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Abstract 

The metabolic syndrome (MetS) is a large-scale and expanding public-health and clinical threat worldwide. We 
investigated the determinants of MetS, assessed its prevalence and components and, estimated their genetic con-
tribution, taking advantage of the special characteristics of Sardinian isolated populations. Inhabitants of 10 villages 
in Ogliastra region participated in a cross-sectional survey in 2002–2008 (n = 9,647). Blood samples, blood pressure 
(BP), anthropometry and, data from a standardized interview were collected. Prevalence of MetS was estimated by the 
direct method of standardization. Variables associated with the MetS were identified using multilevel logistic regres-
sion. Heritability was determined using variance component models. MetS Prevalence was 19.6% (95% CI 18.9–20.4%) 
according to NCEP-ATPIII, 24.8% (95% CI 24.0–25.6%) according to IDF and, 29% (95% CI 28.1–29.8%) according 
to AHA/NHLBI harmonized criteria, ranging from 9 to 26% among villages. The most prevalent combination was 
BP + HDL-cholesterol (HDL) + triglycerides (TRIG) (19%), followed by BP + HDL + waist circumference (WAIST) (17%) 
and, BP + HDL + TRIG + WAIST (13.6%). Heritability of MetS was 48% (p = 1.62 × 10−25), as the two most common 
combinations (BP + HDL + TRIG and BP + HDL + WAIST) showed heritability of 53 and 52%, respectively. The larger 
genetic components of the two most frequent combinations determining MetS deserve greater investigation in order 
to understand the underlying mechanisms. Besides, further studies are warranted to confirm these findings both in 
isolated and outbred populations.
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Background
Metabolic Syndrome (MetS) is a metabolic condition 
characterized by a number of related disorders, such as 
abdominal obesity, glucose intolerance, disturbed plasma 
lipids and high blood pressure. MetS raises the risk of 
developing cardiovascular diseases and type 2 diabetes 
and represents a major health problem increasing mor-
bidity and mortality (Kaur 2014).

MetS definition appeared for the first time about 
25  years ago when this risk factors clustering and 
its association with insulin resistance suggested the 

investigators the existence of a unique pathophysiologi-
cal condition (Meigs and Tracy 2000). In order to pro-
vide uniformity in the description of this phenomenon, 
different diagnostic criteria have been proposed for 
MetS. Firstly defined by The World Health Organization 
in 1998 (Alberti and Zimmet 1998), many international 
agencies and organizations subsequently proposed vari-
ous definitions, among which the most widely used are: 
the Third Report of the National Cholesterol Educa-
tion Program Expert Panel on Detection, Evaluation 
and Treatment of High Blood Cholesterol in Adults 
(NCEP-ATPIII) (National Cholesterol Education Pro-
gram 2002), the International Diabetes Federation (IDF) 
(International Diabetes Federation 2006), and the har-
monizing criteria of the International Diabetes Federa-
tion and American Heart Association/National Heart, 
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Lung and Blood Institute (AHA/NHLBI) (Alberti et al. 
2009).

MetS likely originates from a complex interaction 
between genetic, metabolic and environmental factors. 
Understanding what factors are predictive of MetS and how 
these factors are distributed and interrelated within differ-
ent populations is important for identifying populations 
at risk and supporting public health interventions. Many 
investigators have evaluated the prevalence of MetS over 
time. Previous epidemiologic studies in American, Asian 
and, European populations have documented a higher 
prevalence of MetS in men, elderly, overweight/obese and 
physically inactive individuals, lower social classes, smokers 
and certain ethnic groups (Desroches and Lamarche 2007; 
Kolovou et al. 2007; Ervin 2009; Kumbasar et al. 2013).

In Italy, studies in the general population reported a 
MetS prevalence (NECP-ATPIII criteria) of 17.8% (Bon-
ora et  al. 2003) and, of 18% in women and 15% in men 
(Miccoli et al. 2005).

Studies carried out in Spain revealed that MetS preva-
lence was 28.5% (IDF), 24.8% (NECP-ATPIII) and 31% 
(harmonized definition) (Buckland et  al. 2008; Fernán-
dez-Bergés et al. 2012).

A study conducted in a Dutch genetic isolate found a 
MetS prevalence of 36.8 vs 31% (IDF) and, 26.7 vs 22.8% 
(NECP-ATPIII), in men and women (Henneman et  al. 
2008). Data on two populations in the southwest of 
Germany showed a higher prevalence of MetS in rural 
(20–25%) as compared to urban (10–15%) populations 
(Boehm et al. 2005).

Others reported the prevalence of MetS in different 
ethnic groups. Lorenzo et  al. compared the expression 
of the metabolic syndrome (NECP-ATPIII) in Spain 
(25.8%) and San Antonio, TX (28%), two populations 
with major differences regarding their cardiovascular risk 
profile (Lorenzo et al. 2003). Florez et al. evaluated His-
panic people from Zulia State, Venezuela and found that 
MetS prevalence (NCEP-ATPIII) was 31.2% and it was 
lower in Amerindian (17%) compared to Black (27.2%), 
White (33.3%) and Mixed (37.4%) (Florez et  al. 2005). 
Some studies estimate the current prevalence of this syn-
drome in the United States to be up to 34% (Ervin 2009), 
and among native Japanese to be 41% in men and 51% in 
women (Oda et al. 2007). In northern India MetS preva-
lence was estimated as 47.5% (IDF) and 38.5% (NCEP-
ATPIII) (Mangat et al. 2010).

The reasons for these ethnic disparities in MetS preva-
lence are not clear. Besides variations in environmental 
factors, an increased genetic susceptibility could explain 
the observed differences. The clustering of risk factors in 
the MetS may reflect multiple interrelations among these 
phenotypes and/or a manifestation of a dominant under-
lying common factor.

Since both genetic and environmental factors are 
involved in the MetS, we studied this complex pheno-
type in an isolated population from Sardinia (Oglias-
tra, Italy). Genetic isolates like Ogliastra represent an 
important and powerful tool in investigating genetic and 
non–genetic risk factors of complex diseases because of a 
reduced background variability.

Aims of this study are to investigate the determinants 
of MetS, to assess its prevalence and components, and to 
estimate their genetic contribution.

Methods
Population features and study design
Ogliastra is a mountainous region flanking the eastern 
coastal areas of Sardinia (Additional file 1: Figure S1). It 
is inhabited by small communities characterized, on the 
one hand, by similar environment, life style, social cus-
toms and eating habits and, on the other hand, by very 
few exchanges among each other because of the mor-
phology of their territory, the distance from big towns 
and the inadequacy of transport links (Angius et  al. 
2001). Furthermore, various analyses of the Y chromo-
some, mitochondrial DNA and genome wide high den-
sity SNPs revealed a great deal of genetic differentiation 
among subpopulations within Ogliastra (Fraumene et al. 
2003, 2006; Pistis et al. 2009).

A cross-sectional survey was carried out in 10 villages 
from this area between 2002 and 2008: Baunei, Escalaplano, 
Loceri, Perdasdefogu, Seui, Seulo, Talana, Triei, Urzulei and 
Ussassai. People living in the villages were invited to take 
part in the study by means of public proclamations and let-
ters sent to each family. Respondents (average participation 
rate 80%) gave a blood sample, underwent anthropomet-
ric measurements, bioelectrical impedance analysis and a 
standardized interview collecting socio-demographic, life-
style, medical and drug history data.

The sample analysed in the present study aged 
18–101  years old and consisted of 9,647 individuals 
(4,075 men and 5,572 women).

Data collection and measurements
Among living habits, we gathered information on physi-
cal activity (never/occasional/moderate/intense), cur-
rent smoking (number of cigarettes smoked per day) 
and alcohol consumption (number of glasses per day of 
wine, beer and spirits). We collected data on the use of 
lipid-lowering drugs, antihypertensive and hypoglycemic 
treatments.

Blood tests (24 biochemical and 22 hemogram param-
eters) were made in our central laboratory in Perdasde-
fogu (Targa 3000, Biotecnica Instruments, Rome, Italy 
and Coulter LH Hematology analyzer, Beckman-Coulter, 
Brea, CA).
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Anthropometric measurements (weight, height, waist, 
wrist and hip circumferences) were taken on subjects 
wearing only their underwear. Weight was determined 
on a portable electronic scale to the nearest 0.1  kg and 
height was measured to the nearest 0.5 cm with a stadi-
ometer. Body mass index (BMI) in kg/m2 and waist hip 
ratio were calculated. Bioelectrical impedance analysis 
was performed by BIA 101 (RjL/Akern Systems, Detroit, 
MI): resistance, reactance and phase angle were used to 
determine body composition parameters. Blood pressure 
(BP) was measured in both arms with a standard mercury 
sphygmomanometer (Miniatur 300 B, Speidel & Keller) 
according to standard conditions. Three measurements 
were performed at intervals of 2–5 min and the mean of 
the three values was calculated considering the arm with 
the higher pressure.

Metabolic syndrome
In this study NCEP-ATPIII, IDF and, AHA/NHLBI har-
monized criteria defined MetS (National Cholesterol 
Education Program 2002; International Diabetes Federa-
tion 2006; Alberti et al. 2009). When using NCEP-ATPIII 
definition, subjects who had three or more of the follow-
ing criteria were identified as affected by MetS: triglyc-
erides (TRIG) ≥150 mg/dL or lipid-lowering medication; 
HDL-cholesterol <40  mg/dL for men and <50  mg/dL 
for women or lipid-lowering medication; systolic BP 
≥130  mmHg or diastolic BP ≥85  mmHg or antihyper-
tensive medication; fasting glucose (GLU) ≥110  mg/
dL or hypoglycaemic medication; waist circumference 
>102 cm for men and >88 cm for women.

When using IDF definition, a subject was considered 
affected by MetS if central obesity (defined as waist cir-
cumference ≥94  cm for men and ≥80  cm for women) 
plus two of the following factors subsisted: TRIG 
≥150 mg/dL or lipid-lowering medication; HDL-choles-
terol <40 mg/dL for men and <50 mg/dL for women or 
lipid-lowering medication; systolic BP ≥130  mmHg or 
diastolic BP ≥85 mmHg or antihypertensive medication; 
GLU ≥100 mg/dL or previously diagnosed type 2 diabe-
tes. Finally, when using AHA/NHLBI harmonized crite-
ria, MetS is defined as the presence of three or more of 
the IDF definition’s metabolic factors.

Statistical analysis
Statistical analysis was performed using STATA 11.1 
(College Station, TX). Collected data were described by 
sex, using t test to compare mean values and Chi square 
test to assess homogeneity of proportions. Estimates of 
prevalence were standardized by the direct method using 
the 2008 population structure of Italy. We run ANOVA 
on the quantitative variables, adjusting for age and sex, 
for assessing discrepancies across villages. We computed 

the frequencies of MetS components’ combinations and 
evaluated variation by age, sex and village, using multi-
nomial logistic regression. Furthermore, logistic regres-
sion was run to identify variables associated with the 
MetS. Given the special characteristics of genetic iso-
lates, where individuals are nested within families and 
within villages, we used multilevel models (Generalized 
Linear Mixed Models) (Rabe-Hesketh et  al. 2005), that 
allow family and village parameters to vary randomly. 
Independent quantitative variables were categorized into 
sex-specific quintiles to better assess the direction and 
strength of the association. Intraclass correlation coef-
ficient, that provides a quantitative measure of within-
cluster correlation or the proportion of the total variance 
in the outcome attributable to village and family effects, 
has been computed (Snijders and Bosker 1999). Finally, 
with the aim of investigating the genetic contribution to 
MetS, heritability analysis was carried out using SOLAR 
(Sequential Oligogenic Linkage Analysis Routines ver-
sion 4.2.7) (Almasy and Blangero 1998), that implements 
variance component models on extended pedigrees. Her-
itability, which is the proportion of phenotypic variance 
attributable to additive genetic effects, was estimated 
for MetS and its components’ combinations as dichoto-
mous traits and, for MetS individual components as 
quantitative traits, after accounting for covariates whose 
effect was significant at the p < 0.05 level. To handle dis-
crete traits SOLAR uses a liability threshold model, that 
extends polygenic theory to discrete non-mendelian 
characters by postulating an underlying continuously 
variable susceptibility (Falconer and Mackay 1996). All 
analyses were adjusted for age, sex, treatment, smoking, 
alcohol and exercise. The significance of heritability esti-
mates was tested by comparing the likelihoods of nested 
models using the likelihood ratio test.

Results
A total of 9,647 individuals ranging from 18 to 101 years 
of age were included in the analysis. The general char-
acteristic of the study participants are presented in 
Table  1. Men had higher BMI, systolic and diastolic BP, 
TRIG, GLU, serum uric acid, liver enzymes, white and 
red blood cell counts and, estimated glomerular filtra-
tion rate (eGFR), whereas women had higher total and 
HDL-cholesterol. In addition, the proportion of men who 
smoked, drank red wine and were physically active was 
higher than that of women. Overall, 16.3% of the study 
sample was obese, 38.7% had hypertension, 6.8% diabetes 
and 22.9% chronic kidney disease.

Standardized prevalence of MetS was 19.6% (NCEP-
ATPIII, 95% CI 18.9–20.4%), 24.8% (IDF, 95% CI 
24.0–25.6%) and, 29% (IDF and AHA/NHLBI, 95% CI 
28.1–29.8%), with a statistically significant difference 
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between men and women (31.8 vs 26.4%). Since the ten 
villages represent genetic isolates with peculiar founder 
populations and almost no migration or exchanges 
amongst them for many centuries up to 30  years ago, 
prevalence of MetS was estimated separately (NCEP-
ATPIII, Figure  1). In some of the villages age- and sex-
adjusted prevalence was significantly higher or lower 
than the average value, ranging from 9 to 26%.

Aiming at explaining such differences, we evalu-
ated all the variables we collected for studying the MetS 

(Additional file 2: Figure S2). Villages with highest or low-
est prevalence of MetS, besides factors directly involved 
in its definition, have also consistent values of the vari-
ables we found associated with MetS even if in a different 
way: for example, Loceri (26% MetS prevalence) has also 
higher BMI, waist and wrist circumference, but moderate 
values of serum lipids, as Talana (15% MetS prevalence) 
has lower blood glucose and fat mass, but higher BMI 
and BP.

We investigated which components combination con-
tributed most to the diagnosis of MetS. Table 2 shows the 
distribution of affected subjects by all possible combina-
tions of components. The most prevalent combination 
is BP +  HDL +  TRIG (19%), characterizing about one-
third of men. The second one is BP +  HDL +  WAIST 
(17%), representing about one-fourth of women, and the 
third one is BP + HDL + TRIG + WAIST (13.6%). For 
some of the combinations there is a statistically signifi-
cant difference between men and women, in particular 
MetS in women appears more influenced by the waist 
component as MetS in men looks more influenced by 
the triglyceridemia and glycaemia components. Interest-
ingly, for the most frequent combinations, statistically 
significant differences were observed among villages, 
even after adjusting for age and sex: in villages where the 
BP + HDL + TRIG combination was the most prevalent, 
the BP  +  HDL  +  WAIST was the less prevalent (Fig-
ure 2) and vice versa.

In the multilevel age-adjusted logistic regression 
models, among anthropometric and body composition 
variables, upper quintiles of BMI, wrist and waist circum-
ference, fat mass, body cell mass and intracellular water 
percentages, on the one hand, and lower quintiles of fat 
free mass, muscular mass, total body water and extracel-
lular water percentages, on the other hand, were asso-
ciated to MetS. Among serum and blood parameters, 

Table 1 Characteristics of the study participants

Data are presented as absolute and relative frequencies, no. (%), or means (SD).

ALT alanine transaminase, AST aspartate transaminase, eGFR estimated glomeru-
lar filtration rate.
a eGFR was calculated using the MDRD formula following the recommendations 
of the National Kidney Disease Education Program.

* p value refers to t test for difference in mean values, for quantitative variables, 
and to Chi square test for homogeneity of proportions, for categorical variables, 
between men and women.

Men 
(N = 4,075)

Women 
(N = 5,572)

p value*

Age (years) 49 (17) 49 (17) 0.7303

Body mass index 
(kg/m2)

26.5 (3.9) 25.3 (5.0) <0.0001

Systolic blood pres-
sure (mmHg)

131 (16) 125 (18) <0.0001

Diastolic blood pres-
sure (mmHg)

83 (10) 79 (10) <0.0001

Antihypertensive 
drug use

715 (17.6%) 1,002 (18.0%) 0.580

Total cholesterol 
(mg/dL)

203 (40) 207 (38) <0.0001

Triglycerides  
(mg/dL)

124 (98) 95 (54) <0.0001

HDL-cholesterol 
(mg/dL)

49 (12) 58 (13) <0.0001

LDL-cholesterol 
(mg/dL)

130 (36) 130 (34) 0.9400

Antilipidemic drug 
use

202 (5.0%) 306 (5.5%) 0.245

Fasting blood glu-
cose (mg/dL)

100 (25) 93 (24) <0.0001

Serum uric acid 
(mg/dL)

5.3 (1.3) 3.6 (1.1) <0.0001

AST (U/L) 24 (16) 20 (11) <0.0001

ALT (U/L) 32 (25) 21 (16) <0.0001

White blood cells 
(×103/μL)

7.4 (1.8) 6.9 (1.8) <0.0001

Red blood cells 
(×103/μL)

5.2 (0.6) 4.7 (0.5) <0.0001

eGFRa (mL/
min/1.73 m2)

73 (15) 69 (16) <0.0001

Current smokers 962 (23.6%) 728 (13.1%) <0.0001

Wine drinkers 2,343 (57.6%) 1,302 (23.4%) <0.0001

Phisically active 585 (14.4%) 915 (9.2%) <0.0001

Figure 1 Prevalence of the metabolic syndrome by village according 
to NCEP-ATPIII. Bars are 95% CI.
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higher levels of triglycerides, blood glucose, uric acid, ala-
nine transaminases, white and red blood cells and, lower 
levels of HDL-cholesterol and eGFR were associated to 
MetS. In addition, smoking, wine drinking, physical inac-
tivity, young age at menarche or at least two pregnancies 
in women were associated with the disorder. Notably, 
over 55  years of age, women had about three times the 
odds of MetS in respect to men (Additional file 3: Table 
S1). Even in the multilevel multiple model, many of these 
variables were confirmed as independently associated to 
MetS (Table 3).

Results of heritability analysis are presented in Table 4. 
MetS heritability was 48% (p =  1.62 ×  10−25), with no 
significant difference among villages. Most common 
combinations showed heritabilities of 53 and 52%, for 
BP + HDL + TRIG and BP + HDL + WAIST, respectively 
(Additional file  4: Figure S3,  shows two pedigrees as an 
example of such high degree of familial aggregation); for 
BP +  HDL +  TRIG +  WAIST combination heritability 
was 34%, and for BP + HDL + WAIST + TRIG + GLU 
combination it was 58%; while for BP + GLU + WAIST 
combination heritability (17%) was not significantly dif-
ferent from zero. Finally, heritability of each single MetS 
component was estimated, showing HDL-cholesterol and 
waist circumference as highly heritable traits.

Discussion
Assessing prevalence of MetS and investigating what fac-
tors are associated and how these factors are distributed 

and interrelated in populations characterized by a great 
deal of environmental homogeneity, may help dissecting 
such a complex disease.

Although the prevalence may vary depending on geo-
graphic location, race, gender and, urbanization, MetS 
affects over 20% of adults in many populations world-
wide. In Sardinian genetic isolates we obtained results in 
accordance with this worldwide trend. We found higher 
prevalence of MetS according to the AHA/NHLBI and 
IDF definitions compared to the NCEP-ATPIII one (29, 
24.8 vs 19.6%) (Fernández-Bergés et  al. 2012; Mangat 
et al. 2010). More controversial is the difference in prev-
alence between men and women: some studies found a 
higher prevalence in men (Buckland et  al. 2008), some 
others in women (Henneman et  al. 2008; Lorenzo et  al. 
2003) and some studies did not observe any signifi-
cant difference (Bonora et  al. 2003). Notably, age- and 
sex-adjusted prevalence of MetS varied widely among 
the 10 villages (9–26%). These discrepancies across vil-
lages, together with the differences/similarities observed 
among collected data (Additional file 2: Figure S2), were 
such that resembled the clustering already outlined in 
a previous study made on the basis of the population’s 
genetic structure (Pistis et  al. 2009). This observation 
supports the existence of genetic effects that contribute 
to phenotypic variation among sub-populations in the 
same region.

Such variability prompted us to investigate the dis-
tribution of the combinations of MetS components 

Table 2 Distribution of affected subjects by MetS components composition

BP blood pressure, GLU fasting plasma glucose, HDL high density lipoprotein cholesterol, TRIG triglycerides, WAIST waist circumference.

* p < 0.05 for difference of affected subjects’ proportions in men and women, two sided Chi square test.

Men (N = 838) Women (N = 1,121) All (N = 1,959)

N % N % N %

BP + HDL + TRIG* 241 28.76 132 11.78 373 19.04

BP + HDL + GLU* 44 5.25 18 1.61 62 3.16

BP + HDL + WAIST* 68 8.11 269 24 337 17.2

BP + TRIG + GLU 53 6.32 10 0.89 63 3.22

BP + TRIG + WAIST 52 6.21 62 5.53 114 5.82

BP + GLU + WAIST 79 9.43 121 10.79 200 10.21

HDL + TRIG + GLU 15 1.79 7 0.62 22 1.12

HDL + TRIG + WAIST* 10 1.19 48 4.28 58 2.96

HDL + GLU + WAIST 1 0.12 14 1.25 15 0.77

TRIG + GLU + WAIST 2 0.24 3 0.27 5 0.26

BP + HDL + TRIG + GLU* 72 8.59 26 2.32 98 5

BP + HDL + TRIG + WAIST* 76 9.07 190 16.95 266 13.58

BP + HDL + GLU + WAIST 24 2.86 77 6.87 101 5.16

BP + TRIG + GLU + WAIST 30 3.58 20 1.78 50 2.55

HDL + TRIG + GLU + WAIST 7 0.84 7 0.62 14 0.71

BP + HDL + WAIST + TRIG + GLU 64 7.64 117 10.44 181 9.24
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among villages. Interestingly, for the most frequent 
combinations, some statistically significant differences 
were observed, even after adjusting for age and sex. For 
instance, in Perdasdefogu and Seui, BP + HDL + TRIG 
combination was significantly more frequent than the 
BP + HDL + WAIST one and vice versa in Loceri. Once 
sex, as a potential confounding factor, is ruled out, and 
given that in these populations there is a relatively homo-
geneous environment (Angius et  al. 2001), a possible 
explanation may be the presence of different genetic 
factors in villages behaving in opposite manners. This 

hypothesis is supported by the high heritability showed 
by both these combinations (53 and 52%, respectively) 
and by the different genetic structure of these villages 
(Pistis et al. 2009). Distinctive founder effects and genetic 
drift may have induced a striking differentiation among 
villages, so that different frequencies of the allelic vari-
ants involved in the expression of these combinations 
may be present in these villages.

Overall, BP and HDL-cholesterol seem to be the most 
important components that, added to high TRIG or 
glycaemia in men and to large waist circumference in 

Figure 2 Prevalence of MetS components’ combinations by village. Bars are 95% CI. Percentages in brackets represent prevalence of specific combi-
nations over subjects affected by MetS. Prevalences on y axis are computed over the entire sample adjusting for age and sex.
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women, most frequently determine MetS. Furthermore, 
the combination of these factors is set in a condition 
where lifestyle, according to changes that typically occur 
in Western society, such as everyday physical activity 
decrease and improper eating habits, most influences the 
family predisposition to develop insulin resistance and 
MetS. The observed gender-specific differences confirm 
results of other studies (Miccoli et al. 2005; Lorenzo et al. 
2003).

Logistic regression analysis on anthropometric and 
body composition variables confirmed that all forms of 
excessive body fat are associated to metabolic syndrome, 

as opposed to higher proportions of muscular and fat 
free mass.

Even adjusting for age, smoking and drinking we 
observed a significant association of white blood cells 
(WBC) and red blood cells (RBC) counts with MetS. It 
is well known that WBC count is a marker of acute infec-
tion, tissue damage, and other inflammatory conditions, 
but the mechanisms underlying its increase in MetS 
patients remain unclear. One possibility may be via the 
association between insulin resistance and WBC; another 
one, via proinflammatory cytokines, like TNF-α and IL-6 
released from adipose cells, that elevate the WBC count 

Table 3 Multiple logistic regression: independent associates of MetS

CI confidence interval, eGFR estimated glomerular filtration rate, OR odds ratio, RBC red blood cells, WBC white blood cells.
a Estimates are adjusted for age, wine consumption, physical activity and smoking. Reference category is the first quintile or normal range for quantitative variables 
and never/otherwise for qualitative variables.
b Serum uric acid >7.0 mg/dL in men and >6.0 mg/dL in women.
c Intraclass correlation coefficient (the proportion of the total variance in the outcome attributable to village and family effect) at the village level and at the family-
within-village level are both ρ = 0.01811053.
d Intraclass correlation coefficient is ρ = 0.04958685 at the village level and ρ = 0.07525541 at the family-within-village level.

Menc Womend

Quintiles ORa 95% CI p value Quintiles ORa 95% CI p value

Wrist (cm) (17–17.3) 1.4 0.9, 2.1 0.089 (15–15.6) 1.6 1.1, 2.3 0.014

(17.3–17.8) 1.1 0.8, 1.7 0.486 (15.6–16) 1.8 1.3, 2.6 0.001

(17.9–18.3) 1.8 1.2, 2.6 0.003 (16–16.7) 2.1 1.5, 3.1 <0.0001

(18.3–23.5) 3.1 2.2, 4.4 <0.0001 (16.7–21) 3.2 2.2, 4.5 <0.0001

Fat mass (%) (0.15–0.19) 1.7 1.1, 2.7 0.02 (0.22–0.27) 2.5 1.4, 4.3 0.001

(0.19–0.23) 2.6 1.7, 4 <0.0001 (0.27–0.32) 4.9 2.9, 8.2 <0.0001

(0.23–0.27) 3 1.9, 4.7 <0.0001 (0.32–0.38) 8.8 5.3, 14.8 <0.0001

(0.27–0.83) 5.5 3.5, 8.8 <0.0001 (0.38–0.79) 11.8 7, 20 <0.0001

Intracellular water (%) (0.54–0.57) 1.2 0.9, 1.7 0.21 (0.51–0.53) 1.4 1.1, 1.9 0.009

(0.57–0.58) 1.5 1, 2.2 0.03 (0.53–0.55) 1.5 1.1, 2 0.004

(0.59–0.6) 1.7 1.1, 2.5 0.008 (0.55–0.57) 1.7 1.3, 2.3 0.001

(0.6–0.67) 1.4 0.9, 2.1 0.162 (0.57–0.71) 2.3 1.7, 3.2 <0.0001

WBC (×103/μL) (5.9–6.7) 1 0.7, 1.4 0.968 (5.5–6.3) 1.1 0.8, 1.4 0.622

(6.7–7.6) 1.5 1, 2.1 0.03 (6.3–7.1) 1.2 0.9, 1.6 0.123

(7.6–8.7) 1.6 1.1, 2.4 0.007 (7.1–8.1) 1.3 1, 1.7 0.099

(8.7–24.4) 2.4 1.7, 3.5 <0.0001 (8.2–40.7) 2 1.5, 2.7 <0.0001

RBC (×103/μL) (4.7–5) 1.1 0.8, 1.5 0.558 (4.3–4.6) 1.2 0.9, 1.6 0.26

(5–5.3) 1.2 0.9, 1.7 0.259 (4.6–4.8) 1.2 0.9, 1.5 0.323

(5.3–5.6) 0.9 0.6, 1.2 0.394 (4.8–5.1) 1.3 1, 1.8 0.052

(5.6–7.8) 1.2 0.9, 1.7 0.228 (5.2–7) 1.3 1, 1.8 0.046

Hyperuricaemiab UA >6 or 7 mg/dl 1.6 1.2, 2.3 0.002 UA >6 or 7 mg/dl 3.5 2.2, 5.6 <0.0001

Liver enzymes alteration AST or ALT >40 U/L 1.8 1.4, 2.3 <0.0001 AST or ALT >40 U/L 1.7 1.3, 2.4 0.001

Cronic kidney disease eGFR <60 ml/min/1.73m2 1.3 1, 1.7 0.058 eGFR <60 ml/min/1.73m2 1.3 1.1, 1.6 0.006

Physical activity seldom 0.7 0.5, 1.1 0.118 Menarch age (years)

1–2 times/week 0.5 0.2, 0.9 0.014 ≤12 1.4 1, 1.8 0.048

>2 times/week 0.4 0.2, 0.8 0.009 Pregnancies (no)

Smoking Ex smoker 1.1 0.9, 1.5 0.275 ≥2 1.2 1.1, 1.5 0.047

Smoker 1.4 1, 1.9 0.041
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(Nagasawa et  al. 2004). Recent longitudinal studies sug-
gested that baseline inflammation mirrored by WBC 
level may impact future MetS development (Babio et al. 
2013; Kim et al. 2010). In addition, the increase in RBC 
count could be expression of an insulin-resistant state, 
since it is suggested that insulin can bind receptors upon 
erythropoietic cells and stimulate their proliferation 
(Aoki et  al. 1994). Just a few studies addressed the pos-
sible association of RBC with MetS (Kim et al. 2010; Stra-
face et al. 2011).

The observation that the prevalence of MetS 
increases with increasing levels of serum uric acid 
and, independently, with decreasing levels of e-GFR, 
is confirmed by other studies (Sui et al. 2008; Thomas 
et al. 2011). Recently, growing evidence demonstrated 
that uric acid may have a key role in the pathogenesis 
of MetS. Proposed mechanisms of uric acid mediated 
MetS include the inhibition of endothelial NO caus-
ing hypertension, inflammation and oxidative stress in 
adipocytes leading to insulin resistance and, increased 
endothelial and smooth muscle oxidative stress (Wang 
et al. 2012).

Previous studies have shown that higher concentra-
tions of liver enzymes are associated with the diagnosis 
of MetS and its components and are well known steatosis 
markers (Kotronen et al. 2007).

Finally, our results confirm that young age at menarche 
might play a role in the development of the MetS, even 
if the pathway is not yet clear. It is possible that early 
menarche is a marker for childhood obesity; whether it acts 
additionally or as a risk factor by itself rather than through 
sex hormone differences is still to be understood (Stöckl 
et al. 2011; Glueck et al. 2013).

It is noteworthy that, overall, the analysis of quantitative 
parameters such as anthropometric ones, alanine ami-
notransferase, eGFR, white and red blood cell count or, 
serum uric acid highlighted that even minute changes, still 
within the so called normal range, could point towards a 
potential dysmetabolic state. Therefore, in the era of early 
detection and prevention of metabolic disorders, a practi-
cal recommendation might be to follow these parameters 
as continuous biomarkers taking into consideration the 
possibility that even slight changes might be relevant.

We recognize several limitations in this study. First of 
all, our conclusions are mainly descriptive since they are 
based on a cross sectional design. Besides, no exclusion 
criteria were applied, thus, possible confounders could 
have affected the results. Nonetheless, an outstanding 
strength of our study is that it was conducted in a large 
representative sample of the Sardinian adult population 
using standard protocols and instruments. Furthermore, 
adequate training of data collectors, high response rate of 
participants and detailed information on medical history 
and lifestyle ensured a high quality of this study results, 
as evidenced by the fact that we were able to identify 
many of the well known MetS risk factors.

In summary, the two most frequent combina-
tions for MetS diagnosis, BP  +  HDL  +  TRIG and 
BP + HDL + WAIST, show a sex-specific element. Fur-
thermore, they seem to have a large genetic component 
that could be successfully investigated in population iso-
lates characterized by a homogeneous environment that 
likely reduces the background variability otherwise pre-
sent in outbred populations.
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