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ABSTRACT 

We demonstrated that in human platelets the endocannabinoid 2-arachidonoylglycerol (2-AG) decreased dose- and 

time-dependently cAMP intracellular levels. No effect on cAMP decrease induced by 2-AG was observed in the 

presence of the adenylate cyclase inhibitor SQ22536 as well in platelets pretreated with the thromboxane A2 receptor 

antagonist, SQ29548 or with aspirin, inhibitor of arachidonic acid metabolism through the cyclooxygenase pathway. An 

almost complete recovering of cAMP level was measured in platelets pretreated with the specific inhibitor of 

phosphodiesterase (PDE) 3A, milrinone. In platelets pretreated with LY294002 or MK2206, inhibitors of PI3K/AKT 

pathway, and with U73122, inhibitor of phospholipase C pathway, only a partial prevention was shown. cAMP 

intracellular level depends on synthesis by adenylate cyclase and hydrolysis by PDEs. In 2-AG-stimulated platelets 

adenylate cyclase activity seems to be unchanged. In contrast PDEs appear to be involved. In particular PDE3A was 

specifically activated, as milrinone reversed cAMP reduction by 2-AG. 2-AG enhanced PDE3A activity through its 

phosphorylation. The PI3K/AKT pathway and PKC participate to this PDE3A phosphorylation/activation mechanism as 

it was greatly inhibited by platelet pretreatment with LY294002, MK2206, U73122 or the PKC specific inhibitor 

GF109203X. Taken together these data suggest that 2-AG potentiates its power of platelet agonist reducing cAMP 

intracellular level. 
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Endogenous cannabinoids are biologically active lipids that include N-arachidonoylethanolamine (anandamide) and 2-

arachidonoylglycerol (2-AG) [Petrosino et al., 2009]. Anandamide and 2-AG are the main endogenous agonists of type-

1 (CB1) and type-2 (CB2) cannabinoid receptors [Salzet et al., 2000], both of which belong to the superfamily of G-

protein-coupled receptors. Apparently, 2-AG is the true physiological agonist of CB1 and CB2 [Sugiura and Waku, 

2002], whereas anandamide might be the ligand of CB1 and other targets like vanilloid receptors [Petrosino et al., 

2009]. 2-AG can be formed from membrane phospholipids or lysophosphatidic acid, and elicits a variety of biological 

responses “in vitro” and “in vivo” by targeting CB receptors in an autocrine and/or paracrine manner [Sugiura et al., 

2006]. For instance, 2-AG induces calcium transients [Sugiura and Waku, 2002] and activates various kinases such as 

p42/44 mitogen-activated protein kinase (MAPK) [Kobayashi et al., 2001] and p38MAPK [Derkinderen et al., 2001]. 

Additionally, 2-AG behaves as a retrograde messenger in synaptic transmission [Sugiura et al., 1997], and it regulates 

various types of inflammatory and immune responses, spanning from increased production of chemokines [Kishimoto 

et al., 2004] to induction of migration of macrophage-like cells [Kishimoto et al., 2003] and B-lymphocytes [Jordà et 

al., 2002]. Remarkably, endocannabinoids play major roles within the cardiovascular system [Randall, 2007; Mach et 

al., 2009]. Human vascular endothelial cells and human platelets generate 2-AG upon stimulation [Sugiura et al., 1988; 

Maccarrone et al., 2001]. Human platelets have the biochemical tools to metabolize endocannabinoids [Maccarrone et 

al., 2001], express authentic CB1 and CB2 receptors [Catani et al., 2010], and are activated by micromolar 

concentrations of 2-AG through a CB1/CB2-dependent mechanism that leads to increased intracellular calcium and 

inositol-1,4,5 trisphosphate, and decreased cAMP [Maccarrone et al., 2001]. In contrast Baldassarri et al. [2008] have 

published that the ability of 2-AG to act as a physiological agonist does not need CB1/CB2 receptor, leaving open the 

question of which molecular mechanism underlies the effect of this endocannabinoid. Platelet treatment with 2-AG 

leads to the p38MAPK/cytosolic phospholipase A2 pathway activation [Signorello et al., 2011a] and to NO/cGMP 

pathway regulation by PKC [Signorello et al., 2011b]. Moreover 2-AG induces a rapid myosin light chain (MLC) 

phosporylation/activation, early mediated by Rho kinase and later by MLC kinase. MLC phosphorylation is potentiated 

by the MLC phosphatase inhibition through the phosphorylation of both MYPT1 and CPI-17 subunits [Signorello et al., 

2013]. Recently it has been shown that the PI3K/AKT pathway is involved in MLC phosphorylation and some 

downstream events such as actin polymerization, ATP secretion and aggregation [Signorello and Leoncini, 2014]. In 

addition an ultrastructural study [Malorni et al., 2004] put in evidence a significant increase of F-actin in 2-AG treated 

platelets.  

Cyclic AMP is a control molecule in platelets that interrupts multiple signalling pathways and plays a significant 

role in down-regulation of platelet activation [Smolenski, 2012; Raslan and Naseem, 2014]. Starting from a previous 

report by Maccarrone et al. [2001] we wanted to investigate the mechanisms involved in cAMP reduction by 2-AG in 
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stimulated human platelets. The levels of cAMP are tightly controlled and are dependent on its rate of synthesis by 

adenylate cyclase and its rate of hydrolysis by cAMP phosphodiesterases (PDEs). Previous observations have shown 

that platelet activation is associated with a decrease in cAMP concentration [Maccarrone et al., 2001; Lagarde and 

Dechavanne, 1977]. More recently Hunter et al. [2009] demonstrated that in platelets stimulated by several agonists, 

including thrombin, cAMP intracellular levels are reduced. The PKC-mediated phosphorylation/activation of PDE3A 

appear to be involved in this mechanism. On the other hand Zang and Colman [2007] have shown that the activation of 

PDE3A is AKT-mediated and is involved in regulation of cAMP during platelet activation by thrombin.  

Therefore we wanted to clarify whether 2-AG was able to potentiate its power of platelet agonist decreasing 

cAMP intracellular levels. In the present study we show that 2-AG is able to reduce cAMP intracellular levels through 

the activation of cAMP-dependent PDE3A. 2-AG raises PDE3A activity by promoting its phosphorylation. The 

PI3K/AKT signalling pathway is responsible, at least in part, for PDE3A activation. In addition PKC seems to be 

partially involved in the mechanisms leading to PDE3A activition. 

MATERIALS AND METHODS 

Materials 

Apyrase, aspirin (ASA), Colorburst™ electrophoresis markers, cilostamide, cilostazol, dithiothreithol (DTT), EHNA, 

forskolin, GF109203X, isobutylmethilxanthine (IBMX), leupeptin, -mercaptoethanol, milrinone, prostaglandin E1 

(PGE1), PMSF, protease inhibitor cocktail (product number: P2714), U73122 and all chemicals were from Sigma-

Aldrich, USA. 2-AG, LY294002 and SQ22536 were from Tocris Bioscience, UK. MK2206 was from Selleck Chem 

and SQ29548 from Cayman Chem, USA. Inhibitors were diluted in saline from a stock DMSO solution immediately 

before each experiment. Cyclic AMP EIA kit (catalog N° 900-163) and cyclic nucleotide phosphodiesterase assay kit 

(catalog N° BML-AK800) were from Enzo Life Sciences, USA and adenylate cyclase assay kit (catalog N° GQE-EL-

H0268) was from Elab Sciences, China. Anti-PDE3A (catalog N° 07-2197) and anti-phosphoserine (catalog N° 

AB1603) were obtained by Merck-Millipore USA. Anti-phospho-PDE (ser290/ser293) (catalog N° MBS540101) was 

from Biosource, USA. Protein A-sepharose was obtained by GE Healthcare, USA. Horseradish peroxidase-conjugated 

secondary antibodies and -actin were purchased from Santa Cruz Biotechnology, USA. Nitrocellulose membranes 

(pore size 0.45 µm) were from Bio-Rad Laboratories, USA.  

Blood collection and preparative procedures 

Freshly drawn venous blood from healthy volunteers of the “Centro Trasfusionale, Ospedale San Martino” in Genoa 

was collected into 130 mM aqueous trisodium citrate anticoagulant solution (9:1). The donors claimed to have not taken 

drugs known to interfere with platelet function during two weeks prior to blood collection, and gave their informed 
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consent. Washed platelets were prepared centrifuging whole blood at 100g for 25 min. To the obtained platelet-rich 

plasma (PRP) 4 mU/mL apyrase and 4 µM PGE1 were added.  PRP was then centrifuged at 1100g for 15 min. Pellet 

was washed once with pH 5.2 ACD solution (75 mM trisodium citrate, 42 mM citric acid and 136 mM glucose), 

centrifuged at 1100g for 15 min and then resuspended in calcium-free 10 mM HEPES buffer containing 145 mM 

NaCl, 5 mM KCl, 1 mM MgSO4, 10 mM glucose (pH 7.4).  

cAMP measurement assay 

Washed platelets (1.0109 platelets/mL), preincubated for 10 min at 37°C with saline, were stimulated with 2-AG. In 

the experiments in which the dose-dependent effect of the endocannabinoid was evaluated, platelets were stimulated 

with increasing concentrations of 2-AG for 120 sec. In the experiments in which the time-dependence was assessed, 

platelets were challenged with 10 µM 2-AG for different times. Moreover washed platelets (1.0×109 platelets/mL), 

preincubated for 10 min at 37°C with varying compounds, were stimulated with 10 µM 2-AG for 120 sec. In all 

experiments reaction was stopped by adding cold 2.0 M perchloric acid. Mixtures were then centrifuged for 3 min at 

12000g and the supernatants, neutralised with 2.0 M NaOH, were analysed for cAMP content by a commercial EIA 

kit, following the manufacturer’s instructions with appropriate modifications. 

Adenylate cyclase activity assay 

Washed platelets (1.0109 platelets/mL), preincubated for 10 min at 37°C with saline, were stimulated with increasing 

concentration of 2-AG for 120 sec. Washed platelets (1.0×109 platelets/mL), preincubated for 10 min at 37°C with 

varying compounds, were stimulated with 10 µM 2-AG for 120 sec. In all experiments reaction was stopped by putting 

samples on ice. Samples, added with 10 µg/mL leupeptin, 1 mM PMSF, 100 µM DTT, were sonicated twice for 15 sec 

and then centrifuged at 14000g for 5 min. Adenylate cyclase activity was assayed in the supernatants by a commercial 

EIA kit, following the manufacturer’s instructions with appropriate modifications. 

PDE activity assay 

Washed platelets (1.0109 platelets/mL), preincubated for 10 min at 37°C with saline, were stimulated with 2-AG. In 

the experiments in which the dose-dependent effect of the endocannabinoid was evaluated, platelets were stimulated 

with increasing concentration of 2-AG for 120 sec. When the time-dependence was assessed, platelets were challenged 

with 10 µM 2-AG for different incubation times. On the other hand washed platelets (1.0×109 platelets/mL), 

preincubated for 10 min at 37°C with varying compounds able to inhibit specific signal transduction pathways, were 

stimulated with 10 µM 2-AG for 120 sec. In every experimental conditions, the reaction was stopped by putting 
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samples on ice. To each samples 10 µg/mL leupeptin, 1 mM PMSF, 100 µM DTT were added. Platelet suspensions, 

sonicated twice for 15 sec, were centrifuged at 14000g for 5 min. PDE activity was assayed in the supernatants by a 

commercial EIA kit using cAMP as substrate and following the manufacturer’s instructions with appropriate 

modifications.  

Immunoprecipitation of proteins 

Washed platelets (1.0109 platelets/mL), preincubated for 10 min at 37°C with saline, were stimulated with 2-AG. In 

the experiments in which the dose-dependent effect of the endocannabinoid was evaluated, platelets were stimulated 

with increasing concentration of 2-AG for 120 sec. When the time-dependence was assessed, platelets were challenged 

with 10 µM 2-AG for different incubation times.  Washed platelets (1.0×109 platelets/mL), preincubated for 10 min at 

37°C with varying compounds able to inhibit several signal transduction pathways, were stimulated with 10 µM 2-AG 

for 120 sec. Incubation was stopped by adding to samples an equal volume of lysis mixture (0.5% SDS, 1% Triton X-

100, 0.75% sodium deoxycholate, 10 mM EDTA, 1 mM PMSF, 50 mM NaF, 200 µM Na3VO4, 1/100 dilution protease 

inhibitor cocktail). Lysates, after a brief centrifugation, were treated for 2 h at 4°C with 1.0 µg of anti-PDE3A antibody. 

The immunocomplexes were precipitated with protein A-sepharose. After 60 min on ice, immunoprecipitates were 

washed with IP-wash 1 (10 mM pH 7.4 Tris/HCl, 150 mM NaCl, 0.5% Triton X-100), followed by IP-wash 2 (10 mM 

pH 7.Tris/HCl, 750 mM NaCl, 0.5% Triton X-100) and finally with IP-wash 1. Immunoprecipitates were extracted with 

2×Laemmli-SDS reducing sample buffer, heated at 80°C for 15 min and resolved on 5-10% SDS-PAGE. Running was 

performed in the presence of Colorburst™ Electrophoresis weight markers. Gels were transferred to nitrocellulose 

membranes and blots were blocked in 5% BSA dissolved in TBST (Tris buffer saline, pH 7.6, containing 10 mM Tris, 

150 mM NaCl, and 0.1% Tween 20) at 37°C for 30 min and then incubated overnight at 4°C with anti-phosphoserine 

(1:500 dilution) antibody. Membranes were extensively washed and incubated for 60 min at room temperature with 

horseradish peroxidase-conjugated secondary antibody. After further washings, blots were developed using the ECL 

system. Optical density, reported as arbitrary units, was directly quantified by the Bio-Rad Chemi-Doc software 

package. Nitrocellulose membranes were then stripped by incubation with 62.5 mM Tris/HCl (pH 6.7), 2% SDS, 100 

µM β-mercaptoethanol for 30 min at 50°C, reprobed with anti-PDE3A and band intensity was quantified as detailed 

above. 

Immunoblotting analysis of phospho-proteins 

Washed platelets (1.0109 platelets/mL), preincubated for 10 min at 37°C with saline, were stimulated with 2-AG. In 

the experiments in which the dose-dependent effect of the endocannabinoid was evaluated, platelets were stimulated 
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with increasing concentration of 2-AG for 120 sec. When the time-dependence was assessed, platelets were challenged 

with 10 µM 2-AG for different incubation times. In other experiments platelets (1.0×109 platelets/mL), preincubated for 

10 min at 37°C with varying compounds able to inhibit several signal transduction pathways, were stimulated withy 10 

µM 2-AG for 120 sec. Incubation was stopped by adding 2×Laemmli-SDS reducing sample buffer. Samples, heated for 

5 min at 100°C, were separated by 5-10% SDS-PAGE, and transferred to nitrocellulose membranes. Running was 

performed in the presence of Colorburst™ Electrophoresis weight markers. Blots were blocked in 5% BSA dissolved in 

TBST (Tris buffer saline, pH 7.6, containing 10 mM Tris, 150 mM NaCl, and 0.1% Tween 20) at 37°C for 30 min, and 

then incubated overnight at 4°C with anti-phospho-PDE3A (ser290/ser293) (1:500 dilution) antibody. Membranes were 

extensively washed and incubated for 60 min at room temperature with horseradish peroxidase-conjugated secondary 

antibody. After further washings, blots were developed using the ECL system, and the optical density, reported as 

arbitrary units, was directly quantified by the Bio-Rad Chemi-Doc software package. Nitrocellulose membranes were 

then stripped by incubation with 62.5 mM Tris/HCl (pH 6.7), 2% SDS, 100 µM β-mercaptoethanol for 30 min at 50°C, 

reprobed with anti--actin. Band intensity was quantified as detailed above. 

Platelet aggregation 

Platelet aggregation was performed in a Menarini Aggrecoder according to Born’s method [Born, 1962] and quantified 

by the light transmission reached within 3 min. Washed platelets (3.0×108 plts/mL) were preincubated with saline or 

inhibitors for 2 min at 37°C before platelet stimulation with 10 µM 2-AG. To calculate the percentage of inhibition, the 

extent of aggregation measured in the presence of the inhibiting agent was always compared with that measured in a 

control sample containing saline, carried out under the same conditions. From each series of experiments, in which the 

inhibitors were tested in at least five concentrations, a percentage inhibition-concentration curve was derived. From this 

curve, the IC50 value was calculated as the concentration of inhibitor causing a 50% inhibition of the aggregation. 

Statistical analysis 

Data are mean  SD of at least four independent experiments, each performed in duplicate. Statistical comparison 

between two groups was made by the unpaired Student’s t-test. One-way ANOVA followed by Bonferroni’s post hoc 

test was used to compare multiple groups. Statistical significance was defined as p<0.05. 

RESULTS 

Effect of 2-AG on cAMP level 

Intracellular cAMP level was decreased in platelets stimulated by 2-AG. The 2-AG effect was dose-dependent. Total 

cAMP level, 6.60.4 pmol/108plts in resting platelets, decreased to 4.10.2 pmol/108plts in platelets stimulated with 10 
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µM 2-AG (Fig. 1A). Moreover the time-dependent 2-AG effect was gradual, peaking after 120 sec of platelet 

stimulation with 2-AG (Fig. 1B). In contrast 2-AG did not decrease cGMP level in human platelets, but it produced a 

light increase of this cyclic nucleotide. The basal cGMP concentration that corresponded to 0.60.1 pmol/108plts in 

resting platelets increased to 0.80.1 pmol/108plts in platelets stimulated by 10 µM 2-AG as previously observed 

[Signorello et al., 2011b]. A small increase in cGMP levels after exposure of platelets to von Willebrand factor [Riba et 

al., 2006; Gambaryan et al., 2008], thrombin [Zhang et al., 2011] or collagen [Riba et al., 2006] was described. On the 

other hand NO is increased in 2-AG-stimulated platelets [Signorello et al., 2011b]. NO activates soluble guanylyl 

cyclase resulting in stimulation of synthesis of cGMP. Thrombin, von Willebrand factor and collagen are also able to 

activate soluble guanylyl cyclase although to a lesser extent than NO. The 2-AG effect on cAMP level could be 

explained as suppression of cAMP synthesis by inhibiting adenylate cyclase or by increasing its hydrolysis by 

activation of cAMP PDE. No significant effect of 2-AG on adenylate cyclase activity was shown as the measured 

activity was 488 and 414 pmol cAMP/min/mg protein in the absence or in the presence of 10 µM 2-AG, respectively 

(Fig. 2), in agreement with previous data [Leoncini et al., 2004]. IBMX lightly stimulates adenylate cyclase activity, 

while forskolin induces a strong stimulation (Fig. 2). In order to clarify mechanisms involved in 2-AG effect, we tested 

the ability of 2-AG to reduce total intracellular cAMP level in the presence of varying inhibitors. We found that the 

cAMP decrease was unaffected in platelets preincubated with the adenylate cyclase inhibitor, SQ22536, or with the 

PDE2 inhibitor EHNA, whereas it was almost completely blocked in platelets pretreated with the PDE3A specific 

inhibitor milrinone, suggesting that PDE3A activation plays the major role in the reduction of the intracellular cAMP 

level (Fig. 1C). To clarify the mechanisms involved in the upstream signalling pathway of PDE3A activation, we tested 

the effect of LY294002 and MK2206 inhibitors of PI3K and AKT, respectively and of U73122, inhibitor of PLC 

pathway. In the presence of LY294002 and MK2206 a significant (p<0.0005) recovery of cAMP was obtained. A lower 

effect was observed in platelets pretreated with U73122 (Fig. 1C). No experiments have been carried out in the presence 

of the specific PKC inhibitor GF109203X as this compound interferes with the cAMP assay. In addition in platelets 

pretreated with ASA or SQ29548, inhibitor of thromboxane receptor no 2-AG effect on cAMP intracellular level was 

demonstrated. Finally experiments in platelets not stimulated with 2-AG have been performed. Results were quite 

similar to those obtained in the presence of 2-AG (data not shown). 

Activation of PDE3A by 2-AG 

Data reported in Fig. 3 show that PDE is activated in platelets stimulated with 2-AG. The 2-AG effect was dose-

dependent peaking at 10 µM (Fig. 3A). Moreover platelet PDE activity gradually increased during platelet incubation 
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with 2-AG, reaching the highest activation after 120 sec. A prolonged incubation did not raise the 2-AG effect (Fig. 

3B).  

Platelets express several PDEs: PDE2, PDE3 and PDE5. PDE2A, which hydrolyses both cGMP and cAMP with 

an high Km, is allosterically stimulated by cGMP at moderate levels and may contrast the stimulated levels of cAMP 

[Colman, 2004]. PDE3A can hydrolyze both cAMP and cGMP with the same Km but at 10-fold higher Vmax for 

cAMP than cGMP, PDE5 which prefers cGMP as a substrate [Haslam et al., 1999; Smolenski, 2012]. To clarify which 

of these enzymes was stimulated by 2-AG we carried out experiments in the presence of several PDE inhibitors. When 

platelets were treated with the PDE3A inhibitor milrinone PDE activation induced by 2-AG was cancelled. The same 

result was obtained with cilostazol and cilostamide (data not shown). On the contrary 2-AG was still able to activate 

PDE in platelets pretreated with the PDE2 selective inhibitor EHNA (Fig. 3C), indicating that PDE3A but not PDE2 is 

involved in 2-AG activation of cAMP-PDE. In addition LY294002, MK2206 and U73122 produced a partial inhibition 

of 2-AG effect on PDE3A suggesting that PI3K/AKT and PLC/PKC pathways are both upstream involved in PDE3A 

activation (Fig. 3C). Finally SQ29548 or ASA did not modify the 2-AG effect on PDE3A activation, excluding that a 2-

AG metabolite such as arachidonic acid could participate to 2-AG effect.  

PDE3A phosphorylation upon platelet activation by 2-AG 

In platelets stimulated by 2-AG PDE3A is activated (Fig. 3). As it occurs in platelets activated by varying agonists such 

as thrombin [Hunter et al., 2009; Zhang and Coleman, 2007], PDE3A is co-regulated by phosphorylation. Thus by 

immunoprecipitation technique we have measured the phosphorylation status of PDE3A. We have shown that 2-AG 

induces PDE3A phosphorylation. The 2-AG effect is dose-dependent peaking at 10 µM (Fig. 4A) and time-dependent 

reaching the maximum after 120 sec of incubation (Fig. 4B). In addition we have tested the effect of several inhibitors 

on PDE3A phosphorylation (Fig. 5). We have found that the PDE2 inhibitor EHNA has no effect, while milrinone 

abolishes PDE3A phosphorylation. LY294002 and MK2206, PI3K/AKT inhibitors, U73122 and GF109203X, 

PLC/PKC pathway inhibitors, significantly (P<0.0001) reduce PDE3A phosphorylation. On the contrary SQ29548 or 

ASA do not change the 2-AG effect. These results parallel those on PDE3A activity (Fig. 3C), suggesting that 

phosphorylation and activation are strictly connected. It is known that phosphorylation/activation of PDE3A could 

involve varying serine residues. In particular ser428 seems to be target of PKC and ser290/293 can be phosphorylated 

through the PI3K/AKT pathway activation [Hunter et al., 2009]. Results reported in Fig. 5 indicate that both PKC and 

PI3K/AKT pathway can participate to the PDE3A phosphorylation. Unfortunately we haven’t the possibility to evaluate 

the phosphorylation status of ser428, as we did not dispose of the specific antibody against this residue. In contrast we 

have quantified the phosphorylation level of ser290/293 in response to 2-AG. We have found that the 2-AG effect on 
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ser290/293 phosphorylation is dose- and time-dependent reaching the maximum level at 10 µM 2-AG and 120 sec of 

incubation with the endocannabinoid (Fig. 6). As expected the phosphorylation of this residue was cancelled by 

milrinone and greatly reduced by the inhibitors of PI3K/AKT pathway, LY294002 and MK2206 (Fig. 7). 

Effect of PDE3A inhibitors on platelet aggregation induced by 2-AG 

We have evaluated the effect of some known PDE3A inhibitors on 2-AG induced aggregation. We have found (Table 1) 

that cilostazol or cilostamide inhibit aggregation with a similar value of IC50 which corresponds to 4.20.7 and 4.40.7 

µM while milrinone has showed an higher, but non significantly different value (5.10.8 µM). 

DISCUSSION 

Results reported in literature [Maccarrone et al., 2001; Baldassarri et al., 2008; Signorello et al., 2011a; Signorello et al., 

2011b; Signorello et al., 2013; Signorello and Leoncini, 2014; Malorni et al., 2004] suggest that 2-AG behaves as a true 

agonist of human platelets. Concerning the mechanism by which 2-AG acts in human platelets to date independent 

investigations have provided conflicting results, that span from evidence for a CB1/CB2-dependent mechanism to a non 

CB1/CB2-dependent signal transduction or to a classical arachidonate-dependent pathway. Previous data suggest that 2-

AG induced aggregation is cannabinoid receptor dependent and metabolic breakdown independent [Maccarrone et al., 

2001], in agreement with more recent data indicating that 2-AG does not activate human platelets through the release of 

arachidonic acid [Signorello et al., 2011a]. In contrast data presented by Kweon et al [2010] and Brantl et al [2014] 

have shown that 2-AG stimulates platelets by a MAGL (monoacylglycerol lipase) triggered mechanism leading to free 

arachidonic acid and its metabolism. CB1, CB2 or non CB1/CB2 seems to be not involved, as suggested by Baldassari 

et al [2008]. On the contrary we have shown that 2-AG activates the p38MAPK/cPLA2 pathway [Signorello et al., 

2011a] and promotes myosin light chain phosphorylation [Signorello et al., 2013] through a CB1 receptor mechanism. 

In the present report we show that 2-AG potentiates its power of agonist reducing intracellular cAMP level. It is known 

that ADP reduces cAMP concentration below the basal levels through the ADP secreted from granules during platelet 

activation. Two different P2 receptors, P2Y1 and P2Y12, involved in the ADP-induced platelet responses have been 

cloned. The P2Y1 receptor mediates PLC activation via a Gαq subunit and subsequently regulates intracellular calcium 

mobilization and platelet shape changes [Stalker et al., 2012]. P2Y12 receptor, on the other hand, is coupled to the Gαi 

subunit, which prevents the activation of adenylate cyclase, whereupon the intracellular cAMP concentration decreases. 

P2Y12 receptor behaves as a negative regulator of platelet activation [Hechler and Gachet, 2011]. The P2Y12-dependent 

Gαi activation also potentiates the release of granule contents [Garcia et al., 2011] and can directly activate the αIIbβ3 

integrin via phosphoinositide-3 kinase [Jackson et al., 2004; Cosemans et al., 2006; Schoenwaelder et al., 2007; 
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Gratacap et al ., 2011]. However in platelets stimulated by 2-AG the trend of adenylic nucleotides secretion [Signorello 

and Leoncini, 2014] does not parallel with the changes in cAMP intracellular concentration. For such reason ADP that 

could be secreted upon platelet activation by 2-AG cannot partecipate to the cAMP level reduction. In addition 

endocannabinoids inhibit platelet aggregation induced by several agonists such as ADP, thrombin or collagen [Levy et 

al., 1976; De Angelis et al., 2014]. cAMP is a control molecule of down-regulation of platelet activation [Smolenski, 

2012; Raslan and Naseem, 2014]. Intracellular cAMP level reduction can be obtained by inhibiting adenylate cyclase or 

by stimulating cAMP-PDE. Since 2-AG does not affect adenylate cyclase, as shown in this report (Fig. 2), likely 2-AG 

acts on cAMP-PDE, by stimulating its activity. The cAMP-dependent PDE is a component of signalling pathway of 

platelets activation by 2-AG. In particular PDE3A seems to be involved in these mechanisms, as milrinone abolishes the 

2-AG effect on cAMP. Platelets express at least three PDEs: cGMP-stimulated PDE2 and PDE5 and cGMP-inhibited 

PDE3A. PDE3A has a lower km for cAMP than PDE2 [Smolenski, 2012]. For these properties PDE3A exerts a greater 

influence on cAMP level in resting and activated platelets. Moreover PDE3A inhibition by milrinone (Fig. 1C) or 

cilostamide raises basal cAMP level and strongly inhibits platelet aggregation [Levy et al., 1976; Manns et al., 2002]. In 

contrast the PDE2 inhibitor EHNA has no effect on cAMP level (Fig. 1C) and platelet aggregation [De Angelis et al., 

2014]. Here, we shows that 2-AG enhances PDE3A activity (Fig. 3A,B) producing a significant reduction of cAMP 

level. Previously it was shown that PDE3A activity is positively regulated by phosphorylation [Hunter et al., 2009; 

Zhang  and Coleman, 2007]. In particular it has been demonstrated that thrombin stimulates PDE3A activity in human 

platelets through a phosphorylation mechanism which mainly may involve the PI3K/AKT signalling pathway [Zhang 

and Coleman, 2007]. In contrast, Hunter et al. [2009] have shown that in platelets stimulated by varying agonists, 

PDE3A is activated and phosphorylated on several serine residues (ser312, ser428, ser438, ser465, ser492), in parallel 

with the PKC substrate pleckstrin phosphorylation. According to the above cited authors [Hunter et al., 2009] 

phosphorylation and activation of PDE3A require PKC activation and is AKT-independent. In this report we show that 

in platelets stimulated with 2-AG PDE3A is phosphorylated (Fig. 4A,B). PDE3A phosphorylation parallels the PDE 

activation (Fig. 3A,B). Moreover PDE3A phosphorylation and activation are greatly inhibited by LY294002 and 

MK2206 suggesting that the PI3K/AKT pathway is involved in PDE3A phosphorylation and activation by 2-AG. 

Similarly, platelet modulators such as insulin [Lopez-Aparicio et al., 1993] and leptin [Elbatarny and Maurice, 2005] 

can stimulate phosphorylation and activation of PDE3A through the PI3K/AKT pathway. In addition in platelets 

stimulated by 2-AG the PI3K/AKT pathway is actively involved in MLC phosphorylation and in some downstream 

events such as actin polymerization, ATP secretion and aggregation [Signorello and Leoncini, 2014].  Finally cAMP 

signalling regulates platelet MLC phosphorylation and shape change operating at the level of the RhoA/Rho kinase-

MLC phosphatase signalling pathway [Aburima et al., 2013]. On the other hand data shown in this report obtained in 
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platelets pretreated with the PLC or PKC inhibitor U73122 and GF109203X demonstrate that also the PLC/PKC 

pathway participates to the phosphorylation/activation of PDE3A induced by 2-AG as in platelets stimulated by 2-AG 

PKC that is activated in platelets [Signorello et al., 2011b] directly phosphorylates PDE3A. 

In conclusion in this report we provide evidence that AKT via the PI3K signalling pathway and PKC directly can 

phosphorylate/ activate PDE3A, producing an enhancement of cAMP hydrolysis. Likely 2-AG, stimulating pathways 

which lead to platelet activation and aggregation, strengthens its power through the reduction in cAMP intracellular 

levels.  
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LEGENDS 

Fig. 1. Effect of 2-AG on cAMP level. In panel A washed platelets (1.0×109 platelets/mL), prewarmed at 37°C, were 

stimulated for 120 sec with varying concentrations of 2-AG. In panel B washed platelets (1.0×109 platelets/mL) were 

stimulated with 10 µM 2-AG and incubated at 37° as indicated. In panel C washed platelets (1.0×109 platelets/mL) were 

preincubated at 37°C for 10 min with saline or 50 µM SQ22536 (S), 50 µM EHNA (E), 10 µM milrinone (M), 20 µM 

LY294002 (L), 10 µM MK2206 (MK), 10 µM U73122 (U), 1 µM SQ29548 (SQ) and 100 µM ASA (ASA) and then 

stimulated for 120 sec with 10 µM 2-AG. At the end of incubation suitable aliquots were analyzed for cAMP content by 

EIA kit as reported in Methods. Data are the mean  SD of four independent experiments carried out in duplicate. One 

way ANOVA-Bonferroni’s post hoc test: *p<0.01, #p<0.05. Student’s t-test: *p<0.0005 vs none; **p<0.0001, 

#p<0.0005, p<0.01 vs 2-AG. 

Fig. 2. Effect of 2-AG on adenylate cyclase activity. Washed platelets (1.0×109 platelets/mL), prewarmed at 37°C for 

10 min with saline, 100 µM IBMX or 20 µM forskolin (F), were stimulated for 120 sec with varying concentrations of 

2-AG as indicated. At the end of incubation suitable aliquots were analyzed for adenylate cyclase activity by EIA kit as 

reported in Methods. Data are the mean  SD of four independent experiments carried out in duplicate. Student’s t-test: 

*p<0.0001 vs none.  

Fig. 3. Effect of 2-AG on PDE activity. In panel A washed platelets (1.0×109 platelets/mL), prewarmed at 37°C, were 

stimulated for 120 sec with varying concentrations of 2-AG. In panel B washed platelets (1.0×109 platelets/mL), 

prewarmed at 37°C, were stimulated with 10 µM 2-AG. In panel C washed platelets (1.0×109 platelets/mL) were 

preincubated at 37°C for 10 min with saline or 50 µM SQ22536 (S), 50 µM EHNA (E), 10 µM milrinone (M), 20 µM 

LY294002 (L), 10 µM MK2206 (MK), 10 µM U73122 (U), 1 µM SQ29548 (SQ) and 100 µM ASA (ASA) and then 

stimulated for 120 sec with 10 µM 2-AG. At the end of incubation suitable aliquots were analyzed for PDE activity by 

EIA kit as reported in Methods. Data are the mean  SD of four independent experiments carried out in duplicate. One 

way ANOVA-Bonferroni’s post hoc test: *p<0.01, #p<0.05.  Student’s t-test: *p<0.0005 vs none; **p<0.0001, 

#p<0.0005, p<0.01 vs 2-AG. 

Fig. 4. Phosphorylation of PDE3A in platelets stimulated with 2-AG. In panel A washed platelets (1.0×109 

platelets/mL), prewarmed at 37°C, were incubated for 120 sec with varying concentrations of 2-AG. In panel B washed 

platelets (1.0×109 platelets/mL), prewarmed at 37°C, were stimulated with 10 µM 2-AG. At the end of incubation 

suitable aliquots were immunoprecipitated with anti-p-PDE3A and immunoblotted with anti-phosphoserine (p-Ser) as 

detailed in Methods. Blots are representative of four independent experiments. In the lower panels densitometric 

scanning ± SD of PDE3A phosphorylation of four experiments is shown. One way ANOVA-Bonferroni’s post hoc test: 

#p<0.01; *p<0.001. 
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Fig. 5. Effect of varying inhibitors on phosphorylation of PDE3A induced by 2-AG. Washed platelets (1.0×109 

platelets/mL) were preincubated at 37°C for 10 min with saline or 1 µM SQ29548 (SQ), 100 µM aspirin (ASA), 10 µM 

milrinone (M), 50 µM EHNA (E), 10 µM GF109203X (G), 10 µM U73122 (U), 20 µM LY294002 (L) and 10 µM 

MK2206 (MK), and then stimulated for 120 sec with 10 µM 2-AG. At the end of incubation suitable aliquots were 

immunoprecipitated with anti-p-PDE3A and immunoblotted with anti-phosphoserine (p-Ser) as detailed in Methods. 

Blots are representative of four independent experiments. In the lower panel densitometric scanning ± SD of PDE3A 

phosphorylation of four experiments is reported. Student’s t-test: *p<0.0001 vs none; #p<0.0001 vs 2-AG 

Fig. 6. Phosphorylation of PDE3A (ser290/293) during 2-AG activation of platelets. In panel A washed platelets 

(1.0×109 platelets/mL), prewarmed at 37°C, were incubated for 120 sec with varying concentrations of 2-AG. In panel 

B washed platelets (1.0×109 platelets/mL), prewarmed at 37°C, were stimulated with 10 µM 2-AG. At the end of 

incubation suitable aliquots were immunoblotted with anti-p-PDE3A (ser290/293) as detailed in Methods. Blots are 

representative of four independent experiments. In the lower panels densitometric scanning ± SD of PDE3A 

phosphorylation of four experiments is reported. One way ANOVA-Bonferroni’s post hoc test: #p<0.01; *p<0.001. 

Fig. 7. Effect of varying inhibitors on phosphorylation of PDE3A (ser290/293) induced by 2-AG. Washed platelets 

(1.0×109 platelets/mL) were preincubated at 37°C for 10 min with saline or 50 µM EHNA (E), 10 µM milrinone (M), 

20 µM LY294002 (L) or 10 µM MK2206 (MK) and then stimulated for 120 sec with 10 µM 2-AG. At the end of 

incubation suitable aliquots were immunoblotted with anti-p-PDE3A (ser290/293) as detailed in Methods. Blots are 

representative of four independent experiments. In the lower panel densitometric scanning ± SD of PDE3A 

phosphorylation of four experiments is shown. Student’s t-test: *p<0.0001 vs none; #p<0.0001 vs 2-AG 

 

 


