
Copyright Information

This is a post-peer-review, pre-copyedit version of the following paper

Nisticò, A., Baglietto, M., Simetti, E., Casalino, G., & Sperindè, A. (2017, September).
Marea project: UAV landing procedure on a moving and floating platform. In OCEANS–Anchorage,
2017 (pp. 1-10). IEEE.

The final authenticated version is available online at:
http://ieeexplore.ieee.org/abstract/document/8232325/

You are welcome to cite this work using the following bibliographic information:

BibTeX

@INPROCEEDINGS{Nistico2017marea,

author={A. Nistic\’{o} and M. Baglietto and E. Simetti and G.

Casalino and A. Sperind\’{e}},

booktitle={OCEANS 2017 - Anchorage},

title={Marea project: UAV landing procedure on a moving and

floating platform},

year={2017},

pages={1-10},

month={Sept},

}

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://ieeexplore.ieee.org/abstract/document/8232325/

Marea project: UAV Landing procedure on a
moving and floating platform

Andrea Nisticò∗, Marco Baglietto∗, Enrico Simetti∗†, Giuseppe Casalino∗†, Alessandro Sperindè∗†
∗DIBRIS, University of Genova, Via Opera Pia 13, 16145 Genova, Italy

†Interuniversity Research Center on Integrated Systems for the Marine Environment
Via Opera Pia 13, 16145 Genova, Italy

Abstract—In this paper we consider the problem of au-
tonomous landing on a horizontally moving platform with vertical
unpredictable oscillatory dynamics using a quadrotor system.
The quadrotor is equipped with an external Raspberry PI as
a companion computer used for communications. The task is
divided in two subproblems: tracking and landing. We present
the algorithms involved for the entire procedure; a PI regulator
is used for the tracking problem while descending is made
by controlling relative vertical velocity. A finite state machine
approach is chosen to manage multiple robot states and recover
from failures. A software framework was developed in order to
manage general flight missions and, in this case, the landing
assignment. At the end, we performed simulation and real
experiments in order to validate the outcome of this work.

I. INTRODUCTION

The framework of this work is MAREA, an Italian research
project based on a consortium of university and companies
with the purpose of implementing novel strategies for auto-
matic search and rescue operations by exploiting the coopera-
tion between heterogeneous robotic platforms. These demand-
ing tasks are increasingly performed by semi-autonomous
vehicles like MAVs (Micro Aerial Vehicles), allowing the ex-
ploration of remote areas but increasing the need for automatic
management in the entire infrastructure. In particular, during
the whole autonomous assignment, the landing procedure is
one of the most dangerous and challenging process.

Around 50 % of UAVs (Unmanned Aerial Vehicles) suffer
accidents during landing and 70 % of them are attributed to
human factors [1]. An automatic or assisted landing procedure
could significantly decrease the number of accidents; more-
over, with the vehicles constantly decreasing in size, higher
precision is required. In the case of MAVs, atmospheric agents
such as wind and waves have a very high impact on the
dynamics which are hard to handle by human pilots or standard
guidance systems.

The main focus of this work is to automatize the entire
procedure for a scenario which consists in a commercial
quadcopter taking off, searching for the moving target on the
ocean surface and then safely landing on the dedicated pad.
ISME has been working on marine robotics for search and
rescue [2] since many years and thanks to the knowledge
obtained in a previous work [3], a boat prototype, shown in
figure 1, is been developed and intended to be used in the real
application.

(a)

(b)

Fig. 1. (a) boat rendering with target platform; (b) actual vehicle under
construction

For practical reasons, we started with the design of a wider
software framework capable of dealing with general flight
missions by sending the correct commands to the MAV. This
architecture, called mocap2mav [4], consists of a modular
lightweight off-board control station written in C++ where we
encapsulated the modules and algorithms for the landing task.
Most important features of the software are:

• Modularity: modules are independent programs com-
municating with each other through Lightweight Com-
munications and Marshalling middleware (LCM) [5].

• Expandability: consequence of being modular, the ar-
chitecture is easily expandable.

• Universality: the software does not have prior knowl-
edge on the particular quadrotor, this means that through
few sw adapter components it is compatible with different
systems.

Under this framework, the addition of dedicated modules for
the landing procedure is straightforward. The task complex-
ity requires the handling of various situations (approaching,

tracking, landing fail etc.): we expanded previously developed
works on similar scenarios [6], [7] by choosing a finite state
machine approach and adding vertical compensation induced
by waves in the switching logic and algorithm. The considered
framework tackles two main jobs separately:

• Horizontal tracking: the procedure of aligning with the
center of the moving boat on the horizontal plane.

• Vertical compensation: the task of getting closer to
the target by reducing the height and compensating for
vertical oscillation induced by floating dynamics.

This paper will recall briefly the system setup as well as
presenting the proposed control algorithms implemented by
the software. Some experimental results in a laboratory envi-
ronment, showing the MAV undergoing the entire procedure,
are presented.

II. FLIGHT STACK AND ONBOARD CONTROLLERS

Since this application is thought for available commercial
drones, development of the flight architecture is not our
concern. Usually these pieces of software are designed by
specialized teams from the manufacturer company or, as in
our case, from the open source community. A flight stack
consists in the Firmware which is installed on the autopilot
board; the stack manages every hardware communication by
running drivers as well as performing high speed control loops
and localization. Many of these core architectures are available
on the market as they are usually provided with the quadrotor
itself. As a consequence, our work aims to be compatible with
most architecture types by developing software modules that
can be adapted with few effort to the specific platform.

Nevertheless, it is worth presenting briefly the flight control
algorithms in order to better understand theoretical and prac-
tical aspects of this work, even if they run independently from
our system on the autopilot board.

A. State estimation

As a primal assumption, we consider the robot and platform
position measure as given. At this stage, position measurement
is performed by a Motion Capture (MoCap) system composed
by 8 infra red cameras attached to the roof; passive reflective
markers are placed on the MAV’s body and position feedback
is given by the MoCap which calculates markers pose. The
calculated values are then injected in the PX4 [8] sensor fusion
module which consist in a Kalman Filter: it takes as input
different sensors such as GPS, barometer, inertial sensors and
vision sensors in order to estimates the robot state (position
and orientation). We use the vision sensor channel, which is
dedicated to position measures coming from cameras, optical
flows or laser scanners, in order to pass the MoCap raw pose
to the autopilot.

On the other hand, we directly use the platform raw pose
as the real value while velocity is calculated by a discrete
derivative between actual and previous measure. A fixed
window filter performs the desired smoothing on the velocity
signal on each axis.

xE

zE

yE

z�
x�

y�

E��

Gravity

(a)

xE

zE

yE

z�

x�

y�
E��

(b)

Fig. 2. (a) NED representation; (b) ENU representation

B. PX4 Autopilot control scheme

We chose to work with the PX4 autopilot because it
has rapid and active development community, a clear and
structured code and it is open-source. PX4 manages the
entire robot infrastructure: this section will focus only on the
control modules because they represent the interface with our
application.

1) Transformation frames: Before presenting the control
scheme, we should shortly describe the adopted transformation
frames. PX4 uses NED (North-East-Down) coordinate system
which consists in having a local frame, ground fixed, with the
x axis pointing north, y towards east and z downwards by
definition. The angles are represented by roll (rotation on x),
pitch (rotation on y) and yaw (rotation on z). NED frame is
usually adopted in aeronautics, the downwards z is to achieve
the historical definition of a positive pitch when going up. On
the other hand, many robotics applications adopts ENU (East-
North-Up) frames where x is East, z is up and y accordingly.

In both representation, a body frame is attached to the robot.
In NED this will result in x forward and z down while in
ENU x forward and z up. The robot pose is described through
the transformation ETB between body frame respect to earth
frame.

Our application uses ENU frame, the conversion between
the two systems is entirely made by PX4 internally. Figure
2 shows both earth and body frames in the two representations.

�
d
m�v

�m�v

Fig. 3. PX4 Firmware control scheme.

2) Control scheme: Software design is divided in five sub
controllers placed in a cascaded fashion one after the other.
Each controller generates the input for the next one. From the
highest to lowest level we have: position control, velocity con-
trol, attitude control, attitude rate control and motor control.
The entire pipeline is shown in figure 3 alongside with the
estimation modules, red arrows represent signals which are
externally provided namely: position setpoint and position
feedback. On the other hand, being an indoor setup, GPS is
not available but depicted for completeness.

The first module, position control, implements a propor-
tional law using as reference the provided setpoint and as
state the position feedback and generates a velocity setpoint.
Formally we have:

ep = pd
mav − pmav

vd
mav = Kep

(1)

where K is the proportional gain; pmav , pd
mav and vd

mav

are 3-elements vectors and they represent respectively the
actual robot position in earth frame, the desired set-point
which is externally received and the generated target velocity
fed to the next controller. The other cascaded modules are PID
regulators, they take as reference the previous module output
while state is provided by estimators.

It is worth stressing the fact that our MAV takes as input
only position setpoints (which do not coincide with platform
pose) and feedback. It will try to track the provided setpoint
which will be generated by an external application running
on a ground machine. More details are provided in the next
sections.

III. LANDING PROCEDURE

This section starts describing briefly how we tackled the
problem and then it presents the proposed solution from a

theoretical point of view.
First, let us recall some of considerations:
• the absolute pose is provided by IR cameras mounted

around the flight arena;
• we consider the MAV as closed system, it has its own

controllers with their own dynamics;
• the system input is a reference position in space (3-

dimensional vector);
With that said, two distinct but dependent phases can be easily
recognized during the entire procedure: horizontal tracking,
which consists in aligning the MAV’s center of mass with the
landing spot on the horizontal plane (x and y), and landing
which consists in getting closer to the target by reducing the
height and compensating for vertical oscillation.

A. Horizontal tracking

Let us define pd
mav,xy as the desired horizontal position

(or the system input) which is sent to the MAV by the mo-
cap2mav architecture and pplat,xy as the platform horizontal
position. These quantities are defined as 2-dimensional vectors
representing only x and y coordinates. Hence we can define
the horizontal error vector as:

êp,xy = pplat,xy − pmav,xy (2)

The system response (between desired and actual position,
namely input and output) is comparable to a second order
system with a transient and oscillations before reaching the
steady state. One could think of assigning the platform position
as reference but, in the case of a moving target, convergence
will not be achieved in most of the cases. Transient time will
induce a delay and the MAV will stay behind the platform
with a steady error in position.

The idea is to issue a reference point which is in front of
the moving platform, along movement direction, such that the

Fig. 4. Tracking control scheme

drone will be aligned with the landing spot. Hence the final
reference position sent to the robot will be a PI regulator plus
a feedforward component.

We can now introduce the PI regulation on the position error
as:

pd
mav,xy = pplat,xy + kpêp,xy + ki

∫
êp,xy + kfvplat,xy

(3)
The first term is an offset (starting condition of the integrator)
while the other two terms represent the PI controller. Last
member is a feedforward on the platform velocity.

Equation 3 calculates the desired setpoint which is the po-
sition controller input defined in equation 1. We are basically
inverting the PX4 position control in order to send a position
reference which will internally generate a desired velocity
setpoint. In fact, by substituting equation 3 in (1) and setting
K = 1 we obtain:

vd
mav,xy = (kp + 1)êp,xy + ki

∫
êp,xy + kfvplat,xy (4)

Equation 4 shows that tracking is performed exploiting the
embedded velocity controller by applying an external loop
with reference the platform horizontal position and adding a
feedforward term. In short, we send over Wi-Fi pd

mav,xy in
order to generate internally vd

mav . This concept is depicted
in figure 4.

B. Landing

In order to cancel vertical oscillatory movement and de-
scend slowly on the platform, our goal is to keep the MAV
descending velocity respect to the platform equal to a desired
value. Defining vdescmav,z as the desired MAV vertical velocity
respect to the platform we have:

vdescmav,z = vdmav,z − vplat,z (5)

where vdmav,z and vplat,z are the absolute robot and platform
velocities in order to obtain vdescmav,z as relative descendant rate.

Inverting (5) we obtain:

vdmav,z = vdescmav,z + vplat,z (6)

In order to improve stability, we add a proportional gain on the
velocity error; let us define vtargetmav,z as the final target velocity,
we have:

vtargetmav,z = vdmav,z +Kvev,z (7)

Fig. 5. State machine diagram.

where
ev,z = vdmav,z − vmav,z (8)

is the difference between desired and actual MAV absolute
velocities.

The key step in this procedure is the choice for the desired
relative velocity vdescmav,z . This quantity is a negative value and
the magnitude is calculated with a linear relation respect to
the vertical distance êp,z from the landing surface:

|vdescmav,z| = Rêp,z (9)

This desired value is clamped between a minimum of 0.1 m/s
and a maximum of 0.6m/s.

In order to obtain this behavior, we need to generate a
position setpoint. Thus, we will send to MAV the height
reference which will generate internally the vertical target
velocity calculated in (7). This setpoint will be:

pdmav,z = pmav,z + vtargetmav,z (10)

Next step consists in describing how those simple math-
ematical tools are implemented in order to obtain the full
procedure.

IV. PROCEDURE IMPLEMENTATION: FINITE STATE
MACHINE

In section III we present the mathematical equations in-
volved in tracking and descending; the purpose of this part is

to describe how the above equations take part in the overall
procedure which not only consists in tracking and descending,
but also manages unpredictable states such as losing the
platform.

Following a previous work [6], we decided to adopt a
similar solution: a finite state machine approach. Therefore,
the landing procedure is modeled with different states while
the system reacts depending on the actual one.

To each state is mapped a system behavior, an algorithm
which is called at each iteration. The following list describes
each state:

• INIT: initialization state, the procedure entry point. In this
state, the robot will fly to its maximum tracking altitude.

• HOLD: tracking state. The MAV tracks the platform
horizontally using the equations explained in section
III-A.

• DESCEND: when entering this state, the altitude setpoint
is decreased by a small delta, if the minimum tracking
altitude hmin is not reached; otherwise it is clamped to
hmin.

• ASCEND: in this state, the altitude setpoint is increased
by a small delta, if the maximum tracking altitude hmax

is not reached; otherwise it is clamped to hmax.
• COMPENSATION: this states implements the altitude

compensation explained in section III-B, combined with
tracking algorithm as in HOLD state.

• LAND: at this stage, motors are set to minimum rate.
On the other hand, signals represent the switching condition
for each state: in other words, the event that may occur in
order to jump form one particular state to another. Signals are
implemented as booleans and consist in the following:

• Init Done: true when initialization phase ends, imple-
ments a wait function.

• Platform Tracked: true when robot horizontal error re-
spect to the platform center is less than half platform
size, for Nhold consecutive steps.

• Platform Lost: true when robot horizontal error respect
to the platform center is higher than half platform size,
for Nlost consecutive steps.

• Centered: true when robot horizontal error respect to the
platform center is less than a quarter platform size.

• Comp Ready: true when the robot reaches the minimum
tracking setpoint maintaining that pose for one second.

• Ready: true when the robot is 10 cm above platform
surface.

V. COMPONENTS DESCRIPTION

This section describes the components involved in the
experiments. Real setup is presented as well as the simulated
environment, where software components are tested and vali-
dated.

The overall setup consists in multiple software and hardware
components working simultaneously in order to accomplish
the goal. The following parts can be identified:

• IRIS quadcopter: platform used in the experiments.

Fig. 6. IRIS drone with IR markers and raspberry

• PX4 / PiXHawk: namely the Firmware and the autopilot
board on which is running.

• Raspberry Pi: the onboard computer implementing Wi-
Fi communication and serial interface with PiXHawk.

• MoCap: motion capture system.
• mocap2mav software: a collection of software modules

responsible for generating the correct position setpoints
in order to perform a list of predefined task (take off,
move, rotate, land on floating boat) defined by the user.

Above listed components can be divided in two groups:
offboard and onboard components.

A. Offboard components

These hardware and software units, placed offboard, consist
in: motion capture, Motive software and the mocap2mav
program. We chose an Optitrack system, as motion capture,
composed by 8 ”Flex 13” cameras. Each camera has a res-
olution of 1.3 MP running at 120 frames per second with
a 8 ms delay; equipped with IR LEDs, they are able to
retrieve the pose of passive reflective markers mounted on the
robot’s chassis as shown in figure 6 and provide their total
center of mass. Motive software is shipped by Optitrack and
manages the mocap system; it runs on a Windows machine
connected to a LAN network with a Linux computer and a 5
Ghz WiFi router. On the other hand, the mocap2mav software
runs on the Linux machine. This architecture is composed by
different modules executing in parallel and it was developed
for providing a software interface with the IRIS platform,
enhancing its features. The main role is to provide a simple
solution for allowing a user to execute different tasks with
the robot, by task we mean: take off, move, rotate and land.

Through a configuration text file, the user can determine the
tasks sequence with their own parameters (e.g. move in a
specified location, take off at a specific height) and the robot
will execute them one after the other.

The main features are: Modularity, Expandability and
Universality. Each module consists in a C++ independent
program which is reactive to a specific data stream. Streams
are managed by LCM middleware which is responsible for
the inter-process communication, it uses a publish-subscribe
pattern in which each module can subscribe to a channel (data
stream) and read contents from it (C structs). This design
choice supports the Modularity and Expandability features.
Furthermore, by simply writing an interface module for the
target system, we can adapt it to various robots.

The Executioner and Automatic modules represent the ap-
plication core. Executioner is a program dedicated to mission
management, it takes as input the action list and decides
whether the actual task is concluded or not, it publishes on
the dedicated LCM channel the actual task. On the other
hand, the Automatic module, takes as input the actual task and
calculates the proper position set-point in order to accomplish
the goal. Both modules read form the actual position channel
and react to that stream. By reacting we mean that it listens
to a specific channel and execute its core loop when data
arrive. This means that the specific loop rate is determined
by the frequency at which data are streamed. A third module,
Lcm2Ros, implements the interface with the specific platform,
IRIS in this case. It is written around ROS middleware and
simply translates LCM streams in ROS messages and sends
them to the robot over WiFi; both middlewares adopt the pub-
sub pattern. Using this framework, adding platform landing
task was straightforward.

B. Onboard components

These elements represent hardware and software present
on the robotic platform, namely IRIS. Hardware compo-
nents are: PixHawk and RaspberryPI 3. Additionally, software
components are the following: PX4 Firmware, Mavros and
MocapOptitrack ROS packages.

As previously stated, PixHawk is the onboard autopilot
board. It has two co-processors for fail safe, inertial sensors,
two barometers, a magnetometer and physical interfaces that
are attached to the GPS and motors ESCs (Electronic Speed
Controller). The software firmware running on PixHawk is
called PX4. Besides implementing the flight stack presented
in section II-B, PX4 manages the entire robotic system; it
uses Mavlink as a communication protocol streaming more
than 20 channels via radio or serial interface such as battery
status, actual position or attitude. External communication
happens via Mavlink; since radio connection was too weak
and unpredictable, we adopted a WiFi communication inter-
face. In order to achieve that, we expanded the computing
and hardware capabilities adding a companion computer: a
RaspberryPI 3 connected with a serial interface with PixHawk.
The OS installed on the Raspberry is Ubuntu MATE 16.06,
chosen because it has support for Arm packages and it is very

lightweight. Two ROS nodes are executed on the companion
computer: mavros and mocapOptitrack. Mavros is a software
package written by the community which implements a direct
bridge with Mavlink messages sent by PX4.

MocapOptitrack node reads the information coming from
Motive and sends the pose to Mavros which redirects it to the
autopilot. On the other hand, Mavros receives also the position
setpoint coming from the mocap2mav architecture and feeds
it to the position controller.

We should remark that LCM was use beside ROS because
it is very lightweight and easy to port on different devices,
hence we can run the architecture on multiple system types.

Figure 7 depicts the architecture schematics.

C. Overall description

As an example, let us describe the entire procedure. It starts
with the MAV grounded and motors at minimum rate, a task
list is created by the user which describes the actions sequence
to be executed by the robot; as an example, let us define this
list as the following: takeoff (at a desired altitude), move (to
a certain point) and land (on mobile platform).

The ground control software, namely mocap2mav, processes
that list and sends the right position reference to the MAV.
Starting from take off, a position reference is issued above
the robot ground pose at a specific height defined by the user.
Reached that position, it is time for the moving action. In this
case, as the name implies, a reference is set to a specified
position in x, y and z local coordinates. The system checks
continuously the ending condition of each action and, if it
becomes true, it alerts the Automatic module by providing the
new task: that will be landing in this example.

When landing instruction is sent by Executioner to Auto-
matic module, the landing procedure kicks in and the algo-
rithms explained in sections III-A, III-B and IV are executed.
Section IV introduces the reader to the finite state machine
modeling. The entry state is called Init, at this stage hmax

is sent as height reference. When init done becomes true,
the machine switches to Hold state. In this state, the x
and y setpoint are calculated as explained in section III-A
while the altitude is maintained constant and clamped between
hmin and hmax. Let us define l as half of the platform size
(square): if the horizontal error |êp| is less than l, a counter
ctrack is increased by one at each iteration. In the same way,
if |êp| is greater than l then clost is increased by one at
each iteration. As a remark, this is implemented inside the
Automatic module which iterates every time a mocap pose
value arrives, approximately at 120 Hz.

At this point if ctrack becomes greater than a constant
Nhold, the signal Platform Tracked becomes true and the
machine jumps to Descending state. In this condition, height
setpoint is decreased by a small delta while x and y are kept
constant. Right after this operation the machine is forced back
to hold state. This continuous switching is made in order to
manage tracking and vertical movement as separate tasks; in
the same way, if clost becomes greater than a constant Nlost

we switch to Ascending: ctrack is set to zero (and vice versa),

Fig. 7. Software modules

height reference is increased by a delta and state goes back to
Hold. Both in Hold, Ascending and Descending states, height
reference is clamped between hmin and hmax, they represent
respectively: the minimum safest height at which we are sure
to avoid collisions, taking into account vertical oscillations,
and the maximum altitude for the entire procedure.

The states modeling is described in figure 5 as well as
jumping conditions.

From Hold state, Centered and Compensation Ready signals
will become true. The first rises when |êp| is less than
l/2 while the second when the robot hight is around hmin.
When both are true and the platform is tracked, the machine
switches to Compensation state. This state is dedicated to
height compensation and implements the procedure explained
in section III-B beside tracking algorithm.

Finally, when ready signal rises, meaning that the MAV is
10 cm above landing surface, motors are set to idle performing
touchdown. Both Land and Compensate states can jump to
Ascending, if the vehicle is not centered, as a failsafe.

D. Simulated environment

When the experimenting phase becomes critical, we need a
safer solution than the real robot in order to preserve as much
as possible the integrity of the equipment. The Software In
The Loop (SITL) simulation is what we need. This kind of
environment is able not only to simulate the robot physics, but
also to run the actual Firmware. In the simulation, softwares
and interfaces are identical to the one explained in figure 7
and the IRIS plus RaspBerry couple is replaced by a physical
model inside Gazebo sim.

(a)

985 990 995 1000 1005
TIME [s]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
O

S
IT

IO
N
 [
 m

]

MAV_pos_Z

platform_pos_Z

(b)

Fig. 8. Simulation results: (a) the x position of the MAV (red) converging
to the target moving direction (black); (b) height of the MAV (blue) slowly
decreasing until touchdown, while compensating the vertical target movement
(black), and taking off again.

VI. RESULTS

In this section we present some trials results reporting the
system trajectories and discussing the entire procedure from a
performance point of view.

A. Simulation
The preliminary simulation assumes a flat square of di-

mension 1.2 × 1.2 meters as target for landing; in order to
simulate the floating dynamics, we assume the ocean surface
to be modeled with the so called P-M (Pierson-Moskowitz)
spectrum [9] and the platform oscillating accordingly.

The following parameters are used in the simulation:
• P-M spectrum frequencies are in the range from

[0.5 rad /sec – 4.5 rad /sec].
• Sinusoidal waves frequencies [ωi with i = 1, 2 . . . N] are

sampled from that interval with a fixed step.
• For each frequency we generate a random phase and then

sum up the N sinusoids in order to obtain the height
profile for the oceanic surface.

• Amplitudes are calculated from the P-M spectrum assum-
ing a 7m/s wind velocity causing wave motion.

• The platform moves back and forth in a straight line along
x axis in a segment of 20 meters with a velocity of 1m/s.

• Final landing phase is performed if the horizontal error
respect to the center of the platform is less than 0.5m.

As previously stated, the procedure is divided in two sub-
problems: horizontal tracking and vertical descend; this
simulation was performed in order to test both. As an initial
simplifying hypothesis, we assume to have the exact position
of the platform at each time step while the on-board position
controller works with a simulated GPS as feedback. The MAV
autopilot takes position or velocity references processed by the
on-board controller [10] coded in the PX4 Firmware.

Figure 8 shows the preliminary tracking performances
achieved: in black the target coordinates while in color the
MAV coordinates in ENU frame (East-North-UP where x
forward and z up). The y plot is omitted since the moving
direction is along the x axis. Figure 8(a) shows how the PI
regulator converges to the tracked signal, a small overshoot on
abrupt platform direction changes appears. On the other hand,
figure 8(b) shows the vertical behavior: the MAV compensate
the irregular wave by getting closer to the surface until contact,
after some seconds it takes off gain. Figure 9 shows snapshots
of the entire procedure.

B. Real Experiment
After validating the software in simulation, we performed

experiments on the real hardware in order to analyze and
compare the system behavior.

We replicated the oscillatory dynamics, for the indoor setup,
with a second robot composed by a tracked ground vehicle
with a 6 degree of freedom manipulator arm mounted on top
of it. On the second link we placed a squared platform of
0.7 × 0.7 meters as dimensions and a thin foil of foam on
it in order to absorb the impact. Figure 10 shows the ground
vehicle with the IRIS on top for comparison.

As explained in section VI-A, wave amplitudes are gen-
erated through the P-M spectrum according to the procedure
explained in [9] and the following parameters are considered:

• P-M spectrum frequencies are in the range from
[0.4 rad /sec – 1.3 rad /sec.

(a) (b)

(c) (d)

Fig. 9. Landing procedure: (a) tracking, (b) approaching, (c) wave compen-
sation, (d) landing.

Fig. 10. Ground vehicle with the manipulator placed on top for wave
emulation.

• Amplitudes are calculated from the P-M spectrum assum-
ing a 7m/s wind.

• The wave motion has a maximum amplitude (calculated
from the lowest point to the highest) of 0.7m which
correspond to the length of the first arm link.

• PI gains are tuned empirically.
The instantaneous amplitude is generated as a time series and
each value is stored in a text file. A program communicates
with the arm through a TCP socket sending the right angle
references for each joint in order to achieve the desired
platform elevation. In particular, from the text file we gather
the height value and then we transform it as an angle for the
first horizontal pitch arm joint (marked in green in figure 10).
Accordingly, we calculate the value for the second pitch joint
(marked in red) in order to maintain the platform flat.

The procedure consists in a take off instruction directly
with the IRIS placed on the platform and then with a land
command; after landing the robot takes off again and the

(a) (b)

(c) (d)

Fig. 11. (a)

procedure restarts. Figure 12 shows the evolution of the x
and z coordinates both for the robot and platform; the small
height difference when landed is due to the quadrotor landing
feed which add this offset. Figure 11 shows snapshots of the
real experiment.

VII. CONCLUSIONS AND FUTURE WORK

We have considered the problem of autonomous landing
on a floating platform, performed by a quadrotor system. We
assumed the task of self and relative localization as solved at
this stage and we focused our work on the development of the
procedure needed in order to tackle the challenge. We prepared
a laboratory setup which is easy to use due to the presence
of an additional companion computer added to the IRIS robot
and the use of standard software tools for communication with
the autopilot board.

5 10 15 20 25 30 35 40
TIME [s] +1.49840934e9

1.0

1.5

2.0

2.5

P
O
S
IT
IO

N
 [
s]

platform_pos_z

MAV_pos_z

(a)

10 20 30 40 50
TIME [] +1.49840934e9

−2

−1

0

1

2

3

P
O
S
IT
IO

N
 [
m
]

MAV_po _x

platform_po _x

(b)

Fig. 12. (a) z coordinate, MAV hight in blue while platform in black; (b) x
coordinate, MAV position in red while platform in black;

The developed software framework, namely mocap2mav,
offers a simple way to test and implement the different algo-
rithms and modules, as the result of design choices such as:
modularity, expandability and universality. Those three pillars
are the basis of the entire software development performed in
the context of this work giving the opportunity in to integrate
more features in the system with few effort in the future.

We proposed a simple but effective method for horizontal
tracking by closing the internal controller with an external
position loop (with target as reference) including a velocity
feed-forward term (with target velocity as reference). On the
other hand, descending is performed by forcing the relative
vertical velocity to a reference, which is linearly decremented
with respect to the distance from the landing surface until
touchdown. This method is compatible with the majority of
autopilot boards commercially available by simply adjusting
the gains for the specific target system.

The entire procedure was modeled with a FSM dividing the
problem in different states, this method appeared to be conve-
nient for this task where some unpredictable event may occur.
The computational load is very low giving the possibility to
run the software on small devices with limited power.

At the end, simulated and real experiments were performed:
first on the SITL framework by modeling the wave motion
with the P-M Ocean spectrum and after with lab trials on the
actual equipment.

Further improvements are: online estimation of the floating

motion and applying a predictive landing maneuver. A vision
system would be useful both for P-M spectrum estimate and
for providing a more accurate self positioning. Last but not
the least, the development of an automatic system identifica-
tion procedure for the MAV could provide benefits for gain
adjustments.

ACKNOWLEDGMENT

This work has been carried out in the hosting laboratory
EMAROLab at DIBRIS-Unige in conjunction with the ISME
and partially funded by the MIUR/MISE. It has been sup-
ported by the Ligurian Technological District SIIT through
the MAREA - Monitoring And REscue Automation project.

REFERENCES

[1] W. Kong, D. Zhou, D. Zhang, and J. Zhang, “Vision-based autonomous
landing system for unmanned aerial vehicle: A survey,” Processing of
2014 International Conference on Multisensor Fusion and Information
Integration for Intelligent Systems, 2014.

[2] G. Casalino, B. Allotta, G. Antonelli, A. Caiti, G. Conte, G. Indiveri,
C. Melchiorri, and E. Simetti, “Isme research trends: Marine robotics
for emergencies at sea,” in OCEANS 2016-Shanghai. IEEE, 2016, pp.
1–5.

[3] E. Simetti, S. Torelli, and A. Sperindè, “Development of Modular USVs
for Coastal Zone Monitoring,” Sea Technology, May 2016.

[4] Mocap2mav software architecture. [Online]. Available:
https://github.com/EmaroLab/mocap2mav

[5] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight Commu-
nications and Marshalling,” IEEE/RSJ 2010 International Conference on
Intelligent Robots and Systems, pp. 4057–4062, 2010.

[6] O. Araar, N. Aouf, and I. Vitanov, “Vision Based Autonomous Landing
of Multirotor UAV on Moving Platform,” pp. 1–16, 2016.

[7] A. Cesetti and E. Frontoni, “Vision-based autonomous navigation
and landing of an unmanned aerial vehicle using natural landmarks,”
Mediterranean Conference on Control & Automation, pp. 910–915,
2009.

[8] Mocap2mav software architecture. [Online]. Available: http://px4.io/
[9] Z. H. U. Yinggu, F. A. N. Guoliang, and Y. I. Jianqiang, “Controller

design based on T-S fuzzy reasoning and ADRC for a flying boat,” 10th
IEEE International Conference on Control and Automation, pp. 1578–
1583, 2013.

[10] D. Mellinger, “Minimum Snap Trajectory Generation and Control for
Quadrotors,” IEEE International Conference on Robotics and Automa-
tion, pp. 2520–2525, 2011.

