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Abstract

Parametric trace expressions are a formalism expressly de-
signed for parametric runtime verification (RV) which has
been introduced and successfully employed in the context of
runtime monitoring of multiagent systems.

Trace expressions are built on the general notion of event
type, which allows them to be adopted in different contexts.
In this paper we show how trace expressions can be used for
conveniently specifying the expected behavior of a Java-like
program to be monitored at runtime.

Furthermore, we investigate the basic properties of the
primitive operators on which trace expressions are coinduc-
tively defined in terms of a labeled transition system; this
provides a basis for formal reasoning about equivalence of
trace expressions and for adopting useful optimization tech-
niques to speed up runtime verification.

CCS Concepts e Theory of computation — Program
verification; Operational semantics

Keywords runtime monitoring; trace expressions; labeled
transition systems; object-oriented languages

1. Introduction

Trace expressions have been introduced (Ancona et al. 2012,
2016a) as a formalism based on behavioral types initially
called global session types, to formally specify interaction
protocols in multiagent systems for monitoring the correct
behavior of agents at runtime. They have been successfully
adopted in practice for widespread multiagent system plat-
forms (Ancona et al. 2014; Briola et al. 2014).

The semantics of a trace expression is the set of all pos-
sible event traces that can be correctly observed during the
execution of a program; this is formalized in an operational
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way through a labeled transition system whose rewriting
rules can be directly turned into an algorithm for event trace
recognition. Thanks to this, runtime verification of the cor-
rect behavior of a system specified by a trace expression 7
can be performed by a monitor directly driven by the reduc-
tion semantics of 7.

Trace expressions are defined on top of the notion of event
type, to favor their use in different languages, systems, and
applications, and for dynamically monitoring or enforcing
different kinds of properties. In this paper we provide some
examples showing how trace expressions can be suitably em-
ployed for specifying the expected behavior of a Java-like
program, and for monitoring it at runtime. Trace expres-
sions can be used to specify and verify conformance to a
given protocol, which can be useful in the context of object-
oriented systems (Vasconcelos and Ravara 2017).

Recently, trace expressions have been extended (Ancona
et al. 2017) to allow specifications to be parametric (Luo
et al. 2014) in data that can be captured and monitored only
at runtime; thanks to this extension, specifications which,
for instance, depend on the values exchanged by objects
through methods, or on the dynamically evolving collection
of objects or resources available at runtime, can be suitably
modeled, and the number of correct programming patterns
that can be specified is significantly enlarged.

Such an extension poses some challenges for what con-
cerns performance: runtime monitoring is effective only if
it does not undermine the efficiency of the monitored pro-
gram; ideally, monitoring exhibits a time complexity linear
in the length of the analyzed event trace. Preliminary exper-
iments (Ancona et al. 2017) have shown that in some cases
time complexity can be kept linear also for parametric trace
expressions by suitably simplifying the trace expressions dy-
namically generated during the rewriting steps. This calls for
a better understanding of the equational theory of trace ex-
pressions; in this paper we investigate and formally prove
the basic properties of the primitive operators of trace ex-
pressions, with the main aim of formally reasoning about the
equivalence between trace expressions and adopting useful
optimization techniques to speed up RV.



The rest of the paper consists of the following sections:
Section 2 is a gentle introduction to trace expressions, and
shows some examples of their use for RV of Java-like lan-
guages; the full formalization of trace expressions can be
found in the subsequent Section 3. Section 4 contains the
main claims about the properties of the operators of trace ex-
pressions (the detailed proofs can be found in the Appendix),
while Section 5 concludes with some remarks.

2. A gentle introduction to trace expressions

Trace expressions are defined on top of the notions of event
and event type; a trace expression denotes a set of possi-
bly infinite traces of events belonging to a fixed universe of
events €& modeling the observations which a specific mon-
itoring activity is focused on; then, an event trace € is an
element of £* U £“. Although at runtime only finite pre-
fixes can be monitored, to correctly specify the behavior of
non-terminating programs trace expressions have to include
also infinite traces; this significantly affects the model and
the corresponding equational theory (see Section 4): for in-
stance, to specify the correct behavior of a program P con-
sisting of a first task 73 followed by another task 75, one has
to consider the possibility that task 77 does not terminate,
and, hence, that in this case the event trace of P coincides
with the infinite trace generated by 77.

As an initial simple example, we may want to monitor
the sequence of methods invoked on a specific print-writer
object, that is, an instance of java.io.PrintWriter; in
this case, events include the names of all invocable meth-
ods (print, close, etc.) and the distinguished event new cor-
responding to the fact that the object has been created by
invoking any of the available constructors, and its under-
lying stream has been opened; since in this initial example
the monitoring activity we want to perform is very simple,
events are not structured and do not carry values.

For this object we are interested in monitoring that a
correct sequence of methods is invoked on it, according to
the following requirements:

e no method can be invoked before the creation of the
object;

® no method can be invoked after method close has been
invoked on it.

Since trace expressions are built on top of event types, an
appropriate language €T of event types has to be defined;
to make the formalism more flexible, there is no a priori
fixed language of event types, and only a minimal set of
assumptions discussed in the next sections must be satisfied.

In general, event types are allowed to contain variables
ranging over the set of values which events can carry; how-
ever, for this initial example we consider only ground event
types. The semantics of a ground event type ¢ is a set of
events, that is, a subset of £. For this example only three
constant event types are needed:

® newy,, whose semantics is {new};
® closey,, whose semantics is { close};

® no_close;,, whose semantics is € \ {new, close}; this
type denotes all events corresponding to invocation on
the print-writer of any method other than close.

According to the definition above, newy, and close;, are sin-
gleton event types, whereas no_closey, denotes more events.

Given the event types above, we can now define a trace
expression specifying the correct use of a print-writer object.

PW =eV (newy : U)
U = (closey, : €) V (no_closey, : U)

Trace expressions can be recursively defined, hence are
usually defined by a finite set of syntactic equations, as it is
customary for regular (a.k.a. rational) terms, that is, terms
corresponding with trees that are allowed to have infinite
depth, but have always a finite set of subtrees (Courcelle
1983). The meta-variable PW just assigns a name to the
main trace expression for convenience, whereas the use of
meta-variable U is necessary to define recursively the asso-
ciated trace expression. In this example, besides the above
defined event types, we use the following trace expression
operators:

® ¢ is a constant denoting the singleton set containing the
empty trace; this is used whenever no other events are
expected to occur;

® V/ is a binary operator which takes two trace expressions
and builds a new trace expression corresponding to set
theoretic union (that is, logical disjunction) of sets of
event traces;

e : is a binary operator which takes an event type ¢ and a
trace expression 7 and builds the new trace expressions
¥ : 7 whose semantics is the set of event traces obtained
by prefixing the event traces denoted by 7 with the events
matching 9.

Considering the informal semantics given above, it is pos-
sible to derive the following semantics for the trace expres-
sion denoted by PW: either no event occurs at all, or a new
print-writer pw is created, then

e cither an infinite sequence of methods different from
close is invoked on pw;

* or a finite (possibly empty) sequence of methods different
from close is invoked on pw, then method close is
invoked on pw, and, subsequently, no other methods are
invoked on pw.

For this simple example a suitable regular expression
would apparently work as well for specifying the behavior
of a print-writer; however, regular expressions fail to model
infinite traces, therefore an w-automaton should be required
instead. Furthermore, trace expressions support three addi-
tional binary operators, namely, concatenation, intersection,



and shuffle, and it can be proved that for the purpose of
runtime monitoring trace expressions are more expressive
than w-automata and context-free grammars (Ancona et al.
2016b).

We now turn to considering a more complex example
involving parametricity, and, thus, non-ground event types,
and other trace expression operators. The trace expression
defined above and denoted by PW specifies the behavior
of a single print-writer object, therefore its usefulness is
limited. We show how it is possible to specify and monitor
the behavior of a whole community of print-writer objects
with a parametric trace expression. To this aim we first
need to extend the language of events and event types so
that events can indicate the object for which the event has
occurred by carrying its corresponding object identifier.

® newy, (oid), with semantics {new(oid)};
e closey,(oid), with semantics { close(oid)};

® no_closey, (oid), with semantics
{n(oid) | n € PrintWriterMeths,n # close}, where
PrintWriterMeths denotes the set of all method names
that are defined for the PrintWriter class.

For instance, the event new(oid) corresponds to the fact that
a new print-writer has been created and opened with object
identifier oid, whereas close(oid) describes the fact that
method close has been invoked on print-writer identified
by oid. For simplicity we assume that object identifiers are
generated during monitoring to guarantee their uniqueness
even in the presence of object deallocation by means of the
garbage collector; hence, the notion of object identifier is
more abstract than the implementation dependent notion of
object reference.

We also need to introduce the new event type anyy, (oid),
with semantics {n(oid) | n € PrintWriterMeths U
{new}}; anyyy (0id) includes all events involving the print-
writer with identifier oid.

We can now define a parametric trace expression speci-
fying the behavior of a dynamically evolving community of
print-writer objects.

PPW = eV <oid ; newyy (oid) : (cond(anyyy (oid), PU, PPW))>
PU = (closety(oid) : €) V (no-closegy (oid) : PU)

The trace expression uses the derived operator' cond; the
construct cond(any, (oid), PU, PPW) has the following
intuitive semantics: if an event e is matched by anyy, (oid)
(that is, any operation has been performed on print-writer
oid), then e must belong to a trace specified by PU, oth-
erwise it must belong to a trace specified by PPW (thus e
must correspond to the creation of a new print-writer).
Even most relevant for our purposes, the trace expres-
sion uses the new construct <oid ; 7> which binds the
free occurrences of variable oid in 7 = newy(oid) :
(cond(anyyy(oid), PU, PPW)), where oid is expected to

' More details can be found in the next section.

hold an object identifier. In this specific case, all free oc-
currences of oid in 7 are substituted with the value oid iff
the event type newy, (oid) matches the event new(oid). The
trace expression PPWW does not contain free occurrences of
oid, because all uses of oid are guarded by the binder con-
struct <oid ; 7>, therefore the only free occurrences of oid
in 7 are those in PU, and the one contained in the leftmost
occurrence of the event type new,(oid); more precisely,
the recursively defined trace expression PPW contains in-
finitely many occurrences of newy, (oid), and, hence, of oid,
but all such variables are bound to different binders. This al-
lows the different occurrences of newy, (oid) to match events
with different object identifiers.

3. Syntax and semantics

The semantics of event types is specified by the function
match; since the language of event types is not fixed a priori,
we assume that function match is given. If ¥} is an event type,
possibly containing free variables, then match(e,d) = o
iff event e matches event type ¥ with computed substitution
o; o is a finite partial map where the domain dom(o) is
assumed to coincide with the set of variables in 1, while the
codomain is a universe of values V. We say that match(e, )
succeeds iff there exists o s.t. match(e,d) = o, otherwise
we say that match(e, 9) fails.

The substitution with the empty domain is denoted by 0.
The equality 0 = o1 U o9 holds iff dom (o) = dom(o1) U
dom(os), and for all x € dom(o), o(x) = o1(x) if x €
dom(oy), and o(x) = o2(x) if x € dom(oz) (hence, o4
and o must coincide on dom (o) N dom(o2)). The notation
o\« denotes the substitution where x is removed from its
domain: o\, = o' iff dom(o’) = dom(c) \ {x} and for
all x € dom(a’), o’(x) = o(x). The notation o} denotes the
event type obtained from ¥ by substituting all occurrences
of x € dom(o) in ¥ with o (x).

A parametric trace expression T is a regular term built on
top of the following operators:

® ¢ (empty trace)
Y 7 (prefix)

® 71 - T (concatenation)

71 N\ T9 (intersection)

71 V To (union)

71 | T2 (shuffle, ak.a. interleaving)
e <x ;7> (binder)
The trace expression o7 obtained from 7 by substituting

all free occurrences of x € dom(o) in 7 with o(x), is
coinductively defined as follows:

o(@:1)=(c0):(o7)
o(riopT2) = (om1)op (o12) for op € {V, A, |, }
(<X T>) = <X 0\ T>
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Figure 1. Transition system for parametric trace expressions

The operational semantics of parametric trace expressions
is defined by the labeled transition system in Figure 1. The
transition relation 7 - 7/ is defined by rule (main) and de-

pends on the auxiliary relation 7 7! ; 0, which returns the
substitution o generated during the transition step; in this
way the definition in Figure 1 can be easily turned into an
algorithm for event trace recognition; a whole trace expres-
sion cannot contain free variables, and the main transition is
fired only if the computed substitution is empty.

In rule (prefix) a transition step is possible only when
the current event e matches the event type J; the computed
substitution is returned by the match function.

Rules for union, shuffle, and concatenation are straight-
forward.

In rule (and) the side condition requires that the substitu-
tions o1 and o9 computed for the two subexpressions must
coincide on the intersection of their domains; the final sub-
stitution ¢ is obtained by merging o1 and 5.

Two rules are required for the <x ; 7> construct. (var-t)
is applied when variable x is contained in the domain of the
computed substitution ; o is applied to the trace expression
7/ in which 7 rewrites to, the binder is removed and x
is removed from the domain of the computed substitution
(o\x). (var-f) is applied when variable x is not contained in
the domain of the computed substitution ¢; the binder is not
removed, and the computed substitution coincides with o.

The auxiliary predicate €(_) checks whether the seman-
tics of a trace expression contains the empty trace, and is
required in the side condition of rule (cat-r) for 77 - 75: an
event trace is allowed to continue with 7 only if 7y is al-
lowed to terminate, that is, the semantics of 71 contains the
empty trace. Rules for €(_) are straightforward.

The semantics [7] of a trace expression 7 is defined in
terms of the transition relation —, and the predicate €(_).
Since [7] may contain infinite traces, its definition is coin-
ductive.

Def. 3.1. For all possibly infinite event traces € € £* U £
and trace expressions T, € € 7] is coinductively defined as
follows:

o cither € = ¢ and €(1) holds,

e oré = e, and there exists 7' s.t. T 5 7’ and & € [r']
hold.

Derived operators. Several useful operators can be derived
from the primitive operators defined above.

We assume that the language of event types contains the
universe event type any and the empty event type none,
that is, for all e € &, match(e, any) = 0, and there is no
substitution o, s.t. match(e, none) = o; then the constant 1
denoting the set of all possible traces over £ can be defined
by the trace expression 7' = € V any : T, and the constant 0
denoting the empty set of traces can be defined by none : e.

Another useful derived operator is the filter operator.

An event trace € belongs to [¢ > 7] iff by removing
from it all events that do not match 9 we get a subtrace &
s.t. @ € [7]. The ¥ > 7 construct can be derived in the
following way, if we assume that event types are closed by
complementation: (T; A 7) | Ty, where T, = eV 9 : Ty,
Ty = eV VU : Ty, and ¥ is the complement event type of 1J,
that is, for all e € €, match(e, ¥) holds iff match (e, ¥) fails.

The filter operator can be generalized to obtain the condi-
tional operator cond used in Section 2: cond (9, 71, T2) can
be defined by the trace expression (T; A1y ) |(T'f AT2), where,
again, Ty = eV : T3, Ty :e\/E:Tf.

The corresponding rules for the transition system and the
auxiliary function €(_) can be easily derived, see Figure 3.

4. Properties of trace expression operators

In this section we formally investigate the properties of the
operators of parametric trace expressions; the main aim is to
provide the foundations for a study of the equational theory
of parametric trace expressions.
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Figure 2. Rules for derived operators (filter and condi-
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4.1 Preliminaries

Concatenation between sets of traces is defined on top of
trace concatenation as [71] - [12] = { €182 | &1 € [1]Ae2 €
[2] }, assuming [7;] does not contain infinite traces, as it is
customary in the formal languages literature when defining
concatenation of (w-)languages. The semantics of a (ground)
event type ¥ is [9] = {e | match(e,d) = 0}. [7]«
and 7], denote the restriction of the semantics to finite
and infinite traces, respectively, i.e. [7]. = &* N [r] and
[7]w = &€ N [7]. Shuffle between set of traces is defined as
follows: [m1] | [r2] = Ue, eri].e0e[2] €1 | €2- To handle
possibly infinite traces, the shuffle of two event traces is
coinductively defined by the following equations:

ele=cle={e}

eié | €969 = €1 (él ‘ 6252) U 62(6151 | ég)

4.2 Basic properties

The basic properties of trace expression operators are cap-
tured by the equations in Figure 3. Proofs are only sketched
here; more detailed proofs can be found in the Appendix.

(1) is a direct consequence of Definition 3.1 and e(¢).

(2) follows from the definition of the membership judge-
ment and rule (prefix), which allows the rewriting step ¥ :
7 5 ;) whenever match(e, ) = ().

In (3) the infinitary part of the left trace expression needs
to be handled separately. Recall that concatenation of sets
of traces is empty if one of the two sets is empty. However,
given a trace expression 7y - 72 such that [7»] = 0, it could
still be possible to have an infinite reduction on 7;. The C
inclusion can be proved by considering different cases: if a
trace € = ee/’ ... is infinite and there is an infinite reduction
S 71 S ... then é € [r],: otherwise, € = é;é,,
€1 is finite and both €; € [r1]. and &5 € [r2] hold. The
opposite implication can be split into [71],, C [71 - 72] and
[71]« - [7=2] C [71 - 2], which are easier to prove.

Both properties (4) and (5) match the intuitive meaning
of union and intersection.

[e] = {e} ey

[9:7] =[] - [] 2
[ - 72] = [mle U ([11] - [2]) ©)
[r1 A 7] = [m] N (] 4)
[r1 V7] =[m]U[r] 3)

[m1 | 72] = [m1]w U [72]w U ([71] | [72]) (6)
[<x;m>] = | [{x > v}7] (7)

veV

Figure 3. Trace expressions semantics.

Property (4) can be conveniently proved exploiting the
coinduction principle. Consider the inclusion [7; A 5] C
[1], and some & € [11 A 72]; we prove the inclusion by
coinduction on € and 7. If € = € the proof is trivial. If
€ = e, by Definition 3.1 7y Ao — 71 A 74, which can only
hold if 7; = 7. Thus, it is possible to derive € € [r;] from
€ € [r1], and since there exists 7 such that &’ € [r{ A 7]
(namely, 75) we conclude. Similarly, [7; A 2] C [r2] and
[m1] N [7=2]] C [1 A T2] can both be proved by coinduction.

It is straightforward to prove (5) by reasoning on the rules
(or-1) and (or-r) defining the transition 71 V 72 — 7.

In (6), even if [71]|[7=2] correctly handles possibly infinite
traces from both the sets, we still need to take into account
the corner case in which one trace expression does not admit
any event while the other one accepts some infinite traces.
This is similar to what happens with concatenation, since it

is possible to have an infinite reduction 71 | 75 5 7] | 7o =

- not involving 7o at all (the same thing can happen in
the symmetric case). [71 | 2] C [71]w U [m2]w U ([71] |
[2]) can be proved by considering the three different cases
we mentioned. On the other hand, the opposite inclusion
is proved exploiting again the coinduction principle, since,
intuitively, a reduction on a shuffle trace expression never
removes the shuffle operator.

Finally, property (7) deals with the <x ; 7> construct.
Since no assumptions can be made about the value that will
be computed at runtime for a variable x, the set of all valid
traces must take into account every possible value. In a real-
world scenario, only some of them will be valid; for the
others, the semantics of the trace expression resulting from
the substitution will be empty.

4.3 Derived properties

From the basic properties of Figure 3, other interesting al-
gebraic properties can be derived. For instance, though con-
catenation of trace expressions is not as simple as formal
language concatenation, it is nonetheless associative:



[(r1-72) 73] = [ 72l U ([71 - 2] - [73])

= [n]o U ([n]« - [re]o) U (Il - [l - [7s])

= [ri]w U ([l - ([72lw U ([72]« - [73])))
= [r]o U ([n]s - [72 - 7])

=[r-(r2-73)]

In the steps above we exploited the distributivity of concate-
nation over union of trace expressions: [y - (72 V 73)] =
[(71 - 72) V (11 - 73)]. Clearly, {€} is the identity element.

Since union and intersection of trace expressions directly
correspond to their set-theoretic counterparts, many proper-
ties come for free: both operators are commutative and asso-
ciative, and distribute over each other. More precisely, union
and intersection form a Boolean algebra with respect to the
set of all (possibly infinite) event traces £* U €“, thus they
also have many other properties.

Finally, the shuffle operator is commutative and associa-
tive as well, and it distributes over union: [(71 V 72) | 73] =

[(r1[73) V(72| 73)].

5. Conclusion

We have shown how parametric trace expressions can be
usefully adopted for specifying the behavior of a dynam-
ically evolving community of objects to perform RV of a
Java-like program.

We have formally studied the basic properties of the prim-
itive operators of parametric trace expressions to provide the
foundations of an equational theory of parametric trace ex-
pressions useful for reasoning on equivalence of behavioral
specifications, and for validating optimization transforma-
tions to speed up runtime monitoring.

In literature there exist several proposals for RV of object-
oriented languages (Allan et al. 2005; Martin et al. 2005;
Brorkens and Moller 2002; Colombo et al. 2009; Chen and
Rosu 2007; Luo et al. 2014; de Boer and de Gouw 2014).
Even though many of them are based on specification for-
malisms (regular expressions, context-free grammars, and
LTL) which are less expressive than trace expressions in the
context of RV, a deeper comparison with related work is mat-
ter for future investigation.

We are also planning to experiment our prototype tool de-
veloped for RV of multiagent systems (Ancona et al. 2017)
in the context of object-oriented programming, to verify
how it can scale to more complex systems and specifica-
tions; besides Java-like languages, object-oriented RV can
be usefully adopted for dynamic languages as JavaScript,
and widespread platforms based on them, as Node.js.

Finally, we are considering to exploit the equational the-
ory of parametric trace expressions developed here to op-
timize our prototype RV tool by simplifying trace expres-
sions that are dynamically generated by the monitoring sys-
tem driven by the reduction semantics of trace expressions.
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A. Proofs

This section is devoted to the proofs of the equations de-
scribing trace expressions semantics in Figure 3. Most of the
times we will prove the two inclusions separately.

It is convenient to explicitly rewrite Definition 3.1 as an
inference system:

e e [r]
eeé € [7] r
Some of the proofs go by coinduction. We assume famil-

iarity with the coinduction proof principle, especially in the
case of inference systems.

’

(€-empty) ———— €(7) (E€-non-empty)

€ € [7]

Proposition A.1 (Empty trace). For all event traces ¢,
ecleg — e=c¢

Proof. 1t follows from rules (€-empty) and (e-empty).  [J

Proposition A.2 (Prefix). For all event traces e, event type

¥ and trace expression T,

ecv:7] & Fe,é.e=ce ande € [V] and € € [1]

Proof. 1t follows from rules (€-non-empty) and (prefix). [J

Proposition A.3 (Concatenation C). For all event traces e
and trace expressions Ty - To,

€ € |11 - 12] = either (€ infinite and € € [11])
or (31 € [n1], &2 € [r2].

€1 finite and € = &,e3)

Proof. We distringuish different cases. If there is a (possibly
infinite) reduction 71 - 72 <% 7/ - 75 = - - -, then by definition

of rule (cat-1) we can also prove 7y 2N ' Y ... If such
a reduction is infinite, then € must be infinite as well and
e € 7. Otherwise the reduction ends after n steps and

7'1(”) Ty B o1 2 ... by rule (catr). Thus € = &és,

e € [[Tl]] and e; € [[7'2]]. O

Proposition A.4 (Concatenation D-1). For all event traces
€ and trace expressions Ty, Ta,

€ infinite and € € 1] = e € [r1 - 2]

Proof. By coinduction. € = eé’. From € € 1], 1 — 71.
Given € € [y - 72], it can be shown there exists a rule to
derive the judgement by means of rule (cat-1) and 7; 1.
Since € is infinite, €’ is infinite as well and &’ € [71 - 72]. O

Proposition A.5 (Concatenation 2-2). For all event traces
€ and trace expressions Ty, Ta,

Jéy, ;. & finite and € = €185 and &; € [11] and &; € [13]

et éG[Tl'TQ]]

Proof. From &; € [r1] we know there is a finite reduction
T1 — +-+ — 71 such that ¢(7y). Similarly, since &2 € [72],
there is a (possibly infinite) reduction starting from 75. Then
by rule (cat-1) (for the first part) and (cat-r) (for the second
part) € € [y - 72]. O

Proposition A.6 (Intersection C). For all event traces € and
trace expressions Ti, Ts,

e€nAmn] = ecn]andé € [r]

Proof. By coinduction we prove the implication for 7, but
the same reasoning holds for 72 as well. The case € = € is
a trivial consequence of rules (€-empty) and (e-and). Let us
assume € = e€’. Since € € [ A 7], by definition of rule
(€-non-empty) & € [r{ A7y] and 7y A T2 5 7| A TS, and
by definition of rule (and) 74 5 71. Then there exists a rule
to derive € € [71] from the premise & € [r{]. We conclude
showing there is a 7 such that & € [r{ A 7], namely 75. O

Proposition A.7 (Intersection D). For all event traces € and
trace expressions Ti, Ts,

e€[rn]ande €[] = €€ [rn A1)

Proof. By coinduction. Again, since the case € = ¢ is trivial,
we assume & = eé’. From the assumptions, 7; — 7] and
Ty < 74. From these, applying rule (and) we get 7y A 5 —
71 A 74. Then there exists a rule to derive € € [ A 72,
with the premise & € [r{ A 75]. We conclude since both
¢ € [r{] and & € [75] hold. O

Proposition A.8 (Union C). For any trace € and trace
expression Ty, Ta,

€€ Vr] = eithere € [r] oreé €[]
Proof. 1f € = ¢, it follows from rules (€-empty), (e-or-1) and
(e-or-r). Ife = ee', 71 V10 5 7/ for some i € {1,2}, and
& € [!]. By the definition of rules (or-1) and (or-r), 7; > 77,
thus € € [7;]. O

Proposition A.9 (Union D). For all event traces e and trace
expressions Ty, To,

eitheré € []oré € [rr] = €€ [ V12

Proof. Without loss of generality, assume that € € [[71] holds
(the same reasoning works for & € [r]). If € = e, the
statement is a trivial consequence of rules (€-empty) and
(e-or-l). If & = eé’, ; = 7] and & € [r{]. By rule (or-1)
TV Ty 5 1], thus € € [11 V 7). O

Proposition A.10 (Shuffle C). For all event traces € and
trace expressions Ti, To,
e c [[7'1 ‘Tg]] = cither (E'él c [[Tlﬂ,ég € [[Tg]].é € e | ég)
or (€ infinite and € € [11])
or (€ infinite and € € [13])



Proof. We consider three different cases, corresponding to
the three possible scenarios above. If 71 | 72 comes from an
infinite reduction on 7y (71 | 72 = 7| | 72 = ---) then it is
easy to see that € is infinite and & € [7]; the same reasoning
holds for an infinite reduction on 7. If both rules (shuffle-
1) and (shuffle-r) are used in the derivation, we consider all
events e; such that 7" £ 70" a5 well as events e, such
that TQ(j ) 2 T2(j ), By definition of the shuffle operator
e c e | €9, and both ¢; € HTl]] and e; € [[’7'2]] hold. O]

Proposition A.11 (Shuffle D). For all event traces e and
trace expressions Ty, To,

de; € [[Tlﬂ,éz S [[TQ]].éE €1 | €y = €¢E [[7'1 ‘7-2]]

Proof. By coinduction. If € = € then also ; = e = € and
the proof is a consequence of rule (e-shuffle). If € = eé’,
by definition of the shuffle operator either &, = eé] or
€2 = eé,. Without loss of generality let us assume the
former. From the assumptions, 7y N 71, and by rule (shuffle-
) 71 | 72 = 7/ | 7. Then there exists a rule to derive
€ € [y | 72] from a premise & € [7] | 72]. We can conclude
since & € &) | €2 (by definition of shuffle), &; € [r{] and
€ € [[Tg]]. O

Proposition A.12 (Binder C). For all event traces €, vari-
ables x € X and trace expressions T,

g€ <x;m>] = FweV.ee[{x—uv}r]

Proof. If € = ¢, then e(<x ; 7>) and the substitution has
no effect since it can only change event types, which are
not taken into account by €(_); in this case we can conclude
choosing any v € V. Now let us assume € = eé’, and
consider the different rules from which the judgement e €
[<x; 7>] can be derived.

If <x;7> < o7’ by means of rule (var-t), then & €
[or'], T ~ 7';0 and the computed substitution o has
the shape {x — v}. By induction on the inference system

€ €
defining — it can be proved that 7 — 7’50 = oT —
o7'; (. From this we derive € € [o7].

If there is an infinite reduction <x;7> = <x;7/> 5 -+
using rule (var-f) alone, then 7 < 7/ < - ... It can be proved
by induction that o7 = o7/ S ... hold as well for any
o={x— v}, thusé € [o7].

Every other case can be handled using the reasoning
above. O

Proposition A.13 (Binder D). For all event traces e, vari-
ables x and trace expressions T,

JveV.ee[{x—uv}r] = ee[<x;7>]

Proof. In this case the substitution {x — v} can be used
together with rule (var-t) to prove the conclusion, since it is
exactly the substitution needed to proceed with the reduction
sequence. O



