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Abstract. Conductance characteristics of a nonplanar two-dimensional electron gas (2DEG)
can expose the role of its bending on the 2DEG electronic states. In particular, the presence
of an effective geometric potential can be revealed. Here, we present a numerical study of the
coherent electron transport on Y nanojunctions of three cylindrical 2DEGs, including a proposal
for the experimental detection of the geometric potential. We describe the analytical approach
leading to the reduction of the problem dimensionality from 3D to 2D and sketch our simulation
scheme.

1. Introduction
The quantum dynamics of a particle constrained on a thin semiconductor layer can be effectively
represented by a two-dimensional (2D) equation of motion, as far as the layer thickness is so small
that the dynamics in the directions parallel to the layer can be decoupled from the orthogonal
one, where only the ground state of the confinement potential is occupied. While for planar
layers, a trivial 2D version of the effective-mass Schrödinger equation can be sufficient to get
the main electronic-states features, a 2D system that is curved within the 3D space, requires a
different model. In fact, the system curvature must be included into the 2D dynamics through
an effective geometric potential (GP) that attracts a carrier towards the regions with stronger
curvature. Furthermore, the equation of motion should be modified in order to account for
the transformation between the 2D and 3D coordinate system, as we will illustrate in the next
section.

Before proceeding, we stress that the topic introduced above has a relevance that goes
beyond theoretical physics. In fact, a number of nanostructures have been recently realized
where carriers are confined on a surface wrapped around a core semiconductor nanowire via
epitaxial overgrown[1], and the controlled growth of branched nanowires has been clearly
demonstrated[2]. The fabrication of Y junctions of cylindrical 2DEGs is possibly the next
step of these experimental activities. We will show in Section 3 that transport characteristics of
the latter Y junctions are able in principle to expose the presence of the GP. Indeed, although
the GP has been conjectured long time ago[3] and it is commonly included in the modeling of
curved 2D systems[4], its direct experimental evidence has not been achieved so far.
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Finally, in Section 4 we briefly analyze the dependence of the junction coherent transmission
on the angle between two of the branches.

2. Equation of motion on a curved surface
Let us consider a curved surface whose parametric equation is r = [x(q1, q2), y(q1, q2), z(q1, q2)]
and a quantum particle in the 3D space. Following the limiting procedure proposed in Refs. [5]
and [6], we take a confining potential that is zero in close proximity of the surface and infinite
elsewhere. The particle dynamics is separable in the directions orthogonal and parallel to the
surface. In particular, the former direction can be neglected, while in the latter direction,
the steady-states of the quantum particle can be obtained through the following modified
Schrödinger equation[7]
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ψ + V ψ = Eψ(q1, q2) , (1)

where g(q1, q2) is the metric tensor on the surface, g(q1, q2) its determinant, M(q1, q2) and
K(q1, q2) its local mean and Gaussian curvature, respectively, and V (q1, q2) a possible external
potential. It is straightforward to note that the term containing the two curvatures acts as an
additional potential term. Furthermore, since M2 ≥ K, this potential is always attractive. We
note here that an external magnetic field can be also included in the above equation[8], with its
effect being separable from that of the surface curvature[9].

We are interested in the scattering states of the 2D structure. To be specific, we consider a Y
junction of three cylinders, as depicted in Fig. 1. The system has three open boundaries, namely
the three circumferences A, B and C at the edges of the three branches, with radii RA, RB and
RC , respectively. We take the surface coordinate q1 along the circumferences and q2 orthogonal

RC

 

RB RA





Figure 1. Curved surface forming a Y junction,
where the two uppermost branches form an
angle θ with the lower cylinder. In the
simulation presented we take RA = 15 nm
RB = 20 nm RC = 30 nm. The negative value
of the GP term − h̄2

2m

[

M2 − K
]

is reported,
in colorcode (red=−30 meV, blue=0) on the
surface.

q  = Q2       B q  = Q2       A

q  = Q2       C

q1

q2

Figure 2. Sketch of the simulation
domain with the 2D coordinate sys-
tem [q1, q2]. The lateral edges with
the same dashed/dotted line are to
be considered mutually connected
to form periodic conditions.
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to them, as shown in Fig. 2, where the [q1, q2] simulation domain is sketched, together with its
coordinate system. The boundary α = A,B,C has coordinates (q1 ∈ [0, 2πRα], q2 = Qα). On
the cylindrical lead connected to A (not shown in Fig. 1) the wave function ψ for a given energy
E can be written as [10]

ψ(q1, q2 < QA) =
MA
∑

m=0

aA
mχA

m(q1)e
ikA

mq2 +
MA
∑

m=0

bA
mχA

m(q1)e
−ikA

mq2 +
∞
∑

m=MA+1

bA
mχA

m(q1)e
kA

mq2 , (2)

and it has a similar expression in the other leads, non reported for brevity. The physical meaning
of Eq. (2) is simple. The first term represents the incoming component as a combination of the
different orthogonal modes of the lead χA

m(q1), weighted with the injection coefficients aA
m. The

second term represents the combination of the outgoing traveling component, weighted with the
outgoing coefficients bA

m (they are the reflection coefficients in case no injection occurs from the
other leads). The third term represents the evanescent waves. If we define εα

m as the energy of
the transverse mode χα

m, m = Mα represents the last mode with εα
m < E and the evanescent

waves have εα
m > E. On the other hand, for the traveling waves, (h̄kα

m)2

2m = (E− εα
m) is the kinetic

part of the particle energy.
In order to obtain the scattering states of the structure, once we fix an energy E, we solve

numerically Eq. (1) on the internal points of the domain (Fig. 2), together with Eq. (2) on
the boundaries. We stress that the outgoing coefficients bα

m are unknowns of the problem.
The solution of the two coupled equations is essentially the quantum transmitting boundary
method [10].

In our simulations, we obtain the transmission coefficients by injecting the carriers only in
the ground mode of lead A, i.e. aA

0 %= 0 and zero otherwise. On the other hand, for the
conductance calculation we populate the incoming modes with a Fermi distribution following
the Landauer-Büttiker approach.

3. Effect of the GP on the conductance
Here we show how the presence of the GP term −h̄2

2m

[

M2 − K
]

in Eq. (1) produces a remarkable
effect on the conductance of a GaAs-based Y junction. In Fig. 3 we report the conductance
between leads A and C (solid line) and between leads A and B (dashed line), calculated through
a Landauer-Büttiker model at 2 K. Leads B and C are always kept at the same potential. We
take a Fermi energy of 0.6 meV from the bottom of the conduction band and do not consider
charging effects inside the device. Left (right) panel shows the results with (without) the GP
term included in Eq. (1).
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Figure 3. Conductance at a temperature of 2 K between two couples of cylindrical leads of the
Y junction shown in Fig. 1. The solid (dashed) line represents the conductance between A and
C (A and B). The inclusion of the GP leads to crossovers of the two curves.
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Figure 4. Transmission probability as a function of the injection energy with (a) and without
(b) the GP at three different angles θ (see Fig. 1). The carriers enter the Y junction from the
ground transverse mode of A and are transmitted in B (dashed line) and C (solid line). The
thresholds of the transverse modes in B and C emerge as peaks or discontinuities in the curves.

A double crossing between the two curves occurs if the GP is included, while they remain
well separated otherwise. The reason of this behavior can be ascribed to the different surface
curvatures in the cylindrical leads, that produce, through the GP term, different energy shifts
on the fundamental transverse modes χα

0 , as detailed in Ref. [11]. On the other hand, if the GP
is not included, the ground-state energies εα

0 are independent on the radii Rα, since the 1D lines
of the boundaries have periodic boundary conditions.

4. Dependence of the coherent transmission on the branches angle
In order to understand the robustness of the effect described above, we calculated the
transmission coefficient for different values of the angle θ between the two uppermost branches
and the lowermost one (see Fig. 1). When a very small angle (θ ≈ π/15, left panels of Fig. 4)
is considered, the coherent transmission in B is in general reduced with respect to larger θ.
However, for angles comparable to experimental Y-branched nanowires (π/10 < θ < π/4) we
find that the transmission spectrum is essentially unchanged, as can be gathered from the
central and right panels of Fig. 4. A similar behavior can be expected for the conductance, this
confirming the robustness of the presence of the conductance crossings as a signature of the GP.
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