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Abstract
In the literature, a great interest is reserved to complex systems (i.e. serial or parallel or mixed systems), consti-
tuted by the interconnection of single elements. The evolution of system reliability depends on its structure as
well as on the evolution of the reliability of its individual elements. Maintenance activities on systems strongly
affect element aging and system’s operating life. Preventive maintenance, for example, is used to increase
system availability reducing, as a consequence, the probability of failure. Generally, maintenance plans are
performed with respect to some criteria depending on cost or on reliability/availability requirements. There-
fore, the optimum maintenance scheduling of a system can be based on the minimization of the total cost or
on the maximization of its availability. Many Authors emphasize the requirement on system reliability. In [1],
for example, the concept of reliability equivalence from simple series and parallel systems to some complex
systems is presented and reliability equivalence factors of complex systems are obtained. One of the most criti-
cal problems in preventive maintenance is the determination of the optimum frequency to perform maintenance
actions on systems, in order to ensure a pre-defined level of availability. In this paper the predictive mainte-
nance policy, for a single element, is extended to a system constituted by two series elements, named A and B.
The transition from a single unit to a series system is not immediate and presents a great number of problems.
Actually, when a maintenance action is scheduled for a system of this kind, the decision maker must decide if
it is more convenient (with respect to some chosen criterion) to intervene on element A or B or on both. The
proposed methodology deals with this practical problem in the context of the predictive maintenance policy.
Research on this topic is in a running state and the methodology is only theoretically presented.

1 Introduction

In the literature, a great interest is reserved to complex systems (i.e. serial or parallel or mixed systems)
because real systems are constituted by the interconnection of single items. The evolution of system reliability
depends on its structure as well as on the evolution of its elements reliability. Maintenance activities on systems
affect strongly element aging and system’s operating life. To increase system availability and to reduce the
probability of a failure, preventive maintenance is used. Maintenance plans are performed with respect to
some criteria depending, for example, on cost, reliability or availability requirements. Therefore, the optimum
maintenance scheduling of a system can be based on the minimization of the total cost or on the maximization
of its availability. In [1], for example, a set of equations are developed for a two identical component parallel
redundant system to determine the optimum maintenance interval based on the system failure rate. Many
Authors emphasize the requirement on system reliability. In [2], the concept of reliability equivalence from
simple series and parallel systems to some complex systems is presented and reliability equivalence factors
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of complex systems are obtained. One of the most critical problems in the preventive maintenance plans is
the determination of the optimum frequency to perform maintenance actions on systems, in order to ensure
its availability. A solution for this problem is presented in [3] for equipment that exhibits linearly increasing
hazard rate and constant repair rate. The proposed algorithm calculates the interval of time between preventive
maintenance actions for each component, by minimizing the costs. Similarly, in [4] an algorithm is presented
for the maintenance management of a series system based on preventive maintenance in order to guarantee
a pre-determined reliability level. This papers proposes the extension to a series of two components of a
predictive maintenance policy. With the development of electronic monitoring systems, the interest for the
predictive maintenance [5, 6, 7, 8, 9] policy has significantly increased with respect to the traditional preventive
procedure. Although the introduction of sensors and electronic equipment add new costs, process monitoring of
a system item increases its exploitation during its useful life. Actually, while the preventive maintenance action
is scheduled by considering only the a-priori information about the population which the item belongs to, the
predictive one is supported by the additional information coming from the monitoring system that follows each
item stochastic degradation process. In analogy with the single item case [10], the extended methodology is
based on a Bayesian approach but, differently from the previous case, the maintenance scheduling algorithm is
more complex. In fact, when a maintenance action is scheduled, the decision maker must decide if it is more
convenient (with respect to some chosen criterion) to intervene on element A or B or on both. The proposed
methodology deals with this practical problem by employing a cost criterion. The proposed methodology is
only theoretically presented. In particular, the paper is organized as follows. Section 2 introduces the predictive
maintenance policy for a two component series system by presenting the adopted assumptions and the tracking
system procedure. In Section 3 the cost function, to be minimized for the maintenance scheduling, is introduced.
Section 4 shows the proposed algorithm and, finally, in Section 5 conclusions are drawn.

2 Predictive policy for a two components series system

A series of two components is considered. Both elements in the system are supposed to be monitored and
two assumptions are made, described hereafter. The degradation process is described by a first autoregressive
model with drift (AR(1)) or non stationary random walk model (RWM ) [10]:

y j(t +dt) = y j(t)+ γ
′dt + ε j(t) (1)

with j = 1,2 indicating the component in the system, y the physical parameter correlated to the wear, γ ′ the
mean value of the increment rate, ε(t) a white process normally distributed with zero-mean and variance σ2

ε .
Since the degradation process is realistically observed at regular times, say ∆t, equation 1 can be discretized.
Therefore, by setting,

γ =
∫

γ
′dt = γ

′
∆t (2)

equation 1, becomes for each component of the series,

yi+1 = yi + γ + εi+1 (3)

The degradation path cannot be generally observed directly but through a monitoring system that supplies
a variable m correlated to the real degradation path y. Let mi represent the value of such variable at time ti.
By hypothesizing a linear transfer function for the monitoring system, the relation between mi and ti can be
expressed by:

mi = a+byi +δi (4)

where a e b are the coefficients of the linear transformation and δi represents the total system error at time
i [10]. Variable δ , assumed normal distributed with zero-mean and variance σ2

δ
, represents the reading error,

i.e. the imperfection of the monitoring system;
A system is considered failed when its reliability is less than a pre-defined reliability threshold R∗:

RS ≤ R∗ (5)
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In order to compute system reliability, it is necessary to calculate each component reliability in the system.
To this purpose, a Bayesian approach is proposed [11]. By using Bayes’ theorem, the probability of a hypothe-
sis, that at the beginning is exclusively constituted by the a-priori information, is updated as more information
becomes available. In this context, the drift γ in equation 3 was introduced to represent a constant physical
phenomenon characterizing all the units belonging to the same population. Actually, since the degradation be-
haviour of each component is realistically different even among components belonging to the same population,
as a result of specific geometric or metallurgical characteristics as well as different environmental and working
conditions, variable γ is more properly to be considered as a stochastic variable whose outcomes characterize
each specific item. By assuming for γ a normal distribution with mean µγ and variance σ2

γ , each component j
is characterized at the beginning by the same a-priori information, π(γ j) = π(γ). As data flows from the moni-
toring system, its mean and variance µγ, j and σ2

γ, j, can be updated by Bayesian approach. More computational
details can be found in [9];

At each time instant, system reliability is the product of components reliabilities in the series system.
Computation of each component reliability is based on equations (19 and 20) presented for the single item case
in [10].

2.1 The tracking system procedure

Maintenance activities must be planned in advance. Actually, a minimum management time is required, say
Tmin. Realistically, this time is used by the technical staff to prepare the plant and to manage the maintenance
actions. In analogy with single monitored component case [10], at each acquisition time ti, the monitoring
system will provide for each element in the system information on the variable representative of its degradation
level. Then, each item reliability, R j(ti +Tmin), is computed at the future time ti +Tmin. Consequently, system
reliability, RS, at time ti +Tmin, is the product of the two computed reliabilities. While RS is greater than the
fixed threshold, R∗, it is possible to wait for another acquisition of the monitoring system and then to proceed
for a further estimation. Otherwise, the current time is the decision time and the maintenance activity can
be scheduled. However, differently from the single unit case, when a maintenance activity is scheduled, the
decision maker must decide which element in the series needs to be maintained or, alternatively, evaluate the
convenience to intervene on both. Therefore, if A and B indicate the two items in the system, three possible
scenarios must be carefully evaluated:

• Scenario A:the maintenance action is exclusively performed on element A.

• Scenario B: the maintenance action is exclusively performed on element B.

• Scenario AB: the maintenance action will be performed on both elements.

Obviously, the convenience in choosing the more suitable scenario depends on some adopted criterion. In this
paper an economic criterion is presented. To this purpose, a cost function is appropriately defined (see next
Section 3) and, based on it, the following procedure can be followed.

Let ti be the decision time, then a maintenance action will be scheduled at time ti +Tmin. At time ti, the
decision maker evaluates costs associated with each scenario before taking any decision. Let us suppose to
consider the scenario A. In this case, it is hypothesized that a maintenance action will be performed at time
ti +Tmin on element A, whereas no action will be performed on element B that will continue to work with a
reduced reliability.

Therefore, from time ti +Tmin for the maintained component A, that will be considered as good as new, the
only available information is the a-priori information of the population which belongs to. On the contrary, since
no maintenance action will be performed on component B, data collected by monitoring it till time ti can be used
to forecast its degradation path. Then, at the decision time ti, the decision maker can estimate for this scenario
the system degradation path and, consequently, schedule the next maintenance action by determining time T ∗

when system reliability will be again less than the pre-defined threshold. The procedure is obviously repeated
for each scenario. It is interesting to underline that the estimation of the next maintenance time T ∗ at time ti
is exclusively performed for the evaluation of the costs associated with the three scenarios in a specific time
horizon going from the intervention time ti+Tmin to the next maintenance action. Actually, after performing the
maintenance activity at the scheduled time ti+Tmin , elements will be monitored and then a new decision can be
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taken on the basis of the real data flowing from the monitoring system. This implies that the new maintenance
activity will be scheduled in a time not necessarily coincident with T ∗. Anyway, since the degradation rates
are different for the elements in the system, time T ∗ is generally different for each scenario. As a consequence,
costs will be different.

3 Cost function

In order to build the cost function, the following considerations are taken into account. Costs associated
with possible system failures, that can happen in the time horizon going from the scheduled maintenance time,
ti +Tmin, to the next intervention time T ∗, are considered. Let [ti, t f ] be a generic time interval, where ti is the
current time and t f the future time (t f = ti+Tmin) in which a maintenance action is scheduled . It is hypothesized
that both elements are working at time ti. Let indicate with TFS the system failure time, with CUN the system
unavailability cost due to failure, with CPS the cost for a maintenance action (depending on the specific element
to be maintained in the system) and with CFS the failure cost.

Since the time interval between ti and ti+Tmin is likely shorter than the time interval between two subsequent
maintenance activities, failure probability will be here considered negligible. On the contrary, a failure event
can happen with a certain probability in the interval [ti + Tmin,T ∗] or beyond T ∗. In particular, two possible
cases will be here taken into account:

1. A failure happens in the interval [ti +Tmin,T ∗] and is far from T ∗ more than Tmin.

2. A failure happens in the interval [ti +Tmin,T 2∗] and is far from T ∗ less than Tmin.

In the first case, system can be repaired before T ∗. A failure cost CFS and an unavailability cost CUN ·Tmin

will be paid. In both cases, since the scheduled time is ti +Tmin, the cost for a maintenance action on A or on B
or on both elements, i.e. CP(A,B,AB), will be paid.

Therefore, the expected unitary global cost is defined as the rate between the expected cost and the expected
employing time of the system:

C(ti,T ∗) =
N1 +N2 +N3

D1 +D2 +D3
(6)

where:

N1 = CP(A,B,AB)
N2 = (CFS +CUNTmin)P{(ti +Tmin)< tgS < (T ∗−Tmin)}
N3 = (CFS +CUN(T ∗− tgS2))P{(t∗+Tmin)< tgS < T ∗}
D1 = tgS1
D2 = tgS2
D3 = [T ∗− (ti +Tmin)]P{tgs > T ∗}

(7)

In the previous equation:

• tgS1 represents the system mean failure time in the interval [ti +Tmin,T ∗−Tmin].

• tgS2 represents the system mean failure time in the interval [T ∗−Tmin,T ∗].

The probabilities in equation 6 can be expressed as a function of system reliabilities. In particular:

P{(ti +Tmin)< tgS < (T ∗−Tmin)}= RS(ti +Tmin)−RS(T ∗−Tmin) (8)

P{(T ∗−Tmin)< tgS < T ∗}= RS(T ∗−Tmin)−RS(T ∗) (9)

The expressions for the system mean failure time is:

tgS1 =

∫ T ∗−Tmin
ti+Tmin

t fS(t)dt∫ T ∗−Tmin
ti+Tmin

fS(t)dt
=

N4

D4
(10)
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where fS(t) represents the system failure time probability distribution function. Since fS = −R′S(t), the
numerator N4 of the previous equation can be written as follows:

N4 =−
∫ T ∗−Tmin

ti+Tmin

tdRs(t) = (ti +Tmin)RS(ti +Tmin)− (t∗−Tmin)RS(t∗−Tmin)+
∫ T ∗−Tmin

ti+Tmin

RS(t)dt (11)

and the denominator D4:

D4 = RS(ti +Tmin)−RS(t∗−Tmin) (12)

Therefore, system mean failure time (eq. 10) becomes:

tgS1 =
(ti +Tmin)RS(ti +Tmin)− (t∗−Tmin)RS(t∗−Tmin)+

∫ T ∗−Tmin
ti+Tmin

RS(t)dt
RS(ti +Tmin)−RS(t∗−Tmin)

(13)

By applying the same procedure for the computation of the system mean failure time in the time interval
[T ∗−Tmin,T ∗], it follows:

tgS2 =
(T ∗−Tmin)RS(T ∗−Tmin)− (T ∗)RS(T ∗)+

∫ T ∗
T ∗−Tmin

RS(t)dt
RS(T ∗−Tmin)−RS(T ∗)

(14)

By employing the previous equations, the cost function in equation 6 can be easily estimated as a function
of the computed system reliability. By simulation, it is possible to determine the intervention time ti + Tmin

and time T ∗ for each hypothesized scenario. Then, by equation 6, costs can be computed and the first decision
(intervention on A or on B or on both) can be taken.

4 Algorithm

Two elements belonging to two different population are followed by an imperfect monitoring system.

1. At the current time ti, system reliability RS(ti + Tmin) is computed as the product of each monitored
component reliabilities and compared with the pre-defined threshold.

(a) If RS > R∗ no decision is taken and a new estimation is performed with the next acquired data
supplied by the monitoring system.

(b) Else time ti is the decision time and a maintenance action is scheduled at time ti +Tmin.

i. For each scenario, estimate T ∗

ii. Compute costs by equation 6
iii. Choose the scenario with the minimum cost.

2. After performing the maintenance action at time ti +Tmin, system will start a new cycle: the maintained
element is considered as good as new, the other one will continue to work with a reduced reliability.

3. Repeat the process from the beginning.

5 Conclusions

This paper proposes the extension of a predictive maintenance policy procedure, presented in [10] for the
case of a single monitored component, to a two component series system. In analogy with the single unit
case, a Bayesian approach is proposed. However, after scheduling the maintenance activity, the decision maker
must decide which element in the series needs to be maintained. To this purpose, a cost criterion is proposed
by defining a cost function and hypothesizing three different scenarios. The procedure is only theoretically
presented. Its efficacy will be tested in the future by simulation.
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