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Abstract—By bringing Cloud-like services much closer to end-
users and their devices, Fog computing is foreseen to expand the
scope of overlay networks, encompassing different heterogeneity
dimensions (i.e., size, geographical distribution, devices/virtual
objects (VOs) involved, quality of service (QoS) requirements,
etc.). Although highly flexible solutions like Software-Defined Net-
working (SDN) have been conceived to handle such heterogeneity
in future networks, scalability is still an open issue, especially
with respect to Fog computing requirements. In this paper, we
propose an SDN-based network slicing scheme for supporting
multi-domain Fog/Cloud services, which offers high scalability,
among other aspects, over legacy ones. Results show that the
number of unicast forwarding rules needed to be installed in
an overlay drops by up to over one order of magnitude and
4 times compared to the “fully-meshed” and OpenStack cases,
respectively, at the cost of possible path sub-optimality, albeit
knowledge on the datacenter topology can be used for VO
placement optimization.

I. INTRODUCTION

With the onset of Fog computing, Cloud-like services will
soon become widely available much closer to end-users and
their devices. Fog nodes are expected to be deployed practi-
cally anywhere — in street cabinets [1], in micro- and container-
based datacenters [2], in mobile base stations [3], etc. —
wherever there are available computing/storage resources and
of course, network connectivity [4]. By bringing such levels
of consumer proximity, the Fog paradigm is foreseen to pave
the way towards a hyper-connected world.

The scope of virtual networks is expected to grow with
the proliferation of smart devices (e.g., smartphones/tablets,
home appliances, wearables, cars, etc.), sensor networks and
their interplay with Fog-/Cloud-hosted virtual objects (VOs)
[5]; VOs can be understood as the virtual counterpart of
physical devices, as well as complementary functionalities
such as computing/storage. Virtual networks — that range from
enterprise to personal networks — are traditionally realized
via tunneling-based overlays on top of a shared telecommu-
nications infrastructure. In a multi-tenant context, they can
be viewed as ‘“network slices” [6] that are isolated from
each other, providing multiple degrees of freedom to the
tenants in defining their respective architectures. However, the
increasing heterogeneity among them (i.e., size, geographical
distribution, devices/VOs involved, quality of service (QoS)
requirements, etc.) entails highly customized operations and
complex network management that depose classical paradigms
and protocols.

Emerging “softwarization” solutions aim at providing flex-
ibility and programmability levels that could future-proof
the network. For instance, the Software-Defined Networking
(SDN) paradigm [7] seeks to overcome the infrastructure
ossification problem by decoupling network intelligence from
the forwarding plane; this renders forwarding devices simple
and programmable via an open interface like OpenFlow (OF)
[8]. With SDN in place, network management complexity is
expected to significantly drop, although scalability is still an
open issue.

Moreover, the majority of OF-based approaches in the
scientific literature today focuses on efficient datacenter man-
agement (e.g., [9]-[11], among others); they usually consider
a single datacenter rather than the cooperation of multiple
geographically distributed datacenters and, hence, their appli-
cability in supporting multi-domain Fog/Cloud services are
presumably limited.

To this end, we propose an SDN-based network slicing
scheme that offers the following advantages over legacy mech-
anisms:

« overlay isolation through tunnel-less communications and

non-overlapping OF rules;

o intrinsic support for distributed computing facilities
through overlay connectivity inside and among Telco (in-
network) datacenters;

« high compatibility/low technological requirements
through the use of simple OF functions and layer 2 (L2)
addressing criteria, and;

o high scalability through significantly minimizing the
number of OF rules in the overlay implementation.

The remainder of this paper is organized as follows. Sec-
tion II describes the overlay network connectivity and L2
addressing adopted, while frame forwarding rules are dis-
cussed in Section III. Numerical results are then presented in
Section IV, and finally, conclusions are drawn in Section V.

II. OVERLAY NETWORK DESCRIPTION

In this work, we consider a scenario with geographically
distributed Internet services, where each service can consist
of a series of software components (e.g., VOs) that define a
“service chain” [12]. Network slicing enables isolation among
such services, as well as the logical connectivity among
their respective components; if needed, services with complex
connectivity can be handled through multiple slices.



Fig. 1: High-level view of an overlay network.

Each slice § € A is associated to an overlay network Qs,
specifically designed to provide an L2 interconnection among
all the VOs v € Vj in the Telco (in-network) datacenters D.
Generally, VOs in V; could be hosted by any datacenter d € D.

The overlay @Qs is organized into N “center nodes,’
{co,...,cn—1}. Each center node is meant to be mapped on
one of the datacenter gateway switches in the infrastructure.
For the sake of easy presentation, but without losing generality,
in the following we will assume each datacenter with a single
gateway switch ¢4, Vd € D, on which different overlay centers
can be mapped. A high-level view of an overlay network is
illustrated in Fig. 1.

Each VO v is associated to a single center, and all VOs as-
sociated to the same center c,, define the set Vs,, C V5. If Vs,
is made running in the datacenter d*, then c,, is mapped on
its gateway switch ¢g~, giving ig, = ig~, d* € D : ¢, > ig~.

A. Overlay Connectivity

L2 connectivity among (s end-points is built based on
shortest-path trees, paths and edges.

In more detail, the shortest-path tree SPT'(r, L), whose root
and leaves are given by the vertex r and the set of vertexes
L, respectively, is defined by the union of the (shortest) paths
P(l,r) from each leaf [ € L to r.

P(l,r) is the optimal sequence of edges and hops from [
to r. On each of its hops h, two edges ¢;, e, € P(l,r) are
defined, with i/o indicating the flow direction (i.e., towards
the leaf/root, respectively). Edges are mapped to distinct ports
in each switch ¢; hence, in such context, ports and edges are
used interchangeably hereinafter.

Inside each datacenter d € D, VOs of the same overlay
center ¢, are interconnected according to the shortest-path tree
SPT(iq, Vs,n), with the root being the gateway switch ¢4 and
the leaf nodes being the VOs v € Vs ,.

SPT(itb V;S,n) £ UVveVé,n{P(Ua 'Ld)} (1)

The intermediate nodes are given by the subset fd” of OF
switches available in the datacenter d, I, C Ig.

TABLE I: Notation used in the matching fields and action list
of OF rules.

Parameter | Description
dlgst destination MAC address
dlsre source MAC address
out list of ports where a packet matching the rule has to be sent
Din switch port where a packet to be matched enters

On the other hand, the interconnection among the centers
o, - - -,cn—1 of the same overlay Qs is constructed by calcu-
lating the shortest-path trees 5", with the root being ¢4, and

the leaf nodes being i4,,, Vm € {0,...,N — 1}, m # n.

& Uvme{o,...N=1},mezn i P(id,, > 1d, ) } )

Obviously, when 74, coincides with ig. , P(ig, 14, ) = 0.

It is worth noting that each virtual link of the aforemen-
tioned virtual topologies corresponds to a number of OF rules
to be installed for each destination, on every crossed physical
switch. More details on these rules will be discussed in the
following sections.

B. OpenFlow Notation

One of the main design objectives of the proposed scheme
resides in the use of few simple primitives defined by the
OF protocol (ref. ver. 1.3.1 [8]) that are widely supported by
commercial switches in the market.

It is well-known that most of the functionalities and mech-
anisms of such protocol are optional, and (if present) their
implementation on commercial products is sometimes at the
software level. In the latter case, inherent and somewhat
unpredictable performance decays may occur; hence, the au-
thors decided to use basic matching and action rules that are
mandatory in every node supporting the OF protocol v1.3.1.

In this paper, the OF rules will be presented in the form:

p — lo, if match, && matchy && - - - && match, =

{actiony, actions,..., action,} 3)

The first part reports the priority of the rule, with lower «
values indicating higher priority, while the matching fields and
the corresponding list of actions are contained in the second
part.

As regards the matching fields, exact matches will be
represented with the operator ‘=" and the ones with a wildcard
mask with ‘=,,.r;;’. The latter is meant to be applied with
a mask hitting the overlay and/or center identifiers in the 1.2
addresses.

All the rules are meant to be placed in the Table 0 of OF
switches, i.e., the first flow table in the OF pipeline [§8]. Other
notation used in the OF rules is defined in Table I.

C. Layer 2 Addressing

A large part of IT virtualization platforms/hypervisors pro-
vide the possibility to associate customized locally admin-
istered Medium Access Control (MAC) addresses to virtual



network interfaces associated to virtual machines, containers,
or even those managed by the guest operating system. Hence,
we exploit this capability in order to generate MAC addresses
structured to contain information useful for identifying flows
inside/among overlays, and in a form suitable to be matched
by OF hardware and software switches at high speeds. This
idea has been already proposed in the scientific literature for
approaches based on source routing [10] and tag switching
[11] paradigms.

In this work, the rules are designed based on the matching
of IEEE Ethernet 48-bit MAC addresses [13] and optionally on
IEEE 802.1Q Virtual LAN (VLAN) tags [14], whose possible
mapping with the overlay network addressing is illustrated in
Fig. 2.

Particularly, the MAC address is organized into three fields,
namely (from the most to the least significant) the Overlay,
the Center, and the Host Identifiers (IDs). If only the MAC
address is used for the overlay network addressing the Host ID
is kept to a size of 2 Bytes, the Center ID to 1 Byte, and the
Overlay ID to 22 bits (i.e., 3 Bytes minus the 2 flag bits for
universal/local (U/L) and individual/group (I/G) addresses). If
a VLAN tag is also used, the sizes of the above IDs pass to 3
Bytes, 1 Byte and 34 bits, respectively. Other configurations
and sizes may also be supported, but the ones selected are
particularly convenient for simple OF matches (OF defined
that 48-bit MAC addresses can be matched with masks of
lengths from 1 to 6 Bytes at a step of 1 Byte, and only precise
matching of VLAN tags are supported).

All VOs belonging to the same overlay will have the same
value on the Overlay ID, and all those bound to the same
center will share also the same Center ID.

III. FRAME FORWARDING RULES

Let us consider the set of (in-network) datacenters D C
D that host VOs of the overlay network ()5. The set D is
identified as all the datacenters on whose gateway node a @5
center has been mapped i.e., D £ {Vd € D : 3¢, + igq}.

A. Unicast Forwarding

An example of datacenter internal connectivity is illustrated
in Fig. 3. For each VO v hosted in d, the following couple of
OF rules are installed on each h € P(v,i4), and only the first
rule on the root 74:

p — U1, if dlgsy = addr(v) = out — ¢; (A)

(B)

As can be noted, rules (A) and (B) perform a precise
matching of the L2 address of v on the destination and the
source L2 addresses, respectively. Particularly, the rule (B)
allows to move frames generated by v (that consequently have
L2 source address of v) towards the ¢4 node, independently of
their destination.

If a frame generated by v is directed to a another VO © €
Vs .n» in the first interconnection switch ¢* where P(v,i4) and
P(9,iq) intersect, the frame will hit both rules (A) and (B),
ie.

p — I3, if dlsre = addr(v) = out — e,

22 to 34 bits 8 to 16 bits 16 to 24 bits
Overlay ID Center ID Host ID
U/L address bit
,\'7 ({ 1/G address bit N
' VLANID 48 bit MAC address

12 bits 48 bits

Fig. 2: Overlay network addressing scheme and possible
mapping on IEEE Ethernet 48-bit MAC addresses and IEEE
802.1Q VLAN tags.

Edges & SPT (iq, Vsn)
m— Edges € SPT(ig, Vs,,)

<= Unicast Traffic

ﬁ
Vy Vs

V1 V2 V3
Table 0 of hy Table 0 of h,
Priority Match Action Priority Match Action
Iy dlgs, = addr(v,) | out > ey 1, dlgse = addr(v,) i out > ey
Iy dlgs; = addr(vy) | out e, Iy dlgs; = addr(v,) | out > e,
: i dlys, = addr(vy) | out > e;g
g dlsye = addr(v,) | out > e,y
I3 dlg,. = addr(v,) | out > e,, Iy dlg,, = addr(vy) | out— e,
i dlg,. = addr(vy) | out - e,,
i dlg = addr(vs) i out - e,5

Fig. 3: Example of internal overlay connectivity and unicast
packet forwarding among its VOs in the same datacenter.

p — L1, if dlgse = addr(0) = out — ¢;
and

p — I3, if dlgc = addr(v) = out — e,
For instance, as shown in Fig. 3, this happens in the switches
hy and hy for the frames generated by v that are destined to
v1 and vs, respectively. However, thanks to its higher priority,
rule (A) will be selected, and the frame directly redirected to
0, i.e., v1 and vs in the example.

If the destination is not in the datacenter (and, consequently,
the destination L2 address is unknown to all the interconnec-
tion switches), frames will eventually reach 74, and from that
node on, their forwarding will be driven by the algorithm of
the overlay backbone.

As previously sketched, the backbone connectivity is re-
alized through a fully-meshed overlay among the centers
g, - - .,cn—1. Differently from the forwarding criterion inside
the datacenter, and in order to increase the scalability of the
forwarding rules in the backbone, the proposed algorithm does



not rely on the “precise” matching of the L2 addresses, but
only on the matching of their prefix containing the Overlay
and Center IDs. This choice obviously allows reducing the
number of required forwarding rules on the OF switches in
the backbone, especially in the case where each center groups
a significant number of VOs.

Thus, Ve, € {co,...,cn—1}, the algorithm works by
obtaining the spanning tree Q§", according to Eq. (2). For
each node i € Q§", i # iq,,, the following rule is configured:

p — I3, if dlysi =pregia 1d(9, cn) = out > e, (C)

Rule (C) is aimed at allowing unicast traffic from any other
centers ¢4, € Q" to reach ig,. Here, the Q5" tree is crossed
in upstream from the leaves ¢4, (possible source of traffic)
to the root node 74, (the gateway switch of the datacenter
containing the VO to which the traffic is addressed).

It is important to note that for wide-area unicast forwarding,
this concept of using the tree Q" rooted at the destination
gateway switch yields simpler rules, since there is only one
path (and port) on the source that is part of Q5". Then, from
14, on, the switching will be driven by the rules given by
the algorithm for datacenter internal connectivity. Furthermore,
since the optimal path is always chosen when crossing a tree
in upstream, the sub-path from a VO in one datacenter to the
gateway switch of another datacenter is always optimal.

Possible path sub-optimality in the proposed approach may
arise when trees are crossed in downstream for the case of
asymmetric edge weights, as well as in datacenters with high
levels of path diversity.

B. Broadcast/Multicast Forwarding

Although broadcast/multicast forwarding is left for fu-
ture work, it is important to remark that the MAC broad-
cast/multicast address will be re-mapped to the overlay broad-
cast/multicast address, and vice versa, at the hypervisor switch,
and the I/G bit is set to ‘1’. Moreover, broadcast and multicast
forwarding rules will be almost identical, with a slightly
different matching field values; the priority 5 is reserved for
such rules.

IV. NUMERICAL RESULTS

The performance of the proposed approach is numerically
evaluated through a series of Matlab simulations. Ten runs of
varying seeds are executed for tests with random nature in
order to establish confidence in the results.

First, we take a look at the number of unicast forwarding
rules needed to be installed in an overlay, comparing our
overlay network (ON) approach with two baselines, the fully-
meshed (FM) and OpenStack (OS) [15] cases.

In FM, we suppose to install rules with exact matches
for each source/destination pair of VOs in an overlay, on all
switches along the optimal paths between them. We consider
its best-case scenario where all the VOs in the same datacenter
are hosted in the same server, minimizing the number of rules
for simplicity and for the sake of comparison with the other
cases. Exact matching rules for each source/destination pair

Fig. 4: Different datacenter depths d, d and .

are also considered in OS, but they are only installed on
the hypervisor switches involved in an overlay. This concept
tries to take into account the scenario where legacy routers
and/or switches are in place instead of SDN-enabled switches,
using conventional routing/tunneling protocols on top of the
OpenStack platform.

Then, we evaluate the path lengths between two VOs, calcu-
lated using Dijkstra-based shortest path (SP) and the proposed
ON algorithms. The comparison is built on a conservative
assumption that conventional frame forwarding mechanisms
use the optimal/shortest path. Moreover, we focus on the case
when both VOs are inside the same datacenter to get a view on
the possible path sub-optimality of our approach. Equal (eqW)
and random asymmetrical (rndW) edge weights are considered
for different datacenter topologies.

A. Number of Unicast Forwarding Rules

In this study, we define three datacenter depths d d and d
sorted according to the number of hops 1 from the VO to the
datacenter gateway switch, as shown in Fig. 4. A datacenter
of depth d has n = 3 that corresponds to the traditional
three-layer datacenter topology [16], while those of depths
d n=1or d (n = 2) are supposed to cover the heterogeneity
of facilities in a Fog scenario. For the sake of simplicity,
but without loss of generality, the topology of the backbone
is not considered in this evaluation, assuming a full-meshed
connectivity between datacenters.

Initially, we impose that all datacenters involved in an
overlay are with depth ¢, corresponding to a traditional Cloud
scenario. The number of unicast forwarding rules are then
calculated for 5, 15 and 30 VOs, uniformly distributed among
1 up to 30 datacenters. Fig. 5a shows that for 5 VOs OS
has less rules, although it is important to recall that there are
additional routing/tunneling costs incurred. On the other hand,
the best-case scenario of FM is only better than our approach
in the case of 1 datacenter involved, since it coincides with
OS having rules only in the hypervisor switch. As the number
of VOs in the overlay increases, it can be observed that our
approach has consistently less rules than FM (i.e., by up to
over one order of magnitude) and the majority of the OS cases
(i.e., by up to over 4 times).
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Fig. 5: Number of unicast forwarding rules in the overlay
network (ON), fully-meshed (FM) and OpenStack (OS) cases.

Moving to the Fog scenario, we consider the probabil-
ity mass function {P(n),n =1,2,3} :={0.6,0.3,0.1}. This
means that 60%, 30% and 10% of the datacenters involved in
an overlay are generated in the simulation to have depths d,d
and (, respectively. Fig. 5b shows more or less the same trend
as in Fig. 5a. However, it is interesting to note that for 5 VOs,
we now have cases where our approach becomes better than
OS by introducing smaller datacenters. Error bars indicate the
95% confidence interval for the 10 runs.

B. Path Lengths Inside the Datacenter

Here we consider four datacenter topologies (i.e., Tradi-
tional three-layer tree [16], Fat tree [16], Spine-and-Leaf [17]
and BCube [18]) interconnecting 16 servers, as illustrated in
Fig. 6. The first two are conventional tree-based architectures
commonly used in datacenters, while the other two are more
recently conceived to better support East/West (E/W) traffic.

For a given topology, we initially place two VOs v; and vg
in server s;. Then, path lengths are obtained using the SP and
ON algorithms, varying the location of vy from s; through
s16- The eqW cases have all edge weights set to ‘3°, while
mdW ones have weights drawn from the discrete uniform
distribution /{1, 5}.

In all four topologies, the paths obtained for both algorithms
coincide when all edges in the datacenter have equal weights,
as indicated by the eqW curves in Fig. 7. It can also be ob-
served that indeed the Spine-and-Leaf and BCube architectures

yield shorter path lengths on average than the tree-based ones,
demonstrating their suitability for E/W traffic support.

Furthermore, Fig. 7 shows that when the edges have random
asymmetrical weights, our approach (i.e., rndWON curves)
has, on average, higher path lengths compared to SP (i.e.,
rndWSP curves), demonstrating cases of path sub-optimality;
differences between the ON and SP path lengths in all the runs
are illustrated by the box plots (i.e., rndWON — rndWSP) for
statistical significance. However, it can be observed that, for
a given topology, path lengths from s; to a subset of servers
{5z} correspond or are close to the optimal ones. This implies
that knowledge on the datacenter topology can be used to
better place VOs of the same overlay in a datacenter.

Although our approach does not fully exploit the path
diversity offered by such datacenter topologies, it is important
to note that, in a multi-tenant context, centers of different
overlays can be mapped to different gateway switches for
datacenter load-balancing.

V. CONCLUSION

The Fog paradigm is foreseen to expand the scope of over-
lay networks, encompassing different heterogeneity dimen-
sions. Although highly flexible solutions like SDN have been
conceived to handle such heterogeneity in future networks,
scalability is still an open issue. In this respect, an SDN-
based network slicing scheme for supporting multi-domain
Fog/Cloud services, which offers high scalability, among other
aspects, is proposed.

Overlay isolation is achieved through non-overlapping OF
rules that only consider simple (and mandatory) OF functions
and L2 addressing criteria. Results show that the number
of unicast forwarding rules needed to be installed in an
overlay drops by up to over one order of magnitude and 4
times compared to the fully-meshed and OpenStack cases,
respectively. On the downside, possible path sub-optimality
may occur, albeit knowledge on the datacenter topology can
be used for VO placement optimization. Additionally, while
the proposed approach does not fully exploit the path diversity
offered by datacenter topologies, in a multi-tenant context,
mapping centers of different overlays to different gateway
switches can provide load-balancing benefits.

Moving forward, we would like to integrate not only
broadcast/multicast forwarding rules, but also a scheme for
supporting seamless intra-/inter-datacenter VO migration.
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