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Abstract
Many computationally-intensive algorithms benefit from the wide
parallelism offered by Graphical Processing Units (GPUs). How-
ever, the search for a close-to-optimal implementation remains ex-
tremely tedious due to the specialization and complexity of GPU
architectures.

We present a novel approach to automatically discover the best
performing code from a given set of possible implementations.
It involves a branch and bound algorithm with two distinctive
features: (1) an analytic performance model of a lower bound on
the execution time, and (2) the ability to estimate such bounds on a
partially-specified implementation.

The unique features of this performance model allow to aggres-
sively prune the optimization space without eliminating the best
performing implementation. While the space considered in this pa-
per focuses on GPUs, the approach is generic enough to be applied
to other architectures.

We implemented our algorithm in a tool called Telamon and
demonstrate its effectiveness on a huge, architecture-specific and
input-sensitive optimization space. The information provided by
the performance model also helps to identify ways to enrich the
search space to consider better candidates, or to highlight architec-
tural bottlenecks.

Categories and Subject Descriptors D.3.4 [Processsors]: Opti-
mization, Compilers

Keywords GPU, search space exploration, performance model,
branch and bound

1. Introduction
Graphic Processing Units (GPUs) offer massive parallelism whose
raw processing power is an order of magnitude above contempo-
rary multicores. Important domains like linear algebra can greatly
benefit from such parallelism. For example, recent achievements in
deep learning have largely relied on GPU acceleration (cuDNN).

However, choosing between the different optimizations and par-
allelization schemes available for a given algorithm is a difficult
question. It requires a deep knowledge of the architecture and many
trials and errors for the programmer to explore implementation al-
ternatives at each level of parallelism, from thread-local optimiza-
tions to the mapping of computations across the entire processor.

Additionally, programmers have to carefully and explicitly spec-
ify memory transfers between the different memory spaces of var-
ious sizes and properties: global memory, different levels of cache,
and scratchpad memories. Moreover, each targeted architecture and
each problem may impose different implementation decisions to
be taken. Consequently, programmers have to rely on proprietary
libraries provided by hardware vendors to achieve competitive per-
formance.

The problem is not limited to GPUs. On any complex archi-
tecture, the optimization space grows exponentially with the num-
ber of possible decisions: exhaustive enumeration is not an option.
Multiple domain-specific approaches have been proposed, based on
auto-tuning, such as SPIRAL (Puschel et al. 2005) for DSP codes
on multicores, or MAGMA (Tomov et al. 2010) for linear algebra
on GPUs. Auto-tuning drives the search through statistical tech-
niques. However, the selected implementation may still be signifi-
cantly less than optimal. This is one of the reasons vendor libraries
outperform auto-tuning solutions. As a result, the production and
the specialization to a given target or problem-size of highly tuned
libraries remain a critical challenge and a costly effort for most
hardware vendors.

This paper introduces a novel approach to efficiently discover
the fastest code in a set of possible implementations. The essen-
tial novelty is to guarantee that we will find the best-performing
implementation while only evaluating a small fraction of the given
search space. We achieve this using a hybrid analytical and em-
pirical strategy, relying on a branch and bound pruning algorithm
that combines an analytic performance model with actual runs of
the application. A critical idea is that the performance model may
provide valuable information even when many implementation de-
cisions are left open. This is made possible through a performance
model that provides a lower bound on the execution time of the
codes that may be generated from a partially specified implementa-
tion. Formally, if X is a region of the search space, x ∈ X are the
codes that can be generated by instantiating its remaining open de-
cisions, B(X) is the lower bound provided by the model and T (x)
is the execution time for x ∈ X on the GPU, then:

∀x ∈ X : B(X) ≤ T (x) (1)

This bound allows to prune the search space without ever missing
the best implementation. It also provides information on the limits
of the optimizations expressed in the search space. It can even ex-
plain the nature of performance anomalies and their localization in
the program. This information allows the domain expert to extend
the search space with new optimizations, and to select a suitable
architecture through design-space exploration.

Our approach is implemented in a tool named Telamon. The
optimizations that can be expressed with Telamon make it well
suited for working with basic linear algebra kernels on GPUs.
That said, our approach is generic, and provided with a suitable



search space and performance model, it could be expanded to other
architectures and application domains.

The paper is organized as follows. We specify the scope of Tela-
mon in Section 2 and provide some background on GPU architec-
tures in Section 3. Section 4 presents the search spaces and their
representations. Our exploration algorithm is described in Section 5
and the performance model in Section 6. We validate the pruning
efficiency of Telamon and its ability to generate competitive code
in Section 7. Finally, Section 8 discusses the differences between
our approach and existing solutions.

2. Problem Statement
GPU programs are composed of small functions, called kernels,
that are called from the CPU and run on the GPU. The objective of
Telamon is to find the best performing implementation of a GPU
kernel in a given search space.

The search space describes the implementation and optimiza-
tion decisions that may be taken to generate code, such as how
code is parallelized, how loops are tiled, unrolled and vectorized
or which instructions are used. The performance of the generated
code is limited by the decisions exposed in the search space. We do
not address the problem of finding the optimizations that may be
applied which is a research subject in its own.

Telamon optimizes for a specific user-provided input data. How-
ever, the generated code will run correctly on all inputs. Given a
search space, Telamon returns the candidate implementation with
the best execution time for the provided input. We currently target
NVIDIA GPUs, but other GPU architectures are similar enough
that porting Telamon to them should not be problematic.

The search space is described using the intermediate represen-
tation (IR) introduced in Section 4. The originality of this IR is
to represent whole sets of observationally equivalent implementa-
tions of computational kernels, up to dependence-preserving loop
transformations, instruction selection, data mapping and transfer
optimization.

We consider programs with static control-flow: there are no if-
statements and loop counts depend only on kernel parameters. This
allows us to focus on a class of problems that are known to run well
on GPUs (Owens et al. 2008). Many application domains such as
basic linear algebra fall into this category.

The search spaces handled by Telamon are too big for all pos-
sible implementations to be evaluated on the GPU in a reasonable
amount of time. Even the plain generation of the candidates, with-
out running them, is too time consuming for non-trivial examples.
We propose an approach to drastically reduce the number of can-
didate implementations that need to be generated and evaluated,
while still guaranteeing to discover the fastest one.

3. CUDA Programming Model
We now provide some background on the CUDA programming
model and architecture (Nickolls et al. 2008). CUDA is developed
by NVIDIA for their own devices. The programming model used
by other GPU vendors is similar (Stone et al. 2010).

The basis of CUDA is data parallelism: a single code is exe-
cuted in parallel by a large number of threads. The code executed
by each individual thread is usually implemented in the CUDA pro-
gramming language. This CUDA code is then compiled into PTX, a
low-level intermediate representation dedicated to NVIDIA GPUs,
and finally to a proprietary assembly by the CUDA driver. Telamon
directly generates PTX to improve its control over the generated
code.

Threads are grouped into blocks, where they are organized into
a 1, 2 or 3 dimensional grid. Similarly, blocks of threads are or-
ganized into another 1, 2 or 3 dimensional grid. Each block has

the same thread configuration. The dimensions of these grids are
hereafter called thread dimensions and block dimensions. Threads
within the same block can synchronize with each other through bar-
riers and communicate via a fast dedicated memory called shared
memory. This is not possible among threads from different blocks.

There is one additional level of organization within a block:
threads belong to warps, groups of 32 threads that are always exe-
cuted simultaneously. The execution of warps on an SMX is inter-
leaved in order to hide the latency of operations and to maximize
throughput.

A GPU executes kernels by distributing blocks between sev-
eral streaming multiprocessors (SMX). Each SMX contains a large
number of small cores. Each core can execute at most one arith-
metic instruction per cycle. The threads in a given block are dis-
patched to a single SMX, which can house a limited number of
blocks based on the number of registers and the amount of shared
memory used in each.

4. Search Space Representation
We represent the search space of possible implementation candi-
dates of a given kernel using a specific IR. Its design is critical to
efficiently find the optimal implementation of a GPU kernel. The
central design feature of our IR is that a single instance can rep-
resent a whole set of candidate implementations. Indeed, an IR in-
stance defines a region of the search space, i.e., as a partially spec-
ified implementation where some optimization choices are left free
to be explored.

The search space can be fully specified as a single IR instance.
In the following, we denote by X an IR instance and by x ∈ X a
candidate implementation represented by X . We first describe how
unspecified implementation choices are represented and then list
the optimization decisions available.

4.1 Representation of the Implementation Choices
The IR explicitly exposes the set of available alternatives for each
unspecified implementation choice. For example, it lists the avail-
able cache directives for each memory access. Taking an implemen-
tation decision reduces to restricting an open choice to one of the
listed alternatives. When each choice is specified, the IR instance
represents a single implementation for which code can be gener-
ated. Thus, every candidate implementation x ∈ X corresponds to
a specific combination of decisions.

However, some combinations of choices are incompatible. To
avoid the selection of mutually exclusive decisions, the IR guaran-
tees that each available alternative of any choice is compatible with
at least one alternative from every other choice. When a decision is
taken, the IR recursively restricts the alternatives available for other
choices accordingly.

Notice that lists of alternatives are only restricted and never
increased, when making choices. All the optimizations that may
be applied to the kernel are known in advance. This is critical for
the performance model described in Section 6.

4.2 Available Decisions
An IR instance is composed of a list of instructions and loops. The
loops, called iteration dimensions in our context, should have a
fixed number of iterations that depend only on kernel parameters.
Each instruction is nested into a specific list of iteration dimensions.

First, each instruction and each iteration dimension comes in
multiple variants that must be chosen by the search space explo-
ration:
• memory instructions can either use the L1 cache, the L2 cache,

the Read-Only cache, or no cache at all;
• iteration dimensions can be implemented as plain for-loops, as

vectorized or unrolled loops, or as thread or block dimensions.



Second, we list the possible ordering of each pair of iteration
dimensions:
• one can be nested inside or outside the other;
• one can be executed before or after the other;
• the two dimensions may be fused.

This pairwise order can express many transformations, including
loop fusion, loop interchange and coarse grain scheduling. In par-
ticular, we can express synchronization among the threads in a
block: if a thread dimension is ordered before another, we intro-
duce a barrier to ensure that all the computations of the first one
complete before the second one begins.

The orders are encoded in a transitively closed adjacency matrix
and are thus highly redundant. This allows us to represent com-
plex non-scalar decisions and to easily access and restrict the list
of available orders between any two dimensions. The redundancy
does not impact the number of candidate implementations to con-
sider, since the IR ensures that only distinct, compatible decisions
are considered.

Finally, the IR can express point-to-point communications be-
tween two iteration dimensions: data produced at iteration i of one
dimension may be consumed at iteration i of the second. This data
transfer can be implemented in a register only if the two loops are
fused or both unrolled. Otherwise an array is allocated in the GPU
memory to buffer the data between the two loops. This array can be
either in global or shared memory. Thus we also list how each data
transfer can be implemented. In particular, this allows Telamon to
generate copies to scratchpad memories if necessary.

In its current form, the IR does not capture stripmining deci-
sions. To implement loop tiling (a.k.a. blocking), one needs to gen-
erate a separate IR instance for each available stripmining scenario.
Practically, to capture the different stripmining and tiling combina-
tions of a given kernel in the search space, Telamon is fed with mul-
tiple IR instances instead of a single one. For example, tiling a pair
of nested loops involves stripmining both of them in the original IR
instance, effectively exposing 4 nested iteration dimensions, and
instantiating the permutation of the two intermediate dimensions
further down the exploration of the search space. More generally,
tiling opportunities are exposed in the search space by replacing
each loop of size S tiled with a factor of T by two loops: one of
size n/T and the other of size T . This allows both the number of
tiling levels and the tile sizes of each dimension to be explored.
As explained in Section 5, describing the search space with multi-
ple instances impacts the time necessary to generate candidate im-
plementations but not on the number of candidate implementation
to evaluate on the GPU. The performance loss was minimal with
the kernels we consider. This limitation is a temporary engineering
decision to simplify the implementation, keeping the matrix size
constant.

4.3 Sample IR Instance
Let us now present an IR instance associated with the (full) search
space associated with the kernel X ← α.X , where X is a vector
of size N and α a scalar value.

Algorithm 1 shows the the structure of the candidate implemen-
tations we consider. Each iteration dimension and instruction is la-
beled. The loop iterating over the array is stripmined twice so it
can be mapped to the different levels of parallelism on the GPU.
T1 and T2 denote the tile sizes. The inner stripmined loop encloses
three innermost loops, one for each nested instruction: d2, d3 and
d4. This is necessary to vectorize memory accesses even if other
instructions cannot be vectorized on the targeted GPU.

The instructions i0 and i1 compute a pointer to the first element
of X to process at every iteration of d0 and d1. Memory accesses
are indexed by closed-form induction variable expressions index×
constant + variable. These expressions are derived from iteration

Algorithm 1: Structure of the kernel to optimize
Data: X a pointer to an array, α a scalar and N the size of

X
Result: α.X is stored in X
d0: for i in 0..N/(T1T2) do

i0: X0 := move 4T1T2.i+X;
d1: for j in 0..T1 do

i1: X1 := move 4T2j +X0;
d2: for k in 0..T2 do

i2: a := load (4k +X1);

d3: for k in 0..T2 do
i3: b := mul a[d2 → d3], α ;

d4: for k in 0..T2 do
i4: store b[d3 → d4], (4k +X1) ;

dimensions and hoisted at the appropriate level accordingly. Then,
i2 loads a single value from X , i3 multiplies it by α and i4 stores it
back into X . Both i3 and i4 feature point-to-point communication,
respectively between the loop d2 and d3 (denoted as a[d2 → d3])
and the loops d3 and d4 (denoted as b[d3 → d4]).

Along with the structure of the code, the IR stores the avail-
able choices for each decision. Table 1 shows how each iteration
dimension can be implemented: as plain for-loops, as vectorized or
unrolled loops or as block or thread dimensions.

Dimension Implementation

d0 Block, For-Loop
d1 Block, Thread, For-Loop, Unrolled
d2 Block, Thread, For-Loop, Unrolled, Vectorized
d3 Block, Thread, For-Loop, Unrolled
d4 Block, Thread, For-Loop, Unrolled, Vectorized

Table 1. Implementation choices for iteration dimensions

Similarly, Table 2 shows how memory instruction are imple-
mented and Table 3 shows where the data is stored when it needs
to be passed from one iteration dimension to the other.

Instruction Cache Level

i2 L2, RAM
i4 L2, RAM

Table 2. Implementation choices for memory instructions

Data Transfer Data Location

a[d2 → d3] Shared Mem, Global Mem, Register
b[d3 → d4] Shared Mem, Global Mem, Register

Table 3. Implementation choices for communications

Last, Table 4 lists the available ordering between each pair
of instruction or iteration dimensions. The possible orderings are:
Before (B), After (A), Nested Inside (I), Nested Outsize (O) and
Fused (F). In practice, only half of the matrix is stored as the order
between a and b can be deduced from the order between b and a.

5. Branch and Bound
The only way to know the exact execution time of a candidate
implementation is to actually run it on the GPU with the input



d0 d1 d2 d3 d4 i0 i1 i2 i3 i4

d0 / I, O I, O I, O I, O O O O O O
d1 I, O / I, O I, O I, O O, A O O O O
d2 I, O I, O / F, B F, B O, A O, A O O, B O, B
d3 I, O I, O F, A / F, B O, A O, A O, A O O, B
d4 I, O I, O F, A F, A / O, A O, A O, A O, A O
i0 I I, B I, B I, B I, B / B B B B
i1 I I I, B I, B I, B A / B B B
i2 I I I I, B I, B A A / B B
i3 I I I, A I I, B A A A / B
i4 I I I, A I, A I A A A A /

Table 4. Pair-wise ordering of instructions and dimensions

provided by the user. For non-trivial search spaces, however, it
is impossible to evaluate every single candidate in a reasonable
amount of time. Their number is exponential in the number of
choices exposed in the IR, and even enumerating them without code
generation is too expensive. In this section, we present a branch
and bound algorithm that prunes the search space, without ever
excluding the fastest candidate implementation.

Our pruning strategy is based on an analytic performance model
which we apply to a given IR instance. It provides a lower bound
on the execution time of every candidate implementation that is
represented by the IR instance, even when some implementation
choices were left unspecified. Formally, if X is an IR instance,
B(X) is the lower bound provided by the model and T (x) is the
execution time of x ∈ X on the GPU, then:

∀x ∈ X, B(X) ≤ T (x) (2)

The performance model is further detailed in Section 6.
The search space described by a single IR instance is explored

by recursively building a search tree. The initial IR instance is the
root of the tree: it represents the whole search space. The children
of a node represent a partition of the search space described by the
parent. They are obtained by picking an unspecified choice in the
parent and creating one child for each of its possible values. At a
given point, the structure of the tree specifies the choices that have
been considered, as each node is a more constrained IR instance
than its parent. By going deeper in the tree, we eventually reach
its leaves: totally constrained IR instances that represent individual
implementations. In fact, each node in the tree represents a search
space that is exactly the set of the leaves beneath it.

When a leaf is encountered during the exploration, it is evalu-
ated by actually running it on the GPU. We save the leaf with the
shortest execution time as the current best candidate. Each time a
new node is inserted in the search tree, it is evaluated with the per-
formance model. We prune nodes for which the performance model
returns a lower bound greater than the execution time of the current
best candidate. With this pruning strategy, the best implementa-
tion candidate can never be pruned. Indeed, the performance model
guarantees that there is not a single implementation in a pruned
sub-tree that could run faster than the computed lower bound, for
which we already know a better candidate.

When multiple nodes in the tree can be processed, we first look
at the one with the lowest lower bound. This way we never consider
a node that could have been later pruned. The exact algorithm is
shown in Algorithm 2: queue is a double-ended priority queue that
orders the nodes with the lowest lower bound first.

As the performance model can highlight important performance
bottlenecks even for a partially-specified IR instance, we are able to
prune early in the search tree. Indeed, there is no need to generate
the candidates in a sub-tree when the performance model detects
its root may be pruned. Interestingly, our algorithm does not re-
quire the performance model to take all performance bottlenecks
into account or to be too precise: the evaluation of candidates on

Algorithm 2: Search space exploration
Data: The initial search space s0
Result: The best candidate implementation in s0
queue := [(s0, 0)];
best time := +∞;
best candidate := None;
while queue is not empty do

node := queue.pop first();
if node is totally constrained then

time := evaluate node on the GPU;
if time < best time then

best time := time;
best candidate := node;
while queue.last.bound > time do

queue.pop last();

else
c := Pick an unspecified choice in node;
foreach decision d available for the choice c do

new node := apply d to node;
bound := performance model(new node);
if bound < best time then

queue.insert(new node, bound);

return best candidate;

the GPU ensures we always return the best performing implemen-
tation. The performance model only needs to be accurate enough
for the search to complete in a reasonable amount of time.

When the search cannot be expressed as a single IR instance, be-
cause some implementation choices cannot be expressed, the user
can provide multiple IR instances. In that case, the algorithm be-
haves as if the initial IR instances were all the children of some
imaginary root node. This has a minimal performance impact pro-
vided the number of initial instances is not too big. Indeed, com-
pared to a search tree with a single initial IR instance, the only over-
head comes from the fact that some IR initial instances would not
have not been generated if they could have been cut at a higher level
in the tree. With multiple IR instances, the algorithm needs to eval-
uate each one of them once with the performance model to know
which to keep. In our experiments, 250, 000 initial IR instances
increased the search time by only one second (see Section 7.3).

The order in which choices are made is driven by a simple
heuristic. We try to prioritize the decisions with the biggest per-
formance impact. We first decide how iteration dimensions are im-
plemented, then the memory space in which temporary arrays are
allocated, then the ordering of dimensions and lastly the cache di-
rectives to use. More advanced heuristics could attempt to maxi-
mize the number of branches cut near the top of the search tree.

6. Performance Model
We designed a performance model that evaluates a lower bound on
the execution time of all the candidates represented by a given IR
instance. This model needs not provide an exact lower bound, but
its precision influences the pruning efficiency. This is particularly
important for fully constrained (instantiated) IR instances because
evaluating a candidate on the GPU is more costly than generating
the children of a node in the search tree.

The IR structure is strongly tied to the requirements of the per-
formance model. Indeed, to evaluate a lower bound on the execu-
tion time of a kernel, the performance model should abstract over
all possible optimizations. This is why our IR requires that avail-
able choices be listed explicitly.



Our performance model computes a lower bound on the pres-
sure on execution and memory units at each level of parallelism
as well as the latency of dependency chains to calculate a lower
bound on the total execution time of partially specified kernels. The
lower bound is correct even if not all performance bottlenecks are
modeled. Additional bottlenecks can only make the code run more
slowly.

The model first computes a lower bound on the average latency
and number of execution and memory units used by each instruc-
tion. This information is used subsequently to compute the minimal
execution time of a thread, then of a block, and finally of the whole
kernel. These three execution times are respectively noted Tthread,
Tblock and T .

6.1 Individual Throughput and Latency Bounds
A GPU core has a limited number of resources of different kinds for
executing instructions. For each instruction, we compute a lower
bound on the number of resources it requires. We consider the num-
ber of Arithmetic and Logical Units (ALUs), the number of mem-
ory units, the number of instruction dispatchers and the number
of Miss Status Holding Registers (MSHRs) that hold the status of
pending memory requests.

If multiple alternatives are available for implementing an in-
struction, we compute the lower bound independently for each re-
source: we take the smallest usage of each kind of resource across
all variants of the instruction.

The impact of memory instructions on GPU resources depends
on how memory accesses are coalesced. A memory access is coa-
lesced if multiple threads access the same cache line at the same
time. In practice, coalescing depends on the mapping of itera-
tion dimensions to GPU thread dimensions. We assume the most
optimistic coalescing according to the available implementation
choices of an IR instance. We do not yet have an accurate model
of GPU caches and thus assume that all memory accesses hit the
highest available cache. While this limitation impacts the number
of candidates evaluated on the GPU, it does not alter the correctness
of the lower bound.

Similarly, we obtain lower bounds on the average latencies of
instructions and on the overhead in terms of resource use and
instruction dependencies induced by iteration dimensions.

With this approach, we make independent optimistic assump-
tions for each instruction and for each iteration dimension. These
assumptions may be mutually incompatible. For example, we might
assume two iteration dimensions to be mapped to thread dimen-
sions on the GPU, even if parallelizing both dimensions at the
same time would create more threads than supported by the hard-
ware and thus produce incorrect code. This alters the accuracy but
not the correctness of the lower bound: relaxing the constraints on
valid combination of choices can only lower the bound. When the
IR instance is totally constrained, we make no assumption and the
bounds should be exact within the limits of the model.

6.2 Thread Execution Time
We bound the execution time of a thread Tthread by multiplying
the resources used by each instruction or iteration dimension, as
computed in Section 6.1, by the minimal number of times it is
executed within each thread. Then, we sum the resulting values
across all the instructions to obtain a lower bound on the resources
needed to execute the single thread. Finally, we divide this number
by the resources that would be available for a thread at each cycle
if it were run in isolation. This gives us a lower bound on the
execution time of a thread based on the throughput of a single core.

Tthread ≥
Resources used per thread

Resources available per thread
(3)

We may suppose that threads run in isolation as block-level con-
tention is taken into account later in (6).

If the exact number of threads is left unspecified in the IR in-
stance, we suppose maximal thread-level parallelism when com-
puting the number of times instructions and iteration dimensions
are executed. This assumption minimizes Tthread.

We also bound Tthread by the longest chain of data or control de-
pendencies in a thread. The latency of data dependencies between
instructions is computed as described in Section 6.1. Depending on
how iteration dimensions are implemented, control dependencies
may or may not be introduced. As always, we consider the most
optimistic choice among those exposed in the IR.

Tthread ≥ Longest dependency chain (4)

6.3 Block Execution Time
The execution time of a block is always greater than the execution
time of any thread within it.

Tblock ≥ Tthread (5)

All threads within a block can be executed in parallel. Then, if
Tblock 6= Tthread, there is contention on the resources shared between
the threads. We handled it as we did for threads in (3): Tblock is
limited by the resources used by a block divided by the resources
available for a block running in isolation. However, threads in
blocks may only be executed in warps (see Section 3). When
the number of threads in a block is not a multiple of the warp
size, phantom instructions are issued to complete the warp. While
having no effect on the result of the computation, they still occupy
resources, which we take into account by a waste ratio, that we
define as the minimal number of phantom instructions issued per
instruction.

Tblock ≥
Resource used per block× (1 + Waste ratio)

Resources available per block
(6)

When computing (3), we suppose maximal thread-level paral-
lelism. However, we cannot suppose block-level parallelism to be
maximal, as it may affect thread-level parallelism and thereby pro-
duce an incorrect lower bound. To avoid this problem, we com-
pute Tblock in (5) and (6) for maximum thread-level parallelism, as
if block-level parallelism were minimal. We then divide the result
by the maximum number of blocks that could be created (assum-
ing block-level parallelism is maximal) for each block minimiz-
ing block-level parallelism (thus resulting in a minimal number of
blocks). This provides a bound on the execution time of a block as
if block-level and thread-level parallelism were both maximized.

T ′
block ≥

Minimum number of blocks× Tblock

Maximum number of blocks
(7)

6.4 Global Execution Time
First, as for blocks in (6), the global execution time T is bounded
by the throughput of the GPU.

T ≥ Resources used by the kernel× (1 + Waste ratio)
Resources available in the GPU

(8)

Second, T is bounded by the number of blocks that can be exe-
cuted in parallel. This number is limited by the maximum number
of active threads and blocks that the hardware can support, and by
the amount of shared memory used by each block. Indeed, the com-
bined use of shared memory by active blocks has to fit in the GPU
shared memory.

T ≥
⌈

Maximum number of blocks× T ′
block

Maximum number of parallel blocks

⌉
(9)



6.5 Strengths and Limits of the Model
Correctness of the Model Our performance model does not ac-
count for all GPUs bottlenecks. In particular, it does not model
cache misses, nor the number of registers used per thread, nor the
fact that not all ALUs can execute every kind of arithmetic instruc-
tion. Actually, performance bottlenecks may be missing from our
analysis simply because their existence is hidden in the unpublished
micro-architectural details of a GPU. The strength of our approach
is that the lower bound is still correct as additional bottlenecks can
only increase the execution time. Bottlenecks missing from the per-
formance model are accounted for by the branch and bound algo-
rithm by running candidate implementations on the GPU.

Partially Specified Implementations A particular strength of our
model is its ability to bound the execution time of partially specified
implementations, i.e., of entire regions of the optimization space.
This is achieved by taking locally optimistic decisions whenever
multiple options are available. The assumptions taken at two dif-
ferent points in the performance model algorithm do not need to be
compatible with each other. Indeed, considering invalid combina-
tions of choices in the performance model boils down to extending
the search space with invalid candidate implementations and thus
may only reduce the lower bound.

This approach is a source of inaccuracy when two incompatible
assumptions are taken to avoid two different bottlenecks. One of
those will always be present in the generated code, but the model
assumes that both are avoided. However, this inaccuracy will only
last while the two conflicting choices are left unspecified. The more
choices are specified in the IR, the less conflicting assumptions are
made and the more accurate is the model. For totally constrained
instances, no assumption is made at all and the accuracy is maxi-
mal.

Interpretation of the Bounds The bound given by the perfor-
mance model can be easily interpreted by looking at which equa-
tions were used to produce it:
• if T is bounded by (8), the bottleneck is the contention on a

GPU resource shared between all the threads.
• if T is bounded by (9) and Tblock by (6), the bottleneck is

resource contention within a block.
• if T is bounded by (9), Tblock by (5) and Tthread by (3), the

bottleneck is the resource contention within a single thread.
• if T is bounded by (9), Tblock by (5) and Tthread by (4), the

bottleneck is a dependency chain within a thread.
Each of these bounds only considers a single bottleneck at once.

This is a reasonable assumption in the context of GPUs, where a
lot of threads run the same computation in parallel. Indeed, under
such circumstances, parallelism hides the latency due to small
bottlenecks. Only the most limiting factor cannot be hidden. This
hypothesis does not hold for candidate implementations with too
little parallelism, but such candidates usually perform so badly that
they are anyway pruned away.

The accuracy of the performance model could be improved by
bounding the execution time between each pair of synchronization
primitives rather than looking at the latency of a whole thread when
computing Tthread and Tblock. This would handle the cases where
block-level parallelism is too low. Similarly, we could better han-
dle the cases where thread-level parallelism is too low by looking at
the pressure on execution units between each pair of instructions to
take local contention within a thread into account. Such improve-
ments would, however, make the model more costly to run.

It is important to look at the throughput bottleneck at each level
of parallelism as blocks and threads can only use a fraction of
the resources available in a GPU. When we compute the bounds
at the level of a thread or block, we assume it runs in isolation

as contentions between threads or between blocks are taken into
account by the bounds at a coarser level of parallelism.

7. Experiments
In this section, we present the performance of Telamon along three
axes. In Section 7.2 we demonstrate that it can actually be used to
automatically generate high-performance code for multiple GPU
architectures. Then, in Section 7.3, we show the efficiency of our
pruning strategy on a huge search space of possible implementa-
tions. times. Last, in Section 7.4, we evaluate the accuracy of the
performance model used to compute lower bounds of execution

We choose to focus the experiments presented here on the
matrix-matrix multiplication kernel SGEMM from the BLAS spec-
ification (bla 2002). This enables us to provide a more in-depth
analysis of our results.

The SGEMM kernel computes the equation C ← αA.B + βC
on single-precision floating-point values, where A, B and C are
matrices and α and β are scalars. It is implemented by hardware
vendors for all GPUs and is among the most-used functions in
compute-intensive applications such as deep-learning. Section 7.1
describes the search space we used for our experiments.

7.1 Search Space
SGEMM has three inherent iteration dimensions: m, n and k. The
first, m iterates over the rows of A and C, n iterates over the
columns of B and C and k performs a reduction over the columns
of A and rows of B.

Matrix B
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k
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n′′
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Figure 1. Tiling of iteration dimensions for SGEMM

Figure 1 shows the tiling of m, n and k. Our tiling strategy
follows a standard procedure for parallelizing SGEMM on GPUs
(Li et al. 2009). The dimensions m and n are tiled twice, creating
four new dimensions iterating over the tiles ofm and n:m′,m′′, n′

and n′′. The k dimension is only tiled once, creating a dimension
k′, as it offers less parallelism opportunities. We force m′, n′ and
k′ to have the same size to enable more loop fusion opportunities.
Similarly m′′ and n′′ also have the same size.

We load all the data consumed by a tile m′ × n′ × k′ into two
temporary arrays (one for A and one for B) to allow the reuse of the
data of A and B, These chunks of data are shown in red in Figure 1.



Algorithm 3: Structure of our SGEMM implementation
for i iterating over m,m′,m′′ do

for j iterating over n, n′, n′′ do
acc[i, j]← 0;

for l iterating over k do
for i iterating over m do

for j iterating over n do
Load a chunk from A into Atmp;
Load a chunk from B into Btmp;
Compute Atmp ×Btmp into acc;

for i iterating over m,m′,m′′ do
for j iterating over n, n′, n′′ do

C[i, j]← α.acc[i, j] + β.C[i, j];

Algorithm 3 presents the structure of computations in the search
space. Our implementation of SGEMM is based on three main
loop nests: the first one initializes an accumulator acc, the second
one computes the matrix multiplication chunk-by-chunk and the
last one adds the result to C. The loading of chunks and the
Atmp × Btmp operation are each implemented by another loop nest.
Each memory access also has its own loop nest on dimensions
m′′ and n′′ to allow vectorization. Depending on how iteration
dimensions are implemented, acc will be stored in registers or in
a temporary array.

We expose the following implementation decisions in the search
space:
• Each tiling level can take any size in {1, 2, 4, 8, 16, 32}. If the

tile size is one, the tiling level is automatically removed.
• Dimensions in the same loop nest can be nested in any order.
• Dimensions in different loop nests can be fused together.
• We allow iteration dimensions to be implemented as plain

loops, as fully unrolled or vectorized loops, or as thread or
block dimensions. The real list of possibilities for each iteration
dimension is actually smaller as the IR applies the following re-
strictions to ensure the correctness of the generated code: k and
k′ carry a reduction and thus cannot be parallelized, m and n
have a non-constant size and thus cannot be fully unrolled and
dimensions containing non-vectorizable instructions cannot be
vectorized.
• Atmp and Btmp can be placed either in the shared memory or in

any level of the cache hierarchy.
It is important to note that the performance of the generated

code will be limited by the optimizations we expose in the search
space. Our IR does not support texture memory and the program-
ming language exposed by NVidia, PTX, does not allow express-
ing decisions such as register allocation. We believe, however, that
the search space is big enough to achieve competitive performance
and to show the validity of the approach. Tackling those limitations
would require a significant implementation effort and is out of the
scope of a research paper.

7.2 Generated Code Performance
We show that Telamon can be used to automatically generate com-
petitive code for different architectures and different input sizes
by finding the best implementation for two matrix sizes on three
GPUs. The same search space, described in Section 7.1, is used for
all the configurations.

The first GPU we use is a Quadro K4000, a desktop graph-
ics card based on the Kepler micro-architecture, with 768 CUDA
cores, a peak performance of 1.2TFLOPS and 125GB/s of mem-
ory bandwidth. The second GPU is a Tesla K20m, a passively

cooled GPU built to be used in data-centers and based on a variant
of the Kepler micro-architecture optimized for non-graphic appli-
cations. The Tesla K20m features 2496 CUDA cores, a peak per-
formance of 3.5TFLOPS and a memory bandwidth of 208GB/s.
The last GPU is a GeForce GTX 470 based on the Fermi micro-
architecture, with 448 cores, a peak performance of 1.1TFLOPS
and a memory bandwidth of 134GB/s.

We compare the code generated using Telamon to a Cublas, na-
tive hand-written library, and to a state-of-the-art parallel code gen-
erator, PPCG. Cublas is the highly optimized implementation of
BLAS that NVidia provides for its GPUs, and PPCG (Verdoolaege
et al. 2013) is a compiler that can generate parallel code for GPUs
from C-like source code. PPCG leverages polyhedral compilation
strategies to express parallelism in the provided code, and relies on
a combination of heuristics and exhaustive search to find efficient
optimization parameters.

Table 5 shows the execution time for each configuration. We
consider square matrices of size 256 and of size 1024. The timings
do not account for the data transfers between the GPU and the CPU.
Unfortunately, we could not run PPCG on the Tesla K20m as we
did not have a direct access to this GPU. Each value is averaged
over 10 runs. The standard deviation was below 0.03 in all cases.

On 1024 × 1024 matrices, we reach a performance within rea-
sonable distance of Cublas. The slowdown indicates that our search
space does not cover all the target-specific optimizations imple-
mented in Cublas. Further investigation indicates that support for
texture memory is the main missing dimension in the space. Tex-
ture memory provides a very fast read-only cache, enabling host-
side loops to synchronize blocks. This limitation is not fundamental
to our approach and is considered for future versions of the tool. We
do not believe supporting texture memory will bring new insights
to the performance model and search algorithm however.

On 256 × 256 matrices, we beat Cublas by a wide margin
(4.2× speedup on average) thanks to Telamon’s ability to adapt
the generated code to the size of the input, while libraries can only
provide a few implementations of each function.

We outperform PPCG on all configurations. This shows the
strength of our approach over a combination of heuristics and
exhaustive search to find the best optimization parameters. Indeed,
apart from the cache directives, we do not introduce optimizations
that could not be generated with PPCG.

Telamon performs similarly well on all platforms, thus prov-
ing our performance model is generic enough to support multiple
micro-architectures and can adapt the generated code to the tar-
geted hardware.

7.3 Search Space Pruning
We now evaluate the pruning efficiency of Telamon on the search
space presented in Section 7.1. This search space contains 2.7
billion candidate implementations and the corresponding search
tree 5.4 billion nodes. To obtain these numbers, we generated
the full search tree on a dual-socket computer equipped with two
Intel Xeon E5-2630v2 processors, each of them featuring 6 hyper-
threaded cores running at 2.6GHz. Enumerating the search tree
without generating code or evaluating candidate implementations
on the GPU took more than 5 hours using 24 threads.

Let us now focus the search space exploration on 1024× 1024
matrices on the Quadro K4000 GPU. Other sizes and GPU archi-
tectures present similar results.

Exhaustive evaluation is clearly impracticable with the consid-
ered search space: it would take 149 days to run all the candidates
on the GPU, assuming they are all as fast as the fastest implementa-
tion. The actual number would be much higher as our performance
model shows the bad performance of most candidates.



Quadro K4000 Tesla K20m GeForce GTX 470
256× 256 1024× 1024 256× 256 1024× 1024 256× 256 1024× 1024

Cublas 0.410 ms 4.05 ms 0.373 ms 1.43 ms 0.494 ms 3.57 ms
Telamon 0.0940 ms 5.16 ms 0.0866 ms 1.61 ms 0.133 ms 4.92 ms
PPCG 0.500 ms 15.4 ms - - 0.219 ms 14.6 ms

Table 5. Performance of the code generated by Telamon

Finding the best implementation using Telamon takes only 13
minutes. This shows that Telamon can efficiently explore large
search spaces. More precisely, only 17, 664 candidate implementa-
tions were compiled and run on the GPU and only 121, 335 nodes
of the search tree were visited. This is an example of a reduction by
a factor of 1.5 × 105 in the number of candidate implementations
to evaluate, and a reduction by a factor of 4.8× 104 in the number
of nodes visited in the search tree compared to exhaustive search.

The reduction in the number of candidates to be run on the GPU
is critical to achieve good exploration performance. However, the
ability to prune high in the search tree also plays an important role.
Indeed, the exploration takes only 13 minutes compared to the 5
hours necessary to enumerate the search space.
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Figure 2. Nodes pruned at each level of the search tree

Figure 2 shows the effect of the pruning at each level of the
search tree. It displays the number of candidate implementations
and the number of nodes contained in the sub-trees that are cut at
a given depth of the search tree. It also gives the number of cuts
performed.

The main conclusion from this graph is that most candidates are
pruned by a cut which is high in the tree: 77% of the nodes are
cut in the two first levels. It should be noted that the y axis uses
a logarithmic scale. Even the small step between levels 2 and 3
shows a decrease in the number of pruned candidates by a factor
of 10, while 6 × 106 times fewer candidates are pruned in the last
level than in the first. Thus, the performance model detects some
major performance bottlenecks early in the exploration, and already
prunes the search space with only a few cuts in the first levels. More
cuts are necessary in the lower levels as bottlenecks become harder
to detect, but their number is still reasonable. In the end, only 20448
cuts were needed to prune 2.7× 109 candidate implementations.

The levels 11, 16, 17 and 18 do not show any cut as the perfor-
mance model was unable to discriminate between the alternatives
of the choices made at these levels.

7.4 Performance Model Accuracy
To measure the accuracy of the performance model, we evaluate all
of the candidate implementations in a search space on the GPU and
compare their execution times with the lower bounds provided by
the model.

The search space presented in Section 7.2 is far too big to be
fully evaluated and must thus be restricted. We first fix the size of
tiles: m′, n′ and k′ are set to 16, and m′′ and n′′ to 4. Second, we
forcem′ and n′ to be mapped to the thread dimensions of the GPU.
Last we choose to allocate the temporary arrays Atmp and Btmp

in shared memory. These settings ensure that the search space is
small enough to enumerate (73, 728 candidates) and that candidate
implementations run fast enough to be evaluated exhaustively.
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Figure 3. Performance model accuracy

The execution time and the lower bound computed for each can-
didate are shown in Figure 3. The y-axis represents the actual and
predicted execution time, and the x-axis the candidate implementa-
tions sorted by their execution time.

The lower bound is correct on all candidates: it is always below
the measured execution time. Second, the bound follows the exe-
cution time and allows to prune a part of the search space: all can-
didates whose lower bound is higher than the best execution time
are pruned. For the purpose of modeling the accuracy of the per-
formance model, we have restricted the search space so that it only
contains fast enough implementations. In practice, a much bigger
fraction of the search space is pruned.

The bound is not tight. However, in our case, the ability to derive
information from partially specified instances matters more than
the tightness of the bound on fully specified instances. Figure 2
shows that our bound is efficient at pruning high in the search tree,
where each cut has a huge impact and reduces both the number of
nodes to visit and candidates to evaluate. A tighter bound would
help reduce the number of candidate evaluated but would have
a small impact high in the search tree, where the bound is loose
anyway because of the missing implementation decisions.



8. Discussion and Related Work
To the best of our knowledge, Telamon is the first program rep-
resentation, search algorithm and tool capable of constructing the
best performing implementation out of a large search space, in pres-
ence of global transformations involving loops and arrays.

Super-optimization is a class of algorithms to find the opti-
mal instruction sequence for a given computation. However, these
algorithms are limited to straight-line code (or assimilated to it)
(Phothilimthana et al. 2016). Our search space is structurally very
different and too large even for plain enumeration.

Existing basic linear algebra libraries rely either on manually
tuned code, such as Goto BLAS (Goto and Geijn 2008) on CPUs
or Cublas on GPUs, or on autotuning, or both. Manual optimization
requires a careful understanding of the performance anomalies of
each implementation, and a lot of effort to produce these and to
deal with architecture variants.

Autotuning involves statistical methods and predictors to drive
the search towards candidates that are more likely to perform well
(Agakov et al. 2006; Jia et al. 2013; Ansel et al. 2014). While it
avoids the hurdles of manual optimization, autotuning has its own
limitations. First it does does not provide any guarantees on the dis-
tance to the optimal code. The search algorithm might find a local
optimum whose performance would still be far from the best imple-
mentation in the search space. Second, the structure of the search
space must be carefully crafted for the autotuner to be efficient. In-
deed, stochastic methods rely on a notion of locality between pairs
of candidate implementations: Indeed, stochastic methods rely on
the notion of locality: similar implementations are likely to have
a similar execution time. As explained in (Ansel et al. 2014), this
locality information is hard to preserve for complex search spaces.
On the opposite, our branch-and-bound approach applies naturally
to non-homogeneous spaces defined by globally interacting con-
straints. And indeed, our IR exposes complex interdependent de-
cisions, that may not naively be mapped to the predefined con-
structs of autotuning frameworks. For example, the nesting order
of loops cannot be represented by a simple permutation: it also de-
pends on loop fusion and distribution choices, and on how the loops
are mapped to the different levels of parallelism of the GPU. Fur-
thermore, the fusibility of loops is not a transitive relation when
fusion is enhanced with enabling transformations such as shifting
or statement reordering (Pouchet et al. 2011).

Another approach, used in ATLAS (Whaley and Dongarra
1999) on CPUs and in MAGMA on GPUs (Tomov et al. 2010),
is to combine manual optimizations and exhaustive search rather
than statistical exploration. These libraries achieve remarkable per-
formance, but their approach is kernel-specific and cannot be easily
adapted to new problems. LGEN (Spampinato and Püschel 2014)
proposes a more generic approach to compile basic linear algebra
kernels, but still relies on a combination of heuristics and exhaus-
tive search and thus cannot explore many alternatives. Yotov et al.
pioneered the analytical modeling of the performance of BLAS
kernels (Yotov et al. 2003), but scaling their approach to complex
parallel architectures has remained an open problem.

SPIRAL (Puschel et al. 2005) generates high-performance code
for DSP linear transforms from a high level representation. It ex-
plores a collection of rewrite rules for a few well-defined operators,
which serve as the generators of a search space. The exploration of
the space yields a Directed Acyclic Graph (DAG) which is similar
to our search tree, but where confluent rewritings will lead to the
same implementation. (De Mesmay et al. 2009) proposes to detect
the most promising branches to be explored using a Monte-Carlo
approach: a branch is evaluated by randomly selecting a few can-
didate implementations among its descendants and by evaluating
them on the GPU. The authors show it is possible to prune high in
the search tree—or DAG in this case—and still achieve excellent

performance; yet they cannot guarantee the best implementation
will be found. (Remmelg et al. 2016) also show promising perfor-
mances on matrix-matrix multiplication using rewrite rules. How-
ever, their approach is based on heuristics and a fixed parallelization
scheme that offer no guarantees on the execution time and may not
adapt to other kernels.

Compared to manual optimization, one collateral damage of au-
totuning is the understanding of performance anomalies, and the
characterization of the remaining bottlenecks that the selected op-
timizations did not address. This information is crucial to under-
stand why a program does not run faster and to understand if and
how the considered search space can be extended to include bet-
ter implementations. Telamon is able to explain its choices and the
performance bottlenecks it faces, from the bounds produced by the
performance model. For example, the performance model shows
that the limiting factor in the code generated for the 1024 × 1024
SGEMM kernel on a Quadro K4000 is the number of blocks that
can be run in parallel on a single SMX. This number could be in-
creased by using the GPU’s texture memory to load matrix B in-
stead of copying it to a temporary array, thus reducing the amount
of shared memory used per block. Alternatively one could use an-
other GPU with a larger shared memory. While performance coun-
ters found in most GPUs can provide accurate information on a spe-
cific implementation, we provide insights valid on large regions of
the search space, independently of the optimizations that may sub-
sequently be chosen. We illustrated this explanatory capability of
Telamon on the construction of an SGEMM-specific optimization
space, refining and extending the space incrementally. The same
capability could be extended to design-space exploration, by in-
cluding hardware exploration in the space.

Our performance model remains inexpensive and easily inter-
pretable because it considers each bottleneck independently. It
does not try to model the interaction between multiple resource
constraints. The idea of looking independently at each bottleneck
to bound the execution time is developed in the roofline model
(Williams et al. 2009) and known to work well on highly paral-
lel architectures and deep memory hierarchies, where parallelism
or a dominating factor hides secondary bottlenecks. In (Lai and
Seznec 2013), Lai et al. show the effectiveness of this approach:
they provide a bound at 77% percent of the actual execution time
of the matrix multiplication kernel just by analyzing the different
throughput constraints of a highly optimized code.

The originality of Telamon is to bound the execution time of
partially specified implementations. It allows the branch and bound
algorithm to prune high in the search tree without missing the best
implementation. This ability plays a critical role on the reduction
of the exploration time.

Other analytical performance models, such as (Hong and Kim
2009) or (Baghsorkhi et al. 2010), have been developed to drive the
search for good optimization parameters on GPUs. These models
might be more accurate than the one presented here. However, they
tackle a different problem as they try to estimate the execution time
rather than providing a lower bound on it. Code generators based
on such models, such as (Samadi et al. 2012), are highly dependent
on the accuracy of the model they use. Instead, Telamon does not
require the performance model to be too precise, as we guarantee
to find the best implementation even if some bottlenecks are not
accounted for. This is crucial as the exact micro-architecture of
GPUs is not disclosed by hardware vendors.

Existing performance models require all optimization decisions
to be specified and thus cannot prune early in the search tree. Our
intermediate representation is the key ingredient to operate on a
partially specified implementation. A single instance of the IR cap-
tures whole regions of the search space, abstracting optimistically
all the transformations that may be applied to the considered kernel



when computing the performance lower bound. In contrast, SPI-
RAL (Puschel et al. 2005) relies on a set on rewrite rules for a few
well-defined operators. With the rewrite rule approach, one must
first apply a rule to find which further optimizations may be ap-
plied. An optimization which depends on specific rewrite rules may
be completely missed by a non-exhaustive search. With the IR de-
veloped for Telamon, available optimizations are known upfront
and can be applied in any order.

9. Conclusion
We present a performance model, an associated exploration strat-
egy, and a tool called Telamon to find the best performing imple-
mentation out of a large program optimization space. The model
is able to predict the expected performance of partially specified
implementations. This crucially allows us to terminate the explo-
ration of sub-optimal parameter space branches at an early stage,
and makes the search for the optimal implementation tractable.
Telamon demonstrates that reliable information about the execu-
tion time of a whole region of the optimization space can be pro-
vided before the implementations in this region are fully specified.
Furthermore, as the model provides a lower bound on the execu-
tion time, the best candidate implementation is guaranteed not to
be pruned. We validated our approach on the automatic generation
of a high-performance GPU kernel.

Interestingly, we discovered that evaluating performance early
in the exploration was critical to enable agressive pruning strate-
gies. High accuracy comes next and is not strictly necessary to find
the best implementation. For example, Telamon can explore large
search spaces even if the current model assumes all memory ac-
cesses are cached at the highest level of the hierarchy. Still, we are
currently designing an optimistic model of GPU caches to further
reduce the number of candidates evaluated.

We also discovered that the performance model provides key in-
sights to the designer of a code generator and autotuner. It can pin-
point which performance bottlenecks should be tackled to achieve
better performance, hinting at missing dimensions in the optimiza-
tion space. This point has been of tremendous help when build-
ing the search space for the GEMM kernel and refining it to com-
pete with vendor libraries. We believe it can also help supporting
design-space exploration, to select the most appropriate platform
for a given computational domain.

Telamon is dedicated to basic linear algebra on GPUs and cur-
rently evaluated on GEMM only. Yet our branch and bound ap-
proach is generic and could be applied to other domains and hard-
ware. The intermediate representation would need to be extended to
capture that domain’s computational structure and to adapt the per-
formance model to consider the bottlenecks of the target platform.
When porting our approach to another computational domain, the
main hurdle is related with the design and implementation of the
intermediate representation. The programmer has to consider every
interaction between the different optimizations, how they compose
and whether they contradict or restrict each other. One interest-
ing possibility would be to generate domain-specific intermediate
representations and the associated exploration scheme from a high
level description of the optimization requirements.
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