
Model-based Analytics for Profiling Workloads in
Virtual Network Functions

Roberto Bruschi2, Franco Davoli1,2, Paolo Lago1,2 and Jane Frances Pajo1,2
1DITEN – University of Genoa, Genoa, Italy

2CNIT – Research Unit of the University of Genoa, Genoa, Italy
roberto.bruschi@cnit.it, franco.davoli@unige.it, {paolo | jane.pajo}@tnt-lab.unige.it

Abstract—With the flexibility and programmability levels of-
fered by Network Functions Virtualization (NFV), it is expected
to catalyze the upcoming “softwarization” of the network through
software implementation of networking functionalities on virtual
machines (VMs). While looking into the different issues thrown
at NFV, numerous works have demonstrated how performance,
power consumption and, consequently, the optimal resource
configuration and VM allocation vary with the statistical features
of the workload - specifically, the “burstiness” of the traffic. This
paper proposes a model-based analytics approach for profiling
(virtual) network function (VNF) workloads that captures traffic
burstiness, considering - and adding value to - hardware/software
performance monitor counters (PMCs) available in Linux host
servers. Results show good estimation accuracies for the chosen
PMCs, which can be useful to enhance current methods for fine-
grained provisioning, usage-based pricing and anomaly detection,
and facilitate the way towards an agile network.

I. INTRODUCTION

The growing trend towards network “softwarization” has put
the limelight on commodity hardware (i.e., industry standard
high volume servers, switches and storage) and the Virtual-
ization technology. For instance, with Network Functions Vir-
tualization (NFV), networking functionalities are envisioned
to run as software on commodity hardware [1], which can
either be in the Cloud or Fog computing domains. Besides the
various advantages offered by such softwarization solutions,
some issues on performance, energy efficiency and the ensuing
management complexity must be addressed to justify their
viability.

Commodity hardware inherently provides much lower per-
formance and energy efficiency in contrast to the special-
purpose hardware populating the majority of today’s networks.
Although power management techniques (i.e., Low Power Idle
(LPI) and Adaptive Rate (AR)) have become widely available
through the Advanced Configuration and Power Interface
(ACPI) specification [2], the power saving promise comes with
performance degradation [3] or even negative savings if used
naively [4]. On top of that, the additional processing delays
due to the virtualization overhead when implementing (virtual)
network functions (VNFs) as virtual machines (VMs) further
lower the performance, consuming even more energy than their
physical counterparts [5].

Moreover, this shift towards an extremely modular and
virtual network architecture - that could potentially provide
the service “agility” required by tomorrow’s demands - calls

for automated resource configuration and provisioning mecha-
nisms to cope with the resulting complexity of network/service
management. The ETSI NFV Management and Orchestration
(NFV-MANO) framework [6] is stipulated for this purpose,
designating the virtual infrastructure manager (VIM) for the
management and control of resources in an NFV infrastructure
based on their capacity/usage and fault/event notifications
- information that generally does not directly expose key
performance indexes in the network.

In today’s research scene, numerous studies have been de-
voted to understanding and/or addressing the aforementioned
concerns. Among others, [4] proposes dynamic idle period
prediction for intelligent sleeping state entry, [7] models the
power consumption and performance of commodity hardware
based on renewal theory principles, optimizing their trade-
off, [8] studies and models the virtualization overhead, [9]
models VNF performance using discrete-time analysis, and
[10] tries to incorporate available power management tech-
niques in VM consolidation. Most of these works demonstrate
how performance, power consumption and, consequently, the
optimal resource configuration and VM allocation vary with
the statistical features of the network workload - specifically,
the “burstiness” of the traffic. A typical approach to capture
traffic burstiness involves analyzing packet-level traces as in
[7], which may be unsuitable for profiling highly dynamic
workloads. This, together with the long-held dream of fine-
grained provisioning and usage-based pricing, as well as
anomaly detection, drive the need for workload profiling on
the fly.

To this end, we propose a model-based analytics approach
for profiling workloads in VNFs using - and adding value to
- available hardware/software performance monitor counters
(PMCs) in Linux host servers that could potentially enhance
the operation of the VIM. In particular, this paper evaluates
different PMCs to choose the most suitable ones for measur-
ing/estimating the offered load, utilization (due to the network
workload), batch arrival rate and average batch size, comparing
different black-box approaches with existing models.

The remainder of this paper is organized as follows. Firstly,
the system under test (SUT) is described in Section II. The
proposed approach is then discussed in Section III, giving
details on the model, the PMCs and the estimation process.
Experimental results are then presented in Section IV, and
finally, conclusions are drawn in Section V.

Fig. 1: Overview of the system.

II. SYSTEM DESCRIPTION

As virtualization extensions are made available in x86
hardware, Kernel-based Virtual Machine (KVM) [11] - a full
virtualization solution for Linux - has gained much popularity
for its simplicity and ability to run VMs with unmodified
guest operating systems (OSs). KVM uses the Linux kernel
as bare-metal hypervisor and has been integrated in the kernel
since the 2.6.20 release, making it the default virtualization
mechanism recommended for most Linux distributions [12].
In this respect, KVM virtualization is the basis of this work,
but the approach can be also applied to other platforms.

Fig. 1 shows the SUT mapped to the KVM architecture. The
user space process Quick Emulator (QEMU) [13] implements
the guest networking of KVM, providing an emulated network
interface card (NIC) to the guest OS - a detailed description
of the network I/O path can be found in [14]. In traditional
VM implementation of VNFs, the network function runs as a
guest user space process, as indicated in Fig. 1, giving a rough
idea on how much overhead is introduced by virtualization.
Moreover, a separate core is allocated to the VM process to
ensure its isolation from other processes in the monitoring -
this is done by setting the VM process’s CPU affinity.

Like most commodity hardware today, the multi-core server
used is equipped with power management mechanisms via the
ACPI. It models the LPI and AR functionalities through the
power and performance states (C− and P− states, respec-
tively) accessible at the software level. With these energy-
aware states, idle cores can go to low power sleeping states,
indicated by Cx, x ∈ {1, . . . , X}, while at the active state C0,
a core can work at different performance states, indicated by
Py , y ∈ {0, . . . , Y }. As the indexes x and y increase, the lesser
the power consumption - but performance is degraded due to
increased latencies (i.e., due to wakeup times and increased
service times, respectively). More on this power/performance
trade-off optimization can be found in [7] and [10].

In addition, the ethtool command [15] is used to set the
interrupt coalescing and RX/TX ring parameters in the NIC
such that the incoming/outgoing traffic to/from the core are left
almost as they are. Particularly, the options for adaptive inter-
rupt coalescence (i.e., adaptive-rx and adaptive-tx)
are disabled, and the parameters defining the waiting times be-

fore raising RX/TX interrupts (i.e., rx-usecs, rx-frames,
tx-usecs and tx-frames) are set to 0. When interrupts
are disabled, the status is updated after a packet is received or
transmitted (i.e., rx-frames-irq and tx-frames-irq
set to 1). Although these settings somehow generate hardware
interrupts that match the load, it is important to note that
the utilization overhead due to the interrupts can become
significantly high in heavy load conditions. In such a case,
traffic shaping via interrupt moderation can be desirable - this
requires optimizing the trade-off between the overhead due to
interrupts and end-to-end latency. On the other hand, setting
the rx and tx buffer sizes of the RX/TX rings to the pre-
set maximums (i.e. 4096) ensures that the NIC’s capability to
handle burst arrivals is maximized.

III. MODEL-BASED ANALYTICS

In this first take on model-based analytics for profiling
workloads in VNFs, we suppose a one-to-one correspondence
between VMs and cores for simplicity (i.e., each VM is
allocated one virtual CPU (vCPU) and each core runs one
VM). Consequently, the core workload and utilization are
assumed to conform with those of the VNF.

Here we recall a model proposed in [10] for an energy-aware
core running VMs, which becomes the basis for comparison
of the PMC-based measurements and estimates. Then, the set
of PMCs considered and their roles in the analytics will be
presented.

A. Model and Proposed Approach

We model the core running the VM as a MX/G/1/SET queue
[16], a generalization of the well-known MX/G/1 queue [17]
that takes into account a setup period SET . This model not
only captures traffic burstiness, but more importantly, SET
captures the operations required between idle/busy transi-
tions (e.g., core on/off transitions and reconfiguration, context
switches, etc.).

It has been established in [18] and [19] that traffic behaviour
in telecommunications networks can be effectively modeled
by using the Batch Markov Arrival Process (BMAP), where
packets arrive in batches rather than singly. In more detail,
batches of random size X arrive at the core at exponentially
distributed inter-arrival times with batch arrival rate λ and
average batch size β, defining the offered load OL = λβ
packets per second (pps). A batch of customers that arrives at
an empty system initiates the setup period SET = τwu + τcs
required before service can be resumed, where τwu and τcs are
the setup components corresponding to the CPU wakeup times
(which depends on the C− state) and context switching (which
depends on the P− state), respectively. SET is supposed
to be deterministic for a given (Cx, Py) pair. Then, when
the setup is finished, exhaustive service begins. Packets are
served individually with generally distributed service times, at
an average rate µ (pps). The core utilization can be expressed
as:

ρ =
λβ

µ
(1)

Fig. 2: Generic renewal cycle of a MX/G/1/SET queue.

which is assumed to be less than 1 for system stability.
Based on classical renewal theory principles, independent

and identically distributed (iid) “cycles” of alternating idle and
delay busy (i.e., actual busy period plus the setup) periods can
be identified, as shown in Fig. 2. From this perspective, the
core utilization can be expressed in terms of the renewal cycle
components:

ρ =
E{B}

E{B}+ E{I}+ E{SET}
(2)

where E{B}, E{I} and E{SET} are the expectations of the
actual busy period, idle period and setup period, respectively.

Suppose that µ is given for a certain VNF and (Cx, Py)
pair; we want to measure ρ and estimate λ. An estimation of
OL can be provided, as well. Then, β can be estimated by
inverting the utilization equation or, alternatively, OL.

β̂ =

{
ρµ/λ̂

ÔL/λ̂ if OL can be estimated
(3)

In the latter case, the utilization can also be estimated as:

ρ̂ = ÔL/µ (4)

B. Performance Monitor Counters

Different utilities for Linux performance monitoring are
evaluated to find the most suitable PMCs in obtaining the
aforementioned model parameters. In this work, the following
commands/tools have been chosen for the black-box measure-
ments/estimations. The terms ‘CPU’ and ‘core’ will be used
interchangeably hereinafter (note that in the case of hyper-
threading, ‘CPU’ may also refer to a logical core).

1) Mpstat command: The mpstat command [20] comes
with the sysstat package and it reports utilization and interrupts
statistics per CPU.

The -u option reports the CPU utilization with a percentage
breakdown of the time spent in user space (with/without nice
priority), kernel space (excluding the time spent in servicing
interrupts), servicing hardware and software interrupts, idle
(with/without outstanding disk I/O requests), running a virtual
processor, among others. For the interrupts, the -I ALL
option is able to report both hardware and software interrupts
received per second according to those listed in /proc/interrupts
and /proc/softirqs files, respectively. To report either one of
them, CPU or SCPU is used in place of the keyword ALL. To
specify a CPU to be analyzed, the -P <cpu#> option is used,
otherwise -P ALL. Lastly, the <interval> and <count>
parameters are used to set the time in seconds between each
report and the number of reports to be generated, respectively.

2) Idlestat tool: Idlestat [21] is a tool useful for CPU
power/performance state analysis. In its trace mode, the
idlestat command monitors and captures C− and P−
state transitions of CPUs, as well as raised interrupts, over a
user-defined interval. To achieve this, it relies on the kernel’s
ftrace function, which requires root privilege.

The --trace option is used to run idlestat in trace
mode, which comes with the -f and -t parameters specifying
the trace output filename and the capture interval in seconds,
respectively. Moreover, the -c and -p options are used to
report C− (including POLL - the state in which the CPU is
idle but did not enter a sleeping state) and P− states statistics,
displaying the minimum time, maximum time, average time
and total time spent in each state per CPU. For the interrupts,
-w is used to report the number of times a particular interrupt
caused a core to wake up. Any combination of -c, -p and
-w can be used in running an idlestat trace.

3) Perf tool: perf stat [22] is a command included in
the kernel-based performance analysis tool perf, which gathers
performance counter statistics of processes, threads or CPUs
(system-wide/per-CPU).

Statistics of specific events can be obtained by using the
option -e; the perf list command [23] can be run to get
a list of all available events, categorized according to their
type (i.e., hardware event, software event, hardware cache
event, tracepoint event, etc.). The options -p <pid> and -t
<tid> are used to specify a process or thread to be analyzed,
while -C <cpu#> is used to specify a CPU and -a (-A) to
obtain system-wide statistics from all CPUs with (without)
count aggregation.

The Linux sleep command with the <number> parame-
ter can be appended to the perf stat command to specify
an interval in seconds for gathering statistics. The actual time
elapsed ∆t is displayed together with the counts.

C. Estimation with PMCs

For a given (Cx, Py) pair, OL, ρ, λ and, consequently, β can
be measured/estimated using the commands/tools described in
the previous section.

1) Offered load: In this work, we use the total number of
software interrupts received per second by the CPU, obtained
with the mpstat command, to estimate OL. Although this
already gives good accuracy levels, looking into the breakdown
may allow for further improvement - particularly, the rate
at which software interrupts are raised for packet reception
events, NET RX/s.

2) Utilization: As regards the utilization, both mpstat and
idlestat commands provide performance counters for its
measurement.

With the former, utilization is given by:

ρmeas,1 = 1−%iowait−%idle (5)

where %iowait and %idle are the percentage of time spent
in idle with and without outstanding disk I/O request, re-

spectively. On the other hand, the latter command provides
utilization as:

ρmeas,2 =
TPy

TPy
+ TCx

+ TPOLL
(6)

where TPy , TCx and TPOLL correspond to the average dura-
tion spent in Py , Cx and POLL states, respectively.

Both of these measurement approaches give approximately
the same results (≈ ρmeas) - however, in contrast to the
model, it was observed that the measured busy period and,
consequently, the utilization include the setup period. To
correct this, we use the deterministic setup time as follows.

ρcorr = ρmeas −
τwu + τcs

TPy + TCx + TPOLL
(7)

Lastly, since we were able to estimate OL in Sub-
section III-C1, the utilization can also be estimated as in (4).

3) Batch arrival rate: Here we compare different ap-
proaches for estimating λ based on performance counters
obtained with the idlestat and perf stat commands.

As presented in [24], the average idle period of a
MX/G/1/SET queueing system is simply: E{I} = 1/λ. Start-
ing from this, we first estimate the batch arrival rate from TCx

and TPOLL obtained with the idlestat command.

λ̂1 =
1

TCx
+ TPOLL

(8)

With the perf stat command, there are two events that
can be useful for estimating λ - kvm:kvm_vcpu_wakeup
and kvm:kvm_ack_irq. With the former, we obtain the
number of vCPU wakeup events within the elapsed time ∆t,
estimating the batch arrival rate as:

λ̂2 =
of kvm:kvm_vcpu_wakeup events

∆t
(9)

The latter, on the other hand, gives the number of interrupt
controller interrupt acknowledgments, aggregating both RX
and TX interrupts, within the elapsed time ∆t. With this, we
suppose that only half of the count is due to packet reception,
estimating the batch arrival rate as:

λ̂3 =
of kvm:kvm_ack_irq events

2∆t
(10)

4) Average batch size: Once we have evaluated the most
suitable approach for estimating λ, the average batch size
is estimated as in (3), using both measured and corrected
utilizations, as well as with ÔL.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed model-based analytics approach,
we consider a Linux server equipped with two Intel R© Xeon R©

E5-2643 v3 3.40GHz processors [25]. The SUT is connected
via RX/TX Gigabit Ethernet links to an Ixia NX2 router tester
- the testbed component used for generating artificial traffic
(64-byte Ethernet frames are considered in this evaluation). As
regards the VNF, OpenWrt [26] is run on a VM and configured
as a virtual firewall (VF).

Fig. 3: Average offered load estimates and error bounds.

The ACPI configuration of the SUT is set to (C1, P0)
to maximize the system throughput, where the C1 power
state corresponds to the lightest sleeping state, while the P0

performance state to the maximum core frequency. For this
configuration, the average service rate µ of the VF is assumed
to be the maximum throughput of the system. We further
suppose that the wakeup time from C1 is τwu ≈ 1µs (for the
Sandy Bridge EP platform [27]) and the setup component due
context switching τcs ≈ 30µs (the proposed rule of thumb for
real-world scenarios in [9]).

In this evaluation, traffic is generated from the
router tester at varying inter-burst gaps (in seconds)
and batch sizes (in packets), while ensuring that
OL < µ for system stability. Particularly, we consider
1/λ ∈ {0.0005, 0.00075, 0.001, 0.0015, 0.002, 0.003} and
β ∈ {1, 5, 10, 20, 40, 60}. Multiple runs (namely, 10) are
performed for each (λ, β) combination to get a grasp on the
reliability of the results.

A. Offered Load

Fig. 3 shows the averages of obtained estimates for varying
values of 1/λ and β. Error bars are used to indicate the ceilings
of the maximum error percentage for each β value.

The worst estimate was obtained for β = 1 (i.e.,
%err = 8.84%). Then, the estimation accuracy gradually im-
proves as traffic smooths out, with %err < 3% for β ∈ {5, 10}
and %err < 1% for β ∈ {20, 40, 60}. Since we considered
the total number of software interrupts received per second
in the estimation, this trend means that the impact of the
interrupts raised for purposes other than packet reception (e.g.,
for kernel housekeeping) becomes more noticeable when the
offered load is very low. An improvement could be to look
into the breakdown and consider NET RX/s, as pointed out
in Sub-section III-C1.

B. Utilization

Fig. 4a shows how the obtained utilization measurements
and estimates compare with the model. For OL < 20000
pps, a spread among ρmeas samples obtained at the same
load conditions is observed. The correction proposed in Sub-
section III-C2 reduces the spread, but not so much when the
load is low. This behaviour implies that the virtualization

(a) measured and estimated utilization

(b) rescheduling interrupt rate (RES/s)

Fig. 4: Estimating the utilization due to the VNF workload.

overhead is not fixed and depends on the traffic burstiness,
further motivating the need to characterize VNF workloads. On
the other hand, using OL for estimating the utilization matches
the model, giving a hint on the fraction of the utilization due
to actual packet processing by the VNF.

Although the incoming traffic is generated such that
OL < µ, it was observed that some cases result to ρmeas ≈ 1
(and ρcorr ≈ 1), as pointed out by the red shape. Looking
at the statistics, it was found that the rescheduling interrupt
rate (RES/s) in the five cases shot up to over two orders of
magnitude than in normal working conditions, with values
approximately equal to the batch arrival rates (RES/s ≈ λ),
as illustrated in Fig. 4b. This result can be useful to indicate
an anomaly, for instance, in the system configuration, resource
allocation or VNF behaviour. Moreover, utilization-based VM
metering proves to be inadequate in such scenarios - this
requires fine-tuning of existing usage-based pricing models or
perhaps development of new ones.

C. Batch Arrival Rate

Fig. 5 shows a comparison of different approaches in
estimating λ. As before, the red shapes point out the values
obtained when ρmeas ≈ 1 - they are not considered in com-
puting the averages indicated by the corresponding lines.

Aside from the utilization overhead (i.e., the part unac-
counted by the proposed correction in Sub-section III-C2, such
as the interval before a core actually sleeps) that keeps the
core busy for a bit longer than in the model, the average idle
period obtained with the idlestat command exhibits an

Fig. 5: Estimating the batch arrival rate using various PMCs.

Fig. 6: Estimating the average batch size.

increasing dependence on β as λ increases - hence, it is not the
best choice for estimating λ. Both kvm:kvm_vcpu_wakeup
and kvm:kvm_ack_irq gave stable estimates and anoma-
lous measurements were only obtained in a single case -
(λ, β) = (2000, 60) - instead of five, but higher estimation
accuracy is achieved with the latter, making it the most
suitable PMC in most cases. Additionally, we show how RES/s
matches λ when ρmeas ≈ 1. The results suggest that the batch
arrival rate is best estimated as follows.

λ̂ =

{
of kvm:kvm_ack_irq events

2∆t if ρmeas < 1

RES/s if ρmeas ≈ 1
(11)

D. Average Batch Size

Fig. 6 shows the β̂ values obtained according to the esti-
mation approaches proposed in Sub-section III-C4, with the
same convention for anomalous cases as before. Note that
the samples for each batch size are obtained by generating
β packets at varying batch arrival rates - yet the estimation
results are quite stable, as it should be. Moreover, the average
batch size is best estimated from ÔL and λ̂.

On the other hand, Fig. 6 also portrays a different perspec-
tive on the utilization overhead as a whole (i.e., the sum of
components due to the setup, virtualization, sleeping, etc.). In
the worst-case scenario of single packet arrivals (β = 1), the

core works as if β ≈ 8. The impact of the overhead gradually
decreases with increasing β - perhaps it can be thought to
be spread among the packets in a batch. To reduce this
overhead problem, a possible approach could be traffic shaping
via interrupt moderation. Furthermore, having an accurate
characterization of both λ and β can be useful in optimizing
the interrupt coalescing parameters in the NIC according to
the desired trade-off between the overhead and the end-to-end
latency.

V. CONCLUSION

NFV is foreseen to play a major role in the upcoming
softwarization of the network, as it provides flexibility and pro-
grammability levels that would help support future demands by
implementing networking functionalities as software on VMs.
Numerous studies have demonstrated how performance, power
consumption and, consequently, the optimal resource configu-
ration and VM allocation vary with the statistical features of
the workload - specifically, the burstiness of the traffic. In this
respect, a model-based analytics approach for profiling VNF
workloads that captures traffic burstiness, considering - and
adding value to - PMCs available in Linux host servers, is
proposed.

The MX/G/1/SET core model is used as a basis for
comparison of the PMC-based measurements and estimates.
PMCs obtained with the mpstat, idlestat and perf
stat commands are considered in this work, exposing the
most suitable ones for measuring/estimating the offered load,
utilization, batch arrival rate and average batch size. Then,
to evaluate the proposed approach, an experimental testbed
based on Intel R© Xeon R© E5-2643 v3 3.40GHz processors
and Ixia’s NX2 router tester is used. Results show good
estimation accuracies for the chosen PMCs. In addition, the
impact of the utilization overhead is also illustrated, pointing
out possible anomaly detection use-cases and motivating the
need for improved usage-based pricing models.

For future work, we would like to extend this approach to
cover VM sharing and to evaluate its performance for VNF
implementations based on Intel’s Data Plane Development Kit
(DPDK) [28].

ACKNOWLEDGMENT

This work was supported by the INPUT (In-Network
Programmability for next-generation personal cloUd service
supporT) project, funded by the European Commission under
the Horizon 2020 Programme (Grant no. 644672).

REFERENCES

[1] M. Chiosi, et al., “Network Functions Virtualization: An Introduction,
Benefits, Enablers, Challenges & Call For Action,” White Paper, 2012.
[Online]. Available: http://portal.etsi.org/NFV/NFV White Paper.pdf

[2] “Advanced Configuration and Power Interface Specification.” [Online].
Available: http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf

[3] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy Efficiency
in the Future Internet: A Survey of Existing Approaches and Trends in
Energy-Aware Fixed Network Infrastructures,” IEEE Commun. Surveys
Tuts., vol. 13, no. 15, pp. 223–244, 2011.

[4] L. Duan, D. Zhan and J. Hohnerlein, “Optimizing Cloud Data Center
Energy Efficiency via Dynamic Prediction of CPU Idle Intervals,” in
Proc. 2015 8th IEEE Int. Conf. on Cloud Computing (CLOUD), New
York, NY, 2015, pp. 985–988.

[5] E. Hernandez-Valencia, S. Izzo and B. Polonsky, “How Will NFV/SDN
Transform Service Provider OPEX?” IEEE Netw., vol. 29, no. 3, pp.
60–67, May 2015.

[6] “Network Functions Virtualisation (NFV); Management
and Orchestration,” ETSI NFV ISG Specification,
2014. [Online]. Available: http://www.etsi.org/deliver/etsi gs/NFV-
MAN/001 099/001/01.01.01 60/gs nfv-man001v010101p.pdf

[7] R. Bolla, R. Bruschi, A. Carrega, and F. Davoli, “Green Networking with
Packet Processing Engines: Modeling and Optimization,” IEEE/ACM
Trans. Netw., vol. 22, no. 1, pp. 110–123, Feb. 2014.

[8] L. Chen, S. Patel, H. Shen and Z. Zhou, “Profiling and Understanding
Virtualization Overhead in Cloud,” in Proc. 2015 44th Int. Conf. on
Parallel Process. (ICPP), Beijing, China, Sep. 2015, pp. 31–40.

[9] S. Gebert, T. Zinner, S. Lange, C. Schwartz and P. Tran-Gia, “Per-
formance Modeling of Softwarized Network Functions Using Discrete-
Time Analysis,” in Proc. 2016 28th Int. Teletraffic Congr. (ITC),
Würzburg, Germany, Sep. 2016.

[10] R. Bruschi, F. Davoli, P. Lago and J. F. Pajo, “Joint Power Scaling of
Processing Resources and Consolidation of Virtual Network Functions,”
in Proc. 2016 5th IEEE Int. Conf. on Cloud Networking (CloudNet),
Pisa, Italy, Oct. 2016.

[11] “KVM.” [Online]. Available: http://www.linux-kvm.org/
[12] W. von Hagen, “Using KVM Virtualization,” Tech. Rep., 2014. [Online].

Available: https://www.ibm.com/developerworks/library/l-using-kvm/l-
using-kvm-pdf.pdf

[13] “QEMU.” [Online]. Available: qemu.org
[14] S. Zeng and Q. Hao, “Network I/O Path Analysis in the Kernel-Based

Virtual Machine Environment Through Tracing,” in Proc. 2009 1st Int.
Conf. on Inform. Sci. and Eng. (ICISE), Nanjing, China, Dec. 2009, pp.
2658–2661.

[15] “Ethtool(8) - Linux Man Page.” [Online]. Available:
https://linux.die.net/man/8/ethtool

[16] G. Choudhury, “An MX/G/1 Queueing System with a Setup Period and
a Vacation Period,” J. Queueing Syst., vol. 36, no. 1-3, pp. 23–38, 2000.

[17] H. Tijms, A First Course in Stochastic Models. John Wiley & Sons
Ltd, England, 2003.

[18] A. Klemm, C. Lindemann, and M. Lohmann, “Modeling IP Traffic
using the Batch Markovian Arrival Process,” J. Performance Evaluation,
vol. 54, pp. 149–173, Oct. 2003.

[19] P. Salvador, A. Pacheco, and R. Valadas, “Modeling IP Traffic: Joint
Characterization of Packet Arrivals and Packet Sizes using BMAPs,” J.
Comput. Networks, vol. 44, pp. 335–352, Feb. 2004.

[20] S. Godard, “Mpstat Manual Page,” Sep. 2016. [Online]. Available:
http://sebastien.godard.pagesperso-orange.fr/man mpstat.html

[21] “Ubuntu Manpage: Idlestat - A CPU Power-
state Analysis Tool.” [Online]. Available:
http://manpages.ubuntu.com/manpages/xenial/man1/idlestat.1.html

[22] “Perf-stat(1) - Linux Man Page.” [Online]. Available:
https://linux.die.net/man/1/perf-stat

[23] “Perf-list(1) - Linux Man Page.” [Online]. Available:
https://linux.die.net/man/1/perf-list

[24] J. Medhi, Stochastic Models in Queueing Theory, 2nd ed. Elsevier
Science USA, 2003.

[25] “Intel R© Xeon R© Processor E5-2643 v3 (20M Cache, 3.40
GHz).” [Online]. Available: http://ark.intel.com/products/81900/Intel-
Xeon-Processor-E5-2643-v3-20M-Cache-3 40-GHz

[26] “OpenWrt.” [Online]. Available: https://openwrt.org/
[27] R. Schöne, D. Molka and M. Werner, “Wake-up Latencies for Processor

Idle States on Current x86 Processors,” Comput. Sci. - Research and
Develop., vol. 30, no. 2, pp. 219–227, 2015.

[28] “DPDK.” [Online]. Available: http://dpdk.org/

