∣

∣

∣

∣

∣

0 ≤ k < MAX

1 ≤ i ≤ N

1 ≤ j ≤ N

.

Representing iteration spaces in this way, it is quite easy to

specify subsets of that space (inserting additional constraints),

to compose them (applying polyhedral unions) or to decom-

pose them (splitting the polyhedra into unions of polyhedra)

them depending on our algorithm. To manipulate polyhedra,

we rely on isl [15] to achieve, e.g., polyhedral unions and

differences and on CLooG [16] to generate back a code from

a polyhedral representation.

Another key polyhedral model concept we are using is

scheduling. It specifies the relative ordering of the iterations

with linear constraints. Scheduling is a polyhedral relation

from the iteration space to a multidimensional time space.

In the final code, the iterations are ordered with respect

to the lexicographic ordering of their time dimension (the

first dimension is the most significant, the next one is less

significant and so on, like hours, minutes, seconds, etc.). For

instance, the ordering of the iterations of the lin_solve

loop in Fig. 1 is:

θlin solve(MAX,N) =

k

i

j

 →

t1
t2
t3

∣

∣

∣

∣

∣

∣

t1 = k

t2 = i

t3 = j

.

This scheduling corresponds to the identity with respect to the

initial code: the ith time dimension is equal to the ith loop

iterator, hence the iterations should be executed in the same

order as in the initial loop. In this work, we rely on polyhedral

scheduling to guarantee the remaining or simplified iterations

are executed in the same order with respect to the original code

to minimize result deviation. We use CLooG [16] to generate

a code that respects a scheduling specification.

B. Monitoring Data

ACR needs a way to gather information about the computa-

tion at runtime to identify different approximation regions, i.e.,

the parts of the computation space where the approximation

strategy should be different. This task should be simple enough

to avoid adding significant computation overhead with regard

to the time saved by the optimized code. To achieve that, a

uniform grid is embedded into the data space to represent dif-

ferent zones of the simulation, according to the grid pragma.

Every cell in the grid represents an (hyper-)square shaped

portion of the data space. The dimension of the grid may

affect the accuracy and the efficiency of the generated code in

contradictory ways, hence a good tradeoff is preferable.

The information stored in the grid, or its evolution during

execution, should allow to decide about the desired accuracy

in the corresponding portion of the computation space. The

grid is refreshed by a specific thread according to the user-

provided monitoring specification. Moreover, to avoid too

frequent changes in the grid (which would translate to code

generations that may be obsolete when they become available),

we did study different post-processing policies (evaluated on

our case study in Section V):

Raw (no post-processing): the grid reflects exactly the

approximation strategy which should be applied according to

ACR pragmas, with the risk that some regions oscillate rapidly

between various approximation strategies, not leaving enough

time to generate optimized codes between two changes.

Versioning: grid cells are updated when a higher precision

is needed whereas precision downgrade is ignored. When the

difference between the current grid and the raw grid is more

than a given threshold, we restart with the raw grid. Hence

some grid cells are set to a more precise alternative with

respect to ACR pragmas, with the risk of a less efficient

computation. However this policy reduces the need for a new

code compilation because we allow some cells to use higher

precision temporarily.

Stencil: each grid cell is evaluated not only according to the

monitored values in that cell, but also according to neighboring

cells. For instance if a grid cell is set to low precision but

is surrounded by high-precision cells, it is switched to high-

precision as well to anticipate a probable change. Here again,

some grid cells are tagged to be more precise with respect to

ACR pragmas, with the risk of a less efficient computation.

Once the grid is filled with the information gathered, and

post-processed if requested, the regions are constructed by

joining grid cells with similar approximation strategy.

Technically, each grid cell is represented as a polyhedron

and the region is constructed by aggregating cells with poly-

hedral unions thanks to isl. Fig. 3 shows a snapshot of a

fluid simulation and the corresponding grid state: each shade

of grey corresponds to a region where a similar approximation

strategy should be applied.

C. From Data Space to Computation Space

The monitoring builds a grid of the data space where each

grid cell is linked to an alternative. In order to generate

the optimized code, we need to know which part of the

computation space contributes to each grid cell.

When the access function of the monitored data is an affine

function of the outer loop iterators and constant parameters,

which is a restriction of the monitor construct, and the

iteration space can be represented through a system of linear

inequalities as described in Section III-A, then the relation

between the computation space and the data space is an affine

relation that maps each point of the iteration domain to the data

it is accessing. Finding the computation space contributing

to some data is a matter of inverting the access function, a

classical preimage polyhedral computation [17]. For instance,

in Fig. 3 the monitored data is density[i][j]. A grid cell

will specify bounds for i and j, and the preimage will report

all the original iterations for i and j within those bounds and

k within the original bounds.

D. Code Generation

Once a state grid has been computed to reflect the current

mapping of approximation strategies onto different regions of

the computation space, the next step is to generate on the fly an

optimized code to replace the current one (if the current state

grid actually differs from the previous one) to implement the

approximation. Several approaches with different properties

are possible. The hand-tuned approach is the naı̈ve, simple

way to build an adaptive code. It respects the original iteration

ordering but suffers from a high control overhead. We describe

it in Section III-D1. The dynamic approach, further explained

in section III-D2, is capable at runtime to generate a code that

respects the original iteration ordering but with a low control

overhead. Finally, the static approach generates an adaptive

code at compile time with low control overhead but without

respecting the original iteration ordering. This version may be

used only when no inter-cell data dependency exists to avoid

high deviation of the approximation.

1) Hand-tuned Code: A trivial way to build an adaptive

code from an original loop to approximate and the monitoring

information is to insert a guard inside the computational loop

to select the strategy corresponding to the current iteration.

Because the adaptive loop itself is easy enough to be written

manually, we refer it as the hand-tuned code. Using this

strategy, only the dynamic selection has to be generated at

runtime according to the monitoring. It simply computes to

which grid cell contributes a given iteration, then it executes

the corresponding approximation strategy. The hand-tuned

code respects the original iteration ordering since it scans

the original iteration domain in the initial order. However its

control overhead is quite high since a selection test has to be

performed at the innermost loop level.

2) Dynamic Code Generation: To generate a very efficient

code with no control overhead, we translate the problem to

a code generation in the polyhedral model task. Tools like

CLooG [16] are able to generate an efficient code from a

polyhedral representation made of two set of objects: iteration

domains which describe the set of statement instances to

execute, and scheduling relations which describe the relative

order of the statement instances.

We build the iteration domains by aggregating grid cells

with similar approximation strategies together using polyhe-

dral union operations. Hence, each region is modeled as a

union of convex polyhedra. Those regions are then mapped

back to the computation space by considering the iteration sub-

space that updates those regions as detailed in Section III-C.

We associate each subspace with the corresponding compu-

tation that reflects the approximation strategy, i.e., a block

of code or some new constraints such as parameter values

(as in our example in Fig. 1). Those subspaces form the

input iteration domains of the code generation problem. Then,

to ensure the approximated computations are processed in a

similar order than the original one to preserve accuracy, we

enforce the lexicographic ordering of the original computation

space dimensions as the input scheduling relations of the

code generation problem. Then CLooG is able to generate a

code with extremely optimized control overhead to, e.g., avoid

costly tests at the innermost level of the computational loop

to choose the right approximation strategy, which could not

be possible with a static approach.

Once CLooG has generated an approximation code, it is

compiled and loaded dynamically to the computation process.

The automatically generated code has no costly internal tests

to decide about the optimization strategy, and the remaining

computations are done with respect to the initial ordering to

preserve accuracy. It executes the same iterations on the hand-

tuned version and in the same order, but without any internal

test to drive the computation. The cost to get such a code is a

polyhedral code generation at runtime because it is necessary

to get the grid state to generate a code that matches the current

situation. In Sec. V, we show that the performance benefits of

the generated code is much greater than its generation cost.

3) Static Code Generation: Our last code generation ap-

proach generates a code at compile time with low control

overhead, but that does not respect the original iteration order-

ing. We rely again on polyhedral manipulation techniques to

decompose the original iteration domains to disjoint parts that

contribute to different grid cells. We also rely on polyhedral

code generation techniques to generate a code corresponding

to each grid cell. The loop bounds may depend to parame-

ters that will be updated dynamically to reflect the current

approximation strategy for that grid cell. At runtime, each

grid cell code will be executed independently, hence without

respecting the initial iteration order. This may severely impact

the approximation quality but may be adapted for codes with

simple data dependences where iterations are independent.

E. Runtime

The ACR runtime for the dynamic code generation is

decoupled into five threads to exploit multicore architectures

and to reduce the technique’s overhead:

(1) the computation thread is responsible for the main

computation itself, (2) the monitoring thread computes the

state grid, (3) the CLooG thread provides a code generation

service: it waits for polyhedral code generation requests and

generates the corresponding C codes with low control over-

head (several server threads may coexist to process several

requests concurently), (4) the compilation thread provides a

compilation service: it waits for C code compilation requests

and generates the corresponding object codes, finally (5) the

coordinator thread creates and manages all the other threads.

The runtime operates as summarized in Fig. 2. At the

beginning of the computation, no optimized code is available.

Hence, the computation thread executes the original code for

the first iteration and updates the internal data structures.

The monitoring thread constantly watches the monitored data

as specified by ACR pragmas. When necessary, it updates

the state grid and signals the coordinator thread. When the

coordinator thread is signaled about the availability of a new

state grid, it builds a code generation request to get an

optimized code corresponding to the current situation. Then

it sends it to the CLooG thread. When the CLooG thread

answers, the coordinator thread sends a compilation request to

the compilation thread, who answers with an object code. In

the meantime, the computation thread continues the iterations

with its current code. When the coordinator thread receives

a new compiled optimized code, it checks whether the code

generated still fits the current state of the grid or not. If

yes, it updates the code of the computation thread for the

next kernel call. If not, it ignores it, updates its request for

an optimized code and lets the computation thread continue

with the original code. The same happens if the state grid

evolves while an unsuitable optimized code is being used by

the compute thread: the computation code is switched back to

the original.

The runtime is optimized in several ways to ensure a con-

venient optimized code is available for the computation thread

as soon as possible. First, the coordinator thread requests

two different compiled codes for the same C input: a non-

optimized one which may be generated and used quickly (we

use TCC, the Tiny C Compiler) and a very optimized code that

may be available later and that will replace the non-optimized

one (we used GCC with aggressive optimization options for

this). Second, the coordinator thread is using a cache of

generated codes to immediately use an already generated code

for a known state grid. Finally, the coordinator accepts over-

approximations instead of switching back to the original code:

what is needed is that the optimized code performs the same

or more complex computations than the levels specified in the

current grid, for every grid slot. In that way we can say that

the computations done are “safe” and they do at least what

was specified by the domain-specific information.

CLooG threadCLooG thread

Computation threadMonitoring thread

Coordinator thread

CLooG thread Compilation thread

Data structures

Updates

1: Monitor

2: Provide grid

 state

3: Request

 code generation

6: Provide object code4: Provide C code

5: Request

 compilation

7: Provide new

 function

CLooG thread(s) Compilation thread(s)

Fig. 2: ACR runtime thread interaction diagram.

When using the hand-tuned or the static approaches, the

runtime is simply the same without CLooG and compilation

threads since there is no need for runtime code generation.

Instead, the monitoring updates a selection function or a

parameter array that drives the loop execution.

IV. CASE STUDY: FLUID SIMULATION

To illustrate how Adaptive Code Refinement can be used,

we detail how it may be applied to a typical representent of its

application domain, a fluid simulation application [18]. This

program, called Eulerian fluid simulation, has the character-

istic of being a grid based simulation. A snapshot of such

Fig. 3: Snapshot of the fluid simulation on the left, the corresponding grid state on the center and the volume of total

computations (denoted by k) on the right.

simulation is shown in Fig. 3(left). Particle-based simulations

and grid-based simulations are the most effective ways of sim-

ulating the behavior of fluids. Grid-based methods respond to

the so-called Eulerian approach, where fluids are represented

by fixed points in the space with information about the fluid in

time and they are updated at every time step of the simulation.

Grid based techniques often suffer from mass loss and are

slower than particle based methods, but they usually have

higher accuracy and better tracking of smooth fluid surfaces.

They form a very suitable family of codes to apply ACR,

because on one hand the simulation is an approximation of

a physical phenomenon and on the other hand the processing

is done on a highly regular computation space where each

element requires complex computations.

A. Exploiting Domain-Specific Knowledge

In fluid simulation, the state of a fluid is typically rep-

resented by a velocity vector and a density value for every

point in the space. The density in a given point represents the

amount of fluid concentrated and the velocity vector represents

the direction and intensity of the flow in that point. The

evolution of the simulation is described by the Navier Stokes

equations [19]. The simulation steps can be decomposed in

Advection, Diffusion and External Forces influence. Advection

is the phenomena that describes how velocity moves the fluid

and other objects in the space along with the flow. Diffusion

describes the resistance of a fluid to flow because of its

viscosity. The influence of External Forces describe local or

body forces applied to a specific region or all the fluid like a

fan blowing air, gravity, etc. Density is carrying the pertinent

information for efficient monitoring: precise computations

should be done in regions where this value is high and

conversely. This domain-specific knowledge is encoded for

ACR through the monitor pragma to maximize the accuracy

of the approximation.

B. Applying ACR

To apply ACR to the simulation, the grid state is filled

according to the density values. The value of a grid cell is the

level of the maximum density point in that cell. The specific

target of the optimization by approximation is the portion of

the simulation code dedicated to the diffusion phase. Diffusion

computations corresponds to a significant part of the total

computations of the simulation.

The diffusion phase is computed with a numerical iterative

method to obtain a solution. The numerical algorithm gets

better solutions the more iterations it does. The original code

is programmed to do a fixed amount of iterations in the

whole space. To do diffusion, the iterations of the numerical

method are done one by one in the complete simulation space.

That is because the particles need to know about the solution

of its neighbors to compute the next approximation of its

own solution. We have used the ACR approach to make the

numerical algorithm perform less iterations while maintaining

dependencies as much as possible on areas with little amount

of fluid or no fluid at all. We have chosen to have 3 levels of

complexity for the regions: the optimized algorithm will do the

first basic iterations over the entire iteration step, then the other

iterations over a more restricted region where there is more

than a negligible amount of fluid, and will end doing more

iterations only where there is a considerable amount of fluid

that needs extra iterations to reach a good enough solution.

A simplified excerpt of the corresponding code with the ACR

pragmas is shown in Fig. 1.

V. EXPERIMENTAL RESULTS

The experimental setup is a quad-core Intel Core 2 Quad

Q6600 system with 4 GB of memory. All codes are compiled

using GCC 6.2.1 with -O3 -march=native option (which

builds the best performing original and hand-tuned versions).

In addition to GCC, the compilation thread also uses the Tiny

C Compiler 0.9.26 to minimize dynamic compilation time.

A. Eulerian Fluid Simulation

ACR [20] was evaluated against a single threaded imple-

mentation of a 2D and 3D Eulerian fluid simulation described

by Stam [18] of 400 × 400 particles. We compared the

approximate computation code relying on ACR with various

grid updating policies (detailed in Section III-B) against the

original code as well as a hand-tuned version that mimics

the ACR strategy without dynamically generated code. We

observe performance, computation savings and accuracy over

 0

 20

 40

 60

 80

 100

 120

100 200 500 1000 2000

K
e

rn
e

l
ti
m

e
 (

s
)

Simulation steps

Original
Hand tuned

Stencil
Raw

Versioning

5
,8

5 1
2

,4
3

3
5

,0
7

5
9

,6
0

1
0

1
,5

6

2
,9

1 6
,1

1

1
7

,7
7

3
8

,1
5

8
0

,7
9

1
,8

0

4
,2

0

1
3

,0
8

2
9

,1
8

6
1

,9
6

0
,9

6

2
,3

3 8
,3

9

2
0

,9
2

4
8

,2
8

0
,9

6

2
,3

0 8
,4

6

2
1

,1
0

4
8

,7
5

 0

 50

 100

 150

 200

 250

 300

100 200 500 1000 2000

A
p

p
lic

a
ti
o

n
 t

im
e

 (
s
)

Simulation steps

Original
Hand tuned

Stencil
Raw

Versioning

1
6

,7
4 3
1

,9
0

8
0

,8
6

1
4

6
,3

2

2
6

7
,5

0

1
4

,2
3

2
5

.4
6

6
3

,4
3

1
2

7
,3

3

2
5

7
,1

3

1
2

,5
8

2
3

,4
5

5
7

,8
9

1
1

5
,3

8

2
2

9
,0

8

1
1

,7
4

2
1

,4
5

5
3

,2
3

1
0

7
,9

6

2
1

9
,2

8

1
1

,7
3

2
1

,3
4

5
2

,9
7

1
0

7
,5

5

2
1

8
,7

6

(a) Execution time for the ACR optimized kernel alone (b) Execution time for the whole application

Fig. 4: Execution time for the optimized kernel and the complete fluid simulation application. Original is the original

application; Hand tuned is a manually written version that mimics ACR without dynamically generated code; Stencil,

Raw and Versioning are ACR versions with corresponding state grid post-processing policies (detailed in Section III-B).

a range of simulation iterations. During simulation, fluid

is injected regularly in the iteration space together with a

directional force to make it acquire velocity. The test cases

have different types of regions with similar appropriate ap-

proximation policy and they evolve over time.

Overall execution time is reported in Fig. 4 at different steps

of the simulation, for the original code, we compared a hand-

tuned version with a dynamic code generation version with

three different state grid post-processing strategies. The stati-

cally generated version is not appropriate with this benchmark

because the data dependencies requires to use the original

iteration ordering to avoid high deviation. Performance results

after 1000 simulation steps show a speedup of 2.85 for the

optimized kernel for ACR with raw state grid update strategy

(resp. 2.82 for versioning and 2.04 for stencil) with

respect to the original code and 1.82 (resp. 1.81 and 1.31) with

respect to the manually optimized code. The versioning

policy achieves equivalent performance and better precision

compared to the raw policy: it requires 3% more computations

but saves 43% code compilations on average.

It is worth noticing that the performance improvement

is only due to the approximation strategy: the generated

computation thread is sequential and no other polyhedral

optimization has been applied. ACR is complementary to

existing optimization techniques and will be composed with

them in future work. The present paper only evaluates the

benefits of “pure” ACR.

Computation savings of the diffusion part for a complete

simulation step (where it is used 3 times) with respect to the

original code are shown in Tab. I. Our metric for computa-

tion savings is the difference of the number of iterations of

the original code (corresponding to the number of calls to

the lin_solve_computation() in the pseudo-code in

Fig. 1, i.e., 3×MAX ×N ×N , with MAX set to the same

value as the high precision ACR alternative) and the number of

iterations actually executed by the computation thread. Results

show very significant computation savings compared to the

number of computations of the original diffusion, ranging from

30 to 74%.

TABLE I: Saved computations with ACR - raw policy

Iterations 100 200 500 1000 2000

% saved comput. 73.45 69.05 59.72 48.73 30.61

Accuracy results are shown in Tab. II. We measured the

difference in density for every particle in fixed snapshots of

both simulations, with the original application as reference.

We measured both the mean and maximum difference of every

particle. Values of the density fluid vary between 0 and 20. We

observe that even after 1000 iterations and removing 77% of

the computations, the mean difference for all particles is only a

fraction of the maximum density value. The stencil policy

shows the best precision property at the price of efficiency as

shown in Fig. 4. Moreover, the maximum measured deviation

is below 0.05 while in the application, two particles may be

displayed using different colors only if they do not belong to

the same plateau, each separated by 0.08 and starting at 0.

Hence, those results show ACR has a limited impact on the

simulation despite its aggressive computation savings.

B. Evaluation on Multiple Applications

Conway’s Game of Life [21], belongs to the family of

cellular automata. Those automata consist of a regular grid of

cells, each having a finite number of states. The automaton

TABLE II: Precision results for ACR after 1000 iterations

(density values range from 0 to 20)

Grid update policy Raw Versioning Stencil

Average deviation 0.0017 0.0011 0.0003

Maximum deviation 0.0484 0.0464 0.0247

evolves using a set of rules in order to determine the state in

which each cell will be at the next generation. Game of Life

particular automata consists of a 2D space of cells being either

alive or dead. This automaton rules follows: if we consider as

neighbours the eight cells surrounding any individual cell, a

previously dead cell becomes alive if there were exactly three

neighbours alive at the previous generation. If the cell was

already alive, it will survive to the next generation if it has

exactly two or three alive neighbours. Otherwise the cell dies

or stays dead.

The particularity of Conway’s Game of Life is that

it does not tolerate any approximation in the computation of

the living cells however we can still optimize with smart com-

putation savings and by getting rid of useless data accesses.

Big cellular automatons contain usually a lot of “dead zones”

where none of the cells are alive. This emphases a perfect

way to save computation but we can even avoid accessing

those regions. It is indeed impossible for those dead cells

to become alive in a time that is lower than the distance

separating them from a breathing cell. We use this property

to only visit cells that can be potentially lit in the near future.

We use the dynamic version with stencil in order to activate

the neighbouring cells in advance. So only part of the domain

filled with alive cells and their neighbouring are active at a

given time. We are using the alternative zero compute in the

domain where these dead zones are present. We take advantage

of the stencil policy as it enables computation on dead regions

having active neighbour cells and anticipates their migration.

Experimental results shown in Tab. III is the result of

running the algorithm on an existing automaton simulating

a digital clock. Notice the increase in speedup over time. This

is due to the application behaviour. It does indeed require less

and less computation as the automaton evolves to form the first

minute after midday (i.e. passing from hour 0:00 to 0:01). As

this automaton is evolving, also does the grid representing its

computations.

TABLE III: Game of Life application simulating a clock

Iterations Original (s) ACR (s) Speedup Deviation

20 51.1 36.5 1.4 None
40 94.49 57.1 1.7 None
80 181.3 99.0 1.8 None

160 355.0 181.7 1.9 None

K-Means Clustering [22] partitions multiple observations

inside clusters. In order to group observations together we

need a function f(obs1, obs2) that computes the “distance”

between the two observations. The higher this value is the

less likely they are to be in the same cluster. The main

goal is to pack observations together and to minimize each

cluster sum of distance altogether. The problem is NP-hard but

there exists a heuristic named “k-means algorithm” having two

repeating steps. Supposing each cluster has a center and can

be parameter of the previous distance function. The first step

simply assigns all observations to the nearest cluster center

and the second recomputes the cluster center as the mean of

each observation position. The two steps repeat until a local

minimum is reached.

For K-Means Clustering we took advantage of the

following properties of the algorithm: at the beginning, the

algorithm solution is very volatile and objects will change

cluster really often, although after a small number of iterations

some clusters seems to have already converged to a local

minimum [23]. Thus only a small part of the objects will

continue to change from one cluster to another, in particularly

the one which are on the edge between two cluster zones.

The input for this benchmark is essentially pictures. Pixels

have the particularity that if they do switch from one cluster

to another, chances are high that pixels nearby will do the

same. For a maximum accuracy of the algorithm we used the

stencil strategy in order to activate the clustering on neighbours

pixels. We decided to skip the computation if the objects

inside the cells have settled for more than a certain number of

algorithm iterations. We implemented a version of the kernel

that only reassigns pixels to their previous cluster and used the

alternative function to specify how many times pixels have to

stay inside the same cluster to switch to the new function.

The algorithm is fed with three different pictures, the first

picture having 2560 × 1600 pixels representing a bird on a

branch. The second is a picture taken by a telescope from

a Nebula (3000 × 2785) and the last is a picture of a wolf

(4288 × 2848). Those images are serialized and passed as a

single entity to the algorithm. Tab. IV shows the result of

this benchmark. We can notice that with ACR the number

of iterations of the algorithm is reduced as we would expect

because we locked some pixels in place.

TABLE IV: K-Means clustering on three images

Picture Original ACR Speedup Deviation

Bird 4.18s 3.52s 1.18 0.0073
Nebula 16.08s 13.05s 1.23 0.0001
Wolf 26.93s 17.53s 1.54 0.0429

Finite-difference Time Domain (FDTD) Electro-Magnetic

Simulation [24] is intended to solve the Maxwell equations

and simulate the propagation of electric and the induced mag-

netic field in space. FDTD is a grid-based model using finite-

difference expressions to approximate the equation derivatives.

The resulting expressions are solved in two steps, first by

solving the electric field component and the next instant in

time the magnetic field component.

To optimize this application we choose to skip the electric

field computation where the magnetic field is relatively low.

We can do this because a low magnetic field does not induce

any current and thus leaves the electric field intact. To achieve

this, the ACR monitoring pragma will be pointed to the

magnetic field array and the alternative “zero compute” be

used whenever the field is low enough. The algorithm is based

on neighbour propagation of values, this is why we also used

the stencil version for this benchmark.

The simulation runs in a 2D space with an obstacle in

the middle. That will reflect the wave as it travels from the

left to the right and back, creating more waves as it spreads.

The results are shown Tab. V. This application requires high

accuracy or the divergence elevates really quickly.

TABLE V: FDTD simulation of an electro magnetic wave

bumping on an obstacle.

Iterations Application time (s) Speedup Deviation
Orig ACR

500 13.94 12.47 1.11 0.0000
1500 18.82 14.72 1.27 0.0000
3000 27.15 19.31 1.41 0.0017
5000 38.23 28.18 1.35 0.0099

C. Runtime overhead estimation

In order to evaluate the overhead of the ACR runtime we

pre-generated, for each call to the target kernel, its optimized

version with respect to precision. The simulation was then run

with the exact same setup having the ACR runtime replaced

with the pre-generated versions. This represents the best case

scenario where we already have the perfect version ready when

the kernel is called.

In Tab. VI we present the results obtained for FDTD. It

is the simulation requiring the most kernel versions hence

where the overhead is the highest. The results show a very

small overhead compared to the optimal version. The ACR 1C

column gives the time when both the ACR runtime and the

computation thread are bound to the same CPU core. Those

results support our multithreaded runtime approach that allows

the computation thread to continue with the precise version

while the code generation is done in the background.

TABLE VI: FDTD application time with the ACR runtime

enabled on 1 and 3 CPU cores compared to the precomputed

versions

Iterations Application time(s) Overhead
ACR 1C ACR 3C Opti. w.r.t. ACR 3C

500 15.47 12.47 12.20 2.2%
1500 23.22 14.72 14.13 4.2%
3000 36.69 19.31 18.42 4.8%
5000 57.09 28.18 26.88 4.8%

D. Comparison Against Loop Perforation

We compared our technique with a simplified version of

loop perforation [7]. Our simplifications removes the profiling

step of loop perforation which is highly data dependent, for a

better comparison to ACR which adapts to any input data. We

tuned loop perforation to obtain the same speedup as ACR and

compared the deviation of both approaches. Tab. VII shows

ACR has a significantly lower deviation due its dynamic nature

which selects the most pertinent iterations to approximate.

TABLE VII: Percentage of iterations saved and the data deviation com-
pared to the original at constant iteration. The deviation is computed by taking
the difference between two values belonging to the same spot of the simulation
and expressing the ratio from the initial value and this difference.

Bench Saved iterations Deviation
(Iterations) ACR Perfor ACR Perfor

2D Fluid (1000) 48.7 50.0 0.0011 1.024

3D Fluid (600) 52.2 50.0 0.0051 0.9847

FDTD (3000) 51.9 50.0 0.0000 6.1979

VI. RELATED WORK

Compiler Techniques The idea of relaxing data depen-

dences and skipping computation to trade accuracy for per-

formance has been studied in the past in various ways. Loop

perforation [25], [7] is a static technique which removes

complete loop iterations selected with respect to a training

phase. Contrary to loop perforation, ACR is a dynamic ap-

proach which may remove only selected parts of a given

loop execution and is designed to produce more accurate

results with end-user guidance. Our work shares the concept of

high-level information including alternative implementations

provided through pragmas with Green [6], however Green is

based on an offline training to select the final code while

ACR is continuously recomputing the best code. EnerJ [26]

uses the type system to specify approximate variables to save

energy. SAGE [8] is a GPU-oriented technique skipping or

simplifying processing with respect to performance impact

while we primarily focus on accuracy. HELIX-UP [5] ignores

some dependences to enable code parallelization, which is

complementary to our approach. Power savings is also studied

by Misailovic et al. [27] who provide a language interface

to rely on hardware providing approximate instruction and

memory storage that draws less power but may produce a

wrong result at a given rate.

Numerical Analysis Techniques ACR has been inspired

by numerical analysis techniques, in particular Adaptive Mesh

Refinement [9] which can maintain the consistency of a

solution for a bounded error in the minimum possible amount

of time in simulation problems. [28] extends the use of a

multiscale analysis for grid adaptation to incorporate locally

varying time stepping. Space filling curves are also used to

transform multidimensional data for better parallelization of

multiscale adaptation methods [29]. The differences between

our approach and these works is the manipulation of the

simulation space since they modify the shape of the simu-

lation space at runtime. Its underlying iteration structure is a

hierarchical grid which incorporates and looses points during

the simulation. On the opposite, the ACR approach keeps the

original iteration space intact while the generated code that

achieves the computation may change dynamically.

VII. CONCLUSION

In this paper, we introduced Adaptive Code Refinement

(ACR), a new compiler technique to improve performance at

the price of accuracy. Starting from a reference program and

high-level approximation information provided by the user, it

generates automatically a program that continuously adapts the

optimization strategy to the most appropriate one in regions of

the computation space. ACR provides a unique set of features

to offer performance, accuracy and flexibility. Performance

is provided by building on state-of-the-art polyhedral code

generation techniques to generate an optimized code and

by exploiting multicore architecture with several specialized

threads to minimize the runtime overhead. Accuracy is pre-

served as much as possible by relying on a dynamic strategy

that achieves precise computation only when and where it

matters and by preserving the original computation ordering.

Finally, flexibility is achieved through a simple yet powerful

set of pragmas to drive the approximation strategy, allowing

the user to focus on a simple ideal computation kernel while

the approximation is managed by the ACR system.

To evaluate ACR, we built its compiler extensions and run-

time, and we applied it on several representative benchmarks

from simulation and iterative algorithms. The experimental

results demonstrate significant performance improvement with

low accuracy deviation, with a minimal effort from the pro-

grammer. We showed that ACR outperforms a manual opti-

mization that would mimic the same dynamic approximation

but which cannot have an optimized control flow that can only

be achieved by our runtime code generation. It is also more

precise than simplified existing loop perforation technique

since ACR is able to select relevant approximation at runtime.

Finally, ACR is complementary to other optimizations such

as polyhedral loop parallelization: our results only report im-

provements due to approximations with low control overhead.

ACR is a first step towards generic compiler-assisted gener-

ation of self-tuning applications. Many studies and extensions

are possible to improve it, including ways to increase the flex-

ibility of the grid, to make the technique even more automatic

or to reduce the mechanism overhead. However it is clearly a

very promising new way to explore for any application where

approximation is either desirable or possible.

REFERENCES

[1] P. Feautrier, “Some efficient solutions to the affine scheduling problem:
one dimensional time,” Intl. Journal of Parallel Programming, vol. 21,
no. 5, pp. 313–348, october 1992.

[2] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
PLDI’08 ACM, Tucson, USA, Jun. 2008.

[3] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos, “Iterative opti-
mization in the polyhedral model: Part II, multidimensional time,” in
PLDI’08. Tucson, Arizona: ACM Press, June 2008, pp. 90–100.

[4] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and
P. Sadayappan, “When polyhedral transformations meet SIMD code
generation,” in PLDI’13, Seattle, USA, Jun. 2013, pp. 127–138.

[5] S. Campanoni, G. Holloway, G.-Y. Wei, and D. M. Brooks, “HELIX-UP:
Relaxing program semantics to unleash parallelization,” in IEEE/ACM

CGO, San Francisco, USA, Feb. 2015, pp. 235–245.

[6] W. Baek and T. M. Chilimbi, “Green: A framework for support-
ing energy-conscious programming using controlled approximation,” in
PLDI’10, Toronto, Canada, Jun. 2010, pp. 198–209.

[7] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in European Conference on Foundations of Software Engineering,
Szeged, Hungary, Sep. 2011, pp. 124–134.

[8] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke,
“Sage: Self-tuning approximation for graphics engines,” in MICRO’13

IEEE/ACM Intl. Symp. on Microarchitecture, Davis, California, Dec.
2013, pp. 13–24.

[9] M. J. Berger and P. Colella, “Local adaptive mesh refinement for shock
hydrodynamics,” J. Comput. Phys., vol. 82, no. 1, pp. 64–84, May 1989.

[10] K. Trifunovic, A. Cohen, D. Edelsohn, F. Li, T. Grosser, H. Jagasia,
R. Ladelsky, S. Pop, J. Sjödin, and R. Upadrasta, “Graphite two years
after: First lessons learned from real-world polyhedral compilation,” in
GCC Research Opportunities Workshop (GROW’10), Pisa, Italy, 2010.

[11] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Grösslinger, and L.-
N. Pouchet, “Polly-polyhedral optimization in llvm,” in International

Workshop on Polyhedral Compilation Techniques, France, 2011.
[12] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,” URL:

http://www. cs. ucla. edu/pouchet/software/polybench, 2012.
[13] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul,

“The polyhedral model is more widely applicable than you think,” in
ETAPS CC’10, ser. LNCS, Paphos, Cyprus, Mar. 2010, pp. 283–303.

[14] A. Venkat, M. Shantharam, M. Hall, and M. Mills Strout, “Non-affine
extensions to polyhedral code generation,” in IEEE/ACM CGO’14,
Orlando, FL, USA, February 2014, pp. 185–194.

[15] S. Verdoolaege, “isl: An integer set library for the polyhedral model,”
in Mathematical Software - ICMS 2010, Third International Congress

on Mathematical Software, Kobe, Japan, Sep. 2010, pp. 299–302.
[16] C. Bastoul, “Code generation in the polyhedral model is easier than

you think,” in PACT’13 IEEE International Conference on Parallel

Architecture and Compilation Techniques, Juan-les-Pins, France, Sep.
2004, pp. 7–16.

[17] D. K. Wilde, “A library for doing polyhedral operations,” Parallel

Algorithms and Application, vol. 15, no. 3-4, pp. 137–166, 2000.
[18] J. Stam, “Real-time fluid dynamics for games,” in Proceedings of the

Game Developer Conference, 2003, p. 25.
[19] A. J. Chorin, “Numerical solution of the Navier-Stokes equations,”

Mathematics of computation, vol. 22, no. 104, pp. 745–762, 1968.
[20] M. Schmitt, “ACR compiler and runtime.” [Online]. Available:

http://gauvain.u-strasbg.fr/%7Eschmitt/acr
[21] M. Gardner, “Mathematical games: The fantastic combinations of John

Conway’s new solitaire game ”life”,” Scientific American, vol. 223,
no. 4, pp. 120–123, 1970.

[22] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series

C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.
[23] J. Meng, S. Chakradhar, and A. Raghunathan, “Best-effort parallel

execution framework for recognition and mining applications,” in
IPDPS’09. IEEE, 2009, pp. 1–12.

[24] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopou-
los, and S. G. Johnson, “Meep: A flexible free-software package for
electromagnetic simulations by the FDTD method,” Computer Physics

Communications, vol. 181, no. 3, pp. 687–702, 2010.
[25] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Ri-

nard, “Using code perforation to improve performance, reduce energy
consumption, and respond to failures,” MIT, Tech. Rep. MIT-CSAIL-
TR-2009-042, Sep. 2009.

[26] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general low-
power computation,” in PLDI, San Jose, California, USA, Jun. 2011,
pp. 164–174.

[27] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel:
Reliability-and accuracy-aware optimization of approximate computa-
tional kernels,” in ACM SIGPLAN Notices, vol. 49, no. 10, 2014, pp.
309–328.

[28] S. Müller and Y. Stiriba, “Fully adaptive multiscale schemes for con-
servation laws employing locally varying time stepping,” J. of Scientific

Computing, vol. 30, no. 3, 2007.
[29] K. Brix, M. Silvia Sorana, S. Müller, and S. Gero, “Parallelisation

of multiscale-based grid adaptation using space-filling curves,” ESAIM,
vol. 29, pp. 108–129, Dec. 2009.

