
universitat
Autónoma'
de Barcelona

A new distributed diffusion algorithm

for dynamic load-balancing

in parallel systems

Departament d'Informàtica

Unitat d'Arquitectura d'Ordinadors

i Sistemes Operatius

A thesis submitted by Ana Cortés Fité in

fulfilment of the requirements for the degree

of Doctor per la Universitat Autònoma de

Barcelona.

Barcelona (Spain), September 2000

A new distributed diffusion algorithm for

dynamic load-balancing in parallel systems

Thesis submitted by Ana Cortés Pité in

fulfilment of the requirements for the degree of

Doctor per la Universitat Autònoma de

Barcelona. This work has been developed in

the Computer Science Department of the

Universidad Autónoma de Barcelona and was

advised by Dra. Ana Ripoll Aracil,

Bellaterra September, 2000

Thesis Advisor

Ana Ripoll Aracil

A la meva fila Júlia:

"... mami explica'm aquest conte."

ACKNOWLEDGEMENTS

A lot of people have made this work possible. I wish to express my sincere

gratitude to them all for being there, for working with me and for helping me.

First of all I want to thank Ana Ripoll Aracil for being my advisor throughout this

work, for her constant advice and never-ending encouragement. I have learned from

her how to organise basic concepts and new ideas, and how to describe and transmit

them with clarity.

I would like to express my gratitude to Emilio Luque for his- suggestions at the

outset of this work, as well as for his inestimable contribution to its development at

certain critical moments.

My deepest thanks go to Miquel Angel Senar for his technical support and the

clarity of his discussion of this work, and, particularly, for not being discouraged at my

own discouragement, for bringing calm and good sense in moments of desperation

and madness and, above all, for being there at all times. Without his support and

affection this work would never have reached its conclusion.

Thanks to Ferran Cedó, member of the Department of Mathematics at the

Universitat Autònoma de Barcelona, for his mathematical support in the formal

detailed descriptions and analysis of this work.
»

To Tomàs Margalef for thinking of me at the very beginning of this work, and for

getting me under starters' orders.

To Dani Franco and Indira Garcés for lending me the beta version of their

network simulator in order to obtain "deadlock" free reliable communication times.

I would also like to thank Maria Serrano, Lola Reixachs, Eduardo César and

Elisa Heymann for putting up with long talks with me without ever losing their

patience.

Thanks to Josep Pons and Jaume Jo who have collaborated in the

implementation of some of the programs related to this work.

Special thanks to Porfidio Hernández for his academic help during the period in

which I was intensively preparing my lectures.

I am also grateful to the rest of my colleagues from the Computer Architecture

and Operating Systems Group as well as to those who have passed through the

Group during the gestation and preparation periods of this work, for their constant

support and encouragement.

Last, but decidedly not least, I would like to thank my family for their support

throughout this time, and especially my daughter Júlia who, without being aware of it,

has given me the strength to cope with the work's tough final stage, and who has had
t

to suffer in ignorance all of my many and various moods and frames of mind.

Contents

PREFACE vu

CHAPTER 1

THE DYNAMIC LOAD-BALANCING PROBLEM 1

1.1 INTRODUCTION 3

1.2 KEY ISSUES IN THE LOAD-BALANCING PROCESS 4
l .3 PROCESSOR LEVEL 5

1.3.1 Load Manager block 6

1.3.2 Load Balancing Algorithm block 8

Load Balancing Activation 8

Work Transfer Calculation 9

1.3.3 Migration Manager block 10

Load unit selection : 10

Load transfer 10

1.4 SYSTEM LEVEL 11
1.4.1 Centralised. 12

1.4.2 Totally distributed 12

1.4.3 Partially distributed. 13

1.4.4 Synchronous versus asynchronous 14

1.5 LOAD-BALANCING ALGORITHM TAXONOMY 15
1.6 DYNAMIC LOAD-BALANCING STRATEGIES 16

1.6.1 Randomised. 77

1.6.2 Physical Optimisation 18

1.6.3 Diffusion 20

1.6.4 Dimension Exchange 22

1.6.5 Gradient Model 23

1.6.6 Minimum-direction 25

1.7 SOFTWARE FACILITIES FOR SUPPORTING DYNAMIC LOAD-BALANCING 28

7.7.7 Architecture of Process-based LBS. 29

1.7.2 Design issues of a process migration mechanism 30

Contents

t
Migration Initiation 30

State Capture 30

State Transfer 32

Process Restart '. 32

1.7.3 Limitations of process migration mechanisms 33

1.7.4 Examples of existing packages for supporting dynamic load balancing. 34

CHAPTER 2

NEAREST-NEIGHBOUR LOAD-BALANCING METHODS 39

2.2 BASIC NOTATION AND ASSUMPTIONS 41
2.3 ITERATIVE NEAREST-NEIGHBOUR LOAD BALANCING ALGORITHMS 43

2.3.1 Algorithm convergence 44

2.3.2 Termination detection problem 46

2.4 ANALYSIS OF RELEVANT NEAREST-NEIGHBOURS LOAD BALANCING ALGORITHMS 48
2.4.1 The SI D (Sender Initiated Diffusion) algorithm 49

!

2.4.2 The GDE (Generalised Dimension Exchange) algorithm 56

2.4.3 The AN (Average Neighbourhood) algorithm 63

2.5 SUMMARY OF THIS CHAPTER 67

CHAPTER 3

DASUD LOAD-BALANCING ALGORITHM 71

3.; DASUD (DIFFUSION ALGORITHM SEARCHING UNBALANCED DOMAINS)'S MOTIVATION 73
3.2 DESCRIPTION OF THE DASUD ALGORITHM 75

3.2.1 Description of the first stage of DASUD 77

3.2.2 Description of the second stage of DASUD 79

Searching Unbalanced Domains (SUD) block 79

Fine Load Distribution (FLD) block 79

Sending Instruction Message (SIM) block 80

Processing Instruction Messages (PIM) block 81

Contents

3.3 AN EXAMPLE OF DASUD EXECUTION 83

3.4 DASUD'S COMPLEXITY 86

3.5 DASUD'S CONVERGENCE... 88

3.6 DASUD'S CONVERGENCE RATE 98

3.7 PERFECT LOCAL BALANCE ACHIEVED BY DASUD 99

3.8 GLOBAL BALANCE DEGREE ACHIEVED BY DASUD. 101

CHAPTER 4

COMPARATIVE STUDY OF NEAREST-NEIGHBOUR LOAD-

BALANCING ALGORITHMS 103

4.1 SIMULATION FRAMEWORK 105

4.1.1 Interconnection Networks 707

4.1.2 Synthetic Load distributions 108

4.2 QUALITY METRICS 111
4.3 STABILITY ANALYSIS 112

4.3.1 Influence of the initial load distribution pattern in the difjnax 773

4.3.2 Influence of the system size in the difjnax 776

4.3.3 Influence of the initial load distribution shape in the difjnax 777

4.3.4 Influence of the initial load distribution pattern in the a. 77P

4.3.5 Influence of the system size in the a. 720

4.3.6 Influence of the initial load distribution shape in the a. 722

4.3.7 Conclusions of the stability analysis ; 722

4.4 EFFICIENCY ANALYSIS ! 124
4.4.1 Influence of the initial load distribution pattern in u 124

4.4.2 Influence of the system size in u 725

4.4.3 Influence of the initial load distribution shape in u 72P

4.4.4 Influence of the initial load distribution pattern in steps 130

4.4.5 Influence of the system size insteps 737

4.4.6 Influence of the initial load distribution shape in steps 735

4.4.7 Conclusions of the efficiency analysis 736

4.5 SUMMARY AND CONCLUSIONS OF THE COMPARATIVE STUDY. 137

Contents

CHAPTERS

SCALABILITY OF DASUD 139

5.1 INTRODUCTION 141
t

5.2 DASUD'S SCALABILITY WITH RESPECT TO THE PROBLEM SIZE ... 142
I

5.3 DASUD'S SCALABILITY WITH RESPECT TO SYSTEM SIZE ... 145

5.4 CONCLUSION ABOUT DASUD'S SCALABILITY ... 150

I

CHAPTER 6
4

ENLARGING THE DOMAIN (ZVDASUD) 151

6.1 INTRODUCTION 153
6.2 EXTENDED SYSTEM MODEL .. 154
6.3 METRICS .. 156

6.3.1 Communication periods ... 757

The information collection period (7^/) .. 159

The transfer period (T^) .. 159

6.3.2 Computational period (T* hal) .. 759

6.3.3 Trade-off factor (t _ o f f (k)) .. 160

6.4 THE EXPERIMENTAL STUDY OF ArDASUD .. 161

6.4.1 The best degree of final balance .. 762

6.4.2 Greater unbalancing reduction .. 770

6.5 CONCLUSIONS TO THIS CHAPTER .. 174

CHAPTER 7

CONCLUSIONS AND FUTURE WORK .. 177

7.1 CONCLUSIONS AND MAIN CONTRIBUTIONS ... 179

7.2 CURRENT AND FUTURE WORK .. 184

I

REFERENCES .. 187

IV

Contents

APPENDIX A

DASUD LOAD-BALANCING ALGORITHM: EXPERIMENTAL

AND THEORETICAL ANNEXES A.I

A.l EXPERIMENTAL VALIDATION OF DASUD's FINAL BALANCE DEGREE A.3
A.2 EXPERIMENTAL VALIDATION OF DASUD's CONVERGENCE RATE A.4

A.3 A REALISTIC LOAD-BALANCING MODEL A.6

APPENDIX B

COMPARATIVE STUDY OF NEAREST-NEIGHBOUR LOAD-

BALANCING ALGORITHMS: COMPLEMENTARY TABLES.... B.I

APPENDIX C

ENLARGING THE DOMAIN (¿¿-DASUD): COMPLEMENTARY

FIGURES C.I

APPENDIX D

ENLARGING THE DOMAIN (As-DASUD): COMPLEMENTARY

FIGURES AND TABLES D.I

PREFACE

Advances in hardware and software technologies have led to increased

interest in the use of large-scale parallel and distributed systems for database, real-

time, and large-scale scientific and commercial applications. The operating systems

and management of the concurrent processes constitute integral parts of the parallel

and distributed environments. One of the biggest issues in such a system is the

development of effective techniques for the distribution of processes among

processing elements to achieve some performance goal(s), such as minimising

execution time, minimising communication delays, and/or maximising resource

utilisation. Load-balancing is one of the most important problems which have to be

solved in order to enable the efficient use of multiprocessor systems. Load-balancing

aims at improving the performance of multiprocessor systems by equalising the

computational load over all processors in the system since it is commonly agreed that

equally balancing loads between all processors in the system directly leads to a

minimisation of total execution time.

There are applications that can be partitioned into tasks with regular

computation and communication patterns and, therefore, load-balancing algorithms

can be used to assign computational tasks to processors before beginning the

execution. This is called static load-balancing. However, there is an important and

increasingly common class of scientific applications (such as particle/plasma

simulations, parallel solvers for partial differential equations, numerical integration, N-

body problem to name just a few) where the computational load associated with a

particular processor may change over the course of a computation and cannot be

estimated beforehand. For this class of non-uniform problems with unpredictable a

priori computation and communication requirements, dynamic load-balancing

algorithms are needed to efficiently distribute the computational load at run time on

the multiprocessor system. This work is about dynamic load-balancing in message-

passing parallel computers where, in general, a direct, point-to-point interconnection

network is used for communication. Load-balancing is performed by transferring load

from heavily to lightly loaded processors. For that purpose, a load-balancing

VII

Preface

algorithm has to resolve the issues of when to invoke a balancing operation, who

makes load-balancing decisions according to what information and how to manage

load migrations between processors. We can find several answers to these questions

which results in a wide set of load-balancing techniques.

A highly popular class,of load-balancing strategies are nearest-neighbour

approaches which are edge-local, that is, methods that can be implemented in a local

manner by each processor consulting only its neighbours, thereby avoiding

expensive global communication in distributed applications. The load moved along

each edge is related to the gradient in the loads across it. These kinds of distributed

load-balancing algorithms are appealingly simple and they degrade gracefully in the

presence of asynchrony and faults. Most of these algorithms are implemented in an

iterative way to achieve a global load balanced state and, therefore, they are referred

to as iterative load-balancing algorithms. The load balance stems from successive

approximations to a global optimal load distribution by only being concerned with

local load movements. In the ideal case, a perfect state is achieved when all

processors have the same load! These kinds of load-balancing algorithms are suited

to appreciably decreasing large imbalances.

!
Most iterative load-balancing algorithms proposed in the literature consider an

idealised version of the load-balancing problem in which the loads are treated as real

numbers; therefore, loads can! be split to arbitrary. However, in a more realistic

setting of the problem, which covers medium and large grain parallelism, the loads

(processes, data, threads) are not infinitely divisible and, as a consequence, they are

treated as natural numbers. There are two categories of load-balancing algorithms

that consider discrete load model. On the one hand, the load-balancing algorithms

that were originally designed under the discrete load model assumption, and, on the

other hand, the discrete adaptation of the idealised load-balancing algorithms by

performing rounding operations. Iterative load-balancing algorithms using discrete

load model produce situations in which a global load balance cannot be guaranteed
i

when the load-balancing process terminates. Furthermore, the convergence analysis

of these iterative load-balancing algorithms using discrete load model has not been

explored in the literature.

VIM

Preface

We raised the issue of the development of a realistic iterative load-balancing

algorithm which was able to solve the balancing problems of existent discrete load-

balancing algorithms in an asynchronous fashion. One important goal in this work

was to derive a rigorous mathematical description of the proposed algorithm, which

allows us to analyse its convergence, as well as other formal aspects of the algorithm

such as its complexity and convergence rate. The proposed algorithm called DASUD

(Diffusion Algorithm Searching Unbalanced Domains) is noteworthy for its ability to

detect locally unbalanced situations that are not detected by other algorithms and for

always achieving the optimal local balance distribution

4

Once DASUD was fully described, we were interested in comparing our

proposal to the most relevant load-balancing strategies within the same family, in

order to evaluate the goodness of DASUD. For that purpose, we raised the need to

develop a simulation environment in which to be able to simulate the whole load-

balancing process for different iterative load-balancing algorithms under the same

conditions. Parameters such as topology, load distributions, system size and problem

size should be easily variable in order to analyse the influence of each of them on the

behaviour of the simulated load-balancing algorithms.

By simulation we have compared our algorithm with three well-known nearest-

neighbours load-balancing algorithms within the literature attending to two quality

measurements: stability and efficiency. Stability measures the ability of the algorithm

to coerce any initial load distribution into a global stable state as close to even as

possible. Efficiency measures the time delay for arriving at the globally stable state.

From the results we are able to conclude that DASUD exhibits the best trade-off

between the degree of balance achieved and the time incurred to reach it.

This work is organised as follows:

• The first chapter gives an overview of the dynamic load-balancing problem in

parallel computing where the key issues that must be considered in this problem

are described. Following this, a load-balancing algorithm taxonomy that

IX

Preface j

illustrates how load distribution can be carried out is developed, and a simple

description of the most relevant dynamic load-balancing strategies is included.

• The second chapter is 'focused on the nearest-neighbour load-balancing

methods. Since this kind of load-balancing algorithms works in an iterative way,

two important issues such as the algorithm convergence and its termination

detection are discussed. Three relevant load-balancing algorithms from this

category are described and analysed in detail.

• In chapter three the proposed dynamic load-balancing algorithm DASUD is

described and analysed. DASUD's complexity is provided, as well as its

convergence proof and upper bounds for the final balance degree and the

number of balance iterations needed to achieve it.

• In chapter four the proposed load-balancing algorithm is compared by

simulation to three of the' most relevant load-balancing algorithms within the

nearest-neighbour category that were described in chapter 2. The simulation

framework has been designed including different interconnection networks as

well as a wide range of system sizes. Moreover, the load distribution patterns

simulated vary from situations which exhibit lightly unbalanced degree to highly

unbalanced situations. The comparison has been carried out in terms of the

unbalance degree reached by the algorithms and the time needed to achieve

this final state.

• In chapter five the scalability of the proposed strategy is analysed in order to

show the capacity of reacting similarly under different problem and system

sizes.

• A question that ocurred to us during the evaluation of DASUD was: how would

DASUD work if it was able to collect more load information than only that of its

immediate neighbours?. For that purpose, in chapter six, an extended system

model is provided. The influence of enlarging the domain into the time incurred

in transferring messages beyond one link, and the extra computational cost

Preface

incurred by the extended version of DASUD (cfs-DASUD) has been also

considered to evaluate which enlargement provides the best trade-off between

balance improvement and the load-balancing time spent.

• Chapter seven summarises the main conclusions derived from this thesis,

outlining, in addition, current and future work in this field.

Finally, the complete bibliography is provided, and complementary tables and

figures are included in four appendixes.

XI

A new distributed diffusion algorithm for dynamic load-balancing in parallel systems

Chapter 1
The dynamic load-balancing problem

Abstract
This chapter gives an overview of the dynamic load-balancing problem in

parallel computing where, firstly, the key issues that must be considered in this

problem are described. Following this, a load-balancing algorithm taxonomy that

illustrates how load distribution can be carried out is presented, as well as a simple

description of the most relevant dynamic load-balancing strategies. Finally,

environments and existing tools for supporting load-balancing are described.

The dynamic load-balancing problem

1.1 Introduction

When a parallel application is divided into a fixed number of processes

(tasks)* that are to be executed in parallel, each processor performs a certain amount

of work. However, it may be that some processors will complete their tasks before

others and become idle because the work is unevenly divided, or some processors

operate faster than others, or both situations. Ideally, all the processors should be

operating continuously on tasks that would lead to the minimum execution time.

Achieving this goal by spreading the tasks evenly across the processors is called

load-balancing. Load-balancing can be attempted statically before the execution of

any process, or dynamically during the execution of the processes. Static load-

balancing is usually referred to as the mapping problem or scheduling problem.

Dynamic load-balancing techniques assume little or no compile-time knowledge of

the runtime parameters of the problem, such as task execution times or

communication delays. These techniques are particularly useful in efficiently

resolving applications that have unpredictable computational requirements or

irregular communication patterns. Adaptive calculations, circuit simulations and VLSI

design, N-body problems, parallel discrete event simulation, and data mining are just

a few of those applications.

Dynamic load-balancing (DLB) is based on the redistribution of load among

the processors during execution time, so that each processor would have the same

or nearly the same amount of work to do. This redistribution is performed by

transferring load units (data, threads, processes) from the heavily loaded processors

to the lightly loaded processors with the aim of obtaining the highest possible

execution speed. DLB and load sharing are used as interchangeable terms in the

literature. While DLB views redistribution as the assigning of the processes among

the processors, load sharing defines redistribution as the sharing of the system's

processing power among the processes. The results of applying an ideal DLB

algorithm to a 3x3 torus is shown in figure 1.1. The numbers inside the circles denote

In this context, both terms (process and tasks) are used indistinctly.

Chapter 1

i
the load value of each processor. Initially, at time (t0) the load is unevenly distributed

among the processors. The load becomes the same in all processors after executing

an ideal DLB strategy (time í,).

Before DLB (time tj
t

i r\ 2 r\; 3
C

After DLB (time/,,)

2 r\ 3

Figure 1.1. Dynamic load-balancing process.

Every DLB strategy has:to resolve the issues of when to invoke a balancing

operation, who makes load-balancing decision according to what information and how

to manage load migrations between processors. There has been much research on

DLB strategies for distributed computing systems. However, on parallel computing

systems, the DLB problem takes on different characteristics. First, parallel computers

typically use a regular point-to-point interconnection network, instead of random

network configuration. Second, the load imbalance in a distributed computer is due

primarily to external task arrivals, whereas the load imbalance in a parallel computer

is due to the uneven and unpredictable nature of tasks.

The advantage of dynamic load-balancing over static load-balancing is that
t

the system need not be aware of the run-time behaviour of the applications before

execution. Nevertheless, the major disadvantage of DLB schemes is the run-time

overhead due to the load information transfer among processors, the execution of the

load-balancing strategy, and the communication delays due to load relocation itself.

1.2 Key issues in the Load-Balancing process

The design of a dynamic load-balancing algorithm requires resolving issues

such as: who specifies the amount of load information made available to the decision-

maker; who determines the condition under which a unit of load should be

transferred; who identifies the destination processor of load to transfer; and how to

The dynamic load-balancing problem

manage load migrations between processors, amongst other issues. Combining

different answers to the above questions results in a large area of possible designs of

load-balancing algorithms with widely varying characteristics. On the one hand, there

are decisions which must be taken at processor level, and others that require a

greater or lesser degree of co-ordination between different processors, so the latter

become system-level decisions.

In order to be systematic in the description of all necessary decisions related

to the load balancing process, we distinguish two different design points of view: the

processor level point of view and the system level point of view (see figure 1.2). We

refer to processor level when the load-balancing operations respond to decisions

taken by a processor. Otherwise, we talk about system level when the decisions

affect a group of processors. In the following sections, we outline the description of

each one of these levels.

Dynamic Load-Balancing

Processor level System level

Figure 1.2. Load-balancing: two design points of view

*

1.3 Processor level.

A processor which intervenes in the load-balancing process will execute

computational operations both for applications tasks as well as for load-balancing

operations. This section describes the load-balancing operations carried out at

processor level and their design alternatives. In order to perform the load-balancing

operations, a processor must allocate three functional blocks to effectively implement

the load-balancing process: the Load Manager (LM), the Load-Balancing Algorithm

(LBA) and the Migration Manager (MM), as shown in figure 1.3. The Load Manager

block is the one related to all load-keeping issues. The Load-Balancing Algorithm

block is related to the concrete specification of the load-balancing strategy. Finally, a

Migration Manager block is needed in order to actually perform the load movements.

Chapter 1
!

i
The processors, which incorporate each one of these three blocks, will be referred to

as running processors. >

^^ computational operations

load balancing operation
' Load

Load | | Balancing !_J Migration
Manager "* Algorithm i j Manager

Figure 1.3 Functional blocks that integrate the load-balancing process within a processor.

The next sections will discuss the implementation issues for each one of these

blocks, as well as their co-operation.

1.3.1 Load Manager block

One of the most important issues in the load-balancing process is to quantify

the amount of load (data, threads or processes) of a given processor (load index). It
t

is impossible to quantify exactly the execution time of the resident processes of a

processor. Therefore, some measurable parameters should be used to determine the

load index in a system such as the process sizes, the number of ready processes,

the amount of data to be processed and so on. However, previous studies have

shown that simple definitions such as the number of ready processes are particularly

effective in quantifying the load index of a processor [Kun91].

The Load Manager block has the responsibility of updating the load

information of the running processor, as well as gathering load information from a set

of processors of the system (underlying domain). The time at which the load index of

each processor is to be updated is known as the load evaluation instant. A non-

negative variable (integer or real number), taking on a zero value if the processor is

idle and taking on increasing positive values as the load increases, will be measured

at this time according to the load unit definition [Fer87]. There must be a trade-off

between the load gathering frequency and the ageing of the load information kept by

the LM block, in order to avoid the use of obsolete values by the Load Balancing

Algorithm block. This trade-off is ¡captured in the following three load collection rules:

The dynamic load-balancing problem

• On-demand: Processors collect the load information from each other whenever a

load-balancing operation is about to begin or be initiated [Sta84][Zna91].

• Periodical: Processors periodically report their load information to others,

regardless of whether the information is useful to others or not [Yua90][Kal88].

• On-state-change: Processors disseminate their load information whenever their

state changes by a certain degree [Xu95] [SalQO].

The on-demand load-gathering method minimises the number of

communication messages, but postpones the collection of system-wide load

information until the time when a load-balancing operation is to be initiated. Its main

disadvantage is that it results in an extra delay for load-balancing operations.

Typically, this category includes bidding methods, where underloaded processors ask

for load information from other processors to choose the best partner in performing

load-balancing [Sta84][Zna91]. Conversely, the periodic method allows processors in

need of a balancing operation to initiate the operation based on maintained load

information without delay. The problem with the periodical scheme is how to set the

interval for information gathering. A short interval would incur heavy communication

overheads, while a long interval would sacrifice the accuracy of the load information

used in the load-balancing algorithm. A protocol to exchange load information

periodically called LIEP (Load Information Exchange Protocol) was presented in

[Yua90]. In that work processors were arranged into a logical hypercube with

dimension d (the topology diameter). During each period of load information

exchange, a processor invoked of rounds of load exchanges in such a way that a

processor exchanged its load value with the directly connected processor in the

inspected dimension. A way to optimise the load collection process is reported in

[Kal88] where the methodology proposed consists of periodically piggy-backing the

load information with regular messages. The on-state-changing rule is a compromise

of the on-demand and periodic schemes. In [Sal90] an on-state-changing method is

reported in order to include the advantages of both approaches. In this case, a

processor sends a status message to its neighbours only if its own load has changed

Chapter 1
j

by a certain value and an updated interval has elapsed since the last update. This

reduces unnecessary frequent updates.

Nevertheless, how the LM block proceeds to collect and hold load information
i

is not relevant to the Load Balancing Algorithm block. The information required by

this block is limited to a set of non-negative numbers that represent the load index of

each one of the processors belonging to the underlying domain. These values will be

used subsequently to evaluate whether it is necessary to perform load movements or
i

not and how these movements must be performed.

i
1.3.2 Load Balancing Algorithm block

t
The Load Balancing Algorithm block uses the load information provided by the

previous LM block in deciding if it is necessary or not to balance the load, source and

destination processors of load movements, as well as the amount of load to be

transferred. An LBA algorithm, can be divided into two phases: Load Balancing

Activation and Work Transfer Calculation.

<
Load Balancing Activation

This phase uses the load information kept by the LM block to determine the

presence of a load imbalance, the criterion used to evaluate whether a processor is

balanced or not is known as trigger condition and is normally associated to a

threshold value that can be defined as:

• Fixed threshold: one or several fixed values are used as criteria to determine

whether a processor is an overloaded processor or not [Zho88] [Mun95].
i

• Adaptive threshold: the threshold values are evaluated during the execution of

the load-balancing algorithm and their values are usually state dependent

[Wil93][Xu93][Cor99c]. '

Usually, the election of fixed thresholds as trigger condition produces simple

strategies where each processor compares its load index with a fixed threshold to

determine whether a processor has load excess (overloaded) or not (underloaded). In

applications where the total load is expected to remain fairly constant, the load

The dynamic load-balancing problem

balancing would be undertaken only in those cases where the load index of some

processor falls outside specified upper and lower thresholds [Mun95].

Another method that has been suggested for situations in which the total load is

changing is to balance load if the difference between a processor's load and the local

load average (i.e. the average load of a processor and its neighbors) exceeds some

threshold [Cor99c][Wil93]. Another similar approach consists of setting the threshold

value using the global load average instead of the local load average to determine

the trigger condition at each processor [Xu93].

All running processors in the system will evaluate the trigger condition at the

start of executing the load-balancing algorithm. However, not all the running

processors will overcome their trigger condition. The processors whose trigger

condition evaluation does not fail will be called active processors. We refer to sender-

initiated (SI) approaches when active processors are the ones with load excess and

we refer to received-initiated (Rl) schemes, [Eag85][Wil93], when the underloaded

processors will become the active processors by requesting load from their

overloaded counterpart.

Work Transfer Calculation

' This phase is concerned with devising an appropriate transfer strategy to

correct the imbalance previously detected and measured. After determining that load-

balancing is required, source and destination processor pairs are determined, as well

as how much work should be transferred from one processor to another. The function

used to determine the destination of load can be implemented using one of the

following choices:

• Randomly: no information about the domain state of the underlying processor is

needed and destination processors are chosen in a random fashion [Zho88].

• Fixed: decisions produced by the active processors are not state dependent.

The quantity of load to be transferred from one processor to another is set a

priori as a fixed value. [Xu97][Cyb89].

• Evaluated: the amount of load to be moved between processors is evaluated at

run time following some predetermined function [Wil93][Cor99c]

9

Chapter 1

1.3.3 Migration Manager block

Finally, the last block is the Migration Manager (MM) block. This block

receives as input the information generated by the Load Balancing Algorithm block,

i.e., the destination processors and the amount of load that should be transferred to

them. This block can be divided into two phases: load unit selection and load transfer,

in order to differentiate between the way of choosing the individual load units to be

transferred, and the physical transfer of those elements. Both phases are described

below.

Load unit selection '
¡

Source processors select the most suitable load units (process, threads,

data,...) which properly match with the load value to be moved. The quality of load-

unit selection directly affects the ultimate quality of load-balancing. Sometimes, it may

prove to be impossible to choose a group of load units whose associated load index

corresponds exactly to the value that needs to be moved. The problem of selecting

which load units to move is weakly NP-complete, since it is simply the subset sum

problem. Fortunately, approximation algorithms exist which allow the subset sum

problem to be solved to a specified non-zero accuracy in polynomial time [Pap94].

Before considering such an algorithm, it is important to note that other concerns may

constrain load transfer options. In particular, we would like.to avoid costly transfers of

either large numbers of processes or large quantities of data unless absolutely

necessary. We would also like to guide load selection to preserve, as best as

possible, existing communication locality in the application. In general, we would like

to associate a cost with the transfer of a given set of load units and then find the

lowest cost set for a particular desired transfer.

Load transfer

This module should provide the appropriate mechanisms to correctly migrate

several selected load units (which can be either processes, data or threads) to any

destination processor. Data migration load-balancing systems support dynamic

balancing through transparent data redistribution. Data migration mechanisms usually

exhibit the lowest complexity amongst the three mechanisms' as they only have to

move data-systems based on thread migration support dynamic load balancing

10

The dynamic load-balancing problem

through thread redistribution in multithreading environments. In such systems, a user

application consists of a number of processes assigned to different processors and

each process encapsulates a certain number of threads that can be

created/destroyed dynamically. Transparent migration of threads implies the

movement of the data and the computation state of a particular thread for one

process located in a processor to another process located in a different processor.

Process migration load-balancing systems support dynamic load balancing through

transparent process redistribution in parallel and/or distributed computing

environments. As in thread migration load-balancing systems, process migration

implies the movement of the data and the computation state. However, process

migration mechanisms exhibit the highest complexity as they must be aware of a

huge amount of information. In the case of a process, the computation state is

considerably more complex compared to the thread case and, moreover, application

binaries must also be moved. In section 1.8, a more detailed description of the

migration mechanisms provided by some load-balancing software packages is

reported.

After having described the behaviour of each one of the blocks corresponding

to one load-balancing operation, it is important to indicate that this decomposition in

the load-balancing process in different modules allows us to experience in a plug-

and-play fashion with different implementations at each one of the above blocks,

allowing the space of techniques to be more fully and readily explored. It is also

possible to customise a load-balancing algorithm for a particular application by

replacing some general methods with those specifically designed for a certain class

of computations.

1.4 System level

This level analyses which processors are involved in the load-balancing

process and how their co-operation is carried out. Hence, the first decision that must

be considered is the election of the set of running processors that participates in the

load-balancing process. Depending on the number of processors belonging to this set

we can distinguish between: centralised, totally distributed and semi-distributed

11

Chapter 1 :

\

approaches. In totally distributee! and semi-distributed schemes the load-balancing

goal is obtained because load-balancing operations are concurrently executed in

more than one processor as time goes by. In particular, when the load-balancing

blocks are executed simultaneously in all running processors of the system, we are
t

considering a synchronous implementation of the load-balancing process. Otherwise,

the system works in an asynchronous way. The influence of each one of above

characteristics in the load-balancing process will be discussed in next subsections.
i

1.4.1 Centralised

Centralised load balancing strategies are characterised by the use of a

dedicated processor for maintaining a global view of the system state and decision

making. This processor is called central scheduler (or central job dispatcher). A
t

central strategy can improve résource utilisation by having all the information of
L

processors and it can achieve optimal performance by using sophisticated
t

algorithms. It can also impose less overhead on the communication network by

avoiding transfers of duplicate or inaccurate host state information. Global scheduling

can also avoid task thrashing caused by contradictory load balancing decisions.

However, centralised models have low reliability. If the central processor fails, the

operation of the whole system ¿an be corrupted. In addition, in large systems with

high load fluctuation, the messages with load information can overload the

interconnection structure around the central processor.

1.4.2 Totally distributed

An alternative to centralised approaches is a distributed scheme, in which the

load-balancing decisions are carried out by all the processors of the system. Load

information exchanges are restricted to a local sphere of processors and load-

balancing operations are also performed within this sphere or domain. Depending on

the existing relationship between different domains, we can distinguish between

overlapped domains or non-overlapped domains. In figure 1.4, the processors in red

are chosen as the running processor. In this example, we consider the domain of a

given processor as the processors directly connected to it. Therefore, with the blue

and yellow colours we indicate the domains of each one of the running processor. In

figure 1.4.a we can observe that there are some common processors between the

12

The dynamic load-balancing problem

blue and the yellow domains. Hence, we refer to them as overlapped domains.

Otherwise, we refer to non-overlapped domains (figure 1.4.b).

(a) W

Figure 1.4. Overlapped domains (a) and non-overlapped domains (b).

When the domain includes a given processor and its immediate neighbours

we refer to it as a nearest-neighbour approach. Nearest-neighbour load-balancing

methods operate on the principle of reducing the load imbalance between each

processor and its immediate neighbours with the aim of diffusing load through the

system converging toward a system-wide balance. Otherwise, load-balancing

strategies are categorised as non-nearest-neighbour approaches. Non-nearest-

neighbour load- balancing alternatives work in a decentralised form by using local

information, which is not restricted to immediate neighbours. Under this assumption

the scope of the domain is extended to a large radius that may also include the

neighbours' neighbours and so on.

Totally distributed approaches, in using local information, do not make such

effective balance decisions as Centralised approaches, but, in contrast, they incur

smaller synchronisation overheads.

1.4.3 Partially distributed.

For large systems (more than 100 processors), neither centralised nor

distributed strategies proved to be appropriate. Although centralised strategies have

the potential of yielding optimal performance, they also have disadvantages that

make them suitable only for small or moderate systems [Bau88]. On the other hand,

distributed strategies have good scalability, but for large systems it is difficult to

achieve a global optimum because the processors have a limited view of the global

13

Chapter 1 I

í

system state. Partially distributed strategies (also called semi-distributed) were

proposed as a trade-off between centralised and fully distributed mechanisms. The

main idea is to divide the system into regions and thus split the load-balancing
i

problem into subtasks. These1 strategies can be viewed at two levels: (i) load-

balancing within a region and (ii)¡load-balancing among all the regions.

Different solutions can be devised for each level of the strategy. Each region

is usually managed by a single master-processor using a centralised strategy and, at

the level of the region, master-processors may (or may not) exchange aggregated

information about their corresponding regions.
i¡

1.4.4 Synchronous versus asynchronous

Taking into account the instant at which load-balancing operations are invoked,

both totally and partially distributed strategies can be further subdivided into

synchronous and asynchronous strategies. From this point of view, we talk about

synchronous algorithms when all processors involved in load-balancing (running

processors) carry out balancing operations at the same instant of time so that each

processor cannot proceed with normal computation until the load migrations

demanded by the current operations have been completed. Otherwise, if each

running processor performs load-balancing operations regardless of what the other

processors do, we refer to asynchronous approaches. Figure 1.5 shows these

behaviours for a four processor system. Notice that the distinction between

synchronous and asynchronous «does not apply for centralised schemes due to the

existence of only one running processor in the entire system.

o Computational operations

[] Load-balancing operation

time

(a) ! (b)
Í
t

I

Figure 1.5. Synchronous (à) and asynchronous (b) load-balancing operations.

14

The dynamic load-balancing problem

1.5 Load-balancing algorithm taxonomy

Most of the load-balancing strategies proposed in the literature are focused

basically on the development of approaches for solving the Load Balancing Algorithm

block mentioned in section 1.3.2., In terms of the algorithmic method used by these

strategies we can derive the taxonomy shown in figure 1.6. The main criteria in

classifying these algorithms concerns the way in which load distribution is carried out.

Randomised Physical Optimisation Single Direction Diffusion

Dimension

Exchange
Gradient model Minimum-direction

Figure 1.6. Load-Balancing taxonomy in temis of algorithmic aspects from

the processor level point of view.

In Stochastic methods, the load is redistributed in some randomised fashion,

subject to the objective of load balancing. Stochastic load balancing methods attempt

to drive the system into an equilibrium state with high probability. Two different

approaches can be found: Randomised allocation and Physical optimisation.

Randomised allocation methods are very simple methods that do not use

information about potential destination processors. A neighbour processor,is selected

at random and the process is transferred to that processor. No exchange of state

information among the processors is required in deciding where to transfer a load

unit. On the other hand, Stochastic algorithms, where physical optimisation is applied,

are based on analogies with physical systems. They map the load-balancing problem

onto some physical systems, and then solve the problem using simulation or

techniques from theoretical or experimental physics. Physical optimisation algorithms

offer a slightly more variety in the control of the randomness in the redistribution of

load units. This control mechanism makes the process of load balancing less

susceptible to being trapped in local optima and therefore these stochastic algorithms

15

Chapter 1 •

i

are superior to other randomised approaches which could produce locally but not

globally optimal results.
i

Deterministic methods proceed according to certain predefined strategies.

These solutions are usually performed in an iterative form when the execution of the

load-balancing algorithm is repeated more than once in a given processor, before

restarting the execution of the user application [Xu94]. Deterministic methods can be

classified into two categories according to the load distribution within the domain:

Diffusion and Single-direction. .

Firstly, in diffusion methods the load excess of an overloaded processor is

simultaneously distributed amongst all processors of the underlying domain, following

an iteration of the load-balancing algorithm. In contrast, in single-direction methods

only one processor of the underlying domain can be chosen as destination processor

after .executing one iteration of the load-balancing algorithm. Single Direction

methods are further classified according to how the destination processor is selected.

When the direction of the closer lightly loaded processor is used as a selection

criterion we refer to Gradient Model, and when the chosen processor is the least

loaded processor of the underlying domain we talk about Minimum-Direction

schemes. Techniques where all processors are considered one by one at each load-
i

balancing iteration are called Dimension Exchange strategies.

We will now describe some of the most relevant strategies that appear in the

literature.

1.6 Dynamic load-balancing strategies

Following the taxonomy described in the previous paragraph, and bearing in

mind the design characteristics outlined in section 1.4, we have constructed table 1.1,

which draws together all published strategies, as far as we are aware. Particularly, in

the case of processor level, the algorithmic aspects seen in section 1.5 are used. At

each box of the table, the mnemonic for the strategy and its reference are given.

Strategies indicated with a continuos line are not feasible or have not been proposed

as far as the author knows. We now describe some of the strategies indicated in the

table, starting with those classified in the randomised category.

16

The dynamic load-balancing problem

Dynamic

Load-Balancing

>

A
lg

or
ith

m
ic

 A
sp

ec
ts

 fr
om

 P
ro

ce
ss

or
 L

ev
e

S
to

ch
as

tic
D

et
er

m
in

is
tic

I

o
•o
c
(0
rr

P
hy

si
ca

l

O
pt

im
is

at
io

n

c
o
'm
ë
a

S
in

gl
e-

di
re

ct
io

n

D
im

en
si

on

E
xc

ha
ng

e

(U <1>

lî
0

M
in

im
um

-

di
re

ct
io

n

System Level View

Centralised

GTCA [Bau95]

CBLB[Bau9S)

MultMevel-

Diffusion [Hor93]

Central [ZhoSSJ

LBC[Lin92]

Totally Distributed

Non-Nearest

Neighbours

Reservation [Eag85]

RANDOM[Zho88]

THRDL[Zho88]

LOWEST[Zho88]

MYPE[Yua90]

NA [SalSO]

DDE [Wu96]

AN-n [Cor99c]

EDN [Cor99c]

GLRM|Xu93]

GMLM [Xu93]

Nearest-

Neighbours

S.-A.[Fox89]

Diffusion [Cyb89][Boi90j

SID.RID [WII93]

ATD [Wat98]

AN [Cor99c]

[Son941[Die99] [Hu99J

DE [Cyb89]

GDE |Xu97]

ON [Cor99c]

Graph-Colouring[Hos90]

GM [Lin87]

B(Bar90]

X-GM [Lul91]

EG [Mun95]

CWN |Kal88]

ACWN [Shu89]

LLRM(Xu93]

LMLM (Xu93)

Semi-Distributed

—

CSAM[Cha9S]

MFAM [Cha95]

Membership-exc. [Eva94]

Joint-membership [Eva94]

Sphere-like [Ahm91]

Hierch. Sched. [Dan97]

Table 1.1 Load-Balancing techniques classified with respect to system level view and processor level

view.

1.6.1 Randomised

As we have seen, in randomised load-balancing algorithms, the destination

processors for load transfer are chosen in a random fashion. Therefore, these kinds

of algorithms use less system state information than deterministic algorithms. These

algorithms use only local load information to make movement decisions. In such

cases a threshold value is preset as a criterion in determining whether a processor

must send out part of its load or not. Several randomised algorithms based on a

threshold value (T/) as a trigger condition (RANDOM, THRHLD.LOWEST) are

17

Chapter 1

i

reported in [Zho88]. In the RANDOM algorithm when a processor detects that its

local load is bigger that T,, a processor is randomly selected as a destination of load

movements. Since all processors are able to make load movement decisions, this

algorithm is classified as a totally distributed and non-nearest-neighbours approach.

THRHLD and LOWEST algorithms are similar to the RANDOM algorithm in the sense

that they also select the destination processor in a random way. However, a number

of randomly selected processors, up to a limit Lp, are inspected instead of selecting

only one candidate. In the THRHLD algorithm, extra load is transferred to the first

processor whose load is below the threshold value. In contrast, in the LOWEST

algorithm a fixed number of processors (Lp) are polled and the most lightly loaded

processor is selected as destination processor. A similar scheme is used in the

MYPE algorithm [Yua90]. Instead of using only one threshold value, the MYPE

algorithm uses two threshold values to determine the state of the underlying

processor, Nu and A//. A processor is overloaded when its load is higher than Nu.

Underloaded processors are the ones whose load is lower than N\. Otherwise, they

refer to neuter processors. An overloaded processor randomly selects a number of

processors (up to the a preset limit) whose load indexes are lower than A//, as

potential receivers. Then a polling scheme is used to determine the final destination

of the load. The load excess will be sept to the first processor whose current load is

lower than A/,. |
f

1.6.2 Physical Optimisation j

The most common physical optimization algorithm for the load-balancing

problem is simulated annealing. Simulated annealing is a general and powerful

technique for combinatorial optimization problems borrowed from crystal annealing, in

statistical physics. Since simulated annealing is very expensive and one of the

requirements for dynamic load balancing is yielding the result in limited time, two

hybrid methods, combining statistical and deterministic approaches, are proposed in

[Cha95]: the Clustering Simulated Annealing Model (CSAM) and the Mean Field

Annealing Model (MFAM). They ¡were proposed to allocate or reallocate tasks at run

time, so that every processor in'the system had a nearly equal execution load and

load interprocessor communication was minimised. In these methods, the load

balancing was activated on a specific processor called the local balancer. The local

18

The dynamic load-balancing problem

balancer repeatedly activates the task allocation algorithm among a subset of

processors. Each local balancer makes task allocation decisions for a group of four to

nine processors. Groups are overlapped with each other, allowing tasks to be

transferred through the whole system.

The CSAM combines a heuristic clustering algorithm (HCA) and the simulated

annealing technique. The HCA generates clusters, where each cluster contains tasks

which involve high intertask communication. Various task assignments (called system

configurations) are generated from the HCA to provide clusters in various sizes that

are suitable for the annealing process. During the annealing process, system

configurations are updated by reassigning a cluster of tasks from one processor to

another. The procedure of simulated annealing is used to either accept or reject a

new configuration. The MFAM (Mean Field Annealing Model) was derived from

modelling the distributed system as a large physical system in which load imbalance

and communication costs causes the system to be in a state of non-equilibrium.

Imbalance is balanced through a dynamic equation whose solution reduces the

system imbalance. The dynamics of the MFAM are derived from Gibbs distribution.

Initially all tasks have the same probability of being allocated in each processor.

Several iterations of an annealing algorithm are carried out so that the system is

brought to a situation where each process is assigned to only one processor. A major

advantage of the MFAM is that computation of the annealing algorithm can be

implemented in parallel. A similar load-balancing algorithm that uses simulated

annealing technique is reported in [Fox89]

In addition to the simulating annealing technique, genetic algorithms constitute

another optimisation method that has borrowed ideas from natural science and has

also been adapted to dynamic load-balancing. Examples of genetic load-balancing

algorithms can be found in [Bau95]. The first algorithm presented in the paper is

Genetic Central Task Assigner (GCTA). It uses a genetic algorithm to perform entire

load-balancing action. The second, Classifier-Based Load Balancer (CBLB),

augments an existing load-balancing algorithm using a simple classifier system to

tune the parameters of the algorithm.

19

Chapter 1

s
1.6.3 Diffusion ¡

i
One simple method for dynamic load-balancing is for each overloaded

processor to transfer a portion of its load to its underloaded neighbours with the aim

of achieving a local load balance. Such methods correspond closely to simple

iterative methods for the solution of diffusion problems; indeed, the surplus load can

be interpreted as diffusing through the processors towards a steady balanced state.

Diffusion algorithms assume that a processor is able to send and receive messages

to/from all its neighbours simultaneously.

Corradi et alter propose a pore precise definition of diffusive load-balancing

strategies in [Cor99c]. In particular, they define an LB strategy as diffusive when:

í

• It is based on replicated load-balancing operations, each with the same

behaviour and capable of autonomous activity;

• The LB goal is locally pursued: the scope of the action for each running

processor is bound to a local area of the system (domain). Each running

processor tries to balance the load of its domain as if it were the whole system,

based only on the load information in its domain; and

• Each running processor's domain overlaps with the domain controlled by at
f

least one other running processor and the unification of these domains achieves

full coverage of the whole system.

Cybenko describes in [Cyb89] a simple diffusion algorithm where a processor

/ compares its load with all its immediate neighbours in order to determine which

neighbouring processors have a load value smaller than the underlying processor's

load. Such processors will be considered underloaded neighbour processors. Once

underloaded neighbours are determined, the underlying processor will evaluate the

load difference between itself and each one of its neighbours. Then, a fixed portion of
¡

the corresponding load difference is sent to each one of the underloaded neighbours.
\

This strategy, as well as other strategies from the literature based on this,
í

[Ber89][Die99][Hu99] were originally conceived under the assumption that load can

be divided into arbitrary fractions, i.e., the load was treated as a non-negative real

quantity. However, to cover medium and large grain parallelisms which are more

realistic and more common in practical parallel computing environments, we must

20

The dynamic load-balancing problem

treat the loads of the processors as non-negative integers, as was carried out in

[Cor99c][Son94][Wat98][Wil93J. A relevant strategy in this area is the SID (Sender

Initiated Diffusion) algorithm [WÍI93]. In this algorithm, each processor / has a load

value equal to w¡ and it evaluates its local load average (w¡) to be used as a trigger

condition. If the load of processor / is bigger than the load average of its domain,

then it is an overloaded processor. Otherwise, the processor was referred to as

underloaded. An overloaded processor distributes its excess load among its

underloaded neighbours. A neighbour processor j of the underlying processor /, is a

neighbour with deficit if its load is smaller than the load average of the underlying

domain (w¡ >w7). Then, the surplus of a given processor / is distributed among its

deficient neighbours in a proportional way. This strategy is classified as a sender-

initiated scheme because the overloaded processors are the active processors. The

same authors described a similar strategy called RID (Receiver Initiated Diffusion)

which is based on the same idea as the SID algorithm, but using a receiver-initiated

scheme to determine the processors which take load-movements decisions. An

example of the behaviour of this algorithm is shown in figure 1.7. The number inside

the nodes represents the load of the corresponding processor. Processor 6 has a

load value equal to 40 (w6=40) and the load average within its domain is 12

(w6 = 12). Therefore, the load excess of processor 6 is equal to 28 units of load. After

applying the SID algorithm, processor 6 decides to move 1,11,5 and 7 load unit to

processors 2, 5, 7 and 10 respectively. These load movements are denoted by the

numbers behind the arrows.

P4

w6=l2

W6 - W6 - 28

Figure 1.7 An example of the execution of one iteration of the SID strategy in processor 6.

21

Chapter 1 ¡

i
The reader can find more examples of deterministic diffusion load-balancing

strategies in [Cor99c][Eva94][Hor93][Sal90][Wat98] and [Wu96].

1.6.4 Dimension Exchange

This load-balancing method was initially studied for hypercube topologies

where processor neighbours are inspected by following each dimension of the
i

hypercube. Thus, this is the origin of the dimension exchange (DE) name. Originally,

in DE methods, the processors of a /(-dimensional hypercube pair up with their

neighbours in each dimension and exchange half the difference in their respective

loads [Cyb89]. The load value1 of the underlying processor is updated at each

neighbour inspection and the new value is considered for the next revision. Going
i

through all the neighbours once consists of carrying out a "sweep" of the load-

balancing algorithm. Such behaviour is shown in figure 1.8.

first dimension

0

second dimension

• load movements

running processor

third dimension

Figure 1.8 Load movements for DE methods in a 3-dimensional hypercube through three

iterations of the load-balancing algorithm (1 sweep) in a running processor.
i

Xu et alter present in [Xu97] a generalisation of this technique for arbitrary

topologies, which they call the GDE (Generalised Dimension Exchange) strategy. For

arbitrary topologies the technique of edge colouring of undirected graphs (where

each node of the graph identifies one processor of the system and the edges are the

22

The dynamic load-balancing problem

links) is used to determine the number of dimensions and the dimension associated

at each link. The links between neighbouring processors are minimally coloured so

that no processor has two links of the same colour [Hos90]. Subsequently, a

"dimension" is then defined as being the collection of all edges of the same colour. At

each iteration, one particular colour/dimension is considered, and only processors on

edges with this colour execute the dimension exchange procedure. The portion of

load exchanged is a fixed value and is called the exchange parameter. This process

is repeated until a balanced state is reached. The DE algorithm uses the same value

of the exchange parameter for all topologies, while the GDE algorithm uses different

values depending on the underlying topology.

The DN (Direct Neighbour) algorithm is a strategy based on the dimension

exchange philosophy, which uses a discrete load model [Cor99c]. This strategy

allows load exchange between two processors only directly connected by a physical

link. A balancing action within a domain strives to balance the load of the two

processors involved. In order to assure the convergence of this method, the running

processors must synchronise amongst themselves in such a way that the running

processors active in any given moment have non-overlapping domains. The same

authors describe an extension to this algorithm, the EDN (Extended Direct

Neighbour) algorithm, which works as a non-nearest neighbour strategy. This

strategy allows a dynamic domain definition by moving load between direct

neighbours, overcoming the neighbourhood limit through underloaded processors.

Load reallocation stops when there are no more useful movements, i.e., a processor

is reached whose load is minimal in its neighbourhood.

1.6.5 Gradient Model

With gradient-based methods, load is restricted to being transferred along the

direction of the most lightly loaded processors. That is, an overloaded processor will

send its excess load only to one neighbor processor at the end of one iteration of the

load-balancing algorithm. Therefore, the main difference between the gradient model

and the dimension exchanged scheme is that at each iteration the load information of

the entire underlying domain is considered in deciding the destination processor,

whilst in DE methods only one processor is considered at each iteration.

23

Chapter 1

In the Gradient Model algorithm described in [Lin87] two-tiered load-balancing
i

steps are employed. The first step is to let each individual processor determine its

own loading condition: light, moderate or heavy. The second step consists of

establishing a system-wide gradient surface to facilitate load migration. The gradient

surface is represented by the aggregate of all proximities, where a proximity of a

processor / is the minimum distance between the processor and a lightly loaded
i

processor in the system. The gradient surface is approximated by a distributed

measurement called the pressure surface, then the excessive load from heavily

loaded processors is routed to the neighbour of the least pressure (proximity). The

resulting effect is a form of relaxation where load migrating through the system is

guided by the proximity gradient and gravitates towards underloaded processors.

Figure 1.9 shows an example of a gradient surface in a 4x4 torus network where

there are two lightly loaded processors (processors 2 and 10). The value between

brackets (x) represents the pressure surface of each processor. Let us suppose that

processor 12 is an overloaded processor (yellow colour). By following the proximities

depicted in the figure, the load excess of processor 12 will be guided to be moved
t

through the red links in order to achieve one of the two lightly loaded processors

within the system (in this case processor 6).

p4

lightly loaded processor

1.9 The GM scheme on a 4x4 torus..
t
i
i

This basic gradient model has serious drawbacks. First, when a large portion

of moderately loaded processors suddenly turns lightly loaded, the result is

considerable commotion. Idling et alter proposed an improved version of the GM

algorithm to remedy this problem, the Extended Gradient Model (X-GM) [LÜI91]. This

24

The dynamic load-balancing problem

method adds a suction surface which is based on the (estimated) proximities of non-

heavily-loaded processors to heavily-loaded processors. This information would

cause load migration from heavily-loaded processors to nearby local minima which

may be moderately-loaded processors. Since the system load changes dynamically,

the proximity information kept by a processor may be considerably out-of-date. And

finally, if there are only a few lightly-loaded processors in the system, more than one

overloaded processor may emit some load toward the same underloaded processor.

This "overflow" effect has the potential to transform underloaded processors into

overloaded ones. The authors of [Mun95] propose another extension to the GM

scheme, EG (Extended Gradient) mechanism, to overcome the problems mentioned.

The EG mechanism is a two-phase strategy, where an overloaded processor

confirms that a processor is still underloaded before transferring load to it, and then

the underloaded processor is reserved in transferring the load.

1.6.6 Minimum-direction

The minimum-direction scheme is an alternative to dimension exchange

methods and gradient model within the single-direction category of deterministic load-

balancing algorithms. In the strategies based on this scheme, the running processor

chooses the least loaded processor within its domain as the only destination of a load

movement after executing the load-balancing algorithm once. Notice that, depending

on the scope of the domain, the least loaded processor within the underlying domain

may coincide with the least loaded processor in the whole system. Such a match is

typically produced in centralised load-balancing systems where the running

processors have access to the load of the entire system.

The LBC (Load-Balancing with a Central job dispatcher) strategy reported in

[Lin92] makes load-balancing decisions based on global state information which is

maintained by a central job dispatcher. Each processor sends a message to the

central site whenever its state changes. Upon receiving a state-change message, the

central dispatcher updates the load value kept in its memory accordingly. When a

processor becomes underloaded, the state-change message is also used as a load

request message. In response to this load request, the dispatcher consults the table

where load values are kept, and the most loaded processor is chosen as load source.

25

Chapter 1 !

I
Then this processor is notified to transfer some load to the requesting processor. The

LBC strategy is à centralised algorithm because the central site guides all load

movements. This strategy is also classified as a receiver-initiated method in the

sense that the underloaded processors are the ones which start the load-balancing

operations.

The CENTRAL algorithm {described in [Zho88] is a centralised sender-initiated

algorithm that works in a complementary form to the LBC strategy. When a processor

detects that it is an overloaded processor, it notifies the load information center (LIC)

about this fact by sending a message with its current load value. The LIC selects a

processor with the lowest load value and informs the originating processor to send

the extra load to the selected processor.

GLRM (Global Least Recently Migrated) and GMLM (Global Minimum Load

Maintained) are two totally distributed non-nearest-neighbour strategies where the
i

domain of each processor includes all processors in the system [Xu93]. Both GLRM

and GMLM strategies use the global load average in the system as a threshold to

determine whether a processor is overloaded or not. This threshold is computed at

each processor using the load values received from the information collector (1C)

processor. The 1C processor has the responsibility of collecting the load of the entire

system and broadcasting it to all processors. These actions will be performed on a
i

time window basis. Once a processor is considered to be overloaded, a destination

processor must be chosen. GLRM selects the destination processor by applying the

last recently migrated discipline in a window time and the GMLM strategy determines

the destination processor as the processor with minimum load value in the current

time window. If the domain of each processor is restricted to the immediate

neighbours, two nearest-neighbour strategies are easily derived from the two

previous ones: LLRM (Local Least Recently Migrated) and LMLM (Local Minimum

Load Maintained).
f
í

I • .
Another algorithm based on the minimum-direction scheme is the CWN

(Contracting Within Neighbourhood) strategy [Kal88]. CWN is a totally distributed

strategy where each processor only uses load information about its immediate

26

The dynamic load-balancing problem

neighbours. A processor would migrate its excess load to the neighbour with the

least load. A processor that receives some load keeps it for execution if it is most

lightly loaded when compared with all its neighbours; otherwise, it forwards the load

to its least loaded neighbour. This scheme has two parameters: the radius, i.e. the

maximum distance a load unit is allowed to travel, and the horizon, i.e. the minimum

distance a load unit is required to travel. If we allow these parameters to be tuneable

at run-time, the algorithms become ACWN (Adaptive Contracting Within a

Neighbourhood) [Shu89].

In the semi-distributed strategy proposed by Ahmad [Ahm91], called Sphere-

like, the system is divided into symmetric regions called 'spheres'. Considering the

load-balancing method applied among these spheres, this strategy falls into the

minimum-direction category. This strategy has a two-level load-balancing scheme. At

the first level the load is balanced among different spheres using global system

information. At the second level, load balancing is carried out within individual

spheres. Each sphere has a processor that acts as a centralised controller for its own

sphere. Since this strategy is primarily designed for massively parallel systems, it

also addresses the problem of creating the spheres. State information, maintained by

each centralised controller, is the accumulative load of its sphere. In addition, a linked

list is maintained in non-decreasing order that sorts the processors of the sphere

according to their loads. The scheduling algorithm first considers the load of the least

loaded processor in local sphere and if it is less than or equal to chosen thresholdl,

the task is scheduled on that processor. Otherwise the scheduler checks the

cumulative load of other spheres. If the load of the least loaded sphere is less than

threshold2, the task is sent to that sphere where it is executed without further

migration to any other sphere. If there is more than one such sphere, one is selected

randomly. In the case that there is no such sphere, the task is scheduled in the least

loaded processor of the local sphere. The parameters thresholdl and threshold2 are

adjustable depending upon system load and network characteristics.

More dynamic load-balancing algorithms included within the minimum-

direction category are reported in [Dan97].

27

Chapter 1

1

1.7 Software facilities for supporting dynamic load-balancing?

Software systems that support some kind of adaptive parallel application

execution are basically classified into two main classes: system-level class and user-

level class.

In the system-level class, load-balancing support is implemented at the

operating system level [Sin97]. In contrast, the user-level class includes all the

systems where the load-balancirig support is not integrated into the operating system

level. They are built on top of existing operating systems and communication

environments. In that sense, load-balancing systems supported at the system level

provide more transparency and less interference (migration can be carried out more

efficiently, for instance) compared to load-balancing systems supported at the user

level. However, they are not as portable as the user-level implementations. In the

remainder of the section we focus mainly on the second class of systems. Readers

interested in load-balancing systems based on system-level support could refer to the

description of systems such as Sprite [Dou91], V System [The85] and Mach [MÍI93].

i

Load-Balancing Systems (LBS) implemented at the user level can be further

subdivided into data-based, thread-based or process-based systems, according to

the load unit that is migrated, as was mentioned previously in sections 1.3.1 and

1.3.3. Therefore, we will refer to load unit migration as a general term that does not

differentiate whether migration involves data, threads or processes.

Moreover, data-based and thread-based LBS are usually based on a
í

distributed shared memory paradigm. As a consequence, some problems addressed

in process-based LBS (process communication, for instance) do not always appear in

data-based and thread-based LBS. We will focus below mainly on the design issues

related to process-based LBS, although the reader should bear in mind that many

issues are also applicable to the other two classes of LBS.

28

The dynamic load-balancing problem

1.7.1 Architecture of Process-based LBS

Despite the particular characteristics of different LBS, a similar system

architecture is shared by most of them. This architecture is based on a set of layers

where upper layer components interact with lower layer components through library

functions (see figure 1.10)

Application
LB library CE library

Load Balancing V
OS library

CE lib.

Communication Environment v v
OS lib.

OS lib.

Operating System

Hardware

Platform

V

Figure 1.10 Layered structure of a Load Balancing System

A parallel application is made of a set of processes that execute in a

distributed environment and co-operate/synchronise by means of message passing.

For that purpose the Communication Environment (CE) offers a set of services that

serve to communicate information between tasks in a transparent way, and conceal

the particular OS network characteristics. Similarly, the Load Balancing (LB) layer will

take advantage of the services offered by the Communication layer. PVM and MPI

constitute common examples of such a communication layer that have been used in

many existing LBS.

The LB layer is responsible for carrying out all the actions involved in process

migration. In that sense, this layer includes all the mechanisms that implement the

object migration. Moreover, this layer should also include the policies mentioned in

section 1.6 that manage the resources and are responsible for maintaining load

balancing. Interaction between the user application and the LB layer could be carried

out by invoking certain functions of the LB layer directly. Alternatively, the

29

Chapter 1

programming language of the application may be augmented with new constructs

and a code pre-processor will transform those constructs to LB functions. In both

cases, the LB functions will be linked to the user application at a later stage. In

contrast to LBS where the interaction between the application and the LB layer is
!•

accomplished through a linked library, there are LBS where such interaction is carried

out by means of messages using the services of the Communication layer. In this'

case, the user application treats the LB system as another application task within the

communication domain of the message-passing environment.
ii

1.7.2 Design issues of a process migration mechanism

A major requirement for LBS is that the migration should not affect the

correctness of the application. Execution of the application should proceed as if the
F

migration had never taken place, the migration being "transparent". Such
t

transparency can be ensured if the state of a process on the source processor is

reconstructed on the target processor. The process migration mechanism can be

roughly divided into four main stages: migration initiation, state capture, state transfer

and process restart. Below, we present the most important issues that a process

migration environment must address in practice.

Migration Initiation \

This stage triggers the decision of starting the migration of a given process,

i.e. it decides when migration occurs. Moreover it should indicate which process

should migrate and where to. In'principle, this information depends on the decisions

adopted by the load balancing 'strategy running in the system. The scope of the

migration event causes the > migration mechanism to be synchronous or

asynchronous. Asynchronous migration allows a process to migrate independently of

what the other processes in the application are doing. Synchronous migration implies
i

that all the processes are first executing and agree to enter into a migration phase

where the selected processes will be finally relocated.
t
i

Sfafe Capture

This stage implies capturing the process' state in the source processor. In this

context, the process1 state includes: (i) the processor state (contents of the machine

30

The dynamic load-balancing problem

registers, program counter, program status word, etc.), (ii) the state held by the

process itself (its text, static and dynamic data, and stack segments), (iii) the state

held by the OS for the process (blocked and pending signals, open files, socket

connections, page table entries, controlling terminals, process relationship

information, etc.), and (iv) the OS state held by the process (file descriptors, process

identifiers, host name and time).

The previous information, known to the process, is only valid in the context of

the local execution environment (local operating system and host). Furthermore, a

process has an state as viewed from the perspective of the communication layer. In

this regard, a process' state includes its communication identifiers and the messages

sent to/from that process.

Capturing the process state can be non-restricted or restricted.

• Non-restricted capture of the process1 state means that the state can be saved

at any moment. The LBS must block the process (for instance, using the Unix

signal mechanism) and capture its state.

• Restricted capture means that the state will be saved only when the process

executes a special code that has been inserted into the application. This implies

that all points where a process may be suspended for migration must be known

at the time of compilation. The special code usually consists of a call to an LB

service that passes control to the LB layer. Then the LB layer decides whether

the process should be suspended for migration or if the call is serviced and the

control returned to the process. In the latter case, the service invocation also

serves to capture and preserve the process state information.

The process state can be saved on disk, creating a checkpoint of the process.

Readers interested in this area should refer to [Tan95] for a detailed description of

the checkpointing mechanism applied to a single user process in the Condor system.

The checkpoint mechanism has the advantage of being minimally obtrusive and

providing fault-tolerance. However, it requires significant disk space consumption.

Other migration mechanisms do not store the process state on disk. They create a

31

Chapter 1 ,

skeleton process on the target processor to receive the migrating process, and then

the process state is sent by the migrating process directly to the skeleton process.

Sfaie Transfer
t

i
For LBS implemented at user-level, the entire virtual address of a process is

usually transferred at this stage [Cas95]. There are different mechanisms to transfer

this information and they dependí on the method that was used to capture the process

state. i

When the checkpoint of;the process has been stored on disk (indirect

checkpointing), the state transferts carried out by accessing the checkpoint files from

the target processor. The use of a certain global file system (NFS, for instance) is the

simplest solution in this case. Otherwise, checkpoint files must be transferred from

one host to another through the network.

When a skeleton process mechanism is used (direct chekpointing), this stage of

the migration protocol implies that the skeleton process was successfully started at

the target processor, (using the same executable file automatically "migrates" the text

of the process). Then the process must detach from the local processor and its state,

which was previously preserved (data, stack and processor context), must be

transferred to the target processor through a socket [Cas95][Ove96J.
t

Process Restart '

The process restart implies that a new process is created in the target host and
i

its data and stack information is assimilated according to the information obtained

from the state of the process in the source host. The new process in the target host

reads data and stack either from disk or a socket, depending on the mechanism used

to capture the process state. Once the new process has assimilated all the

information needed as its own process state, the process in the source host is

removed.

i

Before the new process can re-participate as part of the application, it first has

to re-enrol itself with the local server of the Communication layer. This implies that

32

The dynamic load-balancing problem

some actions are carried out to ensure the correct delivery of messages. It must be

ensured that all processes send all their future messages destined for the migrated

process to the new destination, and that no in-transit messages are dropped during

migration. These actions must also solve problems related to the process identifiers

within the communication environment and message sequencing. Different

mechanisms have been proposed to ensure the correct delivery and sequencing of

in-transit messages. They can be roughly classified into three main categories:

• Message forwarding: a shadow process can be created in the processor where

the process was originally created. This shadow process will be responsible for

forwarding all the messages directed to the process in its new location. When a

message arrives at a processor and finds that the destination process is not

there, the message is forwarded to the new location [Cas95]).

• Message restriction: this technique ensures that a process should not be

communicating with another process at the moment of migration. That imposes

the notion of critical sections where all interprocess communication is

embedded in such sections. Migration can only take place outside a critical

section [Ove96].

• Message flushing: in this technique, a protocol is used to ensure that all pending

messages have been received. Therefore, the network will be drained when all

the pending messages are received [Pru95].

Prior to restarting a migrated process, it must be connected again to the

Communication Environment in order to establish a new communication identifier.

The new identifier must be broadcast to all the hosts so that a mapping of old

identifiers to new identifiers for each process is maintained in a local table. All future

communications will go through this mapping table before they are passed into and

out of the Communication Environment.

1.7.3 Limitations of process migration mechanisms

In practice, there are additional problems that must also be addressed in the

implementation of the LBS. These problems are related to the management of file I/O

(which includes application binaries, application data files and checkpoint files),

33

Chapter 1
I
i

management of terminal I/O and GUIs, and management of cross-application
i

communication and inter-application communication.
i.

Access to the same set of files can be carried out via a networked file system

(NFS, for example). When there is no common file system, the remote access is

accomplished by maintaining a "shadow" process on the machine where the task was

initially running. The "shadow" .process acts as an agent for file access by the

migrated process. Similar solutions can be devised for accessing terminal I/O.

i
However, some limitations are imposed by existing LBS. For instance,

processes which execute fork () or exec (), or which communicate with other

processes via signals, sockets^ or pipes are not suitable for migration because

existing LBS cannot save and restore sufficient information on the state of these

processes. This limitation is reasonable according to the layering architecture of

figure 1.10. User applications are restricted to using the facilities provided by the

Communication layer or the LB layer to establishing communication between

processes orto creating/destroying processes.
í
í

*

Additionally, process migration is normally restricted between machines with

homogeneous architectures, i.e., with the same instruction sets and data formats.

However, there are some systems that allow migration of sequential processes

between heterogeneous machines. For instance, Tui [Smi97] is a migration system

that is able to translate the memory image of a program (written in ANSI-C) between

four common architectures (MC68000, SPARC, i486 and PowerPC). Another

example is the Porch compiler [Str98] that enables machine-independent checkpoints

by automatic generation of checkpointing and recovery code.

1.7.4 Examples of existing packages for supporting dynamic load balancing

In this subsection, we briefly review some of the most significant software

packages that have been developed or are in an early stage of development in the
i

framework of dynamic load balancing and load unit migration. These tools usually fall
t ,

into two main classes [Bak96]:

34

The dynamic load-balancing problem

Job Management Software: these software tools are designed to manage

application jobs submitted to parallel systems or workstation clusters. Most of

them might be regarded as direct descendants from traditional batch and

queuing systems [Bak96][Jon97]. Process-based LBS usually belong to this

group.

Distributed Computing Environments: these software tools are used as an

application environment, similar in many ways to a distributed shared memory

system. The application programmer is usually provided with a set of

development libraries added to a standard language that allows the

development of a distributed application to be run on the hardware platform

(usually, a distributed cluster of workstations). The environment also contains a

runtime system that extends or partially replaces the underlying operating

system in order to provide support for load unit migration. Data-based and

thread-based LBS mainly belong to this group of tools.

For each class of LBS, we briefly describe the main characteristics of one of

the most relevant tools, which serves as a representative example of tools of that

class. This description is completed with a list of references for other similar tools.

a) Data-based LBS. Most of the dynamic migration environments that

distribute data are based on the SPMD model of computation, where the user

program is replicated in several processors and each copy of the program,

executing in parallel, performs its computations on a subset of the data. Dome

[Ara96] is a computing environment that supports heterogeneous checkpointing

through the use of C++ class abstractions. When an object of one class is

instantiated, it is automatically partitioned and adapted within the distributed

environment. Load-balancing is performed by remapping data based on the time

taken by each process during the last computational phase. Due to the SPMD

computational nature of the applications, the synchronisation between

computational phases and load-balancing phases is straightforward. Other

systems similar to Dome that also provide data migration are described in [SN94]

and [Bru99]. An architecture-independent package is presented in [SÍI94], where

35

Chapter 1

í
the user is responsible for inserting calls to specify the data to be saved and

perform the checkpoints. A framework implemented in the context of the Charm++

system [Kal96] is presented in [Bru99]. This framework automatically creates load

balanced Charm++ applications by means of object migration. Load balancing

decisions are guided by the information provided by the run-time system, which

can measure the work incurred by particular objects and can also record object-to-

object communication patterns. In this framework migration can only occur

between method invocations,] so that migration is limited to data members of the

object.

b) Thread-based LBS. These systems are usually object-based systems that

provide a programming environment that exports a thread-based object oriented

programming model to the user. The objects share a single address space per

application that is distributed across the nodes in the network, and the objects are

free (under certain constraints) to migrate from one node to another. Arachne

[Dim98] is a thread system that supports thread migration between heterogeneous

platforms. It is based on C and C++ languages, which have been augmented in
i

order to facilitate thread migration. Conventional C++ is generated by a pre-

processor that inserts special code to enable the saving and subsequent

restoration of a thread state. Migrating threads must be previously suspended, and

suspension takes place when a thread invokes an Arachne primitive. Therefore,
i

threads may be suspended (and potentially migrated) only at particular points that

must be known at the time of compilation. The Arachne environment includes also

a runtime system that manages the threads during program execution. Generating

executables beforehand for each machine supports the heterogeneity of the

environment. Other examplesjof object-based environments that support migrating

threads are Ariadne [Mas96],; Emerald [Ste95] and Ythreads [San94]. In contrast,

UPVM [Kon97] is a process-based environment that provides thread migration for

PVM programs written in single program multiple data (SPMD) style.

c) Process-based LBS. Condor/CARMI [Pru95] constitutes one of the most

notable examples of process migration environments implemented at the user-

level. It is based on Condor, a distributed batch processing system for Unix that

36

The dynamic load-balancing problem

was extended with additional services to support parallel PVM applications.

Condor uses a checkpoint/roll-back mechanism to support migration of sequential

processes. The Condor system takes a snapshot of the state of the programs it is

running. This is done by taking a core dump of the process and merging it with the

executable file. At migration time, the currently running process is immediately

terminated and it is resumed on another host, based on the last checkpoint file.

Condor was extended with CARMI (Condor Application Resource Management

Interface) which provides an asynchronous Application Programming Interface

(API) for PVM applications. CARMI provides services to allocate resources to an

application and allows applications to make use of and manage those resources

by creating processes to run there. CoCheck (Consistent Checkpointing) is the

third component of the system. It is built on top of Condor and implements a

network consistency protocol to ensure that the entire state of the PVM network is

saved during a checkpoint and that communication can be resumed following a

checkpoint. Process migration and checkpointing (with certain limitations in most

cases) have also been developed or are under development in some research

packages such as MIST [Cas95], DynamicPVM [Ove96], Pbeam [Pet98] and

Hector [Rus99], and in some commercial packages that were also based on

Condor such us [Cod97] and LoadLeveler [IBM93].

37

A new distributed diffusion algorithm for dynamic load-balancing in parallel systems

Chapter 2
Nearest-neighbour load-balancing

methods

Abstract

As reported in the previous chapter, totally distributed dynamic load-balancing

algorithms seem to be particularly adequate in the case of parallel systems. In this

chapter, we focus on nearest-neighbour load-balancing algorithms where each

processor only considers its immediate neighbour processors to perform load-

balancing actions. First of all, we introduce a generic notation for nearest-neighbour

load-balancing algorithms. Due to the iterative nature of most of the nearest-

neighbour load-balancing methods, two important issues such as the algorithm

convergence and its termination detection are subsequently discussed. Finally, three

relevant LB algorithms from this category (SID, GDE and AN) are described and

analysed in detail.

39

Nearest-neighbour load-balancing methods

2.1 Introduction

As was commented in chapter 1, nearest-neighbour load-balancing algorithms

have emerged as one of the most important techniques for parallel computers based

on direct networks. This fact is corroborated by the fact that, amongst all categories

of load-balancing algorithms reported in table 1.1, greater concentration of strategies

are found in this (nearest-neighbours column). Amongst the two families into which

we can divide this category when we focus upon the algorithmical aspects of the

strategy, the load-balancing algorithms described below belong to the deterministic

category. As was commented in section 1.5, deterministic algorithms are, in turn,

divided into the subfamilies of diffusion and single direction. The load-balancing

algorithm proposed in this thesis (chapter 3) belongs to the diffusion schemes and it

has been compared, in chapter 4, with three well known load-balancing strategies

from the literature: the SID (Sender Initiated Diffusion) algorithm, the AN (Average

Neighbourhood) algorithm and the GDE (Generalised Dimension Exchange)

algorithm. SID and AN, are diffusive strategies and they have been chosen for their

popularity and similitude to the one proposed in this thesis. GDE belongs to the

single-direction family and it has been selected as a representative algorithm within

this family and for being one of the most popular and traditional load-balancing

algorithms of the same.

In order to be rigorous in the description of the above mentioned load-

balancing algorithms, in section 2.2 some generic notation and assumptions are

introduced. All these algorithms perform the load-balancing process in an iterative

way, therefore the convergence of the algorithm and its termination detection are

important issues to be considered. Section 2.3 deals with these two problems.

Finally, section 4 of this chapter includes a detailed description of SID, AN and GDE

algorithms and the balance problems that arise from each of them are also analysed.

2.2 Basic notation and assumptions

The load-balancing algorithms described in the following section as well as the

proposed in chapter 3 are suitable for parallel system that may be represented by a

41

Chapter 2

*
i

simple undirected graph G=(P,E), i.e. without loops and with one or zero edges

between two different vertices. The set of vertices P={1,2,....,n} represents the set of
i

processors. One edge {i,j} e E if there is a link between processor / and processor).

Let n denote the degree of a vertex / in G (number of direct neighbours of processor /)

and r denote the maximum degree of G's nodes. Note that in symmetrical topologies

the number of immediate neighbours for all the processors in the system is the same,

i.e., r¡ and r will have the same value for any given processor /'. The neighbourhood

or domain of a given processor ; is defined as the following set of processors,

NI = {j eP| {/,/}e£}U {/} . We assume that the basic communication model is the all-

port one. This model allows a processor to exchange message with all its direct

neighbours simultaneously in one communication step, i.e., communication hardware
t

supports parallel communications over the set of links of a processor.

Furthermore, we state that at a given instant t, each processor / has a certain load

w,.(/) and the load distribution among the whole system is denoted by the load vector

W(t) = (wi(t) ... wn(t)). The components of the load vector, W(t), can be real or

integer values depending on the granularity of the application. When the

computational load of a processor is assumed to be infinitely divisible, load can be

represented by a real number and, therefore, the perfect balance is achieved when

all processors in the system have the same load value. This assumption is valid in

parallel programs that exploit very fine grain parallelism. To cover medium and large

grain parallelism, the algorithm must be able to handle indivisible tasks. Hence, the

load would be represented by a non-negative integer number and, therefore, the

global balanced load distribution is the one in which the maximum load difference

throughout the entire system is 0 or 1 load unit.

n

Let Z,=]Tw (0 be the total load of the system at a given time t and'
= y denote the global load\average at the same time. Thus, the objective of a

/ /» [

load-balancing algorithm is to distribute loads such that at some instant t each w,(t)

is "close" to w(t).

42

Nearest-neighbour load-balancing methods

2.3 Iterative nearest-neighbour load balancing algorithms

Most of the nearest-neighbour load-balancing algorithms are implemented in

an iterative form where a processor balances its load by exchanging load with the

neighbouring processors in successive executions of the three functional blocks

introduced in section 1.3: the LM block, the LBA block and the MM block. By

neglecting .the computational operations related with the underlying application, and

only concerning with the load-balancing process, a given processor / should be

allocated the loop shown in figure 2.1.

/ WhiWhile (not_converge)

LB operations

LM block

LBA block

MM block

Figure 2.11terative LB process in a processor i.

By its distributed nature, nearest-neighbour load-balancing algorithms lack

central coordination points that control the execution of load-balancing operations in

each processor. As load decision movements are taken locally by each processor, an

important issue that must be considered when designing iterative distributed load-

balancing algorithms is the convergence of the algorithm. Convergence property

guarantees that there exists a finite number of balancing iterations beyond which all

the processors in the system do not receive or send any amount of load, and

therefore a stable state is reached. With regard to the practical side of these load-

balancing methods, another important issue to be addressed is the termination

detection problem. In order to assist the processors inferring global termination of the

43

Chapter 2

load-balancing process from local load information, it is necessary to superimpose a

distributed termination detection mechanism on the load-balancing procedure. These
í

two issues are discussed in the following sections.
i

2.3.1 Algorithm convergence

Several analytical methods for studying distributed load-balancing algorithms have

been developed for the idealised scenario where' loads are treated as infinitely

divisible and represented by real numbers; therefore, loads can be split to arbitrary

precision [Ber89][Boi90][Cyb89][Hos90][Mut98][Wil93][Xu97]. The convergence of

these methods has been studied using different mathematical approaches (ranging

from linear algebra to other mathematical models). Cybenko [Cyb89], and
t

independently by Boillat in [Boi90], made an important contribution by showing that

ideas from linear system theory jean be employed in characterising the behaviour of

load balancing. We summarise Cybenko's approach . The load assigned to processor

/ at time t+1 is given by

w¡ ^
7=1

where the a¡¡, for 1 < ij < n, satisfy the following conditions:

• a¡j = ají for all i, j.

• if {i, j} g E, then a¡¡ = a¡¡ = 0.

a¡j <i forl <¡<n. >
7=1 i

This type of load assignment can be regarded as "diffusing" loads

among the processors. Cybenko' has shown that with certain choices for the diffusion

coefficients, aff, this process tends to balance the total load among the vertices. It is

possible to express the load vector at time t+1 in terms of a matrix and the load

vector at time t. This matrix is called the diffusion matrix and it is denoted as M where

Mjj=ajj for w and H-1- y • It immediately follows that w(t+1)=Mw(t). It is
7'*'

straightforward to check that if each row of M sums up 1, then L is conserved.

Different M's result in different idealised load-balancing algorithms/Works from the

44

Nearest-neighbour load-balancing methods

literature that matches with this matrix behaviour concentrate their effort in bounding

the time the algorithm takes to appreciably decrease imbalance and how this process

can be accelerated. Classical works in this area [Boi90][Cyb89][Hos90][Xu97] were

focused on the analysis of the influence of the value of «// in the convergence rate

and different distributed load-balancing algorithms were proposed by simply changing

the value of the diffusive coefficient, considering the eigenvalues of the Laplacian of

the underlying topological graph. More recent works try to accelerate the

convergence rate of previous diffusive approaches by keeping a memory at each

load-balancing iteration of what happens in past iterations [Die99][Hu99][Mut98]. In

these alternatives the properties of the Chebyshev polynomial should be applied to

study the convergence rate.

All the above mentioned idealised distributed load-balancing algorithms are

supposed to work in synchronous environments where all processors of the system

perform load-balancing operations simultaneously. Another framework where the

analysis of idealised distributed load-balancing algorithms was focused on is the

asynchronous framework where each processor proceeds regardless of what the

other processors do. Under this assumption, no global co-ordination is needed

between processors. Asynchronous idealised iterative load-balancing algorithms

differ from their synchronous counterparts in the manner in which the portion of

excess load to be moved is evaluated. While synchronous algorithms use a fixed

value («//) to apportion the excess load of an overloaded processor, asynchronous

algorithms use a variable parameter, named P¡¡, which tend to depend on the current

local load distribution [Cor99c][Wil93]. Therefore, the matrix model cannot be directly

applied to this kind of algorithms. Bertsekas and Tsitsiklis proposed a load-balancing

model for asynchronous idealised load-balancing algorithms [Ber89]. They also

proved their convergence under the assumption that the balancing decisions do not

reverse the roles of the involved processors and including some bounds for the

message delays in arbitrary message passing networks (partial asynchronism).

In the more realistic setting of the problem which covers medium and large

grain parallelism, the loads are not infinitely divisible and, as a consequence, they are

treated as natural numbers. An interesting question that arises is: what do the results

45

Chapter 2

mean in the realistic setting where the load is represented by natural numbers? Some

preliminary analysis about the! problems related to consider loads as indivisible can

be found in [Luq95][Mut97][Sub94]. A common solution for this question is found in all

the above mentioned idealised distributed load-balancing algorithms. This solution

simply consists of rounding the load quantities to be moved to make them integral.

Then, the key is to analyse the convergence of these algorithms with respect to the

analysis performed in the idealised situation. Intuitively it is clear that a scheme with

the small perturbation (of rounding down) will behave similarly to the original one.

However, as it was stated in [Mut98], applying standard linear algebraic tools to

handle perturbation such as Gerschgorin's theorem in order to analyse the

convergence rate of the algorithms yields only weak results. In some cases the

convergence of the algorithm has only been substantiated by simulation results as it

happens for the realistic versions outlined in [Son94][Wil93][Xu97]. In other cases,

some theoretical works related with the convergence rate of the realistic counterparts

are provided but only attending to obtain thigh bounds on the global unbalance

[Cor99c][Cyb89][Hos90][Mut98], whereas the convergence proof was left open.

Therefore, there is no proof in the literature of the convergence of iterative

load-balancing algorithms that work with realistic load model, as far as we are aware.

2.3.2 Termination detection problem

With regard to the practical side of iterative load-balancing methods, another

important issue to be addressed is the termination detection problem. With iterative

LB algorithms, the load-balancing procedure is considered terminated when the
i

system reaches a global stable load distribution. From the practical point of view, the

detection of the global termination is by no means a trivial problem because there is a

lack of consistent knowledge in every processor about the whole load distribution as

the load-balancing progresses. In order to assist the processors inferring global

termination of the load-balancing process from local load information, it is necessary

to superimpose a distributed termination detection mechanism on the load-balancing

procedure. There is extensive literature on the termination detection of synchronous

algorithms [Eri88][Haz87][Mat87][Ran83][Ron90][Szy85] as well as asynchronous

forms [Cha85][Dij83][Fra82][Kum92][Sav96][fop84]. Most of the iterative LB

46

Nearest-neighbour load-balancing methods

algorithms proposed in the literature overlooked this problem by also attending to the

analysis of its convergence. Ensuring that all these algorithms lead to termination

consists of including one of the existent determination detection algorithms at the

expense of increasing the overhead of the load-balancing process by the termination

delay.

In continuation, and as an illustration of what has been mentioned, we shall

now describe a synchronie termination algorithm called SSP, whose name derives

from the initials of its authors [Szy85]. At the point of termination evaluation, two

states should be distinguished in a processor: the busy and the idle state. A

processor is in an idle state when the load-balancing process has locally finished, i.e.,

when the load remains unchanged after an iteration of the load-balancing process.

Otherwise, a processor is considered to be in a busy state. But, subsequently, a busy

processor can become idle and an idle processor may return to the busy state.

Global termination occurs when all processors become idle. In order to detect this

global termination, control messages are used to pass information about termination

around, which can emanate from both busy and idle processors. All system

processors keep a counter S to determine how far the farthest busy processor might

be. The counter's value changes as the termination detection algorithm proceeds. S

is equal to 0 if and only if the processor is in a busy state. At the end of a load-

balancing iteration, each processor exchanges its counter value with all of its nearest

neighbours. Then each idle processor updates its counter to be 1+min{S, Inputs},

where Inputs is the set of all received counter values. Evidently, the counter in a

processor actually corresponds to the distance between this processor and the

nearest busy processor. Since the control information of a busy processor can

propagate at most over one edge in one iteration, when the value of S is cf+1, where

d is the diameter of the underlying topology, the global termination condition has

been accomplished. This pseudo-code of this termination algorithm is shown in figure

2.2.

47

Chapter 2

Algorithm SSP for Processor /

5 = 0;

while (S<d+l){

collect the S value from all neighbour processor and stored in InputS;

S = min {S, InputS};

if(LocalTerminated)

S = 5+7; -

else

5 = 0;

Figure 2.2 SSP algorithm for global termination detection.

2.4 Analysis of relevant nearest-neighbours load balancing

algorithms. ,

As has been mentioned in the previous section, the LM, LBA and MM blocks are

the three blocks that constitute the load-balancing process. In this section, we focus

on the description of the LBA block for three well-known load-balancing algorithms by

overlooking the LM and MM blocks: the SID (Sender Initiated Diffusion) algorithm, the

GDE (Generalised Dimension Exchange) algorithm and the AN (Average

Neighbourhood algorithm.

The LBA block implements the load-balancing rules that allow to a given processor /

to obtain, based on its load and on that of the processors relevant to its domain

evaluated in time t, its new load value at time f+1. Therefore, the load value of

processor / at time M can bé defined as a function of all load values within the

underlying domain at time t (Wj(t) V y e TV,) and it can be expressed as follows:

V ./

Below, the formal descriptions and analysis of the LBA block of the SID, the GDE

and the AN algorithms are reported.

48

Nearest-neighbour load-balancing methods

2.4.1 The SID (Sender Initiated Diffusion) algorithm

The SID strategy is a nearest-neighbour diffusion approach which employs

overlapping balancing domains (defined in section 1.4.2) to achieve global balancing

[W1I93]. The scheme is purely distributed and asynchronous. Each processor acts

independently, apportioning excess load to deficient neighbours. Balancing is

performed by each processor whenever it receives a load update message from a

neighbour y, indicating that the neighbour load is lower than a preset threshold

Lww ,i.e., (\Vj(t~)<Lww). Each processor is limited to load information from within

its own domain, which consists of itself and its immediate neighbours. All processors

inform their nearest neighbours of their load levels and update this information

throughout program execution. Load-balancing activation is determined by first

computing the average load in the domain, w,(t), as follows.

^ÏÏT=-LÍ

Next, if a processor's load exceeds the average load by a prespecified amount,

-that is wi(t)-wi(t)>Llhre!ihald , then it proceeds to perform the load

movements decisions. Load distribution is performed by apportioning excess load to

deficient neighbours. Each neighbour; is assigned a weight d*(t} according to the

following formula.

n ,,U otherwise

These weights are summed to determine the total deficiency which is obtained as

following

VjeN,

Finally, the portion of processor f s excess load that is assigned to neighbour /

(0 , is defined as

4(0p (t) = -0±L.
7 AC)

49

Chapter 2

Then, a non-negative amount of load, denoted by Sy(t), is transferred from

processor /to processor y at time t and is computed as,

Balancing continues throughout application execution whenever a processor's

load exceeds the local average by more than a certain amount. Figure 2.3

summarises the LBA block for the SID algorithm. In this figure rfl(t) denotes the

amount of load received by processor / from the neighbour processor j at time t. A

typical value for the Llhreshold parameter is zero to force the load-balancing algorithm

reaching an evenly local load distribution.

evaluate w,(0

if (wi(t)-wi(t)>L,hreshold)

Figure 2.3 LBA block for the SID algorithm in processor i.

The SID algorithm was originally devised to be applied under the assumption that

load can be treated as infinitely divisible. Under this assumption, the algorithm has

been experimentally proved to converge [WÍI93]. However, if the algorithm is modified

to support integer loads, some problems arise. There are two rounded operations

that allow transforming s,y(/) ' into an integer value: floor or ceiling. Under the

assumption of using discrete load values, the load-balancing process should coerce

into a perfect balanced load distribution if all processors of the system end up with a

load value equal to \Un\ orLL/nJ. We recall from section 2.1 that L is the total amount

of load across the system, and n is the number of processors.

50

Nearest-neighbour load-balancing methods

In figure 2.4 it is possible to observe how the convergence of the integer version of

the SID algorithm greatly depends on how Sy(t) is rounded as it has been reported in

[Cor97]. The nodes in yellow colour are the processors with load excess. The

execution of the discrete SID algorithm in these processors will produce the load

movements indicated with the black arrows. If we apply ceiling rounding operations,

the processor loads could oscillate between unbalanced states. In the example

shown in figure 2.4(a) the central node starts the LB process with load excess equal

to 3.25. However, after executing one iteration of SID, it becomes an idle processor,

while its neighbouring processors suddenly become overloaded processors. As a

consequence, the external processors will try to distribute their new excess load by

returning some units of load to the central processor, starting a new cycle of ping-

pong load movements. A clear consequence of such behaviour is that the LB

algorithm will never converge, and overloaded processors can suddenly become idle

processors as happens to the central one. On the other hand, with the floor

approach, the load distribution has converged to a situation that does not exhibit a

perfect global balance (see figure 2.4(b)). Therefore, when a discrete version of the

SID algorithm is needed to be implemented, the floor approach is chosen because it

stops at a stable state although it may not be the even one. Thus, the LBA block of

the discrete version of SID in a given processor / is summarised in figure 2.5.

The conditional sentence in figure 2.5 allows each processor to detect whether it is

balanced or not according to its domain-load average. By taking an Lthreshold value

equal to 0, if the comparison wi(t)-·wi(t)> Llhreshold is not accomplished, then the

load of processor / coincides with its domain load average, and it is considered to be

balanced. In this case, no load movements are guided by the LBA block. Otherwise, if

the load of processor / is different from its own load average, then it is considered as

unbalanced and the load-balancing rules are evaluated. However, the LBA block may

provide no load movements as a consequence of the rounding down operation.

Therefore, although the discrete version of the SID algorithm is able to detect that the

underlying processor is not balanced, it is not always able to correct this situation.

Below, we analyse in more detail, the reasons for such a situation.

51

Chapter 2

t=1

2V

O O
initial load distribution

t=1

t=2

o
(a)

final load distribution

(b)

Figure 2.4 Integer versions of the SID algorithm by applying ceiling (a) and floor(b) rounding operation

LBA block

evaluate w,(t)

if (wi(t)-wi(t)>Lthreshold)

Figure 2.5 LBA block for the discrete SID algorithm in processor!.

52

Nearest-neighbour load-balancing methods

More precisely, there are three unevenly balanced local load distributions that the

discrete SID algorithm is not able to arrange, in spite of being detected as

unbalanced. These three situations are outlined below.

a) Processor / is an overloaded processor which has the highest load value within its

own domain. In particular, the load value of processor / is equal to m+s (w¡(t) = m + s)

and all its r neighbours have the same load value m (Wj(t) = m \/j\{i,j}eE), (see

figure 2.6(a)). If the value of s is less than the number of neighbours (0<s<r), then

processor /guides no load movements. Moreover, if s>1, the underlying domain is

unbalanced. Otherwise, if s is equal to 1, the maximum load difference among the

underlying domains is 1, and then this situation it is considered as balanced. Figure

2.6(b) shows an example of this kind of load distribution, where the central processor

has a load value equal to 8 (w,.(0 = 8), and neighbouring processors have a load

equal to 4. Thus, m is 4 and, since s is also equal to 4, the domain is unbalanced and

the discrete version of SID is not able to arrange such a situation, because after

executing the LBA block the resultant load movements are all 0.

(a) (b)

Figure 2.6 Unbalanced domain where the central processor has the highest load value and all its

neighbour processors have the same load value

b) Processor / is the most loaded processor within its domain with a load value equal

to m (w,(0 = m) but not all its neighbours have the same load value. Suppose that the

load values of the neighbouring processors are «,,n2,...,«r and they accomplish the

following two conditions:

53

Chapter 2

...<ñ <m ,

and

m +

Then, no load movements are guided by processor /. Furthermore, if IH-/I, > 1

there exists an uneven load distribution. This generic situation is depicted in figure

2.7(a).

(a) (b)

Figure 2. 7 Unbalanced domain where the central processor has the highest load value within its domain,

and its neighbours have different load values.

Figure 2.7(b) shows an example of this kind of load distribution. The red

processor is the central processor / which has a load value equal to 4. The

neighbouring processors have the following load values: 2, 2 and 3 which are

identified with «,,«2,«3 respectively. The two conditions exposed above are

accomplished:

• w = 2 < « = 2 < « = 3 < 4

.
• and

.= 2 = n,

Furthermore, with 4-2>1, then the underlying domain is unbalanced and SID

is not able to balance it.

54

Nearest-neighbour load-balancing methods

c) The last local unbalanced situation that SID is not able to arrange is the following.

Suppose that processor is load is equal to o larger than the average load within its

domain, but its load is not the biggest. Then, supposing that the load of its neighbours

is denoted by «,,«2,...,«,. and m is the processor is load, then if the load distribution

within the domain of processor /accomplishes:

• «,<. . .<«,<m<nM <...<nr

-t".
• and

7tt +

•i .

processor / does not perform load movements. In addition, if «r -«, >1, the current

local load distribution is unbalanced. Figure 2.8(a) shows a generic illustration of this

situation.

^y
(a) (b)

Figure 2.8 Unbalanced domain where the central processor is overloaded but is not the most loaded

processor within the domain.

Figure 2.8(b) depicts an example of this situation. Processor / has a load value equal

to 4, and its neighbours have the following load distribution: 3, 3 and 5. Under this

situation the two condition, reported above are accomplished:

= 4 < « = 5 and

3 + 1

55

Chapter 2

Furthermore, as 5 - 3 > 1 the underlying domain is unbalanced, but the

underlying processor will not perform any load movement.

Finally, we can conclude that, although the original SID algorithm is able to

detect unbalanced situations and arrange them, the discrete version of SID, which is

a more realistic approach, is not able to achieve even load distributions. Furthermore,

although it has been experimentally proved that the discrete SID stops, no theoretical

proof about its convergence has been provided.

2.4.2 The GDE (Generalised Dimension Exchange) algorithm

The GDE algorithm belongs to the single-direction family within the nearest-

neighbour strategies as stated in table 1.1. This strategy is based on the dimension-

exchange method which was, initially intensively studied in hypercube-structured

multicomputers [Cyb89][Ran88][Shi89b]. In these kinds of architectures, the

dimension exchange works in the way that each processor compares its load with

those of its nearest neighbours one after another. At each one of these comparisons,

the processor would try to equalise its load with its neighbour's. To do this

systematically, all the processors could follow the order as implied by the dimension

indices of the hypercube: equalising load with the neighbour along dimension 1, and

then along dimension 2, and so on. Thus, the load balancing algorithm block of the

Dimension Exchange algorithm is defined as follows:

LBA block 1
For each dimension
{

if there exists an edge (ij) along the current dimension

Figure 2.9 LBA block for the original DE algorithm in processor!.

The Dimension Exchange method is characterised by "equal splitting" of load

between a pair of neighbours at every communication step. Due to this fact, this

method does not take fullest advantage of the all-port communication model

56

Nearest-neighbour load-balancing methods

described in section 2.2, having to realise as many communication steps as

dimensions exists in the underlying hypercube to execute the entire for-loop in the

LBA block. This algorithms way of working adapts best to the one-port

communication model where a processor is restricted to exchange messages with at

most one direct neighbour at one time.

It has been shown that this simple load-balancing method yields a uniform

distribution from any given initial load distribution in hypercubes topologies in a single

sweep (i.e. one iteration of the for-loop) [Cyb89]. For arbitrary networks it may not be

the case, and the dimension can be defined by edge-colouring techniques. With

edge-colouring techniques [Hos90], the edges of a given system graph G are

coloured with some minimum number of colours (k) such that no two adjoining edges

are of the same colour. The colours are indexed with integer numbers from 1 to k,

and represent the ¿-colour graph as Gk. A "dimension" is defined as being the

collection of all edges of the same colour. An edge between vertices / and j with a

chromatic index c in Gk is represented by a 3-tuple (ij,c). It is known that the

minimum number of colours k is strictly bounded by r , and r<k<r+\ [Fio78].

Figure 2.10 shows an example of a 4x4 mesh coloured with four colours where the

numbers beside the edges correspond to the four colours. During each sweep, all

colours/dimensions are considered in turn. Since no two adjoining edges have the

same colour, each node needs to deal with at most one neighbour at each iteration

step (each step corresponds to one colour; a sweep corresponds to going through all

the colours once -figure 2.11 (a)-).

Figure 2.10 Edge coloring for a 4x4 mesh

57

Chapter 2

Hosseini et alter also studied the convergence property of this method by

treating load as real numbers and using linear system theory. Moreover, the authors

also derived an integer version of this load-balancing algorithm as a perturbation of

the linear version. The load-balancing algorithm block applied to this alternative is

shown in figure 2.11 (b).

LBA block

For (c=1; c <= k; c=c+1)
{ :

if there exists an edge (ij) with colore

For (c=1; c <= k; c=c+1)
{
if there exists an edge (ij) with colore

(a) (b)

Figure 2.11 LBA block for the DE algorithm applied to arbitrary networks in processor i using real (a) and

discrete (b) load values

A question that occurred to the authors when this integer version was

proposed is how does one decide which node receives the floor and which the ceiling

for the average of the paired nodes?. Rather than dealing directly with this question

the authors introduced a notation that records the choices made in each balance

operation allowing the load-balancing algorithm to reach a load distribution, where

deviation from the global load average keeps bounded. This imprecision denotes the
t

difficulty of deriving a load-balancing algorithm that treats load as integer numbers,

which is a more realistic approach using the dimension exchange idea. Xu and Lau

introduced a more precise integer version of the dimension exchange idea for

arbitrary networks which ensures its convergence. The revised algorithm proposed in

[Xu97] was shown in figure 2.12.

58

Nearest-neighbour load-balancing methods

LBA block

For (c=1; c <= k; c=c+1)

if there exists an edge (ij) with colore

f0.5 w, (/) + 0.5w, (í)! ifiv, (0 > Wj (í)

oi/jervvwe

Figure 2.12 LBA block for the discrete versió of the DE algorithm for arbitrary networks in processor i.

Figure 2.13 shows the algorithm's behaviour for a 4x4 mesh where the

algorithm 2.12 is applied. The edge colouring used corresponds to the one shown in

figure 2.10. Suppose that the load distribution at some time instant is as in figure

2.13(a), in which the number inside a processor represents the load of the processor.

Then, after a sweep of the dimension exchange procedure, the load distribution

changes to that in figure 2.13(b). The load distributions obtained when executing the

load balancing function at each dimension/colour is also shown. The red edges

denote the pair of processor, involved in the load exchange within the inspected

dimension/colour, and the arrows show the amount of load moved between them. In

order to achieve a stable global load distribution, the load-balancing algorithm block

(one sweep) must be executed three times more, as is shown in figure 2.14. The

obtained final load distribution is not a global balance situation because the maximum

load difference throughout the entire system is two load units instead of one. Thus,

one can derive that an equal splitting of load between pairs of processors does not

always coerce into an even global load distribution, where the maximum load

difference between any two processors within the system is one load unit.

59

Chapter 2

sweep

(b)

Figure 2.13 Load distribution during a sweep of DE for arbitrary networks

3 sweeps

initial load distribution final load distribution

Figure 2.14 DE for arbitrary networks

In the light of the intuition that non-equal splitting of load might lead to fewer

sweeps necessary for obtaining a uniform distribution in certain networks, Xu and Lau

generalised the dimension exchange method by adding an exchange parameter to

control the splitting of load between a pair of directly connected processors. They

called this parameterised method the Generalised Dimension Exchange (GDE)

method [Xu92][Xu94][Xu97]. The GDE method is based on edge-colouring of the

60

Nearest-neighbour load-balancing methods

given system G using the idea introduced by Hosseini et alter in [Hos90] and reported

above. For a given G*, let w,(0 denote the current local load of a processor / and A,

denote the exchange parameter chosen. Then, the change of w¡(t) in the processor

using the GDE method is governed by the following LBA block:

LBA block

For (c=1; c <= k; c=c+1)

if there exists an edge (ij) with colore

Figure 2.15 LBA block for the GDE algorithm in processor i.

In order to guarantee w,(7)>0, the domain of the exchange parameter A, is

restricted to [0,1]. There are two choices of the exchange parameter which have been

suggested as rational choices in the literature:

• A,=1/2: equally splitting the total load of a pair of processors. Note that this

choice reduces the GDE algorithm to the Dimension Exchange method. This

special version of the GDE algorithm is referred to as the ADË (Averaging

Dimension Excahge) method. As mentioned above, this value of the exchange

parameter favours hypercube topologies.

• À = l/(l + sin(x/k)) in the mesh and A = \/(l + sin(2n/k)) in the torus where k is

the largest dimension of the corresponding topology. This variant of the GDEx

method is known as the ODE (Optimally tuned Dimension Exchange) method. It

has been proved in [Xu95] that under the assumption that no load is created or

consumed during the load balancing process, the two previous values of the

exchange parameter are optimal for meshes and torus respectively.

Xu and La u have shown that in easy numeric terms, the optimal exchange

parameter for /c-ary n-cubes topologies ranges between [0.7, 0.8].

61

Chapter 2

These theoretical results were obtained by Xu and Lau treating loads

as real numbers. As we have previously mentioned, to cover medium and large grain

parallelism which are more realistic and more common in practical parallel computing

environments, load may be treated more conveniently as non-negative integers.

Then, a modified version of the GDE algorithm is needed. Such a variant is included

in the code of figure 2.16 where the revised formula of the LBA block is shown.

LBA block

For(c=í;c<=/c;c=c+íj

if there exists an edge (ij) with colore

otherwise

Figure 2.16 LBA block for the discrete version of the GDE algorithm in processor i.

Because of the use of integer loads, the load balancing process will end with a

variance of some threshold value (in load units) between neighbouring processors.

This threshold value can be tuned to satisfactory performance. By setting this value

to one load unit the closest total load-balancing is enforced. Then, it is clear that

0.5 < À < 1 because a pair of neighbouring processors with a variance of more than

one load unit would no longer balance their loads when /l<0.5. Xu and Lau

demonstrate experimentally that the optimal exchange parameter À when the integer

load model is applied, is not always 0.5, but somewhere between 0.7 and 0.8, which

is an agreement with their theoretical results.

As happens to other load-balancing algorithms that were originally devised to

be used by treating loads as infinitely divisible, the discretization approach of the

original GDE algorithm also arises some problems which have been analysed in

[Mur97][Sub94]. Figure 2.17 shows the load changes performed in the pictured

domain after executing one sweep (three iterations) of the discrete version of the

62

Nearest-neighbour load-balancing methods

GDE algorithm, where exchange parameter À has been chosen as 0.75. As can be

observed in the example, the discrete version of GDE may converge to a situation

that does not exhibit a perfect global balance.

initial load distribution

t=1

final load distribution

1 sweep

Figure 2.17 Discrete versions of the GDE algorithm with exchange parameter fa equal to 0.75

2.4.3 The AN (Average Neighbourhood) algorithm

The Average Neighbourhood algorithm is a load-balancing algorithm which

belongs to the diffusion family as well as the SID algorithm (see table 1.1). These two

algorithms are similar in the sense that both evaluate the load average within the

domain of each processor to determine whether it has load excess or not. In other

words, if the load value of a given processor / is bigger than the load average within

its domain, the LBA block may produce some load movement decisions to distribute

this surplus load among the neighbouring processors. From the analysis of SID's

behaviour reported in section 2.4.1, we have concluded that although there is a time

when the execution of SID in a given processor / provides no load movements, the

load distribution obtained at that time may not be balanced. The AN algorithm tries to

arrange this problem by including the capability of moving loads between non-directly

connected processors. These load movements are restricted to being performed

between processors that have a common neighbouring processor. Therefore, the

goal of the AN's LBA block on processor / is to balance the load of all processors

belonging to its domain [Cor99c]. This goal is wider than simply trying to balance the

load of processor / only. The LBA block computes the average domain load using the

63

Chapter 2

load information from all processors belonging to its domain. Bearing in mind that the

domain of a given processor / is denoted by N¡ ,and that r is the number of the direct

neighbours in a symmetric topology, this average is evaluated as follows:

Two thresholds values named Tsen£ter and Trece/Ver which are centred around the

domain load average, are also evaluated. A processor / is classified as:

• sender in N¡ if Txnder is smaller than the current load value of processor /

• receiver if Trece/ver is bigger than the current load value of processor /

(wi(t)<Trcceiver)\

• neuter in any other case, i.e. , Treceiver < w, (/) z Tsender .

Any time a processor / receives load information from one of its neighbours, the new

load average within its domain is calculated and Tsender and 7"rece,ver are updated to

evaluate the needs of load-balancing in the domain.

In a single balancing iteration, depending on the domain load situation, one

action can be decided:

1 . if processor / is sender and at least one neighbouring processor is
i

a receiver, processor / sends load towards them proportional to its

deficit load;

2. if processor /, is received and there is at least one sender in the

domain, processor / requests load from one of them, in particular

the most loaded one, and the amount of load requested will be

proportional to its excess;

3. if processor / is neuter but there are senders in the domain, it

requests to provide load from the most loaded sender and to give it

to the most underloaded processor of the domain.

64

Nearest-neighbour load-balancing methods

In other words, a given processor / tries to push the load of all processors

within its domain as close as possible to the domain load average. However, the

algorithm gives priority to balancing processor / (point 1 and 2). Only if it is balanced

does the algorithm try to balance neighbouring processors (point 3). The described

implementation achieves the goal of moving the load of every domain processor

within the range defined by Tender and TKceiver. In order to achieve a perfect balanced

domain where the maximum local load difference is no bigger than one load unit,

both thresholds must coincide with the local load average, i.e., Treceiver = Tsender = w¡(t).

It is important to remark that a load movement must not reverse the role of

processors in the domain to grant stability, in other words, the load reallocation must

be limited to avoid a sender processor becoming a receiver in the domain, and

viceversa. Figure 2.18 summarises the LBA block for the AN algorithm.

An important difference in the AN algorithm with respect to the two load-
f

balancing algorithms described in the previous sections (SID and GDE) lies in the

limitation of the number of processors in the system that can be executing the

balancing process simultaneously. This means that some degree of co-ordination

between the LBA blocks is needed to avoid situations in which balancing operations

take place concurrently in overlapping domains. For this reason, all system

processors are organised in processors subgroups, in such a way that the processor

domains relevant to a particular subgroup are totally disjoint. These subgroups are

referred to as serialisation sets, and there should be the minimum possible number in

existence. Since the AN algorithm is a totally distributed load-balancing algorithm,

each processor of the system belongs to a serialisation set. Bearing in mind this

serialisation restriction, it would imply covering all the serialisation sets at once in

order to obtain that all processors execute the balancing process one single time.

Figure 2.19 depicts all the serialisation sets in a 4x4 torus topology where the red

processors are the processors which are allowed to execute the load-balancing

process. As we can observe there are 8 serialisation sets with 2 non-overlapped

domain in each one of them.

65

Chapter 2

LBA block

evaluate w,(r), Tsentjerand Trece,ver

w/(0- (0

w¡ (/)

ifwi(t)<Treceiver

otherwise : in this case load movements

can be commanded between processors

belonging to the underlying domain

Figure 2.18 LBA block for the AN algorithm in a master processor i.

Figure 2.19 Serialisation sets for a 4x4 topology

66

Nearest-neighbour load-balancing methods

Whenever the activity of the algorithm is stopped because competing load-

balancing operations are taking place in overlapping domains, the algorithm cannot

simply wait for their completion. The situation of the domain processors is likely to

have been changed, and the information upon which a decision was based could

have become obsolete. The load-balancing process must abort whenever it is

delayed, because of competing actions. Therefore, the need for serialising the load-

balancing process can be viewed as an important constraint, since it generates high

synchronisation message traffic and continuous interruptions of the load-balancing

operations in some processors.

The convergence of the AN algorithm has been proved with respect to

keeping the global load variance bounded beyond a given time [Cor96]. However,

final load distribution does not always exhibit a global balance situation as happens in

the example depicted in figure 2.20 where the maximum load difference between any

two processors at the end of the load-balancing process is 2.

Figure 2.20 Final unbalanced situation applying the AN algorithm

2.5 Summary of this chapter

This section is oriented to summarise the main characteristics of each one of

the three algorithms described above, in order to have a global view of their

similarities and differences with respect the main implementation key issues and their

derived capabilities. Recalling from chapter 1 that the load-balancing process viewed

from the processor level point of view, is decomposed into three functional blocks: LM

(Load Manager) block, LBA (Load Balancing Algorithm) block and MM (Migration

Manager) block. In particular, in this chapter, we concentrate on an exhaustive

description of the corresponding LBA (Load-Balancing Algorithm) bock which,

67

Chapter 2

recalling from chapter 1, is the block of the global load-balancing process that

decides source and destination processors for load movements, as well as the

amount of load to be moved between them.

MAIN CHARACTERISTICS

Im
p
le

m
e
n
ta

tio
n

 K
e
y
 I
s
s
u
e
s

B
e
h
a
v
io

u
r

F
e
a
tu

re
s

$
0)

í

1
3

B
ID

3>

8
J3

5

5

3

Original Load

Model

Domain

Load Balancing

Activation

(trigger condition)

Work Transfer

Calculation

Set of running

processors

Degree of co-

operation

Simultaneous active

processors

Convergence

Detection of unbalanced

domains

Local Balance

Global Balance

Movements between non-

directly connected

processors

SID

Infinitely divisible

load units

Nearest

Neighbours

One adaptive

threshold

(local load average)

Evaluated

(depending on load

distribution within the

domain)

All system processors

Asynchronous

All system processors
i •

' Not proved

Not allowed

Not always achieved

Not always achieved

Not allowed

GDE

Infinitely divisible

load units

Nearest

Neighbours

One adaptive

threshold

(load difference

between two

neighbours

Fixed

(exchange parameter)

All system processors

Synchronous

Processors involved in

the same dimension

Not proved

Not allowed

Not always achieved

Not always achieved

Not allowed

AN

Discrete

load units

Nearest

Neighbours

Two adaptive

threshold

(evaluated around the

local load average)

Evaluated

(depending on load

distribution within the

domain)

All system processors

Synchronous

Processors belonging

to the same

serialisation set

Not proved

Not allowed

Not always achieved

Not always achieved

Allowed

Table 2.1 Summary of the main characteristics of SID, GDE and AN.

68

Nearest-neighbour load-balancing methods

As was described in section 1.3.2 of this work, the LBA block is divided into

two phases: Load Balancing Activation and Work Transfer Calculation. The first

phase is responsible of testing the trigger condition and, therefore, determining which

processors are the active processors at a certain time, i.e., which processors

overcome the trigger condition and will consequently execute the second phase of

the LBA block. In table 2.1, we have included the particular characterisation of each

one of these phases for all analysed algorithms. However, not only these

characteristics are reported in that table. Other relevant issues from the processor

level point of view, as well as from the system level point of view are also considered

in its summary. Furthermore, table 2.1 incorporates the behaviour features derived

from the execution of each algorithm.

69

A new distributed diffusion algorithm for dynamic load-balancing in parallel systems

Chapter 3
DASUD load-balancing algorithm

Abstract

In this chapter a new dynamic load-balancing algorithm called DASUD (Diffusion

Algorithm Searching Unbalanced Domains), which uses a local iterative scheme to

achieve a global balance, is proposed. DASUD was developed for applications with a

coarse and large granularity where load must be treated as non-negative integer

values. Firstly, in this chapter, we describe the proposed algorithm, its complexity is

analysed and its functioning demonstrated for an example in which the underlying

topology is a 3-dimensional hypercube. Subsequently, the proof of DASUD's

convergence is provided, and bounds for the degree of overall balance achieved are

provided, as well as for the number of iterations required for such balance.

71

DASUD load-balancing algorithm

3. í DASUD (Diffusion Algorithm Searching Unbalanced Domains)'s

motivation

The load-balancing strategies within the nearest-neighbour category exhibited

some problems when load is packaged into discrete units. In particular, in chapter 2,

the problems related to the three algorithms described have been analysed.

Summarising, the main problem that all these strategies exhibited is that they may

produce solutions which, although they are locally balanced, prove to be globally

unbalanced. Figure 3.1 shows the load of 6 processors connected in a linear array,

which are obtained as balanced solution by most of the nearest-neighbour load-

balancing algorithms. However, this load distribution is not an even distribution

because the maximum load difference through the whole system is 5 load units. We

recall from chapter 2 that the system is balanced when the global maximum load

difference is 0 or 1 load unit.

Figure 3.1 Final stable load distribution but globally unbalanced.

The proposed algorithm DASUD, is based on the SID load-balancing

algorithm and incorporates the evaluation of some new parameters to detect stable

unbalanced local load distributions achieved by SID and generates some load

movements to slightly arrange them. DASUD detects as unbalanced situations such

as the one shown in figure 3.1 and is able to drive the system to a final balanced load

distribution such as the one depicted in figure 3.2.

Figure 3.2 Final balanced load distribution.

In table 3.1, we enumerate the characteristics of DASUD by using the same

scheme that the one used in section 2.5 to summarise the main characteristics of the

three load-balancing algorithms described in chapter 2 (SID, GDE and AN). In the

following section, an exhaustive description of DASUD's behaviour is provided.

73

Chapter 3

MAIN CHARACTERISTICS

i
I

Î

|

0)

"E.
E

B
e
h
a
vi

o
u
r

F
ea

tu
re

s

£
.3

1

£

S
ys

te
m

 L
ev

el

8
J2

S

«
JQ

§

Original Load Model

Domain

Load Balancing Activation

(trigger condition)

Work Transfer Calculation

Set of running processors

Degree of co-operation

Simultaneous active processors

Convergence

Detection of unbalanced domains

Local Balance

Global Balance

Movements between non-directly

connected processors

DASUD

Discrete load units

Nearest Neighbours

One adaptive threshold

(local load average)

Evaluated

(depending on load distribution within

the domain)

All system processors

Asynchronous

All system processors

Finitude proved

Allowed

Always achieved

Upper Bounded

Allowed

Table 3.1 Main characteristics of the DASUD load-balancing algorithm

\

3.2 Description of the DASUD algorithm

We now discuss the behaviour of one iteration of DASUD or, in effect the same

thing, the LBA block of the DASUD algorithm. Essentially, one iteration of DASUD

consists of two load-balancing stages as is shown in figure 3.3. The first stage

performs a coarse load distribution of the load excess of the underlying processor,

whereas the second stage produces a more accurate excess distribution in order to

achieve the perfect load balance within the underlying domain. More precisely, in the

first stage, if the underlying processor is an overloaded processor it will proportionally

distribute its excess load among its underloaded neighbour processors in such a way

that the most underloaded neighbours will receive more load than the less

underloaded ones. In the second stage, firstly, each processor checks its own

domain to determine whether 'it is unbalanced or not. In order to balance the

74

DASUD load-balancing algorithm

underlying domain, each processor can proceed by completing its excess load

distribution in a more refined way, sending messages to an overloaded neighbour

instructing it to send load to an underloaded neighbour, or performing load

movements between non-directed connected processors.

We now formally describe each one of the stages of DASUD. In order to do so,

we use the same nomenclature described in chapter 2, and we introduce certain new

notation that is described below.

In the DASUD algorithm, each processor sends a message, at certain given

times, to all its neighbours containing its local load. This information is not updated

immediately in all neighbour processors due to delays introduced by the network.

Therefore, each processor / keeps in its local memory an estimation of processor's j

load (we denote w,y(0 as the load estimation of processor j kept in memory by

processor ; at time 0- Then, if / and j are neighbour processors (i.e. {i,j} e E),

w¡j(t) - w j (T ¡j (t)), where Ttj(t) is a certain time instant satisfying O < T y (t) < t.

For convenience, if / #j and {i,j} e E then .̂(0 = 0. Each processor is able to

assess its current load at each instant. This means that w^t) = w,(t). For our

algorithm, it is also convenient that each processor has a list of its neighbours sorted

according to the assigned processor indexes. This sorted list will be used as criteria

for selection in those cases in which a processor must be selected from amongst a

subset of neighbouring processors.

DASUD works asynchronously. Therefore, each processor / can be associated

with a set of instants T, that will be denoted as a set of load balancing times for

processor /. At each one of these instants, processor / begins the first stage of the

DASUD algorithm. In this stage each processor compares its load with the load

estimation of all its neighbours that are stored in its local memory. As each T, is a

time-discrete set, in order to study DASUD's behaviour, we can discriminate the

variable t. Therefore t assumes the value 0,1,2,...

75

Chapter 3

Figure 3.3 One iteration ofDASUD algorithm

76

DASUD load-balancing algorithm

Firstly, processor / performs some initial actions starting by checking the load

estimations kept in its memory of its neighbours (w//(0) and it computes the load

average of its domain as follows:

#N¡

Once processor / has computed its local load average, w¡ (t), it also evaluates a

local load weight, denoted by dH(t), in order to detect whether it is an overloaded

processor or not, d,,(t) = w¡(t)-w,(t). If processor / is an overloaded processor, d,,(t)

will be a negative value (d,,(t)<0). Otherwise, if processor / is an underloaded

processor, du(t) will be a non-negative value (d,,(t) > 0).

Then, depending on the value of dH(t) one of the two stages of DASUD will be

performed. If du(t)<Q then the first stage will be executed. Otherwise, if du(t)>Q

the computation will go on with the second stage.

3.2.1 Description of the first stage of DASUD

In this stage, the load excess of the processor / is distributed among its

neighbouring processors with load deficit. The load excess distribution is performed

proportionally to the corresponding load deficit. For this purpose, a load weight d^t)

is evaluated for each processor) belonging to the domain of processor / according to

the following formula: d,j(t) =
 :wi(i)--wij(t). An overloaded processor / (dti(t)<0)

performs load balancing by apportioning its excess load only to deficient neighbours,

j, whose load weight is a positive value (¿/(/(0 > 0). The amount of excess load to be

moved from an overloaded processor / to one of its deficient neighbours j will be

denoted by s,j(t). In order to evaluate Sy(t), a new weight called djj(t) is computed

for all processors/

77

Chapter 3

" [O otherwise

The total amount of load deficits is computed on Dt(t) to determine the total

n

deficiency, D¡ (t) = V d*¡ (t)

Subsequently, the portion of excess load of processor / that is assigned to
"í

neighbour/ Py(t), is computed as follows,

otherwise

Then, a non-negative amount of load, denoted by s¡j(t), is transferred from

processor /to processor; at time t and is computed as, sv(t) = floor(-PiJ(t)*du(t))

If s¡j(t) = Q for ally, i.e., no load movements are performed by the first stage of

DASUD, then the second stage will be executed. Otherwise, the second stage of

DASUD is skipped and no more load movements will be performed during this

iteration.

3.2.2 Description of the second stage of DASUD

In this stage, DASUD evaluates the balance degree of processor domain / by

searching unbalanced domains. This stage is composed of four blocks which work

together with the aim of completely balancing the underlying domain. These blocks

are: the SUD (Searching Unbalanced Domains), FLD (Fine Load Distribution), SIM

(Sending Instruction Message) and PIM (Processing Instruction Messages) blocks.

Each one of these blocks are described below.

78

DASUD load-balancing algorithm

Searching Unbalanced Domains (SUD) block

In this block four parameters are evaluated:

a) maximum load value of the whole domain (included /): w""x(t),

b) minimum load value of the whole domain (included /): \vmn(t),

c) maximum load value of neighbouring processors of processor /: w™* (/),

d) minimum load value of neighbouring processors of processor /': w™'"(t).

The maximum load difference through the domain of processor / is evaluated

(w,mojr(0-w,m/"(0) ¡n order to detect whether its domain is unbalanced or not. We recall

that N, is balanced at instant t if w,majr(0-w,m'"(0<l- If the domain is not balanced

FLD block will be executed. Otherwise, if the domain is balanced, the PIM block will

be executed.

Fine Load Distribution (FLD) block

If the domain is unbalanced (w^"(t)-w^"(t)>^) then one of the two following

actions can be carried out according to the values of the four parameters evaluated in

the previous block.

• Action 1: If processor ; is the processor with maximum load of its domain

(w,(0 = <""(/)) and all its neighbours have the same load (•*>%"(t) = w™"1 (t)),

then processor ; will distribute a units of load to its neighbours one by one. The

value of a is computed as a = (w"ax(t)-w"in(t)-l), in order to maintain the

load value of processor ; lower-bounded by the load average of its domain. The

distribution pattern coincides with the neighbours order kept in memory by

processor / (y, < j2 < ... < jr), so processor / will send one load unit to

processors: j}, j2 ... ja . Note that the value of a will always be smaller

than the number of neighbours (a < r), otherwise, the first stage of DASUD

would perform some load movements, and this part would not start up.

79

Chapter 3

• Action 2: If processor / is the processor with maximum load of its domain

(w. (/) = w^""(t)) but not all the processor belonging to the domain have the same

load (w7"(/)*w™*'(0)· then one unit of load is sent to one of the less loaded
t

neighbour processors denoted by fmln, which is obtained as follows,

= mi»

If action 1 or action 2 have produced some load movements, then the second

stage of DASUD has finished. Otherwise, the next block to be executed will be the

SIM block.

A preliminary proposal of DASUD, which only incorporated the two actions

described above, was reported in [Luq95].

Sending Instruction Message (SIM) block

This block is related to the possibility of commanding load movements between

non-directed connected processors. If the domain of processor / is not balanced

(wffljr(0-M'™"(0>1) but processor / is not the most loaded processor (w,(0 *<""(/)),

then processor /will command ̂ one of its neighbours with maximum load, j'majc, to

send a load unit to one of its neighbours with minimum load, j'min . The values of j'mm

and j'mtn are obtained as follows:

and the message (/, j'min, t, jw.., (í)) is sent from processor / to processor j'majc,

where / is the index of the processor that sends the messages, j'min is the index of

the target processor, t is the time instant at which the message is sent and w.., (?) is
í/mor

the estimation load of j" processor that processor / keeps in memory when the

80

DASUD load-balancing algorithm

message is sent. As a consequence of this action, processor / commands the

movement of one unit of load between two processors belonging to its domain. Note

that these two processors can be non-directed connected processors. The PIM block

will subsequently be executed.

Processing Instruction Messages (PIM) block

This block will always be executed after the SIM block and when no load

movements have been performed by the first stage of DASUD, and the underlying

domain is balanced. The block is related to the management of the instruction

messages received from processors belonging to the underlying domain. Processor /

will consider the received instruction messages which have the following content:

(/, /, /', Wji(t')). All messages whose fourth component accomplishes that

Wj, (/') = w, (/) are sorted according to the following criteria:

* Firstly, in descending order of sending time, t'.

* Second, in ascending order of index/

* Lastly, in ascending order of target processor j'.

The first element of the sorted list is chosen, and processor / sends one load unit

to the processor/', crossing processor/

Finally, at the end of each iteration of DASUD, processor / proceeds with the

elimination of all received instruction messages from processors belonging to its

domain. This action is always carried out independently of which previous stage has

been executed.

As a consequence of applying the second stage of DASUD, some load

movements can eventually be carried out to correct unbalanced situation. This

amount of load is denoted by o,(t), and it can be equal to {0,1, a}. Notice that when

no load movements are produced by the first stage of DASUD (s¡j(t) = O V/ e P), the

value of S¡(t)could be a non-negative value (£,(/)^0). Otherwise, if processor /

81

Chapter 3]
i

sends a portion of its excess load as a consequence of applying the first stage of

DASUD, no extra load movements will be carried out by the second stage of DASUD

(¿,(0 = 0). Notice that the firstj stage of DASUD coincides with the SID algorithm.
i

Then, bearing in mind that Sy(t) and S,(t) identify the amount of load sent by

processor / to its neighbours; at time t, and denoting by /},(/) the amount of load

received by processor) from processor / at time t, the load of processor / at time t+1

can be expressed by the following formula:

(1)

Finally, the complete behaviour of DASUD is summarised in figure 3.4 where the

LBA block of DASUD is provided.

LBA block

evaluate w,(t)

if (w,(0>w,(0)

{ Í

F/gure 3.4 L8/\ fa/ocfc of the DASUD algorithm in processor!

82

DASUD load-balancing algorithm

3.3 An example of DASUD execution

This section illustrates the behaviour of the DASUD load-balancing algorithm

by considering a 3-dimensional hypercube with an initial load distribution denoted by

the load vector: w(0) = (4, 3, 5, 3, 2, 1, 3, 8). In figures 3.5 the numbers

inside the nodes denote the load of each processor and the subindexes are the

corresponding processor index.

The load movement between two processors is indicated with an arrow between

them and the label of each arrow represents the amount of load to be moved. The

actions carried out at each stage of DASUD, as well as the most relevant parameters

evaluated for each processor during each iteration of the load balancing process, are

summarised in table 3.1. Particularly, column 3 in the table illustrates the received but

not processed instruction messages of each processor. The fourth and fifth columns

include the value of the load average within the underlying domain and the load

excess of the underlying processor, respectively. The load movements generated by

the first stage of DASUD are shown in the sixth column. When no load movements

are performed from processor / to any of its neighbours as a consequence of applying

this stage, the content of the corresponding cell is sv(\) = 0.

Otherwise, the subindexes indicate the source and destination processors of a

particular load movement. The remaining columns correspond to the different blocks

of the second stage of DASUD. A discontinuous line in the cell indicates that the

corresponding action is skipped. The word no indicates that no load movements are

performed by that block. In the FLD block column, the amount of load to be moved

and the destination processor are indicated by / toj. For example, for processor 3 the

expression "1 to 2" in the column Action 1 of the FLD block, indicates that one load

unit is moved to processor 2. Finally, the SIM block column reflects the message to

be sent and the destination processor.

In this example, two iterations of DASUD are needed to achieve the final

balanced load distribution. During the first iteration, processors 1 and 8 perform load

movements as a consequence of executing the first stage of DASUD. Therefore,

stage two of DASUD is skipped. Processors 2 to 7 do not perform load movements

83

Chapter 3

as a consequence of applying the first stage of DASUD (s,y(l) = 0), stage 2 is then

carried out. All these processors detect that their domains are not balanced, so the

load-balancing algorithm goes on through the FLD block. Processor 3 observes that
i

its load is the largest within its' domain and all its neighbours have the same load

value. Then, action 1 of the FLD block is executed by processor 3 and 1 load unit will

be sent to processor 2. Processors 2, 4, 5, 6 and 7 produce no load movements

when the FLD block is executed, each one then executes the SIM and PIM blocks.

The instruction messages sent by each one of these processors are reported in the

SIM block column of table 3.1. As the current iteration is the first one, no processor

has received messages, therefore, no processor will perform any load movements by

the PIM block . t

At the beginning of the second iteration of the DASUD algorithm, processors 2, 3

and 8 have instruction messages to be processed. Processors 2 and 5 have enough

load excess to distribute among ¡their neighbours by applying stage 1 of DASUD then

stage 2 will be skipped. Processor 1, 6 and 7 detect that their domains are

unbalanced. As they have performed no load movements at the first stage of

DASUD, their load-balancing process goes to stage 2. Processor 7 sends 1 load unit

to processor 6 as a consequence of executing action 2 of the FLD block, the SIM and

PIM blocks will then be skipped by this processor. Processors 1 and 6 each send one

instruction message to processor 5 and neither of them perform load movements by

the PIM block because they have not received messages from the previous iteration.

Processors 3, 4 and 8 perform no load movements by the first stage of DASUD and

their domains are balanced, their computations then, go on directly to the PIM block.
i

Processor 4 has not received instruction messages so no action can be carried out

by the PIM block. The received-instruction messages of processors 3 and 8 are

discarded because the load value of these processors have changed since the

messages have been sent. At the end of the load-balancing iteration/each processor

deletes its received instruction messages independently of which previous stage has

been executed. !

The final maximum load difference obtained throughout the whole system is one

unit of load, and so the system is balanced.

84

unbalanced initial
load distribution

iteration 1

DASUD load-balancing algorithm

iteration 2

balanced final
load distribution

> - Load movement
—*— - Sending one instruction message

Figure 3.5 An example ofDASUD's execution

DASUD
rfert.fi;

1

2

Proc. i

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

received
instruction
messages

no

no

no

no

no

no

no

no

no

(6,6,1,3)

(2,6,1,5)

no

no

no

no

(4,4,1,8)
(5,6,1,8)
(7,6,1,8)

w,(0

3

3.75

3.5

5

3.75

2.25

4.25

4

4

3

4

3.75

3.25

3.5

3.25

4.25

4/«)

-1

0.75

-1.5

2

1.75

1.25

1.25

-4

1

-1

0

-0.25

-1.75

2.5

-0.75

0.25

Stage 1

i,5(D = I

i,/i) = o

ty(l) = 0

*(,(!) = 0

*(,(» = 0

s,j(\) = 0

itf(l) = 0

%,(!) = 1

í850) = 2

i87(l) = l

íy(2) = 0 ,

í26(2) = 1

*(,(2)-=0

50(2) = 0

*S6<2) = 1

*/,(2) = 0

ij,·(2) = 0

ty(2) = 0

5toee2
Unbalance
d domain?

...

yes

yes

yes

yes

yes

yes

yes

—

no

no

—

yes

yes

no

FLD block
Action

1
—

no

1 to 2

no

no

no

no

no

--

—

—

no

no

Action
2
—

no

no

no

no

no

no

no

--

—

...

no

1 to 6

SIM
block

—

(2,6,1, 5) to
3

—

(4,4, 1,8) to
8

(5,6, 1,8) to
8

(6,6, 1,3) to
2

(7,6,1, 8) to
8

(1,1, 2,5) to
5
_

—

-~

(6,6,2,5) to
5
...

PIM
block

—

no

...

no

no

no

no

no

—

discard
message

s
no

—

no

—

discard
message

s

Table 3.1 Evolution of the DASUD execution for the example of figure 3.5

85

Chapter 3 I

3.4DASUD's complexity

Now that we have described the behaviour of a single DASUD iteration, we

shall now analyse the complexity involved there in.

Before starting the DASUD execution, all processors should sort the indexes

of the neighbours using the same criteria. However, the cost of this can be neglected

because it is insignificant if the global computational cost is considered. One iteration

of DASUD in a processor /, involves different operations depending on which stage or

block produces load distribution among its neighbours. The pseudo-code introduced

in figure 3.6 shows how the différent blocks of DASUD are organised, and table 3.2
I

summarises the maximum number of operations that should be performed at each

one (we recall that the number of neighbouring processors of processor / is denoted

by r). From its overall analysis we can conclude that the computational complexity of

DASUD is dominated by the complexity of the PIM block (O(rlogr)). This means that

the overall complexity of the computational period of DASUD is low.

{ evaluate w¡(í), du(t);

r FIRST STAGE' */

if (da (í) < O ; evaluate sy (/) V/ e N, \ {/} ;

if (no load movements are performed by the FIRST STAGE)

r SECOND STAGE Y

{ SUD block;

if (unbalanced domain)

{ f LFD block Y

iï((w, (O = w,mai(0^ && (<T"(0 = wv7"(0/> ̂ ci/on 1:

•if if w, (í) = w,""(0; &* íw~(0 ̂ <'"(/)^ Acftm 2;

/f Cno toad movement performed by Actionl and Action2)

,{ SIM block;

| PIM block;

}else

'PIM block;

Deleting Instruction Messages;

} l

Figure 3.6 Pseudo-code of one single DASUD iteration.

86

DASUD load-balancing algorithm

DASUD's operations

Actions

Iteration

Initial

Actions

First Stage

S
ec

on
d

S
ta

ge

SUD

LFD

SIM

PIM

Iteration

Completion

Actions

check load estimations

evaluate w,-(i)

' evaluate dn(t)

evaluate d¡j(t)

evaluate D

evaluate P¡-(t)

evaluate s¡j(t)

evaluate

w^(t),wr(t),

evaluate vl™(f)-w°""(t):

compare Wii(t)with w,mai(0

send one message

sort a list of r elements

depending on 3 parameters

kind of operation

memory accesses

division

addition

subtraction

subtraction

addition

division

multiplication

round

subtraction

subtraction

subtraction

transmission

comparisons

quantity

r

1

r+1

1

r

r

r

r

r

2(r+1)

1

1

1

Of /• log r;

delete r messages

Table 3.2. All possible operations performed by one single DASUD iteration.

In the following sections, formal aspects of DASUD are theoretically studied by

firstly regarding its convergence.

87

Chapter 3 ¡

t
I

3.5DASUD's convergence '

In this section we will demonstrate DASUD convergence. For this purpose we

assume the partially asynchronous assumption which was introduced by Bertseka

and Tsitsiklis in [Ber89]. In that work, the authors divided asynchronous algorithms
t

into two groups: totally asynchronous and partially asynchronous. To paraphrase

them, totally asynchronous algorithms "can tolerate arbitrarily large communication

and computation delays", but partially asynchronous algorithms "are not guaranteed

to work unless there is an upper bound on those delays". This bound is denoted by a

constant B called asynchronism measure. That assumption has been modified to be

applied to the realistic load model assumed by DASUD, and to consider some

particular characteristics of the

provided below:

same. The formal description of this assumption is

Assumption 1. (Partially Asynchronism) There exists a positive integer B such that:

a) for every / e P and for every t e N, {/, t + \, ... ,t + B-\] fl T¡#0

b) for every / e P, for every t e N and for every jeN¡ , t-B< TV(/)</

c) the load sent from processor, / to processor j at time t is received by processor j

before time t+B. '

d) the instruction message sent by processor / to processor y at time t, is received by

processor; before time t+B.
í

Part (a) of this assumption postulates that each processor performs a step of the

load balancing process at least once during any time interval of length 6; part (b)

states that the load estimations kept in memory by any processor at a given time t

were obtained at any time between t-B and t; part (c) postulates that load messages

will not be delayed more than B time units as well as the instruction message sent by

processor /to processor/ as has been stated in part (d) of this assumption.

Under assumption 1, to prove the DASUD's convergence consists of proving the

following theorem.

i
Theorem 1. Under assumption 1, DASUD is a finite algorithm.

88

DASUD load-balancing algorithm

For that purpose, we introduce the following three definitions and two lemmas.

Definition 1. m,(0 = mm {w,(t') | ieP, t-3B<t'<t} is the minimum load value

among the total system at a given interval of time of length three times 8

Definition 2. mk(t) = min {w,(t') \ ieP, t-3B<t'<t w,.(f')>mt_,(0}, for any

k>\. The value of mk(t) is the minimum load value that occupies the k-st place if

loads are sorted in ascending order at a given interval of time of length 38.

Definition 3. An agreement is: min 0= L+1

Lemma 1 . The sequence (m\ (/)),20 is non-decreasing and upper bounded.

Furthermore, there exists a non-negative integer t} such that,

a) m](t) = m] (t]) for all t>t¡, and

b) /•_,, (0 = ̂ (0 = ̂ (0 = 0, Y/eP, Vt>tt Vie P such that w, (f ,) = m, (f ,) •

Lemma 1 states that there is a time /, in which the minimum load value becomes

stable (under DASUD algorithm) and all the processors with that minimum load value

neither send nor receive any amount of load.

Proof. Let fix a processor ieP and a time te N. We shall prove that,

w,(/ + l) > w,(0.

If teT¡ then processor / does not execute the load balancing process, so it can

receive load from some neighbour processor, but it has not sent any amount of load.

Thus

If t e T¡ then two different situations can be found depending on which block of

DASUD produces the load movements:

89

Chapter 3
i
i

case 1: No load movements are generated by the FLD and PIM blocks of DASUD

(s¡(i)= o). Two different scenarios can be analysed:

a) Processor / is an underloaded processor (d,,(t)>Q). Then s,j(t) = Q for all

neighbours and so that w¡ (t +1) > w¡ (t) > m, (t).

b) Processor ; is an overloaded processor (du(t) < 0). Then,

7=1 7=1 7=1 7=1

n n

= w¡ (t) + du (/) + £ r j, (f) = ïï, (í) + X rJi W - "<• W
7=1 7=1

The inequality (1) ¡is obtained by taking into account that:

0- Moreover, the equality (2) is true because

y(0 = l • Since w,-(0" ¡s the load average of some processors at a given

time between t-B and t, it is obvious that, w,(0> w,(0- Hence w¡(t +])>m,(0.

i

case 2: Some unit of load can be moved by applying FLD and PIM blocks of DASUD

(S,(t)>0). In this case processor / has not generated load movements by the first

stage of the DASUD algorithm (-s,j(t) = Q for all neighbours j). Two different situations
"Í

can be found:

a) Action 1 or action 2 of the FLD block of DASUD are performed. In this case

W|l (/) = <"(/), and w, (/)-w,"'" (0 >£(/). Thus

w¡ (/+1)=w, (/) - «y, (o + >> (O * w/ (O - s, w ><'" w > w,

b) The PIM block of DASUD is executed, then processor / services a message such

as: (/, /, /', wyï(/'))•
 ln this case w,(0 = w;,(O,i.e., the estimation load that

processor y keeps in its memory about processor / at the time which this message

was sent, coincides with the current load value of processor /. Furthermore,

t-2B<t'<t because all messages sent by a processor y to processor / before

90

DASUD load-balancing algorithm

time t -2B , will be received by this processor before t-B and deleted before t.

The meaning of the message (/, /, /', w,,(O) ¡s the following:

so, there is a time T, with t-3B<t'-B<r < t'<t, such that w.,(t') = w,(r).

Therefore, w¡(t)-w.-(T)>\ and we can conclude that

w, ,(t + 1) > w, (í) - 1 > W. (T) > m¡ (O .

As a conclusion, we have proved that w¡(t + 1) >/«,(/) V/ e P and V feN. So,

m, (f + !)>/», (f) V /eN.

Since (/M, (/)),20 is an upper bounded non-decreasing integer sequence, (L is an

upper bound) there exists a nonnegative integer t0 such that m¡(t) = m¡(t0) Vf >/0 .

Then, part (a) of lemma 1 is proved for any time t that t>t0.

We shall now prove part (b) of lemma 1. For this purpose, we set

P} (t) = {ieP | w¡ (0 = w, (í)} as the set of processor with minimum load value of

the system at time f and we shall see that: P, (í0)2/J
1 (/„ +\)^Pl(t0 +2) 3..., i.e.,

the sequence of sets of processors with minimum load is a non-increasing sequence

beyond t0 .

Let t > tQ and / e P \ P, (O *. We shall see that / g P, (í + 1) , i.e., if processor /' is not

a processor with minimum load at time t, then it will never be a processor with

minimum load value at time t+1.

' Note that: P \ P} (t) = P, (t)

91

Chapter 3 ¡
!
i
t

• If t£Tt, then we havei seen that w,(; + l) > w¡(t) > m,(0 = m,(f +1), so

/*/>,(* + !). \

• If t e r,,, some different situations can be found:* i
*

=> if Sj(t)>Q then, as we have seen before w,(t + \)>m}(t) = m¡(t +1), so,

/*/»,(* + !). !
!

=> if £,(0 = 0and processor/is an underloaded processor (d,v(0^0), then it has

been proved that w, (t +1) > w, (0 > w, (0 = m¡ (t +1), thus / g P, (í +1).

=> if ¿,(0 = 0 and processor / is an overloaded processor (d¡,(t)<0), then we

have that w, (t +1) > w¡ (t) > m} (t) = m, (t +1) and / € P, (t +1).
j

So, we can conclude that P, (t0)2P, (¿0 +l)3Pi (i0 +2)3...

Since P,(/0) is a finite set, there exists an integer í, >/0 such that P, (t) = Pl (t})

v/ > /,.

Note that if processor / has the minimum load value at time í, (/ e P, (/,)), then
t

£,(0 = O V / > / , . Furthermore, this processor becomes an underloaded processor

(dii(t)>0 V/>í,). In such situation, ^ (O^O.VyeP, Ví>í,. Finally, if the load of
t

processor / keeps constant and lit sends no load to any of its neighbours, obviously,

no load can be received, i.e. rj¡(t) = Q, Vy 'eP, W>7,. Then, part (b) of lemma 1 is

proved. !

Since part (a) has been proved for any t such that Vr > t0 and í, > f0, then lemma

1 is proved •

t

Lemma 2. Let us define Pk(t) = {itP \ w,(t) = mk (t)}. Then, there exists
an increasing sequence t\,t2... of positive integers such that,

i

a) mk(t) = mk(tk) for ail t>tk, and

' . *'
b) ^(0 = ̂ (0 = ̂ (0 = 0, V /eP, vt>tk andV/eQ/>A(/ t)

92

DASUD load-balancing algorithm

This lemma states that there exists a time tk beyond which the minimum load

value of order k becomes stable, and all the processors that belong to the sets of

processors with load values equal to or less than that load value neither send nor

receive any amount of load.

Proof. We prove the result by induction on k.

For k = 1 we have lemma 1.

Assume that k > 1 and the result is true for /c-1.

k-i

Let fix a time t > t k _ } +35 and a processor /eP\(JpA(/A.,), i.e., the load of
h=\

processor / at time tk_\ is bigger than minimum load value of order k-1. We shall see

that w¡(t + \)>mk(t).

If t g T¡ then processor / does not execute the load balancing process, so it can

receive load from some neighbour processor, but it has not sent any amount of load.

Thus

If t e T¡ then two different situations can be found, depending on which block of

DASUD produces the load movements:

case 1: No load movements are generated by the FLD and PIM blocks of DASUD

(g¡(t) - 0). Three different scenarios can be analysed:

a) Processor / is an underloaded processor (du(t) > 0). Then s^t) = ° W e P and

so ·w(t + \'z·w(t)>m(t).

93

Chapter 3

i
!

b) Processor / is an overloaded processor (du(t)<0) and there exists a
r

neighbouring processor j whose load is less than or equal to the minimum load
k-\

value of order k-1 (3 j e (J P,, (/*_,) such that/ e W,). Then the portion of excess
/!=! *<

I
load to be moved to this neighbour processor will be bigger than the portion of

any other neighbour y'whose load value is bigger than the minimum load value of

order k-1 (P,(0<^//(0 V / e P \|J/>,,(/*_,) and j e TV,). Therefore,

5., (0 < s¡j (0 = 0 and then w¡(t +1) > w¡(r) > mk (/).

c) Processor / is an overloaded processor (du(t) < 0) and there does not exist any

neighbouring processor y whose load is less or equal to the minimum load value

i*"1. i _
of order k-1 (Zje(JPh(tk_¡) such that/ e TV,) then w,(t)>mk(t). Bearing in mind

h=\

the proof of lemma 1, we see that: w,(t +1) > w¡(t), so w¡ (/ + !)> mk (í)
i
ii
t

case 2: Some unit of load can be moved by applying FLD and PIM blocks of DASUD

(S,(t)>Q). In this case processor / has not generated load movements by the first

stage of the DASUD algorithm (̂ (/) = 0 for all neighbours j). Two different situations

can be found:

a) Action 1 or action 2 of the FLD block of DASUD are performed. In this case

">,(')-<""(') ><?/(')• Therefore, w/(/ + l)£w,(0-£/(0>w/
mftl(0*^(0. The

last inequality is true because a neighbour j of processor / that has minimal
k-\

load cannot belong to (JJp/, (/*_,). If processor y belonged to this set it could
h=\

I
not receive load from /', but <5,(0> 0 •

t

b) The PIM block of DASUD is executed, then processor ; services a message

like this: (J,J",T,WJ¡(T)). Then wy/(r)=w,(0, t-2B<r <t ,i.e., the estimation

94

DASUD load-balancing algorithm

load that processor) keeps in its memory about processor / at the time which

this message was sent, coincides with the current load value of processor /'.

Then , the estimation load of the target processor (/") that processor y keeps in

its memory is smaller than the current load of processor ; minus one

(w^.(r) < w¡(t)-\). The target processor has a load value bigger than the

k-\

minimum load value of order k-1 (feP\[Jph(t/!_l)). Now, w^(r)=w7,(r'),
A=i

where tk_{ < t-3B<r-B< r'< r<t.

Then w, (/ +1) = w, (/)-! + £ rjt (t) > wf (r1) > mk (/).
7=1

With the above steps, we have proved that:

Hence, the sequence of integers (mk (t))t>t +3# is a non-decreasing integer

sequence upper bounded by /., then there exists a time t'k with t'k > tk_} + 35 such

that mk (t) = mk(t'k) \/t>t'k. We have now proved the part (a) of lemma 2.

Now, we shall prove part (b) of lemma 2. For this purpose, we shall prove that

P*(4)3/>*(í*+1)^/>t('*+2)2... ¡-e., the sequence of sets of processors with

minimum load of order k is a non-increasing sequence beyond tk .

k

Let t > t'k and let / € P \ (J ph (t) . We shall see that if processor / is a processor
/! = !

with a load value bigger than the minimum load value of order k at time t, then its load

95

Chapter 3

t
will remain lower bounded by the minimum load value of order k beyond t+1

• If t $. T, ,, then as we have already seen before, w¡(t + 1) > w, (t) > mk (t) = mk(t + 1)
t

k

and, therefore, ieP\ [J ph(t + V).
h = \

• If t e T¡ , then some different'situations can be found:

=> If o,(t)> 0 , as we have already seen, we have that w¡(t + \)>mk (t) -mk (/ + !),

*!

and, therefore, ieP\\Jph(t + Y).
h = \

=> If S¡(t)=0 and the procesèor / is an underloaded processor (d,,(t)^0) then
t

*w,(t + \)> w¡ (0 > mk (0 = mk (t +]) and, therefore, / e P \ |J ph (t + 1) .
i "='
i

:=> If <5,(0=0 and processor / is an overloaded processor (¿/,,(/)<0) and there exists

a neighbouring processor) with load value less than or equal to the minimum load

*-l t+B

value of order k-1 (3 j e (J p/, (0 such that y E N¡) then s ¡j (t) < ̂ ^ (r) = O .

k-\

Then, as PiJ<(t)<pij(t) V feP\\\ph(t) with/eA^,., we have that
*í

s,j<(t)<Sij(t) =0, thus w(.(í + l)>w,.(0>'»A (0 = »íA (/ + !). Therefore

ieP\\Jph(t + \)
"=1 ¡

If s¡(t)=0 and processor / is an overloaded processor (d¡¡(t)<0) and there does
!

not exist any neighbouring processor with load value less or equal to the
k-\

minimum load value of order, k-1 , (2y e(J/>/,(/) such thatyeN,) then
h=\

w, (í) > mk (t) = mk (/ +1) and t w¡ (t +1) > w, (t). Therefore, / € P \ (J ph (t +1).

96

DASUD load-balancing algorithm

Hence, we can conclude that pk(t'k)^pk(t'k+l)3pk(t'k+2)^...

Since pk(t'k) is finite, 3 tk > t'k such that pk(t) = pk(tk)
 v'^*-

Note that if processor i has the minimum load value of order k at time

tk (ie/» t(f t))then £,(0=0 Vt>tk.

k-\

Moreover, if ay e y /»/,(/) with j e N, then s(/(0 = 0 V/ e P and W>/ t, and if

with j e NI then d,,(t)>0 Vt>tkand, therefore, ,̂(0 = 0 V/ e P and

W > f A . Hence, we also have rj,i(i) = ü V/ e P and \ft>tk, part (b) of lemma 2 is

proved. •

Proof (of the Theorem). Let t } , t2,... the increasing sequence of positive integers of

Lemma 2.

*Since P is finite, there is a positive integer k such that y ph(tk) = P .
h=\

Therefore, beyond time tk the DASUD algorithm does not perform any additional

load movement (a sketch of this proof was presented in [Cor98]). •

Finally, it should be noted that this algorithm operates without the processors

knowing the value of L. If the value of L varies, the algorithm is able to adapt to those

changes during the global load-balancing process.

The DASUD's convergence proof provides the basis for developing a general

convergence proof for realistic iterative and totally distributed load-balancing

algorithms. A general model for realistic load-balancing algorithms is developed and

the convergence of this realistic load-balancing model is proved. This important

contribution is included in appendix A.

97

Chapter 3 j
j

3.6DASUD's convergence rate

As has already been commented, DASUD is an iterative load-balancing algorithm,

therefore, after having established its convergence, the next logical path would be to

determine the number of iterations required to obtain a stable state. Given the difficulty of

obtaining this number in any exact way, an upper bound for the convergence rate is

conjectured.

We follow this proposal ! by an analysis of the worst initial load distribution

where all load is concentrated in one processor. Bearing in mind that n is the number
t,

of processors of the system and L is the total load, the maximum amount of load to
i r -,

be moved among the system should be (n-1) blocks of — units of load. If one

i ' '
multiplies this amount of load by the maximum number of edges to cross in the worst

i
case, one obtains !

t

n \ In

From this inequality the following conjecture is derived:

i

Conjecture A. DASUD achieves the stable situation with at most

*(/, + !) steps. |
f

A more accurate upper bound can be conjectured by considering the topology

diameter (d) and the maximum initial load difference (D0).
i

Conjecture B. DASUD achieves the stable situation with at most

|*(Z>o+l)sfeps.
¡
i

As its name indicates, both proposed upper bound conjectures are valid up to the

point that no counter example is found. Since no mathematical proof is provided for

these conjectures, we decided í to experimentally validate them by comparing the

98

DASUD load-balancing algorithm

experimental results with the theoretical conjectured value. In particular, we only

validate Conjecture B for being more precise than Conjecture A. This experimantal

validation is provided in chapter 5 of this work.

3.7Perfect local balance achieved by DASUD

As we have reported in the general assumptions introduced in chapter 2, a

domain is considered to be unbalanced, as is the entire system, when the maximum

load difference between any two processor belonging to it is bigger than one load

unit. Recalling from section 3.2 that one iteration of DASUD in a processor / is

composed by two load-balancing stages where the first stage performs a coarse load

distribution of the load excess of the underlying processor, whereas the second stage

produces a more accurate excess distribution in order to achieve the perfect load

balance. In section 2.4.1 we have provided the description of the SID algorithm, as

well the unbalanced situations that SID was not able to balance. The same examples,

used to exemplify SID's problems will be used in this section to show how DASUD is

able to solve them. These cases are shown together in figures 3.7.

©9©

(a) (b) (c)

Figure 3.7 Three unbalanced load distributions achieved by the SID algorithm.

O

(a) (b) (c)

Figure 3.8 Balanced load distributions acieved by DASUD.

99

Chapter 3 ¡
i

Let us analyse each one of these three problems individually by starting with

example 3.7(a). In this case, since the local load average evaluated by the red

processor is equal to 4.6, its load excess is 3.4. Since the first stage of DASUD

results in no load moving, the second stage must be executed, more precisely, action

1 of the FLD block. The red processor distributes 3 load units individually amongst

certain neighbouring processors'. The final load distribution obtained after the DASUD
i

iteration in the red processor is illustrated in figure 3.8(a).

Let us now consider the unbalanced situation depicted in figure 3.6(b). In this

case, not all processor neighbouring the red one have the same load value, but the

maximum load value corresponds to this one. As happens with the previous example,

the second stage of DASUD should be executed because the first one generates no

load movements, but now the action 2 of the FLD block will be executed instead of

action 1. Action 2 generates the red processor sending one load unit to one of its less

loaded neighbours. In particular, to the processor which is identified with the smaller

index in the sorted list of the underlying processor. Therefore, the load distribution

achieved in this case is the one depicted in figure 3.8(b).
>
>

Finally, the unbalanced load distribution shown in figures 3.7(c) is treated. In

this case, the processor in yellow detects that its domain is not balanced because the

maximum load difference within, it is bigger than one load unit, but it has no excess

load to move. Therefore, it commands the red processor to send 1 load unit to one of

the blue processors, specifically the one whose index is the smallest. This

commanding action is performed by sending an instruction message from the yellow

processor to the red one. The block responsible for sending this is the SIM block.

This instruction message will be received by the red processor in a posterior time

instant and it will be stored to be processed when required. The DASUD's execution

in the red processor goes directly to its second stage because this processor has no

load excess. Since the underlying domain is detected to be balanced, the PIM block

is executed and, as a consequence, one load unit is sent from the red processor to

the selected blue one via de yellow processor. The final load distribution after this

balancing process is depicted in figures 3.8(c).

100

DASUD load-balancing algorithm

In conclusion, we have seen that DASUD has the ability of detecting

unbalanced domains and guiding the necessary load movements to achieve a local

load distribution where the maximum load difference is one load unit. However, this

fact does not ensure the capability of reaching an even global load distribution. The

following section deals with this fact.

3.8 Global balance degree achieved by DASUD

As we have just seen, on DASUD's completing its execution, each

processor's domain is balanced. Since the balance condition is locally but not globally

assured, situations such as the one shown in figure 3.9 may be attained.

Figure 3.9 Global state unbalanced, local domain balanced

As we can observe in the figure, each domain is balanced because its

maximum load difference is one load unit, but the existence of overlapped domains

stems from having a global unbalance load distribution since the global maximum

load difference is 3 load units. Notice that in this example, each processor observes

its domain as balanced. However, each processor is not able to control the balance

degree between processors outside its domain, although their domains overlap with

the underlying domain. All that can be assured is that the load from the relevant

processors of the 2 overlapped domains will differ at most in one load unit of the

processor load common to both domains. However, this fact does not apply between

the non-common processors of two overlapped domains as is observed from figure

3.9 where the maximum load difference between a pair of non-common processors

belonging to two overlapped domains is sometimes 2 load units. In the worst case,

this effect would be spread by the shortest path between two processors located at

the maximum distance, i. e. by a path with a distance equal to the diameter of the

architecture (d) driving the system to a final global unbalanced load distributions. We

call such effect a "platform effecf. Thus, an upper bound for the final maximum global

load difference should be delivered.

101

Chapter 3

Let t f be the instant at which DASUD finishes in all processors, then the

maximum load difference for any domain is upper bounded by one, which is formally

denoted as the following: ,

•j (tf) - n' (tf) < 1 V/, k e TV,, flwrf Vi e P.

Therefore, if iJeP and i0 = /, /,, /2, ...,ir =j is a minimum length way between

processors / and j, then

If.,

andas it,/A+2 etf/t+i, we have:

I,}, {/,,/2 },..., {/_,,/,.}<

- w

where i = floor - -i. The previous inequality corresponds to the formal description

of the platform effect described above. Therefore, if d is the diameter of the

architecture graph G, then |

i.e., the maximum load difference for processors at the end of DASUD is upper

bounded by p, which is defined as follows:

'd*

102

A new distributed diffusion algorithm for dynamic load-balancing in parallel systems

Chapter 4
Comparative study of nearest-

neighbour load-balancing algorithms

Abstract
In this chapter, the proposed load-balancing algorithm DASUD is compared to

the three nearest-neighbour load-balancing algorithms described in chapter 2: SID,

GDE and AN. The simulation framework has been designed including different

interconnection networks as hypercube and torus, as well as a wide set of system

sizes which range from 8 to 128 processors and for different load distributions

patterns which vary from situations which exhibit a light unbalance degree to high

unbalance situations. The comparison has been carried out in terms of stability and

efficiency. The stability concerns the goodness of the final stable load distribution

achieved for each one of the tested algorithms and efficiency measures the cost

incurred in achieving such a final situation in terms of the number of simulation steps

and the amount of load movements performed during the global load-balancing

process.

103

Comparative study of nearest-neighbour load-balancing algorithms

4.1 Simulation framework

Recalling from chapter 1 that in a totally distributed load-balancing framework,

each processor in the system alternates its execution time between computational

operations from the underlying application and load-balancing operations. These

load-balancing operations are divided into three bocks: the LM (Load Manager) block,

the LBA (Load-Balancing Algorithm) block and the MM (Migration Manager) block.

This decomposition of the load-balancing process into three blocks allows to

experiment in a "plug & play" fashion with different strategies at each one of the

blocks. As mentioned in chapter 2, we are interested in analysing different nearest-

neighbour strategies with respect to the behaviour of their LBA (Load-Balancing

Algorithm) block. For that purpose, we have developed an LBA simulator, which allow

us to:

• test the behaviour of different load-balancing algorithms under the same

conditions;

• evaluate the behaviour of the load-balancing algorithms for different processor

networks;

• evaluate the behaviour of the algorithms for different load situations;

This simulation environment hs been used to evaluate the effectiveness of the

load-balancing algorithms analysed in chapter 2 (SID, GDE and AN) and 3 (DASUD).

A consideration was adopted in the load-balancing simulation process in order

to simplify programming and make the results more comprehensible. We assumed

that all the simulated algorithms were globally synchronised. All processors perform

the while-loop introduced in section 2.3 in global simulation steps where no processor

proceeds with the next iteration of its load-balancing process until the current one has

been finished in all processors of the system. Therefore, the load-balancing

simulation process is performed by consecutive simulation steps understanding by

simulation step the execution of an iteration of the load-balancing operations in as

many system processors as possible in a simultaneous manner. Although the

105

Chapter 4 '
i
i

simulation process is performed in a synchronous way for all of them, each simulated

load-balancing algorithm (DASUD, SID.GDE and AN) has different synchronisation

requirements. Let us describe for each algorithm what is identified as step of the

load-balancing simulation process.i
t

DASUD and SID have no synchronisation requirements between processors,

therefore the definition of one simulation step of the load-balancing simulation

process coincides for both algorithms and consists of executing the algorithm

simultaneously in all processors of the system once. This definition does not apply

either to GDE nor to AN because they have some particular synchronisation

requirements that are not required either for SID or DASUD.

On the one hand, the GDE algorithm superimposes an order in the
i

communication steps guided by the number of dimensions of the underlying topology.
i

Therefore, if the dimension of the underlying topology is equal to c (recalling from
f

chapter 2 that dimension and edge-coloured is assumed to be the same) then one

step of the load-balancing simulation process consists of concurrently executing the

algorithm in all processors that have one edge in the inspected dimension once.

Notice that one step does not coincide with the term sweep (introduced in section

2.4.2) which corresponds to executing as many load-balancing steps as dimensions

exist in the underlying system. In this case, as has already been observed (above)
t

the all-port communication model assumed in this discussion is not fully exploited.

On the other hand, the restriction imposed by the AN algorithm lies in the

impossibility of executing the load-balancing process simultaneously in processors

whose domains overlap, giving rise to the creation of groups called serialisation sets

described in section 2.4.3. Therefore, we identify one step of the load-balancing

simulation process as the simultaneous execution of the load-balancing operations in

all processors belonging to the same serialisation set.

Figure 4.1 indicates in ired those processors that execute load-balancing

during a given simulation step for each one of the simulated algorithms where the

underlying topology is a 3x3 torus.

106

Comparative study of nearest-neighbour load-balancing algorithms

C c c
c

(a) (b) (c)

Figure 4.1 Processors that execute load-balancing simultaneously in a certain simulation step under SID

and DASUD (a), GDE (b) and AN (c).

The load-balancing simulation process was run until global termination

detection was accomplished. This termination condition can be a limit on the number

of simulation steps set beforehand, or the detection that no load movements have

been carried out from one step to the next, i.e., the algorithms have converged.

Specifically, in our experiments, simulations were stopped when no new load

movements were performed during two consecutive steps of the load-balancing

simulation process. We refer to the simulation step at which the load-balancing

simulation finishes as last_step. Although the simulation did not mimic the truly

asynchronous behaviour of some algorithms, their results can still help us to

understand the performance of the algorithms since the final load imbalances are the

same whether the algorithm is implemented synchronously or asynchronously. The

main difference is in the convergence speed.

Subsequently, we shall describe the complete simulation framework by firstly

describing the different kinds of interconnection networks used, and following this

with the set of initial load distributions applied.

4.1.1 Interconnection Networks

The load-balancing simulator has been designed to execute iterative load-

balancing algorithms in arbitrary networks. In our experimental study, the following k-

ary n-Cube topologies have been used: 2-ary n-Cube (hypercube) and /c-ary 2-Cube

(2-dimensional torus). The sizes of these communication networks were: 8, 16, 32,

107

Chapter 4 j

I

64 and 128 processors. However, in order to have square /c-ary 2-Cube, instead of 8,
:

32 and 128 processors, the sizes of these topologies have been changed by 9 (3x3),

36 (6x6) and 121 (11x11), respectively.
!
t
i

4.1.2 Synthetic Load distributions

In our simulations, the problem size is known beforehand and all the

experiments included in this chapter are performed for a fixed problem size L equal to
)

3000 load units. Therefore, the expected final load at each processor, i.e., the global

load average, can be evaluated a priori to be \Un\ or _Un\ n being the size of the

topology. We generated an initial set of synthetic load distributions that were used as

inputs to the simulator. The set of initial load distributions were classified into two

main groups: likely distributions and pathological distributions. Likely distributions

cover all the situations that are assumed to appear in real scenarios where most of

the processors start from an initial load that is not zero. In this case, each element
!

w,(0) of the initial global load distribution denoted by w(0), has been obtained by
i

random generation from one of four uniform distributions patterns. These four
k

distribution patterns cover a wide range of likely configurations: from highly balanced

initial situations to highly unbalanced initial situations. The four patterns used in likely

distributions were the following:

• Initial load distributions varying 25% from the global load average:

Vi w,(0) e [i/n -0.25 *L/n,L/n + 0.25 *L/n]

• Initial load distributions varying 50% from the global load average:

Vi w>,(0) e [L/n-0.50 *L/n,L/n + 0.50 *L/n]

• Initial load distributions varying 75% from the global load average:

V/ w, (0) E [i/n - 0.75 * L/n, L/n + 0.75 * L/n]

• Initial load distributions varying 100% from the global load average:

Vi w, (0) e[L/n-L/n, L/n + L/n]

The 25% variation pattern corresponds to the situation where all processors

have a similar load at the beginning, and these loads are close to the global average,

108

Comparative study of nearest-neighbour load-balancing algorithms

i.e., the initial situation is quite balanced. On the other hand, the 100% variation

pattern corresponds to the situation where the difference of load between processors

at the beginning is considerable. 50% and 75% variation patterns constitute

intermediate situations between the other two. For every likely distribution pattern, 10

different initial load distributions were used.

The group of pathological distributions was also used in order to evaluate the

behaviour of the strategies under extreme initial distributions. In these distributions a

significant amount of processors has a zero initial load. These scenarios seem less

likely to appear in practice, but we have used them for the sake of completeness in

the evaluation of the strategies. The pathological distributions were classified in four

groups:

• A spiked initial load distribution, where all the load is located on a single

processor: w(0) = (¿, O, ..., 0), i.e., there are n-1 idle processors in the

system.

• 25% of idle processors, a quarter of the processors have an initial load equal

toO.

• 50% of idle processors, half of the processors start with an initial load equal to

0.

• 75% of idle processors, a quarter of the processors have all the initial load.

In addition to the above mentioned load distributions, each one was scattered using

two different shapes: a single mountain shape and a chain shape defined as follows:

• Single Mountain (SM), where load values from the initial load distribution

have been scattered by drawing a single mountain surface, i.e., there is a

localised concentration of load around a given processor in the network.

Therefore, the unbalance is concentrated and it is not easily recognisable in

its real magnitude with a simple overwiew of the system (see figure 4.2(a)).

109

Chapter 4

Chain, where load values from the initial load distribution have been

scattered by drawing multiple mountain surfaces, i. e., there are several

processors that have: a local concentration of load and as a consequence,

a homogeneous distribution on the unbalance in the system is obtained

(see figure 4.2(b)).

(a) (b)

Figure 4.2. Two shapes: Single Mountain (a) and Chain (b)

As a consequence, we have evaluated not only the influence of the values of

initial load distribution, but also the influence of how these values are collocated onto
!
I

the processors. \

To sum up, the total number of distributions tested for a given processor

network was 87, which were obtained in the following way: 10 likely distributions * 4

patterns * 2 shapes + 3 pathological distributions * 2 shapes + 1 spiked pathological

distribution.

The study outlined below is oriented to compare the, simulated algorithms

(DASUD, SID, GDE and AN) according to their stability and efficiency. For this

purpose, in the following section, we shall introduce the quality indexes measured to

perform the study, and in the subsequent sections, the stability and efficiency

analysis of the simulated load-balancing algorithms are provided. Finally, the last

section of this chapter provides a summary of all results and the main conclusions of

the comparative study are reported.

110

Comparative study of nearest-neighbour load-balancing algorithms

4.2 Quality metrics

Stability measures the goodness of the final load distribution achieved by any

load-balancing algorithm. Therefore, bearing in mind that we are dealing with integer

load values, the final balanced state will be the one where the maximum load

difference between any two processors of the topology should be zero or one

depending on L and the number of processors. If L is an exact multiple of n, the

optimal final balanced state is the one where the maximum load difference between

any two processors of the system is zero. Otherwise, it should be one. In our

experiments, two different indexes have been measured to evaluate the stability of

the compared algorithms:

• dif_max: maximum load difference between the highest loaded processor and

the least loaded processor throughout the whole system;

• a : global standard load deviation.

Since efficiency reflects the cost incurred in arriving at the equilibrium state,

the following two indexes were evaluated to have a measure of this cost for all

strategies:

• steps: is the number of simulation steps needed to reach a final stable

distribution;

• load units (u): this measures the quantity of load movements incurred in the

global load-balancing process. For a given step s of the simulation process

the maximum amount of load moved from any processor to one of its

neighbours is called maxjoad(s). According to our synchronous simulation

paradigm, step s will not end until max_load(s) units of loads have been

moved from the corresponding processor to its neighbour. Therefore the

duration of each step depends directly on the value of maxjoad(s). The

underlying communication model is the all-port one as has been commented

on section 2.2, therefore, the value of u might be evaluated as follows:

s=lasl _slep

u= 2J ma*_ load(s)

111

Chapter 4

According to the definitions presented above, whereas the steps index

determines the number of simulation steps needed to achieve the final load

distribution without considering the duration of each one these, the index u is seen to

be a good measure for dealing with this aspect. Furthermore, u is a representative

index of the "time" incurred by each step of the simulation process because the global

time is directly related to the amount of load that should be moved at each load-

balancing step. |

As has been mentioned throughout the description of our simulation

framework, the global load-balancing process may be iterated until no load

movements are carried out throughout the entire system or can be stopped at a

predetermined step. We have selected the first of these two alternatives. Therefore,

since we are evaluating the complete load-balancing process the quality indexes

described above are measured at the end of the load-balancing simulation process.

Following this, the simulation results for stability and efficiency are reported

starting with the first.
i

¡
4.3 Stability analysis

Stability is the ability of a load-balancing algorithm to coerce any initial load

distribution into an equilibrium 'state. As has been previously mentioned, the final

balance degree achieved by each one of the compared load-balancing algorithms

has been evaluated by measuring the dif_max and the CT indexes at the end of the

load-balancing simulation process. For both indexes, the influence of the following

three parameters are individually considered:

i •
• the initial load distribution pattern (% variation from the global load average in

likely initial load distributions, and % of idle processors in pathological

distributions); i

• the system size (number of processors);

• the shape of the initial load distribution (single mountain versus chain);

112

Comparative study of nearest-neighbour load-balancing algorithms

The results obtained for each one of these parameters are outlined in the

following sections, and for all of them the influence of the underlying interconnection

network (hypercube and torus), as well as the two groups of initial load distributions

(likely and pathological) have been individually considered by showing the results in

different graphics or tables. Finally, at the end of the stability analysis, the

conclusions extracted from this experiment are outlined.

4.3.1 Influence of the initial load distribution pattern in dif_max

Figures 4.3 and 4.4 show the results obtained on average in the stability

comparison in terms of dif_max for hypercube and torus respectively. In particular, for

hypercube interconnection networks, the influence for likely and pathological initial

load distributions is depicted in figure 4.3(a) and 4.3(b), and for torus topologies the

influence of both load patterns is shown in figure 4.4(a) and 4.4(b), respectively.

The maximum load difference obtained by SID is always greater than the one

obtained by DASUD, GDE and AN independently of the initial load distribution and

the underlying topology. DASUD, GDE and AN have the quality of keeping the

maximum load difference nearly constant for any load distribution pattern.

Nevertheless, DASUD outperforms GDE and AN because it obtains a better final

balance degree in all cases. On average, GDE obtained a maximum difference of 3.2

for torus and 3.3 for hypercubes. AN keeps bounding its maximum load difference by

2.2 and 2.5 for hypercube and torus topologies, respectively. Finally, DASUD

obtained a maximum difference of 1.4 for hypercube and 1.8 for torus. An

unappreciably slight increase in the maximum difference was obtained on average by

these strategies for pathological distributions, but their relative situation is maintained.

Notice that the behaviour of all simulated algorithms is very similar whatever

topology is used, and only a slight increase in the final maximum load difference is

observed for torus topologies.

113

Chapter 4

30

25

20

E 15

'•5
10

25

Likely distributions (Hypercube)

<,
'

DASUD —
SID-H-

GDE —•
AN • • • • » • •

50 75 100

% variation from average

j (a)

Pathological distributions (Hypercube)

s
5
T3

t\J

35

30

25

20

15

10

5

n
°2

i i

-

x
X

DASUD
SID

GDE
AN

i

-

I

5 ! 50 75

s
X

X

-

— 1 —

— H...

-

-

n-

: % idle processors
! (b)
i

Figure 4.3 Maximum load difference for DASUD, SID, GDE and AN algorithms considering (a) likely and

(b) pathological initial load distributions for hypercube topology with respect to the initial load patterns.

114

Comparative study of nearest-neighbour load-balancing algorithms

35

30

25

S 20
E
S1 15J

Likely distributions (Torus)

DASUD -«-
SID-->-

GDE • —
AN • • • • » • •

10

5

°25 50 75 100

% variation from average
(a)

Pathological distributions (Torus)
45

40

35

30
25

Ëi on DASUD
20 >• SID-
15 h GDE-*-

10 AN

°25 50 75 n-1

% idle processors

Figure 4.4 Maximum load difference for DASUD, SID, GDE and AN algorithms considering (a) likely and

(b) pathological initial load distributions for torus topology with respect to the initial load patterns.

115

Chapter 4

i
4.3.2 Influence of the system size in dif_max

Tables 4.1 (a) and 4.1(b) show for hypercubes and torus topologies

respectively, and for likely and pathological initial distributions, the influence of the
!

size of the architecture on the final balance for all simulated algorithms. The values

included in those tables are the mean values for all initial load distribution patterns

within each group of initial load distribution. In tables B.1 and B.2 in appendix B, the

individual values for each load patterns are included for hypercube and torus

respectively.
i

From the analysis of the results shown in tables 4.1, we can extract that as

the number of processors increases, the maximum difference obtained at the end

likewise increases for DASUD, GDE and AN. The increment of the maximum

difference observed is not very' significant for the three algorithms; for instance, on

average, the maximum difference was always less than 3 for DASUD, 5 for GDE and

4 for AN when the number of processors was 128 for both likely and pathological

distributions and for hypercube interconnections schemes. When DASUD is
!

considered for torus topologies,¡the maximum load difference obtained is 4, whereas

for GDE and AN it is 5, as with the case of the biggest size (121 processors).
i
i

In contrast, the SID algorithm exhibits a different behaviour because, for large

system sizes (121 or 128 processors), the maximum load difference that it is able to

achieve slightly decrease instead of increasing. Since the problem size remains
i

constant for any system size, the global load average decreases as the number of

processors increases. Therefore, initial load distributions for large architecture sizes

provide less unbalance distributions than initial load distributions for small system

sizes. Consequently, SID does not improve its balancing ability as the number of

processors increases, but it takes advantage of the more balanced distribution at the

beginning of the load-balancing process.

By comparing the results obtained for both topologies, we can conclude that

all strategies perform slightly better for hypercube schemes than for torus schemes.

The size of the diameter that is directly related to the domain's size is the main

reason explaining this phenomenon. Since the diameter of the torus is bigger than

116

Comparative study of nearest-neighbour load-balancing algorithms

the hypercubes1 diameter for the same (or similar) number of processors, a load

gradient effect appears, along overlapped domains, that has more incidence in torus

than in hypercubes.

Hypercube (dif_max)

Number

of Procs.

8

16

32

64

128

likely distributions

DASUD

0.4

1

1.56

1.98

2.28

SID

8,76

23.73

31.27

27.01

18.37

GDE

2.32

2.65

3.2

3.74

4.08

AN

0.8

1.27

1.95

3.25

3.77

pathological distributions

DASUD

0.74

1

1.75

2.25

2.37

SID

3.75

18.25

43.73

49.37

32.37

GDE

2.5

3

3.37

3.87

4

AN

0.25

1.5

2.12

2.62

4.12

(a)

Torus (dif_max)

Number

of Proc.

9

16

36

64

121

likely distributions

DASUD

0.85

1

1

2

3.05

SID

8.1

24.01

34.48

29.71

20.01

GDE

1.77

2.52

2.92

4.18

4.87

AN

1.07

1.4

2.37

3.05

4.25

pathological distributions

DASUD

1

1.25

1

2

3.75

SID

6

17.5

54.87

56

43.12

GDE

2

2.25

3.25

4.12

4.5

AN

1

1

2

2.87

4.12

(b)

Table 4.1 Maximum load difference for DASUD, SID, GDE and AN considering likely and pathological

initial load distributions for hypercubes (a) and torus (b) attending to the architecture size.

4.3.3 Influence of the initial load distribution shape in difjnax

As a final consideration for stability analysis with reference to the maximum

load difference within the system (dif_max), we have observed the results obtained

according to the original shape used in the initial load distribution. For all the

experiments we have always considered two different shapes for every initial load

distribution: a Single Mountain (SM) shape and a Chain shape. For all topologies we

have observed that the final maximum load difference depends on how the load

distribution was scattered through the system. Tables 4.2(3) and 4.2(b) shows this

117

Chapter 4
t

dependency for hypercubes and torus respectively and, additionally, for both likely

and pathological distributions. Each number is the mean value for all distribution

patterns, which are reported in'tables B.3 and B.4 in appendix B. One can observe

that, on average, for the chain shape initial scattering, the final state obtained is

slightly more balanced than the final state obtained when the initial scattering

corresponds to the single mountain shape for both topologies and for all simulated

algorithms. This behaviour can be explained because with the single mountain shape

there is a high load gradient effect on the whole system. As a consequence, since the

maximum local load difference that can be achieved, in the best case, is 1 load unit,
i

the existence of a high initial load gradient favours maintaining a global load gradient

at the end of the load-balancing process. This effect has a remarkable influence on

the SID algorithm because it is not able to detect unbalanced domains, and in the

case of scattering the load using the single mountain shape, all domains are initially

unbalanced. ;

With the chain shape, the load is scattered onto various high-load areas
¡

surrounded by low-load areas. As a consequence, the initial load gradient effect that

appears is lower than in the single mountain shape and, therefore, it is easier for all
\

strategies to arrange global unbalance.

Hypercube (dif_max by shapes)

likely distributions

SM

Chain

DASUD

1.725

1.185

SID

32.17

17.39

GDE

3.35t
3.07

(•

AN

2.17

2.16

pathological distributions

DASUD

1.9

1.06

SID

38.3

16.9

GDE

3.65

3.25

AN

2.93

2.7

(a)

Torus (dif_max by shapes)

likely distributions\

SM

Chain

DASUD

1.59

1.56

SID

34.08

12.56

GDE

3.35
(

3.17

AN

2.42

2.42

pathological distributions

DASUD

1.75

1.73

SID

42.15

23.9

GDE

3.49

3.3

AN

2.47

2.6

(b)
i

Table 4.2. Maximum load difference for DASUD, SID, GDE and AN considering likely and pathological

initial load distributions for hypercubes (a) and torus (b) with respect to the shape on the initial load

distribution.

118

Comparative study of nearest-neighbour load-balancing algorithms

4.3.4 Influence of the initial load distribution pattern in the a

Tables 4.3(a) and 4.3(b) show the results obtained on average in the stability

comparison in terms of global standard deviation (a) for hypercube and torus

respectively by considering the influence of likely and pathological initial load

distributions in both cases.

As can be observed from the results included in both tables, all simulated

load-balancing algorithms have a similar behaviour whatever initial load distribution

group (likely or pathological) is applied. Only SID denotes a slight difference between

the standard global load deviation achieved for likely and pathological initial load

distributions. The rest of the simulated algorithms (DASUD, GDE and AN) are always

able to drive the system into the same degree of balance whatever initial load

distribution the load-balancing process starts from.

From the individual analysis of each algorithm, we can extract the following

conclusions: the AN algorithm exhibits the best final degree of balance followed by

DASUD and GDE in this order. As was expected, the balance degree achieved by

the SID algorithm is the worst.

In previous sections, we saw that the maximum load difference achieved by

DASUD was less than the maximum load difference achieved by AN. Therefore, we

can deduce that AN has the ability of obtaining, in most of the processors, a final load

value equal to the global load average, whereas DASUD has the ability of driving all

processors into a final situation where their load values are very close to the global

load average. However, since the maximum load difference obtained by AN is larger

than the one obtained by DASUD, this means that at the end of the load-balancing

process when AN is applied, there is a small number of processors whose load

values differs from the global load average by a significant value.

119

Chapter 4

Hypercube (standard deviation - aj

DASUD

likely distributions
l

25%

0.21

SID II 3.8

GDE II 0.78

AN II 0.1

50%

0.2

5.11

0.7

0.11

75%

; 0.2

| 5.9

0.75
i

| 0.1

100%

0.21

6.2

0.8

pathological distributions

25%

0.2

6.32

0.86

0.11 II 0.1

50%

0.2

5.85

0.8

0.1

75%

0.2

5.66

0.82

0.1

n-1

0.2

7.66

0.88

0.1

(a)

torus (standard deviation - a)

I
likely distributions

25%

0.3

SID II 3.89

GDE II 0.81

AN I 0.14

50%

0.31

5.49

0.8

0.14

75%

i 0.31

6.63

| 0.83

0.14

100%

0.31

7.56

0.85

0.14

pathological distributions

25%

0.345

8.43

0.87

0.17

50%

0.34

8.82

0.86

0.17

75%

0.34

8.48

0.86

0.17

n-1

0.35

10.89

0.88

0.17

(b)

Table 4.3 Standard deviation for DASUD, SID, GDE and AN considering likely and pathological initial

load distributions for hypercube (a) and torus (b), for all system sizes and for all shapes with respect to

the initial distribution patterns.

4.3.5 Influence of the system size in the a

Tables 4.4(a) and 4.4(b) show the global standard load deviation obtained by

all the strategies with respect to the system size. The values included in each table

are the mean values for all initial load distribution patterns. The separate values are

included in tables B.5 and B.6 from appendix B.

I
As can be seen, DASUD, GDE and AN achieve a deviation that is very low,

for all topologies and distributions. In particular it is less than 1.5 for all cases. In

contrast, SID exhibits a higher standard deviation for all cases. SID obtains, on

average, more than 10 times the deviation obtained by the other three algorithms

DASUD, GDE and AN. However, all strategies have a common behaviour as the

system size increases. The balance degree obtained for all load-balancing algorithms

120

Comparative study of nearest-neighbour load-balancing algorithms

worsens as the number of processors grows. Such a characteristic reflects the fact

that totally distributed load-balancing algorithms are affected by architecture size and,

in particular, by the diameter of the topology.

We also observe that there is a slight difference between the results obtained

for each topology. The final balance degree attained in torus is worse than the

balance degree obtained in hypercube topology. The reason for this difference is the

diameter of each topology, since for the same diameter the final standard deviation

reached is very similar whatever interconnection network is used. For example, the 4-

dimensional hypercube and the 4x4 torus have the same diameter, which is equal to

4, and their final standard deviations coincide.

Hypercube (standard load deviation - a)

Number

of Proc.

8

16

32

64

128

likely distributions

DASUD

0.03

0.5

0.0

0.01

0.5

SID

2.6

5.2

5.8

6.3

6.4

GDE

0.6

0.7

0.8

0.9

0.9

AN

0.02

0.21

0.0

0.01

0.3

pathological distributions

DASUD

0.0

0.5

0.0

0.01

0.5

SID

1.2

4.7

8.4

8.5

9.3

GDE

0.7

0.8

0.8

1

1

AN

0.0

0.21

0.0

0.01

0.3

(a)

Torus (standard load deviation - a)

Number

of Proc.

9

16

36

64

121

likely distributions

DASUD

0.35

0.5

0.01

0.01

0.72

SID

2.5

5.7

5.8

7.4

8.2

GDE

0.5

0.6

0.8

1

1.2

AN

0.15

0.2

0.01

0.02

0.33

pathological distributions

DASUD

0.47

0.5

0.01

0.01

0.75

SID

2.1

4.4

11.3

13.6

14.4

GDE

0.5

0.6

0.8

1

1.5

AN

0.18

0.21

0.01

0.01

0.43

(b)

Table 4.4 Global standard deviation forDASUD, SID, GDE and AN considering likely and pathological

initial load distributions for hypercubes (a) and torus (b) with respect to the architecture size.

121

Chapter 4

As a final consideration, we observe that there is not such a significant

difference between the final balance degree achieved for the two groups of initial load

distributions (likely and pathological). This means that the final balance degree

obtained by these load-balancing algorithms does not depend so much on the initial

load distribution.
t

4.3.6 Influence of the initial load distribution shape in the a

The last parameter evaluated concerning stability analysis is how the final

balance degree can be affected by the initial load distribution shape. The values

depicted in tables 4.5(a) and 4.5(b) are the mean values of the final balance standard

deviation for all initial load patterns in the corresponding initial load distribution group

(likely or pathological). The individual values for each load pattern are included in

tables B.7 and B.8 in appendix B.

As happens in the analysis performed for the maximum load difference

(dif_max), the global standard deviation is very similar whatever load scattering is

applied in the case of DASUD, GDE and AN. Only for SID is a significant increment
í

observed when the initial load distribution shape is Single Mountain. This fact

confirms that the presence of a high unbalance gradient throughout the whole system

favours the existence of final balanced domains, but favours unbalanced when were

compared to its overlapped domains.

j

4.3.7 Conclusions of the stability analysis
i

In this section, we summarise the main conclusion extracted from the stability

analysis outlined previously. In table 4.7 these conclusions are exposed taking into
!

account each one of the analysed parameters. Notice that, in general, DASUD, GDE

and AN exhibit a common behaviour when the ability of driving the system into a

stable state as close to the even load distribution is considered. DASUD and AN

obtain the best results for all analysed parameter, therefore, to emphasise this fact,

the name of both algorithms is wrote in red in table 4.7.

122

Comparative study of nearest-neighbour load-balancing algorithms

Hypercube (crby shapes)

likely distributions

SM

Chain

DASUD

0.2

0.21

SID

7.43

3.07

GDE

0.76

0.75

AN

0.1

0.07

pathological distributions

DASUD

0.2

0.2

SID

8.06

3.7

GDE

0.84

0.82

AN

0.14

0.1

(a)

Torus (a by shapes)

likely distributions

SM

Chain

DASUD

0.32

0.32

SID

8.45

3.33

GDE

0.82

0.82

AN

0.14

0.14

pathological distributions

DASUD

0.345

0.34

SID

10.74

6.45

GDE

0.87

0.86

AN

0.17

0.16

p)
Table 4.5. Global standard deviation for DASUD, SID, GDE and AN considering likely and pathological

initial load distributions for hypercubes (a) and torus (b) with respect to the shape on the initial load

distribution.

ft

•€)

O

Stability Summary

p
a
tt
e
rn

s

.8
10

Q>
V

3?

§L
ra
(0

difjnax

DASUD

GDE

AN

SID

DASUD

GDE

AN

SID

DASUD

GDE

AN

SID

remains low and invariant for any topology,

any initial load group and any initial load

distribution pattern.

Very high, and depends on the initial load

distribution group

remains low and increases as the system

size increases, but not greatly. It is higher

for torus than forhypercube topologies.

Very high and increases as the system size

also increases.

remains low and is slightly larger for the SM

shape than for the Chain shape

Very high and is larger for the SM shape

than for the Chain

standard deviation (a)

DASUD

GDE

AN

SID

DASUD

GDE

AN

SID

DASUD

GDE

AN

SID

remains low and invariant for any

topology, any initial load group and any

initial load distribution pattern.

Very high, and depends on the initial

load distribution group

remains low and increases as the

system size increases, but not greatly. It

is higher for torus than for hypercube

topologies

Very high and increases as the system

size also increases.

remains low and is slightly larger for the

SM shape than for the Chain shape.

High and is larger for the SM shape

than for the Chain shape

Table 4.6. Summary of the results from the comparative study with respect to the stability analysis

123

I
I

Chapter 4

4.4 Efficiency analysis

In this section, the comparison is focused on evaluating the costs incurred by

the load-balancing process of all simulated algorithms in terms of the number of load-

balancing simulation steps needed to reach the stable state and the quantity of load

units moved throughout the system during the complete load-balancing process (u's).

We recall from section 4.1 that one simulation step is defined as the execution of the

load-balancing operations in ; as many processors as is possible to do so

simultaneously, and that u (load units) measures the maximum amount of load
í

moved at each simulation step for all load-balancing process. For the sake of

simplicity, in the rest of this section we refer to simulation steps as steps.

The order of efficiency ¡result exposure follows the same scheme as that

followed for stability analysis. Both the efficiency indexes load units (u) and steps

have been analysed by considering the influence of the initial load distribution

pattern, the system size and the shape of the initial load distribution. As happens in

the stability case, all studies have treated the underlying topology (hypercube and

torus), independently as well as the initial load distribution group (likely and

pathological). Finally, the conclusions of the efficiency analysis are reported.
\

4.4.1 Influence of the initial load distribution pattern in u

Table 4.8 summarises the amount of load moved throughout the system for all

simulated algorithms by taking into account the initial load distribution pattern. Each

number is the mean value obtained for all system sizes. It can be observed that all

strategies exhibit a similar behaviour for both initial load distribution groups (likely and

pathological). As the initial unbalance degree increases, the amount of load

movements required to achieve the final load distribution increases as well. However,

the amount of load moved for'each individual algorithm presents some important

differences. The two algorithms that generated less effort in arranging the initial

unbalance in terms of u's are the SID and the DASUD algorithm. Both of these

behave, on average, in a similar way, independently of the underlying topology. AN

has a common behaviour for both topologies but exhibits a significant increment in

the load moved throughout the system compared to SID and DASUD. Finally, GDE

clearly depends on the underlying topology, obtaining worst results for torus

124

Comparative study of nearest-neighbour load-balancing algorithms

interconnection networks than for hypercubes. The main reason for these differences

is the degree of concurrency allowed by each algorithm in the execution of the load-

balancing operations among all system processors (simultaneous running

processors). Since SID and DASUD maximally exploit this capacity, they are able to

overlap more load movements than their counterparts and, by contrast, GDE and AN

restrict this concurrence degree to a subset of processors within the system, and thus

the total load movements are propagated throughout more time. Notice, however,

that GDE hardly depends on the underlying topology. This algorithm does not take

advantage of the all-port communication model because at each step a given

processor can only perform load movements between itself and one immediate

neighbour. However, when it is executed in a hypercube topology, since for all

inspected dimensions all processor have a link with it, all processors execute the

load-balancing process simultaneously. This fact does not apply to torus topologies

because the number of links for each processor does not coincide with the number of

dimensions (colours in this case). For that reason, the total load units moved in the

entire load-balancing process exhibits a considerable increment.

Hypercube (toad units - u's)

DASUD

SID

GDE

AN

DASUD

SID

GDE

AN

likely distributions

25%

38.62

29.41

45.1

65.16

50%

75.75

61.92

91.26

129.24

75%

108.17

93.66

82.49

180.42

100%

155.64

140.47

183.92

264.18

pathological distributions

25%

117

99.7

263.12

289.9

50%

180.2

160.9

389.3

425.8

75%

301.7

284.4

444.8

517.5

n-1

781.4

753.8

1222.2

1261.4

Torus (toad units - u's)

37.53

27.11

168.9

53.74

75.88

61.3

247.5

98.65

121.42

41.21

337.2

129.37

139.77

123.68

459.9

188.14

118.8

93.8

365.76

239.3

169.1

142.8

750.9

370.2

312.4

278.4

1567.0

494.3

1041.2

1012

2957.6

1152.8

Table 4.8 Load units moved (u's) for DASUD, SID, GDE and AN algorithms considering likely and

pathological initial load distributions for hypercube and torus topology with respect to the initial load

distribution patterns

125

Chapter 4

4.4.2 Influence of the system size in u

Figures 4.5 and 4.6 give more detailed information about the movements of

load units (u) for hypercube and torus topologies, respectively. From their analysis we

can extract the following observations. First, DASUD and SID result in being

independent of the underlying topology because, starting from the same load
i

distribution, either likely or pathological, both strategies generate similar results for

hypercube and for torus. Secondly, the total amount of load moved during the load-

balancing process by DASUD was slightly higher than the quantity moved by SID for

any initial load distribution (likely or pathological) and for any topology (hypercube or
i

torus). In contrast, GDE and AN obtain, in general, worse results. The amount of load

moved during the LB process is, on average, twice that moved by DASUD and SID

for likely initial load distributions and, furthermore, when we consider pathological

patterns, this difference could be more than three times.
i

It is worth observing that GDE exhibits a topology dependence that is
|

detected when a more detailed analysis of its behaviour is performed. This

dependence is easily detected if the relative situation with the AN's result is

observed. Whereas the GDE algorithm has better results, on average, than AN for

hypercube topologies, for torus AN is faster than GDE, i.e., the movement measure is

smaller for AN than for GDE. But notice that, since AN does not significantly vary its

behaviour whatever topology is analysed (the u's are nearly the same for torus of

hypercube), GDE stems from an underlying topology dependence (the ü's for torus

are twice the ü's for hypercube). One important reason for this fact is that GDE is
t

based on DE algorithm as has been described in chapter 2, which was originally
t

developed for hypercube interconnection networks. Under this topology, at each step

of the simulation process, all processors execute load-balancing operations because

they all have an edge in all dimensions of the hypercube. Therefore, in spite of not

exploiting the all-port communication model, for hypercubes the maximum

concurrence in load-balancing operations is exploited. However, for the torus

topologies, GDE represents a considerable loss in efficiency. This is due to the fact

that in each simulation step, not all processors in the system will be executing load-

balancing operations, since in this case the number of dimensions is obtained by
i

minimally colouring the graph associated with the topology.

126

Comparative study of nearest-neighbour load-balancing algorithms

350

300

^ 250
•£
§ 200

1 150
3 100

50

Likely distributions (Hypercube)

DASUD -
SID--

GDE--
AN

1200

1000

g 800

600

400

200

0

8 16 32 64

number of processors

(a)

Pathological distributions (Hypercube)

128

c

Io

DASUD

GDE- —
AN ••••-•

8 16 32 64 128

number of processors

(b)

Figure 4.5 Efficiency in terms of movement measure (u's) for hypercube topologies, and considering (a)

likely and (b) pathological initial load distributions.

Ó
o

127

Chapter 4

Likely distributions (Torus)

DASUD ->
SID-+

GDE--
AN

number of processors

(a)

Pathological distributions (Torus)

"S
'E
u
TJ
CO_g
3

¿uuu
1800

1600
1400

1200

1000
800
600

400,
200

n

i i i
-•--. ! DASUD — —

'\ ' SID -1--
••-. ! GDE -- —

F

" " * * • . .

X

* K..f

('""••-..

^^^—^^^Jft—^ ""••••
^ _£_

1 1 1

9 16 36 64 121
f

. number of processors

(b)
ti

Figure 4.6 Efficiency in terms of movement measure (u's) for torus topologies and considering (a) likely

and (b) pathological initial load distributions.

128

Comparative study of nearest-neighbour load-balancing algorithms

4.4.3 Influence of the initial load distribution shape in u

The effect of how the initial load distribution is scattered through the

processors has also been investigated in order to observe whether it has any

influence on the evaluated indexes, or not, for all algorithms. In table 4.9, we show

the amount of load moved on average by each algorithm to obtain a stable state

depending on how the initial load distribution is scattered to processors. Each value is

the mean value for all sizes of hypercubes and torus, and for all initial load patterns.

The separate values are included in tables A.5 and A.6 in appendix A.

From the analysis of tables 4.9(a) and 4.9(b) we extract that the value of u for

single mountain scattering is larger than that obtained when chain scattering is

applied for all strategies when the initial load distribution group is the pathological

group. This is attributable to the kind of load movements generated. When single

mountain scattering is applied all local load movements have the same global

direction, from heavily loaded processors to lightly loaded ones, because this kind of

load scattering generates a local load gradient equal to the global one. Consequently,

all local load movements are productive movements. Furthermore, since in single

mountain shape all load is evenly concentrated in the same region of the system

keeping the rest of processors idles, load redistribution becomes difficult. Non-idle

processor belonging to the limit of the loaded region are continuously receiving load

from processors within the loaded area and sending it to the idle region, this fact

implies an increment in the load moved around the system. On the other hand, when

chain scattering is used, idle processors are surrounded by loaded processors and,

consequently the load distribution is faster and not so tedious.

When we analyse the values obtained for likely initial load distributions only

GDE and AN behave in the same way as for pathological cases. DASUD and SID

change their behaviour by providing more load movement for chain shape than for

single mountain shape. In this case, both algorithms are penalised for their capacity

of having all processors concurrently executed load-balancing operations. The

following scenario appears: there are some processors that can see themselves as

locally load-maximum while not being globally-maximum and, therefore, some load

thrashing is generated. GDE and AN do not exhibit this problem, because only a few

129

Chapter 4

processors are simultaneously, executing the load-balancing process, and the

thrashing effect is avoided.

Hypercube (load units- u's- by shapes)

SM

Chain

likely distributions | pathological distributions

DASUD

88.34

100.75

SID

69.94

92.79

GDE

110.5

90.87
(

AN II DASUD
II

192.21

127.29

344.05

201

SID

320.45

187.33

GDE

629.07

300.1

AN

705.35

302.13

(a)

Torus (load units -u's- by shapes)

SM

Chain

likely distributions

DASUD

88.46

92.99

SID

69.48

84.1

GDE

332.3

274.5i

AN

118.63

116.32

pathological distributions

DASUD

420.45

140

SID

385.75

346

GDE

1482.6

798.13

AN

580.6

346

Table 4.9 Load units moved (u's) for DASUD, SID, GDE and AN considering likely and pathological

initial load distributions for hypercube (a) and torus (b) topologies with respect to the shape on the initial

load distribution.

4.4.4 Influence of the initial load distribution pattern in steps
1 ' '

Finally, in the following sections we deal with the number of simulation steps

needed to achieve the final stable load distribution. In this section, we analyse the

influence of the initial load distribution pattern on the number of total steps performed

during the load-balancing simulation process. As happens for the load units, the

number of steps incurred by all simulated algorithms increases as the initial load

imbalance increases, whatever, initial load distribution group is observed. From an

individual analysis of each load-balancing algorithm, the algorithm that incurs in the

least number of steps is the SID algorithm. DASUD occupies the second place in the

ranking followed by AN and, finally by GDE. However, all strategies need more steps

to reach the final load distribution when they are executed in a torus topology than in

a hypercube topology. The highest connectivity degree exhibited by hypercube

interconnection networks is the reason for such difference. GDE has obtained the

worst results because it does not exploit the all-port communication model, and it

takes more steps to be aware of load changes at each domain.

130

Comparative study of nearest-neighbour load-balancing algorithms

Hypercube (steps)

DASUD

SID

GDE

AN

likely distributions

25%

9.56

5.35

34.11

29.56

50%

13.47

7.51

34.73

33.6

75%

15.26

9.03

35.9

35.6

100%

16.78

9.79

45.11

38.64

pathological distributions

25%

15.7

8.2

44.5

38.8

50%

17.2

9.9

47

39.6

75%

17

9.5

38.4

38

n-1

24.2

12

51.5

51.2

(a)

torus (steps)

DASUD

SID

GDE

AN

likely distributions

25%

22.5

5.25

47.76

22.43

50%

28.5

9.09

49.24

25.76

75%

33.02

11.25

50.9

28.18

100%

38.16

.14.11

52.9

30.28

pathological distributions

25%

38.8

11.6

66.1

32.1

50%

47.8

19.1

67.8

35.9

75%

48.2

22.4

69.5

33.9

n-1-

68

38.6

70.4

42.4

(b)

Table 4.10 Steps for DASUD, SID, GDE and AN algorithms considering likely and pathological initial

load distributions forhypercube (a) and torus (b) topologies with respect to the initial load distribution

patterns

4.4.5 Influence of the system size in steps

Figures 4.7 and 4.8 show the number of simulation steps needed for the

whole simulation process on average for hypercubes and torus, respectively, for

DASUD, SID, GDE and AN strategies. The individual values corresponding to each

initial load distribution patterns are included in Appendix B.

SID is the strategy that needs the smallest number of steps for all topologies

and the smallest number of processors to stop the load balancing-process. This fact

stems from the incapacity of SID to evenly attain load distributions at the end of the

131

Chapter 4 i

load-balancing process as it has been extracted from the stability analysis. For that

reason, the low number of SID steps is not an important point in this analysis.

However, that is not the case for the other simulated strategies. We continue by
»

analysing the results obtained for each one in further detail.
í

We begin with the GDE load-balancing algorithm. If we focus globally on GDE

behaviour for hypercubes and torus, we will see that, whilst for the hypercubes the

number of simulations steps increases as the system size also increases, in the case

of the torus, the number of simulation steps remains fairly constant. The main reason

for this fact is the connectivity degree of a given processor, i.e., the number of

processors directly connected to it. In hypercube topologies, the size of the domain of

a given processor increases as the system size increases, whereas, for torus the

domain size remains constant as the number of processors grows. In particular, for

hypercube topologies the size,of the domain coincides with the diameter of the

system, whereas the number of immediate neighbours for a given processor in torus

interconnection networks is always 4.

We shall now analyse the results obtained by the AN algorithm. In this case,

we can also highlight a distinct behaviour for the topologies analysed. When the load-

balancing process is performed in hypercube topologies, the number of steps spent

in the global load-balancing process exhibits a homogeneous behaviour, whatever

the system size might be. By contrast, when the underlying topology is torus, a more

irregular behaviour is obtained, the degree of connectivity exhibited by each topology

has an important relevance in these results. Since the AN strategy has the constraint

of not allowing the simultaneous execution of the load-balancing algorithm in

processors whose domains are'overlapped, large domain sizes stem from being less

overlapped in load movements because fewer concurrent load-balancing operations

may be performed in the system. Therefore, the number of steps increases.

132

Comparative study of nearest-neighbour load-balancing algorithms

Likely distributions (Hypercube)
ou
¿c

40
35'

« 30

& 25
20,
15
10:

n

i 1 i
a-

.X M V- " *

- .-•' DASUD
. -•' SID
/ GDE

AN
_í

- . — ' ~^ ~
<C-+ ,

i i i

_ —
~~t~".

-
i
-

32

number of processors

(a)

Pathological distributions (Hypercube)

128

g.
V)

IV

60

50

40

30

20

10:

n

i l i

. - * - • • " * " " * " " "

/ ' ..M

- s nA^i in *
" / SID--»--"
/ GDE •• —

AMK.. "Ml N "

i i i

128

number of processors

(b)

Figure 4.7 Steps for DASUD, SID, GDE and AN algorithms considering (a) likely and (b) pathological

initial load distributions forhypercube topology with respect to the system size.

133

Chapter 4

i Likely distributions (Torus)

wo.

w

/u

60

CA

40

30

on

10

n

1 1 1

1-•-"""

V , DASUD -^
SID--^-'

i GDE----
AM "

-/^^^~~~-^~~-~~~~-.^_

i i ' i ~~"

9 16 36

number of processors

(a)

121

8.o>

90

80

70

60

50

40

30

20

10

0

Pathological distributions (Torus)

K' ' "
•' f

9 16 36

DASUD -•-
SID--+-

GDE--*-
AN--»

64

number of processors

(b)

121

Figure 4.8 Steps for DASUD, SID, GDE and AN algorithms considering (a) likely and (b) pathological

initial load distributions for torus topology with respect to the system size.

134

e
o
o

Comparative study of nearest-neighbour load-balancing algorithms

4.4.6 Influence of the initial load distribution shape in steps

We have also investigated the influence of the initial load scattering on the

number of steps needed by the load-balancing process to reach the termination

condition. Tables 4.11 (a) and 4.11(b) show the average of such number of steps for

all sizes of hypercubes and torus, respectively. More detailed information can be

found in tables B.15 and B.16 in appendix B.

For single mountain shapes the number of steps is higher than for chain

shapes than for single mountain shape This characteristic is independent of the initial

unbalanced degree and of the initial load distribution group (likely or pathological).

For all likely distributions, the number of steps required for single mountain shapes is

approximately twice, on average, the number of steps required for chain distributions.

This feature has a high similarity to the behaviour exhibited by the total amount of

load moved when the load distribution shape is considered (section 4.4.3). The local

unbalance gradient observed by each processor coincides with the global one,

therefore, a number of productive steps are performed to coerce the imbalance into a

load distribution as close to the even one as possible.

HypercubeTopology (steps by shapes)

SM

Chain

likely distributions

DASUD

17.79

9.74

SID

9.22

6.62

GDE

40.64

34.28

AN

36.56

32.14

pathological distributions

DASUD

21.6

12.53

SID

11.55

7

GDE

48.19

39.55

AN

44.8

34.9

(a)

Torus Topology (steps by shapes)

SM

Chain

likely distributions

DASUD

39.6

21.49

SID

13.34

6.5

GDE

52.71

47.72

AN

28.55

24.77

pathological distributions

DASUD

58.05

35.13

SID

27.5

11.6

GDE

69.57

66.32

AN

37.37

32.26

(b)

Table 4.11 Steps for DASUD, SID, GDE and AN considering likely and pathological initial load

distributions for (a) hypercube and (b) torus topologies with respect to the initial load distribution shape

135

Chapter 4

¡ Efficiency Summary
pa

tte
rn

s

.§
M

0)
oí>.M

fl>
Q.
n
(0

/oad un/fs (u'sj

DASUD

GDE

AN

SID

DASUD

GDE

AN

SID

DASUD

SID

AN

GDE

increases as the initial unbalance

degree also increases

t
!

decreases as the system size

increases\

likely: larger for Chain than for SM shape

pathological: larger for SM than for Chain.

larger for SM shape than for

Chain shape

simulation steps

DASUD

GDE

AN

SID

DASUD

GDE

AN

SID

DASUD

GDE

AN

SID

increases as the initial

unbalance degree increases

increases as the system

size increases but not

greatly

larger for SM shape than for

Chain shape

Table 4.12. Summary of the results from the comparative study with respect to the stability analysis

4.4.7 Conclusions of the efficiency analysis

Finally, in this section, we summarise the main conclusion extracted from the

efficiency analysis. In table 4.12 these conclusions are exposed by taking into

account each one of the analysed parameters. For each parameter (pattern, system
!

size and shape) the two algorithms that provides the best results are written in red.

Notice that for all parameters and quality indexes the load-balancing algorithm that

requires íess time to reach the final load distribution is the SID algorithm. However,

DASUD's behaviour remains very close to SID for the whole experimentation.

It is worth noting that the best efficiency results obtained by the SID algorithm

denote its incapacity to coerce the system into a balance load distribution. The load-

balancing process applying the SID algorithm lasts a short time period because,

although it allows all processors to work simultaneously, the performed load

movements slightly arrange the system imbalance. In contrast, DASUD incurs within

a similar load-balancing time, but performs more productive load-balancing

136

O
O
e

Comparative study of nearest-neighbour load-balancing algorithms

movements. AN and GDE both are penalised for their synchronisation requirements.

This restriction forces them to execute more load-balancing steps and load

movements cannot be overlapped, as happens when SID or DASUD algorithms are

applied. This drawback implies that AN and GDE take a large time period in

achieving the final load distribution.

4.5 Summary and conclusions of the comparative study

Table 4.13 includes a summary of all experimental studies performed in this

chapter. Since the detailed analysis of the stability and efficiency results have already

been carried out in the corresponding sections, in table 4.13 we use very simple

terms to denote the goodness of each algorithm with respect to each study. A trade-

off column is also included to expose the main conclusions of this chapter. On the

one hand, with respect to the stability analysis, DASUD, AN and GDE obtain the best

results. In particular, DASUD is the best. On the other hand, by considering the

efficiency analysis, SID and DASUD are the two algorithms that arrive first at the end

of the load-balancing process. Therefore, DASUD is the load-balancing algorithm that

exhibits the best trade-off between the final balance degree and the cost incurred in

achieving it.

Summary of the comparative study

DASUD

AN

GDE

SID

Stability

Very Good

Very Good

Good

Very Bad

Efficiency

Low Cost

High Cost

High Cost

Low Cost

Trade-off

The best trade-off between

stability and efficiency

Medium trade-off

Bad trade-off

Bad trade-off

Table 4.13. Summary of the results from the coparative study with respect to the stability analysis

f»

137

€>
«
ft A new distributed diffusion algorithm for dynamic load-balancing in parallel systems
e
ft
ft
ft
ft

f»
ft
ft

Chapter 5
Scalability of DASUD

**
ft
J Abstract
ft /n Í/7/S chapter, using the same simulation framework reported in chapter 4,

® we analyse the scalability of DASUD with respect to problem size as well as system

size.

139

o
o
o
O Scalability of DASUD

O
O
o
O 5.1 Introduction

An important aspect of performance analysis in load-balancing algorithms is

the study of how well the algorithm adapts to changes in parameters such as problem

size and system size.

The experimental study outlined in chapter 4 has been undertaken

considering different systems sizes and topologies but the problem size keeps

constant for all experiments. The aim of that chapter was to compare different load-

balancing algorithms with respect to their ability to achieve the final stable state, and

the cost incurred to reach it. From that analysis, we have concluded that DASUD

results in the best trade-off between the final balance degree and the cost incurred to

achieve it. In this chapter, we perform a more precise analysis of DASUD's behaviour

under different problem sizes. The distributed nature of DASUD make us suppose

O that DASUD will react in a similar way for small problems as well as for large ones.

® Furthermore, we believe that DASUD will behave similarly as the problem size
O
£ increases.

O
^ The results provided in the following sections have been obtained by setting
tffc

H the total amount of load distributed among the whole system (/_) by one of the

O following values: 3000, 6000,12000, 24000 and 48000 load units. Two experimental

® studies are outlined below. Firstly, we analyse how DASUD is able to adapt to

Q different problem sizes when the underlying topology and system size do not change.

Ó For that purpose, we do not simulate the load-balancing process for all commented

* problem sizes, and we only consider the two extreme and the medial values (3000,

g 12000 and 48000). Secondly, the influence of the system size is considered. Since in

O chapter 4 this parameter has been evaluated for a fixed problem size, here, we

analyse what happens when the problem size changes as the system size changes

as well. In this case, all above mentioned problem sizes (/.) have been used to obtain

a similar initial load imbalance for all system sizes.

141

Chapter 5 !

5.2 DASUD's scalability with respect to the problem size
j

This section is focused on the evaluation of the DASUD's ability to work

independently on problem size for a fixed topology, and on system size. Since we

have executed the load-balancing simulation process for the three problem sizes
i

mentioned (L): 3000, 12000 and 48000, the final global load average will be different

for each problem size. At each step of the simulation process, the maximum load

difference (dif_max) throughout) the system and the global standard deviation (a),

denoted as stdev in the graphics, have been evaluated in order to plot their evolution

as the load-balancing simulation process progresses, both indexes have been

previously introduced in chapter 4. The graphics for all topologies and system sizes

considering likely and pathological initial load distributions are reported in appendix C

to this work. Since DASUD exhibits a similar behaviour for all of them, we only

include in this section the analysis of the figures corresponding to the largest system

size for each topology (7-dimensional hypercube and 11x11 torus) and for likely initial

load distributions.

r

Figures 5.1 (a) and 5.1(b) show the global maximum load difference and the

global load standard deviation as the load-balancing simulation process progresses

for a 7-dimensional hypercube. Each plot for those figures is the mean value of the

global maximum load difference for all initial likely load distributions at the same

simulation step. Figures 5.2(a) and 5.2(b) depict the same information described

above but in this case for a 11x11 torus topology. As can be observed in figures

5.1 (a) and 5.1(b), the balance rate has an insignificant degradation as the problem

size increases for a 7-dimensional hypercube topology. Consequently, for

hypercubes, DASUD's ability to have a high decreasing gradient in the global

unbalance during the initial iterations of the load-balancing process is independent of

the problem size. From a more accurate analysis of figure 5.1 (a) we note that the

global maximum load difference .shows irregular behaviour throughout the initial load-

balancing simulation steps. However, the global standard deviation (figure 5.1(b))

shows constant decreasing throughout the whole load-balancing simulation process.

This situation is not usual, but it sometimes appears at the very beginning of the load-

balancing simulation process as a consequence of some small load thrashing.

However, this fact is not very relevant, since the global load standard deviation shows

142

o
•

* Scalability of DASUD

no fluctuations during this small period. Therefore, the load-balancing simulation

process in hypercubes seems to be less influenced by the growth of the problem

size.

O
O

M-'

Likely distributions (Hypercube d=7)
/uu

600

500

400

300

200

100

n
°c

1 1 1 1 1
i _ onnnL— OUUU

j. L=12000 .
i _ Aonnn•: L— «H3UUU

-

-

• '•.

/i ' • - .
• i " • • - .i " • - • - .

x ̂ • • - . . _

) 20 40 60 80 100 12
steps

>0

(a)

Likely distributions (Hypercube d=7)
IfU

120

100

80

60

40

20

n

°c

1 1 1 1 1

L— innn— oUUU
L=12000 .
i _ Aonnn; L— 4OUUU

-

-

- \

\
->\ • - . ̂

) 20 40 60 80 100 12
steps

>0

(b)

Figure 5.11nfluence of the problem size in (a) the global dif_max and (b) in the global load stdev as the

load-balancing process progresses for a 7-dimensional hypercube and for likely initial load distributions.

143

Chapter 5

Likely distributions (Torus 11x11)

x
m

5
TD

auu

450
A f\f\400

350

300

250

200

150

100

50

(

' ' ' ' i -"ínnn
L=12000 '

.

T ~

-

" ' • - .

r ' ' " ' • - - .

ÍÎ i-i-— - """""•---...
) 50 | 100 150 200 250 3C

i steps
)0

(a)

(U

V)

160

140

120

100

80

60

40

20

Likely distributions (Torus 11 x11)

L=2
L=12000

50 ¡ 100 150 200
steps

(b)

250 300

Figure 5.2 Influence of the problem size (a) in the global dif_max and (b) in the global load stdev as the

load-balancing process progresses fora 11x11 torus and for likely initial load distributions

144

Scalability of DASUD

The analysis of DASUD behaviour in torus topologies when the problem size

changes exhibits some important characteristics. As happens for hypercubes, the

global maximum load difference and the global load standard deviation monotonically

decreases as the load-balancing simulation process progresses. However, DASUD's

response rate in 11x11 torus decreases slower than in hypercubes, i.e., while the

problem size increases the response rate slightly degrade, as can be observed in

figures 5.2(a) and 5.2(b). These results can be explained by the enlarged diameter of

this particular interconnection network. The diameter of an 11x11 torus is equal to 10,

whereas the diameter of a 7-dimensional hypercube is 7. Therefore, as we only

consider local load movements, the larger topology diameter is, the slower the load

distribution is performed. With regard to the results obtained for both topologies with

similar diameter, the response rate remains very close, as is shown in figure 5.3. This

figure shows DASUD's behaviour with respect to the global standard deviation

(stdev) for a 3-dimensional hypercube (5.3(a)) whose diameter is equal to 3 and for a

3x3 torus (5.3(b)) whose diameter is 2, for likely initial load distribution (these

graphics are extracted from appendix C). It is easy to observe that the behaviour
í

depicted in both figures is practically the same.

In conclusion, the ability of DASUD to reach a good balance degree depends

minimally on the problem size. Additionally, this load-balancing algorithm is also able

to act similarly for different configurations of the architecture by exhibiting a slight

dependence on the topology's diameter.

5.3 DASUD's scalability with respect to system size

In this section, we analyse DASUD's response rate as the number of

processors increases for a given interconnection pattern. For this purpose we have

varied the number of processors from 8 to 128. As in the previous section, the study

has been performed for hypercubes and torus, starting the load-balancing process

from any initial load distribution including either likely or pathological patterns. The

results included below correspond to those obtained when likely initial load

distributions are applied. Since the observed behaviour for pathological initial load

145

Chapter 5 I

distributions is the same as for likely patterns, the graphics for pathological

distributions are not included in this section ; however, they may be consulted in
t

appendix C.

0)

M

Likely distributions (Hypercube d=3)
¿uuu

1800
A t*f\e\1600

1400
1200
1000
800
600
400

200
n

' I ' ' ' i -̂ nn'n
: ! 'L=12000 '

i

-':
-i

\ '• E

-\ \
\
\

— \ *,

steps
30

Likely distributions (Torus 3x3)

(A

¿uuu

1800
A f^f\f\1600

1400

1200

1000

800

600

400

200
f\

°c

i —tnnn
f L— OUUU

j L=12000-----
• i i —Afir\r\r\» | L~"*tOUv/U -

•
-

-:

- '•.

\ '• f

VÒ---'

) 5. 10 15 20 25 3
i steps

(b)

Figure 5.3 Influence of the problem size in the global standard deviation as the load-balancing process

progresses for (a) a hypercube with d=3, and (b) a torus with d=2 for likely initial load distributions.

146

Scalability of DASUD

The evolution of the global maximum load difference (difjmax) for hypercubes

and torus is depicted in figures 5.4(a) and 5.4(b) respectively. The results for global

load standard deviation (stdev) are shown in figures 5.5(a) and 5.5(b). As has been

mentioned previously, DASUD's capacity for moving load among the system is

limited by the diameter of the underlying interconnection network. Larger diameters

yield slower load propagation, since load movements are performed locally. The

results obtained for torus topologies seems, at first sight, worse than the results

obtained for hypercubes, however, what is happening is that for the same system

size, the diameter of each topology has different values. In torus interconnection

schemes, the directed connected processors for all processor remains constant as

the system size increases whereas in hypercube architectures the size of the domain

increases as the system size also increases. Therefore, for the same number of

processors, hypercube exhibits a higher connectivity degree than torus and,

consequently, the value of the diameter is, at most, the same for hypercube and for

torus, but in most cases, it is smaller for the same system size.

Notice that the larger system sizes are 128 and 121 processors for hypercube

and torus respectively, whereas the corresponding diameters are 7 and 10. But, if we

observe the results for topologies with the same diameter value as happens for a 4-

dimensional hypercube and 4x4 torus, for instance, we observe that there is a slight

difference in the obtained response rate, even if we analyse the global maximum load

difference or the global standard deviation.

Finally, a similar conclusion as for scalability analysis with respect to problem

size can be extracted. The ability of DASUD to reach a good balance degree

depends minimally on the system size, more precisely, DASUD exhibits a slight

dependence on the topology's diameter whatever interconnection pattern we have.

147

Chapter 5

Likely distributions (Hypercube)

x
CO
E
^j
S

ÍUU

600

500

400

300

200

100

(

! ' ' úi ' nyper
j * hyper
i ' k^\/r\ûr•i ' nyper
«i l· i\/r\Ar

1 hyper
i 1

: 1
\. 1

ï !
li ». i

\ *'•'••.' v '

\̂ ï:::'::::~----- - ,
) 20 40 60 80

! steps

d_0

d=4 .
d—c—o
d— RD

d=7--- "
.

-

-

100 1Í>0

Likely distributions (Torus)

x
ço

5
T3

auu

450
A f\f\400

350

300

250

200

150

100

50
n

°0

1 1 1 1 1
4._. .A. O». Otorus 0X0
torus 4x4 "
tf\FÍ IÓ ÍÍVÍNtorus DXO
t/^ri ic AvRtorus oxo

torus 11x11 "
•

\ i
•. \
\ X-N (

• '̂*i.

1 '. '•-., ^"^-^

\ \ '• '••.. ***·^. i

V. N. " r - . i ''"•-.... t i ~"""-~i -

50 100 150 200 250 3(
[steps

)0

(b)

Figure 5.4 Influence of the system size in the global maximum load difference as the load-balancing

process progresses for (a) a hypercube and (b) torus for likely initial load distributions.

148

Scalability of DASUD

T3
t»

0)

Likely distributions (Hypercube)
If U

120

A f\f\

10U

80

60

40

20

n

°c

•ienIDU

140

120

100

80

60

40

20

n

1 1 1 1 1
LktlMAIH nJ«*Onyper a— o
hyper d=4
L *J^Ci nyper a— o
L*ifHAr *J^C~. nyper Q— o -

« hyper d=7
hi

n •bk
v*%-..VNÒ-'"" -:~.'.

>i^~'^«i.-'-'-'-:i;"j--~.i~'.~:~'n -,._. i i
) 20 40 60 80 100 12

steps

(a)

Likely distributions (Torus)

¿^•••iM *3%*Otorus oxo
torus 4x4 •
É C^»Ctorus oxo
torus 8x8

torus 11x11 .

I S
• \

\

i '• 'N
' '•. *N.

I'. ''•. '"*••»
\ \ '-... ""•-.^
\ •, ''••... '~
V^^^ " " t - . . _ '"! í ~í ' ! — . !^-

IQ

50 100 150 200 250 300 350

steps
(b)

Figure 5.5 Influence of the system size in the global standard deviation as the load-balancing process

progresses for (a) a hypercube and (b) torus for likely initial load distributions.

149

Chapter 5

!
5.4 Conclusion about DASUD's scalability

Í
From the conclusion obtained in the two previous scalability analyses where

the influence of the problem size and the system size have been studied, we

conclude that DASUD is a load-balancing algorithm whose balance properties slightly

depend upon the diameter of the underlying topology. The main reason for this fact is

its totally distributed nature. Since load movements are performed locally, larger

diameters yield slower load propagation.

150

A new distributed diffusion algorithm for dynamic load-balancing in parallel systems

Chapter 6
Enlarging the domain (c/s-DASUD)

Abstract

In this chapter, the following question is analysed: is it possible to accelerate

the load-balancing process enlarging the DASUD's domain to include non-directed

connected processors? For this purpose, an extended system model is provided. The

influence of enlarging the domain into the time incurred in transferring messages

beyond one link and in the extra computational cost incurred by the extended version

of DASUD (ds-DASUD) has been analysed. From this analysis we determine which

enlargement provides the best trade-off between balance improvement and load-

balancing time spent.

151

Enlarging the domain (ds-DASUD)

6.1 Introduction

Up to this point, the DASUD algorithm identifies the domain of a given

processor / with processors with which it has a direct neighbourhood relation. A

question that arose during the evaluation of DASUD was: how would DASUD work if

it was able to collect more load information than only that of its immediate

neighbours? Intuitively, we expect that if DASUD had the capability of using more

load information to take load-balancing decisions, globally, it should be able to reach

a better final balance situation spending less time. We also expect that this effect be

proportional to the enlargement of the domain. For instance, if each processor were

able to collect the load information from the whole system, i.e., DASUD working as a

totally distributed load-balancing algorithm with global information, DASUD should

then, be very fast in correcting unbalanced load distribution, and the final state should

be evenly. However, we know that this DASUD extension incurs an extra time cost

due to communication and computational cost increments. Thus, we were interested

in studying the influence of the domain enlargement in the trade-off between

improvement in the balance degree and the time incurred during the load-balancing

process.

We refer to the extended version of DASUD as ds-DASUD where ds is the

domain scope which is a non-negative integer value that represents the minimum

number of links needed to cross from the underlying processor to the furthest

processor belonging to its domain. We notice that when ds is equal toi, the algorithm

coincides with the original DASUD algorithm. Although ofs-DASUD is still a totally

distributed load-balancing algorithm, the implementation of ds-DASUD introduces

some changes in the underlying system model described in chapter 2. Therefore, an

extended system model is described in the following section. Subsequently, the time

metrics evaluated to determine whether it is worth enlarging the domains or not are

introduced. Finally, we report the experimental study performed to analyse how

DASUD works when the domain of each processor is enlarged.

153

Chapter 6

!
6.2 Extended system model

i

We recall from chapter 2 that we represent a system by a simple undirected

graph G=(P,E), i.e. without loops and with one or zero edges between two different

vertices. The set of vertices P={1,2,...,,n} represents all processors in the system.

One edge {i,j} e E if there is a link between processor /and processor). A processor /

has a domain which is defined as the set of processors from which processor /

maintains load information ¡ including itself and is defined as follows

N,={jeP\{i,j}eE\J\i} . The size of a given domain is the number of processors

belonging to that domain and is denoted by #N¡. The number of direct neighbours

for a given processor is denoted by r, which coincides with ##,-!.

In the new definition of DASUD (ds-DASUD) when the value of cfs is bigger
í

than one (ds>1), some virtual links can be considered to provide a way for connecting

the underlying processor to npn-directly connected processors belonging to its

domain. Then, a new set of edges Ev can be considered and {i,j} e Ev if there is a real

or virtual link between processor7 and processor/ The set of processors belonging

to the domain of processor /', including itself for a certain value of ds, is denoted by

A/f'The resultant topology is referred to as virtual topology and, consequently, a

virtual diameter (dv) should be defined. Figures 6.1 (a) and 6.1(b) show the domain of

a given processor (red colour) for a virtual 3-dimensional hypercube topology with ds

equal to 1 and 2, respectively. Notice that, when the value of cfs is equal to 1, the set

of processors belonging to the domain of the underlying processor match directly with

its direct neighbourhood (processors directly connected to it), therefore, the virtual

topology coincides with the real one.

i

The size of the virtual domain of processor / depends on the value of ds and is

denoted by #/v/s, and the number of virtual neighbours will be denoted by rv. In order

to simplify notation, in the rest of this chapter when we refer to neighbour processors,
i

we consider both neighbours, real and virtual.

154

Enlarging the domain (cfs-DASUD)

virtual links
real links

Figure 6.1 Virtual hypercube topology for (a) 1-DASUD and (b) 2-DASUD

The original version of DASUD has been theoretically analysed in chapter 3.

In that chapter, some upper bounds have been provided for the final balance degree

and the balance rate. Both of these have been derived under the assumption that a

given processor was restricted to use load information from its directly connected

processors. However, if this condition is relaxed as a consequence of enlarging the

domain of each processor, these upper bounds should be updated in order to be

applied to the extended version of DASUD (ds-DASUD). Since this modification

affects the diameter of the underlying topology (d) which should be changed by its

virtual version dv (virtual diameter), the original formulas for the above mentioned

upper bound, should be updated. The notation of these extended upper bounds is

shown in table 6.1.

dv

~2

Table 6.1 Extended upper bounds fords-DASUD

155

Chapter 6

The extended version of DASUD seems to be an interesting alternative for

increasing the convergence rate of the original algorithm. Since larger domains allow

performing more accurate balance decisions, we are interested in evaluating such a

possibility. Therefore, we analyse the influence of the domain scope enlargement in

the balance degree with the aim of determining a domain scope (cfs) that exhibits the

best trade-off between balance degree improvement and the time overhead

introduced when the scope of the domain is enlarged. For this purpose, in the

following section, we describe all times involved during the load-balancing process,

and how these times have been1 evaluated by taking into account the influence of the

domain scope. Subsequently, these metrics will be used to experimentally analyse

whether or not it is worth enlarging the domain scope of the DASUD algorithm.

6.3 Metrics

Iterative load-balancing algorithms improve the load imbalance of a system by
t

successive iterations of the load-balancing operations. In such approaches the total

load-balancing time depends on the number of iterations performed. Since the load-

balancing process has been evaluated by simulation using the same load-balancing

simulator described in chapter 4, we will use the term simulation step (or step for

simplicity) as in chapter 4, instead of iteration.

Under the synchronous simulation paradigm, the total load-balancing
i

overhead incurred by any iterative load-balancing algorithm (Tbal) can be obtained as

follows,

last _ step

hai

_

~ / . ¿bal

where Th
s
al is the time required to execute one simulation step of the load-balancing

process in the whole system, ; and last_step denotes the last step of the load-

balancing simulation process. More precisely, the duration of the s-step of the load-

balancing simulation process (7£,) can be divided into two communication periods

(information collection and transfer periods) and the computational period:

156

Enlarging the domain (c/s-DASUD)

• Communication periods:

=> Information collection period (T*ol): Interval of time required to

gather all load information needed by all processors for executing

the load-balancing algorithm.

=> Transfer period (7^): Time required to perform all load movements

from source processors to destination processors.

• Computational period (T¡ hal): Period of time dedicated by the load-balancing

strategy to evaluate the load movements in all processors.

Consequently, and bearing in mind the synchronous paradigm, the total time

overhead introduced by the global load-balancing process (Tha¡) can be obtained as

follows:

last iteration

s=\

Notice that the duration of these load-balancing periods is directly affected by

the domain scope (cfs), i.e., as the domain scope increases, those periods will

likewise extend. Therefore, it is necessary to be able to evaluate this overhead in

order to obtain reliable results. We now describe how the communication and

computational periods have been evaluated. Subsequently, these time are used to

introduce a goodness index called the trade-off factor, which allow us to determine

which ds provides the best results.

6.3.1 Communication periods

Since in direct networks, the blocking time of a message (which is defined as

the time spent waiting for a channel currently being used by another message [NÍ93])

cannot be pursued, to evaluate the communication times incurred by the extended

version of DASUD (ds-DASUD) during the collection information and transfer periods,

the interconnection network functional simulator N ETS IM has been used [Fra99].

This simulator considers a wormhole routing as routing technique and it takes into

account the resource contentions that a message encounters in its path. In this

157

Chapter 6 j
í
i

routing technique the original message is broken into small units called flits. The

header flit(s) of a message contains all the necessary routing information and all the

other flits contain the data elements. The flits of the message are transmitted through

the network in a pipelined fashion. Since only the header flit(s) has(have) the routing
I

information, all the trailing flits follow the header flit(s) contiguously. Flits of two

different messages cannot be interleaved at any intermediate node [Moh98]. The
i

communication latency for a wdrmhole routing technique is obtained by considering
i

the following times:

• Start-up time (ts): time needed to prepare a message. This delay is incurred

only once for a single message.

• Per-hop time (th): the time taken by the header of a message to travel

between two directly-connected processors in the network.

• Per-flit transfer time (tw): the time taken by a flit of the message to traverse

one link.

If we consider a message that is traversing a path with / links, then the header

of the message takes lth time to reach the destination. If the message is m flits long,

then the entire message will arrive in time mtw after the arrival of the header of the
i

message. Therefore, the total communication time (tcomm) for a wormhole routing, i.e.

the time taken by one message ¡to go from source processors to the destination one,

is given by

**»,„=',

The injection of messages into the network has been simulated by using the

worst pattern in which all processors start the injection process simultaneously. This

injection pattern has been used for both communication periods, collection

information period and transfer period. From the execution of the NETSIM simulator

we have obtained the total simulation time incurred for the whole communication

process by including the injection of the messages by the source processors, the

resource contentions and deadlock detection and recovery. Subsequently, the

particular usage of this network simulator for each communication period is

described. I

158

Enlarging the domain (ds-DASUD)

The information collection period (T*0¡)

Remember that the information collection period is the time spent in gathering

load information for all processors in the system. Since the domain scope is a fixed

value, which does not change at each load-balancing step, the time incurred by the

information collection period will be the same for each load-balancing step.

Therefore, the simulation of load messages travelling around the system only needs

to be executed once. This simulation has been performed by injecting 2-flit messages

from all processors to all of its neighbours, and the total N ETS IM simulation time is

considered as the time spent by the information collection period.

The transfer period (T,srf)

In contrast to the information collection period, the duration of the transfer

period depends on the current step of the load-balancing simulation process. At each

load-balancing step, the execution of the load-balancing algorithm at each individual

processor provides different load movements. Therefore, the time spent in sending

and receiving those messages must be evaluated at each load-balancing step. For

that purpose, for each experiment a trace file is generated, where all load movement

decision generated for all processors at each load-balancing simulation step are

recorded. The information stored in this trace file is used as input to the NETSIM

simulator in order to evaluate the NETSIM time spent for each load-balancing

simulation step in performing the corresponding load transfer movements. In

particular, for a given load transfer of size M, the length of the corresponding

messages that was injected in the networks was 2M.

6.3.2 Computational period (T*_bal)

The computational period for ds-DASUD has been evaluated using the

formula of DASUD's complexity derived in chapter 3. Since that formula was derived

by considering the domain of a given processor as its immediate neighbours, it

should be adapted to take into account the extended model of DASUD. This updating

consists of substituting the number of direct neighbours (r) by the number of virtual

neighbours (rv) as follows:

O(rvlogrv)).

159

Chapter 6

Since the domain size

processors, the computational

is fixed for a given ds, and it the same for all

time incurred by each processor at each load-

balancing step remains constant during the whole load-balancing simulation process.

6.3.3 Trade-off factor (t_off(k))

Finally, we introduce an index to measure the trade-off between the global

standard deviation in the balance iteration k (a(k)) and the time incurred to achieve

this (Tbal (until _&)). This goodness index is called the trade-off factor and is denoted

by t_off(k). For this purpose, let us introduce the term Thal (until _ k). In the
í

previous section, we have described how the three time periods involved in the load-
i

balancing process (information 'collection period, the computational period and the

transfer period) are individually evaluated. We evaluate the duration of these periods

at each load-balancing iteration in the way described in the previous section. By

adding together all these times from step 1 until step k, we can obtain the time spent

for the load-balancing process throughout these k steps. Figure 6.3 graphically shows

the serialisation of these times, and formula (2) formally describes it. We observe that

the terms Tcl, and T¡ '_hal from formula (2) remains constant for all steps, whereas T^
~~]

depends on the current simulation step, as has previously been commented.

Furthermore, when k coincides with the last_step the evaluated time is the time spent

in the global load-balancing simulation process.

+ T,'rf) (2)

Finally, the trade-off factor is obtained by the multiplication of both parameters

involved of/c) and Tbal (until _k) , as shown in formula (3).

= Tba,(until_k)*a(k} (3)

160

Enlarging the domain (c/s-DASUD)

Load-Balancing
process

Total Load-Balancing time

Figure 6.3 Time evolution as the load-balancing process progresses.

In particular, this trade-off factor would tend to be optimal for small global load

standard deviations values, and for small load-balancing times as well. But,

furthermore, the trade-off factor will be small when one of the two operands is also

small.

6.4 The experimental study of ds-DASUD

This section is aimed to analysing the influence of domain enlargement on

balance improvement by taking into account the extra time incurred as a

consequence of sending and receiving messages beyond immediate neighbours, and

spending more time in executing the load-balancing algorithm. The experimental

study outlined below has been carried out using the same simulation framework

described in chapter 4. We recall that the set of initial load distributions used is

divided into two groups (likely and pathological), and that each initial load distribution

has been scattered by following two different shapes (Single Mountain and Chain).

Moreover, the load-balancing simulation process has been executed under two

different interconnection networks (hypercube and torus), and the system size ranges

from 8/9 to 121/128 processors. The problem size varies, as does the system size, in

order to obtain in all cases a similar initial load imbalance.

161

Chapter 6

In order to analyse the existent relation between balance improvement

throughout the load-balancing simulation process, and the time spent during that

process, the global load standard deviation has been evaluated at each simulation
\

step k (c(k)), as well as the corresponding TM(until_k). This parameter has been

evaluated for all simulation steps until the last_step is achieved. As in the previous

experimental studies, the simulation process has been run until no load movements

were produced from one iteration to the next. However, we have superimposed a

maximum number of simulation steps at which the simulation process will be

stopped, although the final stable load distribution has not been achieved. This

simulation step limit has been chosen as 2000.

The experimental study outlined in the following section is aimed at

determining which domain scope (cfs) provides the best trade-off between the final

balance degree and the time incurred to reach it. In the subsequent section, the

experimental study reported is .focused on deriving the ds that provides the best
i

balance improvement at the beginning of the load-balancing process without

executing the load-balancing process until its completeness.

6.4.1 The best degree of final balance

Figures 6.4 and 6.5 show the evolution of the global load standard deviation

(stdev) through simulation time (time) for likely initial load distributions for a 5-

dimensional hypercube and for a 6x6 torus, respectively, where all possible ds have

been considered. These two examples have been chosen as representative for both

topologies because the rest of system sizes exhibit a similar behaviour. Nevertheless,

complete simulation results may be found in Appendix D. Each plot of the depicted

curves shows the mean value of the global load standard deviation at a given step k

(a(k)) of the load-balancing simulation process for all initial load distributions versus

the mean time needed to achieve such situations (Tbal(until_&)). Although these

values are obtained for the entire balance simulation process, in order to make the

analysis of the curves easier, in figures 6.4 and 6.5 only the time interval where the

relevant variations are detected have been plotted. However, this fact does not affect

the comprehension of the following discussion.

162

Enlarging the domain (c/s-DASUD)

140 ¿r
Hypercube d=5 (likely distributions)

0)•a
to

120

100

80

60

40

20

0 o
o
CM

O
O

O
O
CO

oo
CO

ooo

time

Figure 6.4 Global load standard deviation versus time for a 5-dimensional hypercube varying ds from 1

to 5 for likely initial load distributions.

<D
•
w

120,

100

80

60

40

20

0

Torus 6x6 (likely distributions)

oo
CM

oo oo
CD

oo
CO

O
O
O

o
o
CM

O
O

time

Figure 6.5 Global load standard deviation versus time for a 6x6 torus varying ds from 1 to 6 for likely

initial load distributions.

163

Chapter 6
i

From a preliminary analysis of figures 6.4 and 6.5 we can conclude that there

seems to be no difference in the global balance rate, whichever domain scope is

applied. However, we observe that there is a time beyond which the balance rate of

larger ds's is slowed down reversing their behaviour with respect to small domain

scopes. We call this atypical phenomenon inversion rate effect. The magnitude of this

effect is more appreciable in tables 6.2 and 6.3 where the mean values for the final

global load standard deviation, the total load-balancing time and the total number of

load-balancing simulating steps are shown for hypercube and torus respectively. It is

interesting to observe that the final balance degree achieved for all domain scopes is

approximately the same, but only a slight improvement is obtained for larger cfs's.

Notice that in the case of the largest ds, the perfect final balance situation is achieved

as was expected, i.e., stdev equal to 0 when L (problem size) is an exact multiple of

the underlying number of processors, and is very close to 0 otherwise. In the case of

the largest system sizes for both torus and hypercube topologies (121 and 128

processors), the values included in the tables do not represent the real final situation

because in both cases the simulation step limit previously commented on has been

achieved.

With respect to the load-balancing simulation steps needed to reach the final

load distribution, one can observe that, on average, this follows a sequence of values

that exhibits a global minimum at approximately ds equal to 3, on average, for torus
i

topologies, whilst for hypercube topologies the minimum number of steps alternates

between ds equal to 1 and 2 (yellow cells). In contrast, the time incurred in attaining

this final situation significantly increases as the domain scope also increases. For

instance, for all topology and system sizes, the biggest domain scope, instead of

being the fastest in reaching the final stable situation, becomes the slowest.

Unexpectedly, the minimum time is obtained with cfs equal to 1 (green cells).

164

Enlarging the domain (ds-DASUD)

Pathological distributions

Table 6.2 Global load standard deviation, load-balancing time and steps at the end of the load-balancing

process in hypercube topologies for all domain scopes.

165

Chapter 6

Pathological distributions

$r*:.

b
Table 6.3 Global load standard deviation, load-balancing time and steps at the end of the load-balancing

process in torus topology for all domain scopes.

166

Enlarging the domain (c/s-DASUD)

Let us analyse more precisely the reasons for this atypical behaviour. For this

purpose figures 6.6(a) and 6.6(b) must also be studied. These figures show the mean

value of the global maximum load difference at each load-balancing step for all likely

initial load distributions for a 5-dimensional hypercube and a 6x6 torus topology

respectively and for all domain scopes. The results for the remaining system sizes

and initial load distributions patterns can be found in Appendix D. Note that the global

maximum load difference also suffers from the inversion effect which is caused by the

existence of a step beyond which larger ds slowed down the reduction of the global

maximum load difference, as for standard deviation. The reasons for such behaviour

are, although it apparently contradictory, the ability of DASUD to evenly balance

unbalanced domains and certain convergence requirements. We now analyse these

motives in detail.

120

100

80

60

Hyperciibe varying d.=(l..5| with d=5
likely distributions

d.= l
d.=2
d.=3
d,=4
d.=5

200

Torus 6x6 varying d,=(l..6)
likely distributions

0 20 40 60 80 100 120 140 160 180

steps

(a) (b)

Figure 6.6 Global maximum load difference versus load-balancing steps for (a) a 5-dimensional

hypercube and (b) a 6x6 torus for all possible domain scopes.

167

Chapter 6

In chapter 4 we observed that the original DASUD algorithm has the ability of

reaching, in most cases, even load distribution or, at most, in keeping the unbalance

degree bounded by half the value of the diameter of the topology plus one. The

extended version of DASUD, tfs-DASUD, also exhibits this ability. In particular, when

the value of ds coincides with the topology diameter (cf) we can assert that the final

stable state will be evenly. This characteristic stems from the capability of this load-

balancing algorithm to search unbalanced domains, and to equilibrate them

(maximum load difference available within the domain 0 or 1). Since the domain of

each processor becomes the whole system when cfs is equal to d, c/s-DASUD is

iterated until the perfect final balance situation is achieved. Attaining the balance

state implies a great effort by ds-DASUD for large ds in terms of load-balancing steps,

as is clearly depicted in figures 6.6(a) and 6.6(b). However, this effort is spent in

moving small load quantities throughout the system, since the maximum load

difference is not greatly reduced at each load-balancing step. The main reason for

such an anomalous situation is certain convergence requirements needed by DASUD

and by c/s-DASUD as well. We recall some implementation features from chapter 3 of

DASUD which are directly involved in the inversion rate effect. During the execution

of one iteration of the DASUD algorithm in a given processor, load movement

decisions may be performed as a consequence of executing the named PIM block.

This DASUD block processes all the received instruction messages and, sometimes,

as a consequence of attending one of them, the movement of one load unit can be

ordered. In this case, the rest of the instruction messages are deleted. Bearing in

mind such behaviour, let us analyse what occurs in the following example. Assume 5

processors connected in a linear array, as shown in figure 6.7. The real diameter of

this interconnection network is 4 (d=4) and, since the extended version of DASUD

used in this example is 4-DASUD, its virtual diameter is 1 (cfy=1). Therefore, the

domain of each processor includes all system processors, and the virtual topology

corresponds to a full-connected system. The initial load distribution is that depicted in

figure 6.7(a), where the maximum load difference in the whole system, coinciding

with each processor domain, is 2 load units. Thus, it is detected as unbalanced by 4-

DASUD, and some actions are carried out to arrange it. In particular, all processors

detect their domains as unbalanced, because the global load average is equal to 9.2,

but only processors 4 and 5 really perform certain actions. These actions are derived

168

Enlarging the domain (ds-DASUD)

from the execution of the second stage of 4-DASUD. Since both processors observe

that the maximum load difference within their domain is bigger than 1 load unit, and

that their load values do not correspond to the biggest in the corresponding domain,

both processors execute the SIM block of 4-DASUD. Consequently, both processors

send one instruction message to processor 1 commanding 1 load unit to be sent to

processor 4. When processor 1 processes this message, it will only attend to one of

them by performing the load movement shown in figure 6.7(a). The resulting load

distribution is depicted in figure 6.7(b). The unattended message will be deleted.

Subsequently, the execution of the next iteration of 4-DASUD generates processors

1, 4 and 5 to send, one instruction message each to processor 2, commanding send

1 load unit to be sent to processor 5. Finally, only one of these messages will be

attended to, and the final load distribution achieved is that shown in figure 6.7(c).

processor]
indexes

(a)

(b)

(c)

Figure 6.7 Load-balancing process applied using the 4-DASUD algorithm to a linear array with 5

processors

169

Chapter 6

This slow way to balance a domain that includes all processors in the system

becomes slower as the system grows. Notice that all instruction messages sent at

each iteration of the load-balancing process are driven to the same processor instead

of being sent to different processors. This design characteristic is needed to ensure

the convergence of the algorithm. Therefore, we can conclude that the convergence

requirements and the perfect local balance always achieved by DASUD whatever ds

is used, are the causes of the slow convergence rate for larger ds.

At this point of the analysis of ds-DASUD, a preliminary conclusion arises:

although intuitively the extended version of DASUD is supposed to be more effective

in reaching a final stable load distribution, we have experimentally demonstrated that

the best trade-off between the ability to stop the balance process and the time

incurred to achieve it was exhibited by the original DASUD. There are two reasons

that explain this anomalous behaviour. First, as the domain scope increases, the

communication and computational costs significantly increase as well. Secondly,

once a certain balance degree has been achieved in the system, the process to

further reduce the existing imbalance is slower for large domains than for small

domains. Therefore, we reoriented the current study to find an alternative solution if

the load-balancing process is not carried out to its completeness. In particular, we

were interested in the possibility of setting a priori a number of balancing steps to

stop the load-balancing process with the certainly of having reached a substantial

unbalanced reduction.

6.4.2 Greater unbalancing reduction

Tables 6.4 and 6.5 show the global standard deviation (stdev), the trade-off

factor (t_off) and the percentage of unbalance reduction (%) for some particular steps

from the very beginning of the load-balancing process (4 and 7). Each cell includes

the mean value of the results obtained for likely initial load distributions. Since

pathological initial load distributions exhibit a similar behaviour, their results are

omitted here but they are also included in table D.1 and D.2 in appendix D. In order to

put the initial load unbalance at the same level for all system sizes, problem size L

170

Enlarging the domain (ds-DASUD)

has been varied proportionally to the number of processors. This fact is shown in the

column denoted by step 0, where the global load standard deviation before executing

the load-balancing process is included. Although we only show the values for the

global load standard deviation, and the trade-off factor at steps 4 and 7, the same

information has been evaluated and recorded throughout the whole load balancing

process. However, we have chosen these initial balancing steps because we

detected that during this period c/s-DASUD was able to reduce the initial load

unbalance up to 90% and, in most cases improvement could be even greater. We

indicate in green, for each system size, the biggest unbalance reduction and also the

corresponding load standard deviation. Furthermore, yellow indicates the best trade-

off factor for each system size too.

We can observe that for most of the cases both colour indices coincide in the

same domain scope value. More precisely, for hypercube topologies, it is obvious

that ds equal to 3 is, on average, the best choice. However, this criterion does not

apply to the torus topology. In this case we clearly observe that the best domain

scope depends on system size. In particular, we can experimentally derive an optimal

ds in order to obtain a fast unbalance reduction by the following formula

d
—
2

where d is the diameter of the topology. The optimal ds values for both topologies are

indicated in red in both tables.

171

Chapter 6

Hypercithe Likely distributions

134,42 17136,59

134,42

134,42

134,42

133,03

133,03

133,03

12,98

14,95

14,89

60,65

133,03

133,03

133,03

31,07

23,25

90,3

88,8

88,9

54,4

26,01

28,68

28,13

76,6

82,5

24239,50

29492,99

29766,60

80,2

78,5

78,8

30523,17

72206,99

12,75

14,84

14,79

35,63

21,57

90,5

88,8

89

73,2

83,7

36776,42

45690,51

46154,22

E9635Í7JL

32617,08

49445,57

99923,61

116302,1

114600,3

23,01

25,88

28,62

28,07

82,7

80,5

78,5

78,8

118297,1

161719,6

189485,1

186383,8

Table 6.4 Standard deviation, unbalance reduction percentage and trade-off between balance degree

and time for hypercube topologies and for all possible ds at different load-balancing steps.

172

Torus

step

nxn

3x3

4x4

6x6

8x8

11x11

10

Enlarging the domain (ds-DASUD)

Likely distributions

stdev

117.15

stdev

9,22 92.12

to

2102,85 3,36

stdev

97,1

Loff
992,80

117.15 tía*) ti
128.22

128.22

34,74

5,95

72,9

128.22

128.22

119.48

119.48

119.48

3,55

49,61

24,33

9,38

95,3

97,27

8671,97

58,47

79,63

92,14

2379,11

2222,30

14,41

14525,16

11059,08

7643,76

3,57

3,17

88,7

97,2

4949,65

1967,83

35,21

14,48

6,86

97,5

70,5

87,8

94,2

2729,41

13802,32

9619,57

8317i24

119.48

119.48

134.42

134.42

134.42

134.42

7,32

8,44

70,53

46,50

27,35

134.42

14,64

mm mi/

93,8

92,8

47,5

65,4

79,6

9276,27

10829,25

•20539Í18

23741,51

29022,10

24971,08

134.42

134.42

134.42

144.14

144.14

144.14

144.14

144.14

144.14

144.14

13,67

15,70

14,89

83,75

68,08

56,75

36,84

25,91

144.14

144.14

22,93

24,27

89,8

88,3

88,9

41,9

52,7

60,6

74,4

82

84,1

37270,91

45863,81

44589,42

•21557Í25

37041,99

68063,11

78724,50

88097,55

7,11

8,26

61,38

33,86

17,44

11,46

93,1

54,3

74,8

87

91,4

13,45

15,59

14,79

79,19

58,83

44,33

26,62

20,80

89,9

88,4

88,9

45,1

59,2

69,2

81,5

85,5

111291,33|

116659,14

,mm\ os®

13801,85

16329,50

23998!05

25527,80

28260,42

29982,51

58003,30

72697,34

70755,54

27.81 8150

48572,11

84999,45

89771,03

112173,61

158905,38

27,53

26,80

83,2

80,9

81,4

153230,30

220648,41

225854,32

20,89

24,07

27,44

26,74

85,5

83,3

80,9

81,4

191785,35

260083,33

358625,85

373368,61

Table 6.5 Standard deviation, unbalance reduction percentage and trade-off between balance degree

and time for torus topologies and for all possible ds at different load-balancing steps.

173

Chapter 6

Let us analyse in more detail what occurs with the torus topology. The torus

topology exhibits a low connectivity degree because the number of directed

connected processors remains constant as the system size increases. Therefore, the

size of the domain rises slowly, increasing the number of iterations needed to

significantly reduce the initial unbalance as well as the time incurred for that.

However, the proposal cfs value exhibits the best unbalance reduction for all system

sizes, excluding 11x11 torus, without a substantially increase in the trade-off factor at

step 4. At step 7 the unbalance reduction is very close, as in step 4, but the trade-off

factor is increased by more than 40%, which supposes a very high increment in load-

balancing time. Although this penalty is not so important for hypercube topology, step

4 also exhibits the best compromise between balance reduction and time. Therefore,

iterating the load-balancing process 4 times by using the proposal optimal ds, the

unbalanced reduction obtained will be more than 90% in most cases.

6.5 Conclusions to this chapter

We now summarise the main conclusions that arise from the above study. In

scenarios where the best final balance degree is desired, the best choice is to

execute the original DASUD algorithm until it finishes. Typical frameworks that suit

this choice well are the execution of parallel applications such as Image thinning, N-

body, Gaussian reduction, Branch&Bound,... where the load units can be expressed

in terms of data. These applications are in need of synchronisation in some particular

execution times. These points are good time candidates to execute the load-

balancing process for evenly distributing the data. The load-balancing process should

be executed simultaneously in all processors with the aim of achieving the best

balance degree.

In contrast, frameworks where load units can be identified with independent

processes without dependency restrictions best fit the second approach, where no

termination detection technique is needed, but the number of balance steps and the

domain scope should be set before starting, depending on the underlying topology

and system size. In particular, for hypercube topology, the best ds is equal to 3,

174

Enlarging the domain (ds-DASUD)

whereas for torus topology the best cfs depends on the underlying diameter topology

in the following way:

j à ,d. = — + 15 2

However, for both topologies, in order to obtain a balance improvement larger

than 90% with respect to the initial load imbalance, it is enough to execute the load-

balancing process no more than 10 times.

175

A new distributed diffusion algorithm for dynamic load-balancing in parallel systems

Chapter 7
Conclusions and future work

Abstract

This chapter presents the conclusions obtained from this thesis and the

current work and work plan to be undertaken in the future in order to continue

research on load-balancing algorithms.

177

Conclusions and future work

7.1 Conclusions and main contributions

After working for the last few years on the development of this thesis, one has

to think about what the initial goals were, and what degree of achievement has been

attained for them. We shall now describe each of the main goals in this thesis and

how each one of them has been satisfactory achieved.

First of all, our work was aimed at developping an overview of the dynamic

load-balancing problem in parallel computing by summarising the main issues that

must be considered in this problem. The exhaustive analysis of the state of the art in

load-balancing algorithms led to the elaboration of a load-balancing algorithm

taxonomy where algorithmic design aspects, as well as generic implementation

features of load-balancing strategies are considered. This load-balancing

classification is included in the following book:

[SenOO] M.A.Senar, A. Cortés, A. Ripoll et alter.

Chapter 4: Dynamic Load Balancing,

Parallel Program Development for Cluster Computing: Methodology, Tools

and Integrated Environments, editors José C. Cunha, Peter Kacsuk &

Stephen C. Winter, Ed. Nova Science, (to be published)

The next goal was to develop a dynamic load-balancing algorithm that drives

any initial load distribution in parallel system into the even load distribution by treating

load as indivisible units. We focused on the development of a totally distributed load-

balancing algorithm,because it arose as the most popular approach in the literature,

as opposed to centralised schemes. In particular, we were interested in nearest-

neighbour strategies for their apparent simplicity, effectiveness and scalability. Our

preliminary proposal of load-balancing algorithm can be found in:

179

Chapter 7

[Luq94] E.Luque, A.Ripoll, A. Cortés and T.Margalef, A Distributed Diffusion

Method for Dynamic Load-Balancing on Parallel Computers, Actas de las

V Jornadas de Paralelismo, (Malaga) Spain, September 1994, pp. 74-85.

[Luq95] E. Luque, A. Ripoll, A. Cortés, T. Margalef, A Distributed Diffusion Method

for Dynamic Load Balancing on Parallel Computers, Proceedings of the

Euromicro Workshop on Parallel and Distributed Processing, January

1995, pp. 43-50.

This preliminary DASUD proposal incorporated two important features.

One of them was its ability to detect most of the local unbalanced load distributions

and to arrange them by only performing local load movements, and the other one, lay

in its asynchronous implementation. Later, a more accurate analysis of these

problems led to the incorporation of actions complementary to DASUD, facilitating

load movements between non-directed connected processors. With the incorporation

of these actions DASUD was always able to reach optimal local load distributions

and, consequently in most of the cases, global balanced load distributions were

achieved.

The analysis of the balancing problems exhibited by discrete nearest-

neighbour load-balancing algorithms can be found in the following publications:

[Cor97] A. Cortés, A. Ripoll, M. A. Senar and E. Luque, Dynamic Load Balancing

Strategy for Scalable Parallel Systems, Parallel Computing:

Fundamentals, Applications and New Directions (ParCo97), 1998

Elsevier Science B.V., pp.735-738.

[Rip98] A. Ripoll, M.A. Senar, A. Cortés and E. Luque, Mapping and Load-

Balancing Strategies for Parallel Programming, Computers and Artificial

Intelligence, Vol. 17, N° 5, 1998, pp. 481 -491.

180

Conclusions and future work

Since DASUD was executed in an iterative way, one of the most important

issues that arises was to ensure that the load-balancing process provides a final

stable load distribution, i.e., the algorithm globally converges. As far as we are aware,

there is no proof, in the literature, that demonstrates the convergence of realistic

iterative load-balancing algorithms. For this reason, a new important goal arose: to

describe DASUD in a formal way that allows us to prove its convergence. This goal

was completely accomplished. Furthermore, having a formal description of DASUD

allowed us to derive theoretical upper bounds for the final balance degree achieved

by DASUD and for the number of iterations of the algorithm needed to obtain it. The

formal description of DASUD, as well as a sketch of its convergence proof were

reported in the following publication:

[Cor98] A. Cortés, A. Ripoll, M. A. Senar, F.Cedó and E. Luque, On the Stability

of a Distributed Dynamic Load Balancing Algorithm, IEEE Proc. Int'l Conf.

Parallel and Distributed Systems (ICPADS), 1998, pp. 435-446.

The full convergence demonstration of DASUD is provided in the following

technical report:

[Cor98e] A.Cortés, A. Ripoll, M. A. Senar, F.Cedó and E.Luque, On the

convergence of SID and DASUD load-balancing algorithms, PIRDI-8/98,

Technical Report, Computer Science Department, Universitat Autònoma

de Barcelona, 1998. http://pirdi.uab.es/

The proposed algorithm was compared by simulation to three well-known

load-balancing algorithms within the nearest-neighbour category: SID (Sender-

Initiated Diffusion), GDE (Generalised Dimension Exchange) and AN (Average

Neighbourhood). For this purpose, a simulation environment was developed where

different load-balancing strategies could be simulated under the same conditions.

This load-balancing simulator was designed to easily change parameters such as

181

Chapter 7

topology (hypercube and torus), system size (from 8 to 128 processors) and initial

load distribution. In particular, the set of initial load distributions simulated included

situations which vary from load distributions that exhibit a light initial imbalance to

load distributions with a high initial unbalance degree.

The comparative analysis was performed in terms of stability and efficiency.

On the one hand, stability was evaluated by measuring the dif_max and a (global

standard deviation) quality metrics. On the other hand, the number of simulation

steps needed to reach the final stable load distribution (steps) and the quantity of

load movements incurred in the global load-balancing process (load units - u -) was

evaluated to measure efficiency. The whole comparative study was performed for

each quality metric and, for all of them, the influence of the initial load distribution

pattern, system size and the shape of the initial load distribution were individually

considered. The results show that our algorithm obtains the best trade-off between

the final balance degree and the time incurred to achieve it.

This simulation environment also provided a framework to experimentally

validate the theoretical upper bound for the final balance degree achieved by

DASUD, as well as the upper bound for the number of iterations needed to coerce

the system into a stable state.

The most relevant results from this experimental evaluation have been

published in:

[Cor98b] A. Cortés, A. Ripoll, M. A. Senar, P.Pons and E. Luque, Un algoritmo

para balancear dinámicamente las tareas de un programa en sistemas

paralelos, Actas del IV Congreso Argentino Internacional de Ciencias de

la Computación (CACIC'98), 1998, pp. 707-721.

[Cor98c] A.Cortés, A. Ripoll, M. A. Senar and E.Luque, Evaluation of the Balancing

Qualities of the DASUD algorithm, Actas de las IX Jornadas de

Paralelismo, San Sebastian (Spain), September 1998, pp. 381-388.

182

Conclusions and future work

[Cor98d] A.Cortés, A. Ripoll, M. A. Senar and E.Luque, Performance Comparison

of Dynamic Load-Balancing Strategies for Distributed, PIRDI-9/98,

Technical Report, Computer Science Department, Universitat Autònoma

de Barcelona, 1998. http://pirdi.uab.es/

[Cor99] A. Cortés, A. Ripoll, M. A. Senar and E. Luque, Performance Comparison

of Dynamic Load-Balancing Strategies for Distributed Computing, IEEE

Proc. Hawaii Int'l Conference on Systems Sciences (HICSS-32), 1999

[Cor99b] A. Cortés, A. Ripoll, M. A. Senar, P. Pons and E. Luque, On the

Performance of Nearest-Neighbours Load Balancing Algorithms in

Parallel Systems, IEEE Proc. of the Seventh Euromicro Workshop on

Parallel and Dsitributed Processing (PDP'99), 1999, pp. 170-177.

Once the goodness of DASUD was established with respect to other

algorithms in the literature, we focused on studying different aspects of DASUD. In

particular, we experimentally tested the scalability of DASUD with respect to problem

size and also the system size. From the experiments performed with this aim, we can

conclude that DASUD is well-scalable, exhibiting the same behaviour for large sized

systems as well as for large problem sizes, with only a slight dependence on the

topology's diameter being shown.

Finally, the DASUD's ability to always reache a local balance load distribution

by only considering load information from its immediate neighbours caused us to

raise the issue of what would happen if we increased the DASUD scope so as to

provide it, as near neighbours, not only with processors at distance 1 from any

processor, but also those at distance 2 or 3, and so on.... We analysed this effect of

enlarging the locality scope of the algorithm, and an extended version of the original

DASUD was proposed (ds-DASUD). Although we intuitively sensed that disposing of

more load information would produce the best results, from the experimental study

we concluded that the increase in communication costs incurred in collecting load

information and transferring load beyond immediate neighbours, as well as the

increment in the computational time of the load-balancing algorithm, degrades the

183

Chapter 7

response rate of DASUD. Therefore, under execution environments where perfect

balance distribution is needed (maximum load difference in the system should be

smaller or equal to one load unit), the original DASUD algorithm where the domain of

each processor is restricted to the direct neighbourhood obtains the best trade-off

between the final balance degree and the time spent in attaining it with respect to any

c/s-DASUD. However, in execution environments where it is sufficient to highly reduce

initial load imbalance, the extended version of DASUD provides better results if the

load-balancing process is stopped before reaching its conclusion. In particular, we

have observed that for decreasing the original imbalance more than 90%, it is enough

to iterate the load-balancing process 10 times. The ds values that exhibit this ability

are 3 for hypercube topologies, and half the diameter plus one for torus. For example,

for a 4x4 torus topology whose diameter is equal to 4, the best ds corresponds to 3

and, for a 6x6 torus we will chose ds equal to 4. These experiments are currently in

process of publication.

7.2 Current and future work

From the experience obtained throughout the development of this work, as

explained in this thesis, new ideas have emerged, some of which are practically

concluded, whilst others are still being worked on. We now outline all current and

future lines of work, as well as their current degree of development.

An important contribution deriving from of this work, is the development of a

general convergence proof for realistic iterative and totally distributed load-balancing

algorithms. DASUD's convergence proof provides the basis for this new

demonstration. A general model for realistic load-balancing algorithms has been

developed and the convergence of this realistic load-balancing model is proved. As

far as we are aware, it is the first convergence proof for load-balancing algorithms

that treat loads as indivisible. Therefore, since most of the realistic strategies from the

literature fit well with this load-balancing model, their convergence is, in this way, fully

established. This proof is reported in:

184

Conclusions and future work

[CedOO] F.Cedó, A. Ripoll, A.Cortés, M. A. Senar and E.Luque, On the

convergence of distributed load-balancing algorithms with integer load,

PIRDI-2/00, Technical Report, Computer Science Department, Universitat

Autònoma de Barcelona, 2000. http://pirdi.uab.es/ (submitted to SIAM

Journal of Computing).

The load-balancing algorithm proposed in this work, DASUD, has been

validated by simulation for a wide set of initial load distributions that have been

considered as static load situations, where load is neither created nor destroyed

during the load-balancing process. Therefore, in order to evaluate the impact of

application dynamicity on different load-balancing algorithms, some changes should

be introduced in the current load-balancing simulator. For this purpose, the load-

balancing simulator used in the experimental study described in this thesis has been

changed to incorporate the capacity of updating the load values for each individual

processor during the load-balancing simulation process.

Given the theoretical nature of this work, an immediate challenge was to carry

out a real implementation of our DASUD algorithm. Currently, a preliminary real

asynchronous version of DASUD has been developed. This real implementation was

implemented on a cluster of PC's under Linux. In order to be able to execute DASUD

for different interconnection patterns (hypercube, torus ...) a mechanism to logically

configure the underlying platform such as different interconnections schemes is

provided. As a result of this work the following degree project is derived [HerOO].

Once DASUD has been implemented in a real platform, the following step should

be to incorporate DASUD to a real application whose parallel execution in a

multiprocessor environment generates a significant computational unbalance

between processors as the application computation progresses.

Currently, we are in a process that joins the DASUD load-balancing algorithm

with a parallel version of the image thinning application [PlaOO]. Since this is an

application with data parallelism, the observed imbalance is caused by the data

distribution throughout the processors.

185

Chapter 7

We recall that in chapter 1 of this thesis we introduce the idea that to design a

load-balancing strategy three functional blocks should be considered: the Load

Manager block, the Load-Balancing Algorithm block and the Migration Management

block. In this thesis we focused on the development of a Load-Balancing Algorithm

(DASUD) by skipping the other blocks. However, in execution environments where

load consists of independent task, DASUD could be applied directly. In this case, it

would simply require having a tool to facilitate moving tasks between processors.

But, what it happen when the underlying parallel application is defined as a set of co-

operating tasks, i.e., when there are dependency relations between the tasks?. A

new line of work arises from this question, whose principal objective is to provide a

framework for distribution strategies to obtain the necessary data in estimating costs

and profits from possible migrations, and then decide whether or not to migrate such

tasks.

186

References
[Ahm91] Ishfaq Ahmad and Arif Ghafoor, Semi-Distributed Load Balancing For

Massively Parallel Multicomputer Systems, IEEE Transactions on Software

Engineering, Vol. 17, No. 10, October 1991, pp. 987-1004.

[Ara96] J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey and P.

Stephan, Dome: parallel programming in a distributed computing

environment. In Procc. of the International Parallel Processing Symposium

(IPPS-96), 1996, pp. 218-224.

[Bak96] M.A. Baker, G.C. Fox and H.W. Yau, A Review of Commercial and

Research Cluster Management Software, Northeast Parallel Architectures

Center, Syracuse University, Technical Report, June 1996

[Bar90] C. Barmon, M.N. Faruqui and G.P. Battacharjee, Dynamic Load Balancing

Algorithm in a Distributed System, Microprocessing and Microprogramming

29, 1990/91, pp. 273-285. -

[Bau88] K. M. Baumgartner and R. Kling and B. Wah. A Global Load Balancing

Strategy for a Distributed System Proc. Int. Conf. on Future Trends in Distr.

Comp. Syst., pp. 93-102, 1988.

[Bau95] Joey Baumgartner, Diane J. Cook, Behrooz Shirazi. Genetic Solutions to

the Load Balancing Problem International Conference on Parallel

Processing ICPP Workshop on Challenges for Parallel Processing",, pp.

72-81, CRC Press, August 1995.

[Ber89] D.P. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.
• - *•

[Boi90] J.E. Boillat, Load Balancing and Poisson Equation in a Graph, Concurrency:

Practice and Experience, Vol. 2(4), December 1990, pp. 289-313.

[Bru99] R.K. Brunner and L.V. Kaé, Handling application-induced load imbalance

using parallel objects, Technical Report 99-03, Parallel Programming

Laboratory, Department of Computer Science, University of Illinois at

Urbana-Champaign, May 1999.

[Cha95] Hua Wu David Chang and William J. B. Oldham. Dynamic task allocation

models for large distributed computing systems. IEEE Transactions on

Parallel and Distributed Systems, 6(12), pp. 1301-1315, December 1995.

187

References

[Cas95] J. Casas et alter, MPVM: A migration transparent version of PVM,

Technical Report CSE-95-002, Dept. of Computer Science and

Engineering, Oregon Graduate Institute of Science & Technology,

February, 1995.

[CedOO] F.Cedó, A. Ripoll, A.Cortés, M. A. Senar and E.Luque, On the convergence

of distributed load-balancing algorithms with integer load, PIRDI-2/00,

Technical Report Computer Science Department, Universitat Autònoma de

Barcelona, 2000. http://pirdi.uab.es/

[Cha85] K.M. Chandy and L. Lamport, Distributed snapshots: determining global

states of distributed systems, ACM Trans. Còmput. Syst. Vol. 3, 1985, pp.

63-75.

[Cor96] Antonio Corradi, Letizia Leonard!, Diffsusive Algorithms for Dynamic Load

Balancing in Massively Parallel Architectures, DEIS Technical Report N°

DEIS-LIA-96-001, LIA Series N° 8, April 1996. http://www-

lia.deis.unibo.it/Research/TechReport.html

[Cod97] Codine: Computing in Distributed Networked Environments, GENIAS

Software, URL:/www.genias.de/genias/english/codine.html, 1997.

[Cor97] A. Cortés, A. Ripoll, M. A. Senar and E. Luque, Dynamic Load Balancing

Strategy for Scalable Parallel Systems, Parallel Computing: Fundamentals,

Applications and New Directions (ParCo97), 1998 Elsevier Science B.V.,

pp.735-738.

{Cor98] A. Cortés, A. Ripoll, M. A. Senar, F.Cedó and E. Luque, On the Stability of

a Distributed Dynamic Load Balancing Algorithm, IEEE Proc. Int'l Conf.

Parallel and Distributed Systems (ICPADS), 1998, pp. 435-446.

[Cor98b] A. Cortés, A. Ripoll, M. A. Senar, P.Pons and E. Luque, Un algoritmo para

balancear dinámicamente las tareas de un programa en sistemas

paralelos, Actas del IV Congreso Argentino Internacional de Ciencias de la

Computación (CACIC'98), 1998, pp. 707-721.

[Cor98c] A.Cortés, A. Ripoll, M. A. Senar and E.Luque, Evaluation of the Balancing

Qualities of the DASUD algorithm, Actas de las IX Jornadas de

Paralelismo, San Sebastian (Spain), September 1998, pp. 381-388.

[Cor98d] A.Cortés, A. Ripoll, M. A. Senar and E.Luque, Performance Comparison of

Dynamic Load-Balancing Strategies for Distributed Computing, PIRDI-9/98,

188

References

Technical Report Computer Science Department, Universitat Autònoma de

Barcelona, 1998. http://pirdi.uab.es/

[Cor98e] A.Cortés, A. Ripoll, M. A. Senar, F.Cedó and E.Luque, On the convergence

of SID and DASUD load-balancing algorithms, PIRDI-8/98, Technical

Report Computer Science Department, Universitat Autònoma de

Barcelona, 1998. http://pirdi.uab.es/

[Cor99] A. Cortés, A. Ripoll, M. A. Senar and E. Luque, Performance Comparison

of Dynamic Load-Balancing Strategies for Distributed Computing, IEEE

Proc. Hawaii Int'l Conference on Systems Sciences (HICSS-32), 1999

[Cor99b] A. Cortés, A. Ripoll, M. A. Senar, P. Pons and E. Luque, On the

Performance of Nearest-Neighbours Load Balancing Algorithms in Parallel

Systems, IEEE Proc. of the Seventh Euromicro Workshop on Parallel and

Dsitributed Processing (PDP'99), 1999, pp. 170-177.

[Cor99c] Antonio Corradi, Letizia Leonard! and Franco Zambonelli, Diffusive Load-

Balancing Policies for Dynamic Applications, IEEE Concurrency Parallel

Distributed & Mobile Computing, January-March 1999, pp. 22-31.

[Cyb89] George Cybenko, Dynamic Load Balancing for Distributed Memory

Multiprocessors, J.Parallel Distributed Compt. 7, 1989, pp. 279-301.

[Dan97] S.P. Dandamudi and M. Lo, "A Hierarchical Load Sharing Policy for

Distributed Systems", IEEE Int. Symp. on Modeling, Analysis and

Simulation of Computer and Telecomm. Systems (MASCOTS), Haifa,

Israel, 1997, pp. 3-10.

[Die99] Ralf Diekmann, Andreas Frommer, Burkhard Monien, Effiecient schemes for

nearest neighbors load balancing, Parallel Computing, 25, (1999), pp. 789-

812.

[Dij83] E.W. Dijkstra, W.H.J. Feijen and A.J.M. van Gasteren, Derivation of a

termination algorithm for distributed computations, Inform. Processing Lett.

Vol. 16, 1983, pp. 217-219.

[Dim98] B. Dimitrov and V. Rego, Arachne: a portable threads system supporting

migrant threads on heterogeneous network farms, IEEE Trans. On Parallel

and Distrib. Syst., Vol. 9(5), pp. 459-469, 1998.

189

References

[Dou91] F. Douglis and J. Ousterhout, Transparent process migration: design

alternatives and the Sprite implementation, Software - Practice and

Experience, 21 (8), pp. 757-785, August, 1991.

[Eag85] Derek L. Eager, Edwuard D. Lazowska and John Zahorjan, A Comparison

of Receiver-Initiated and Sender-Initiated Adaptive Load Sharing, ACM

SIGMETRICS, Conference on Measurement and Modelling of Computer

Systems, 1985, pp. 1-3.

[Eri88] O. Eriksen, A termination detection protocol and its formal verification,

Journal of Parallel and Distributed Computing, 5, 1988, pp. 82-91.

[Eva94] D.J. Evans, W.U.N. Butt, Load Balancing with Network Partitioning Using

Host Groups, Parallel Computing 20 (1994), pp. 325-345.

[Fer87] Ferrari D. and Zhou S.,An empirical investigation of load indices for load

balancing applications, Proc. of Performance' 87, pp 515-528, 1987.

[Fio78] S. Fiorini and R.J. Wilson, Edge-coloring of graphs, In L. W. Beineke and

R.J. Wilson editors, Selected Topics in Graph Theory, Academic Press

1978, pp. 103-125.

[Fox89] G.C. Fox, W.Furmanski.J.Koller and P.Simic, Physical optimization and load

balancing algorithms, In Proceedings of Conference on hypercube

Concurrent Computers and Applications, pp. 591-594, 1989.

[Fra82] N. Francez and M. Rodeh, Achieving distributed termination without

freezing, IEEE Trans. Software Eng. Vol. SE-8, May 1982, pp. 287-292.

[Fra99] D. Franco, I. Garcés and E. Luque, "A new method to make communication

latency uniform: Distributed Routing Balancing", Proc. of ACM International

Conference on Supercomputing (ICS99), 1999, pp. 210-219.

[HerOO] Jaime Herrero Sánchez, Diseño e implementation de un algoritmo

asincrono de balanceo de carga en un sistema distribuido, Enginyeria

Superior en Informàtica (E.T.S.E),Universitat Autònoma dé Barcelona, Sep.

2000.

[Hor93] G. Horton, A Multi-Level Diffusion Method for Dynamic Load Balancing,

Parallel Computing 19, 1993, pp. 209-218.

[Hos90] S.H. Hosseini, B. Litow, M.Malkawi, J.McPherson, and K. Vairavan, Analysis

of a Graph Coloring Based Distributed Load Balancing Algorithm, Journal

of Parallel and Distributed Computing 10, 1990, pp. 160-166.

190

References

[Hu99] Y.F. Hu, R.J. Blake, An improved diffusion algorithm for dynamic load

balancing, Parallel Computing 25 (1999), pp. 417-444.

[IBM93] IBM. IBM LoadLeveler: General information. IBM, September 1993.

[Jon97] J.P. Jones and C. Brickell, Second Evaluation of Job Queieng/Scheduling

Software: Phase 1 Report, Nasa Ames Research Center, NAS Tech.

Report NAS-97-013, June, 1997.

[Kal88] LV. Kale, Comparing the Performance of Two Dynamic Load Distribution

Methods, Proceeding of the 1988 International Conference on Parallel

Processing, Vol. 1, pp. 8-12.

[Kal96] L.V. Kale and S. Krishnan, Cham++: Parallel programming with message-

driven objects, in Gregory V. Wilson and Paul Lu, editors, Parallel

Programming using C++, pp. 175-213, MIT Press, 1996.

[Kon97] R.B. Konuru, S.W. Otto and J. Walpolè, A Migratable User-level Process

Package for PVM, Journal of Parallel and Distributed Computing, 40, pp.

81-102, 1997.

[Kum92] D. Kumar, Development of a class of distributed termination detection

algorithms, IEEE Trans. Knowledge and Data Eng. Vol. 4, N° 2, April 1992,

pp. 145-155.

[Kun91] Kunz T., The influence of different workload descriptions on a heuristic load

balancing scheme, IEEE Trans, on Software Engineering, 17 (7) pp 725-

730,1991

[Lin87] Frank C. H. Lin and Robert M.keller, The Gradient Model Load Balancing

Method, IEEE Transactions on Software Engineering, Vol. SE-13, No. 1,

January 1987, pp. 32-38.

[Lin92] Hwa-Chun Lin and C. S. Raghavendra, A Dynamic Load-Balancing Policy

with a Central Job Dispatcher (LBC), IEEE Transactions on Software

Engineering, Vol. 18, No. 2, February 1992, pp. 148-158.

[LÜI91] R. Lüling B. Monien, and F. Ramme, Load balancing in large networks: A

comparative study. In Proceedings of 3th. IEEE symposium on parallel and

distributed processing, pp. 686-689, December 1991.

[Luq94] E.Luque, A.Ripoll, A. Cortés and T.Margaléf, A Distributed Diffusion

Method for Dynamic Load-Balancing on Parallel Computers, Actas de las V

191

References

Jornadas de Paralelismo, Las Alpujarras (Malaga) Spain, September 1994,

pp. 74-85.

[Luq95] E. Luque, A. Ripoll, A. Cortés, T. Margalef, A Distributed Diffusion Method

for Dynamic Load Balancing on Parallel Computers, Proceedings of the

Euromicro Workshop on Parallel and Distributed Processing, January 1995,

pp. 43-50

[Mas96] E. Mascarenhas and V. Rego, Ariadne: Architecture of a portable threads

system supporting thread migration, Software practice and Experience, vol.

26(3), pp. 327-357, 1996.

[Mat87] F. Mattern, Algorithms for distributed termination detection, Distributed

Computing, 2, 1987, pp. 161-175.

[MÍI93] O.S. Milojicic, W. Zint, A. Dangel and P. Giese, Task migration on top of the

Mach microkernel, in Mach III Symposium Proceedings, pp. 273-289, Santa

Fe, New Mexico, April, 19-21, 1993.

[Mun95] F.J. Muniz, E.J. Zaluska, Parallel load-balancing: An extension to the

gradient model, Parallel Computing, 21 (1995), pp. 287-301.

[Mut98] S.Muthukrishnan, B. Ghosh and M.H. Schultz, First- and Second-Order

Diffusive Methods for Rapid, Coarse, Distributed Load Balancing, Theory of

Computing Systems, 31, 1998, pp. 331-354.

[Mur97] Tina A. Murphy and John G. Vaughan, On the Relative Performance of

Diffusion and Dimension Exchange Load Balancing in Hypercubes, Procc.

of the Fifth Euromicro Workshop on Parallel and Distributed Processing,

PDP'97, January 1997, pp. 29-34.

[Ni93] L.M. Ni and P.K. McKinley, "A survey of wormhole routing techniques in

direct-networks", IEEE Computer 26 (2), 1993, pp. 62-76.

[Ove96] B.J. Overeinder, P.M.A. Sloot, R.N. Heederick and L.O. Hertzberger, A

dynamic load balancing system for parallel cluster computing, Future

Generation Computer Systems, 12(1), pp. 101-115, May, 1996.

[Pap84] C. Papadimitrious, Computational Complexity, Addison-Wesley, 1994.

[Pet98] S. Pétri, M. Bolz and H. Langendôrfer, Migration and rollback transparency

for arbitrary distributed applications in workstation clusters, Proc. of

Workshop on Run-Time Systems for Parallel Programming, held in

conjunction with IPPS/SPDP'98, 1998.

192

References

[PlaOO] Mercedes Planas Sánchez, Diseño e implementación de una aplicación

paralela en un sistema distribuido: Algoritmo de Thinning, Enginyeria

Superior en Informática (E.T.S.E),Universitat Autónoma de Barcelona, Sep.

2000.

[Pru95] J. Pruyne and M, Livny, Providing resource management services to

parallel applications, in J. Dongarra and B. Tourancheau de., 2nd Workshop

on Environments and Tools for Parallel Scientific Computing, pp. 152-161,

1995.

[Ran83] S.P. Rana, A distributed solution of the distributed termination problem, Inf.

Process. Letters, Vol. 17, 1983, pp. 43-46.

[Ran88] S. Ranka, Y.Won and S. Sahni, Programming a hypercube multicomputer,

IEEE Software, 5, September 1988, pp. 69-77.

[Rip98] A. Ripoll, M.A. Senar, A. Cortés and E. Luque, Mapping and Load-Balancing

Strategies for Parallel Programming, Computers and Artificial Intelligence,

Vol. 17, N°5, 1998, pp. 481-491.

[Ron90] S. Rônn and H. Haikkonen, Distributed termination detection with counters,

Information Processing Letters, Vol 34, 1990, pp. 223-227.

[Rus99] S.H. Russ et alter, Hector: An Agent-Based Architecture for Dynamic

Resource Management, IEEE Concurrency, pp. 47-55, April-June, 1999.

[Sal90] Vikram A. Saletore, A Distributed and Adaptive Dynamic Load Balancing

Scheme for Parallel Processing of Medium-Grain Tasks, In Proc. of the 5th

Distributed Memory Còmput. Conf., pp. 994-999, 1990.

[San94] J. Sang G. Peters and V. Rego, Thread migration on heterogeneous

systems via compile-time transformations, Proc. Int'l Conf. Parallel and

Distributed Systems (ICPADS), pp. 634-639, 1994.

[Sav96] Serap A. Savari, Dimitri P. Bertsekas, Finite Termination of Asynchronous

Iterative Algorithms, Parallel Computing, vol.22, 1996, pp. 39-56.

[SenOO] M.A.Senar, A. Cortés, A. Ripoll et alter.

Chapter 4: Dynamic Load Balancing,

Parallel Program Development for Cluster Computing: Methodology, Tools

and Integrated Environments, editors José C. Cunha, Peter Kacsuk &

Stephen C. Winter, Ed. Nova Science, (to be published)

193

References

[Sh¡89b] Y. Shin and J. Fier, Hypercube systems and key applications, In K. Hwang

and D. Degroot, editors, Parallel Processing for Supercomputers and

Artificial Intelligence, McGraw-Hill Publishing Co. 1989, pp. 203-243.

[Shu89] Shu W. and Kale L.V. , A dynamic scheduling strategy for the Chare-kernel

system, In Proceedings of Supercomputing 89, November 1999.

[SÍI94] L. Silva, B. Veer and J. Silva, Checkpointing SPMD applications on

transputer networks, Procc. of the Scalable High Performance Computing

Conference, pp. 694-701, 1994.

[Sin97] P. K. Sinha, Distributed Operating Systems. Concepts and Design, IEEE

Press, 1997.

[Smi97] P. Smith and N. C. Hutchinson, Heterogeneous Process Migration: The Tui

System, Tech. Rep., Department of Computer Science, University of British

Columbia, March, 14, 1997.

[Son94] Jianjian Song, A Partially Asynchronous and Iterative Algorithm for

Distributed Load Balancing, Parallel Computing 20 (1994), pp. 853-868.

[Sta84] J.A. Stankovic and I.S. Sidhu, An adaptive bidding algorithm for processes,

clusters and distributed groups. In Proceedings of 4th. International

Conference on Distributed Computer Systems, pp. 49-59, May 1984.

[Ste95] B. Steensgaard and E. Jul, Object and native code thread mobility among

heterogeneous computers, Proc. ACM Symp. Operating Systems

Principles, pp. 68-78, 1995.

[Str98] V. Strumpen and B. Ramkumar, Portable Checkpointing for Heterogeneous

Architectures, in Fault-Tolerant Parallel and Distributed Systems, Eds.

Dimiter R. Avresky and David R. Kaeli, chapter 4, pp. 73-92, Kluwer

Academic Press, 1998.

[Sub94] Raghu Subramain, Isaac D. Scherson, An Analysis of Diffusive Load-

Balancing, In Proceedings of 6th ACM Symposiummon Parallel Algorithms

and Architectures, 1994.

[Szy85] B. Szymanski, Y. Shi and S. Prywes, Synchronized distributed termination,

IEEE Transactions on Software Engineering, SE-11(10), October 1985, pp.

1136-1140.

[Tan95] T. Tannenbaum and M. Litzkow, The Condor distributed processing

system, Dr. Dobb's Journal, pp. 40-48, 1995.

194

References

[The85] M. M. Theimer, K. A. Lantz and D. R. Cheriton, Preemptable remote

execution facilities for the V System, Proceedings of the 10th ACM

Symposium on Operating Systems Principles, Pp. 2-12, Oseas Islands,

Washington, December 1-4, 1985.

[Top84] R.W. Topor, Termination detection for distributed computations, Inform.

Process. Lett. Vol.18, 1984, pp. 33-36.

[Wat98] Jerrell Watts and Stephen Taylor, A Practical Approach to Dynamic Load

Balancing, IEEE Transaction on Parallel and Distributed Systems, vol. 9,

No. 3, March 1998, pp. 235-248.

[WÍI93] Marc H. Willebeek-LeMair, Anthony P. Reeves, Strategies for Dynamic Load

Balancing on Highly Parallel Computers, IEEE Transactions on Parallel and

Distributed Systems, vol. 4, No. 9, September 1993, pp. 979-993

[Wu96] Min-You Wu and Wei Shu, The Direct Dimension Exchange Method for

Load Balancing in k-ary n-cubes, IEEE Symposium on Parallel and

Distributed Processing, October 1996, pp. 366-369.

[Xu92] C. Z. Xu and F. C. M. Lau, Analysis of the Generalized Dimension Exchange

Method for Dynamic Load Balancing, Journal of Parallel and Distributed

Computing, 16, 1992, pp. 385-393.

[Xu93] C.-Z. Xu and F.C.M. Lau, Optimal Parameters for Load Balancing Using the

Diffusion Method in k-ary n-Cube Networks, Information Processing Letters

47,1993, pp.181-187.

[Xu94] Chengzhong Xu and Francis C. M. Lau, Iterative Dynamic Load Balancing in

Multicomputers, Journal of Operational Research Society, Vol. 45, N° 7,

July 1994, pp. 786-796

[Xu95] Cheng-Zhong Xu and Francis, C. M. Lau, The Generalized Dimension

Exchange Method for Load Balancing in k-ary n-Cubes and Variants,

Journal of Parallel and Distributed Computing 24, 1995, pp.72-85.

[Xu97] Chengzhong Xu, Francis C. M. Lau, Load Balancing in Parallel Computers.

Theory and Practice, Kluwe Academic Publishers, 1997.

[Yua90] Shyan-Ming Yuan, An Efficient Periodically Exchanged Dynamic Load-

Balancing Algorithm, International Journal of Mini and Microcomputers, Vol.

12, No. 1, 1990, pp. 1-6.

195

References

[Zho88] Songnian Zhou, A Trace-Driven Simulation Study of Dynamic Load

Balancing, IEEE Transactions oon Software Engineering, Vol. 14, No. 9,

September 1988, pp. 1327-1341

[Zna91] T.F. Znati, R.G. Meihem, and K.R. Pruhs, Dilation-based bidding schemes

for dynamic load balancing on distributing processing systems, In

Proceedings of 6th Distributed Memory Computing Conference, pp. 129-

136, April 1991.

196

A new distributed diffusion algorithm for dynamic load-balancing in parallel systems

Appendix A
DASUD load-balancing algorithm:

experimental and theoretical annexes

In chapter 3 a full description of DASUD's behaviour and a theoretical study

about it has been performed. From that analysis some theoretical upper bound have

been derived for the final the balance degree and the convergence rate of the

proposed algorithm. In this appendix, we include an experimental validation of these

bounds using the same experimental framework introduced in chapter 4. Finally, a

general load-balancing model and its convergence proof are provided.

A.1

Appendix A

A.1 Experimental validation of DASUD's final balance degree

Recall that one of the relevant characteristics of DASUD is its ability of

searching and balancing unbalanced domains. As the domain of a given processor /

coincides with its immediate neighbours one can obtain local balance load

distributions, but not always globally balanced. However, this fact is controlled by the

existence of an upper bound for the maximum global load difference achieved at the

end of the load-balancing process which has been provided in chapter 3. This bound

preserves DASUD from reaching poor final balanced situations. Recalling from that

chapter that this bound is referred as /? and it is defined as

In this section, we experimentally validate this upper bound for the final

balance degree by comparing the final maximum load difference obtained by

simulation versus the theoretical value. Firstly, we show in table A.1 the value of the

diameter (d) for hypercube and torus topologies for all simulated system sizes and

the corresponding p value, which has been theoretically evaluated.

Table A.2 shows the maximum value for the maximum load difference

obtained by DASUD in all our tests. As can be seen, in the worst case DASUD

always achieves a maximum difference lower than the corresponding value of p. This

means that, even for highly pathological initial distributions, DASUD .is able to obtain

a final maximum difference bounded by half of the diameter of the architecture plus

one.

n=n° processors

Topol.

Hyper

Torus

Diam.

log n

*{%

8/9

d

3

2

P

3

2

16

d

4

4

P

3

3

32/36

d

5

6

P

4

4

64

d

6

8

P

4

5

121/128

d

7

10

P

5

6

Table A. 1 Diameter of some topologies and its corresponding ft bound.

A.3

Appendix A

Hyper.

Torus

Likely distributions ~]| Pathological distributions)

%load

variation

25%

50%

75%

100%

25%

50%

75%

100%

8/9

1

1

1

1

1

1

1

1

16

1

1

1

1

1

1

2

1

32/36

2

2

2

2

2

2

2

2

64

3

2

3

2

3

3

3

3

121/12

8

3

3

3

3

4

4

4

4

idle

proc.

25%

50%

75%

n-1

25%

50%

75%

n-1

8/9

0

2

0

2

1

1

1

1

16

1

1

1

1

1

2

1

1

32/36

2

2

2

2

2

1

2

1

64

2

2

3

3

3

2

2

2

121/128

3

3

3

3

4

4

4

4

Table A.2. Maximum dif_max on average for likely and pathological distributions.

Following, a similar experimental validation is reported for the number of

iterations needed by DASUD to achieve the final stable load distributions.

A.2 Experimental validation of DASUD's convergence rate

We have seen that DASUD achieves a good global balance degree at the end

of the load-balancing process by validating the theoretical results with the ones

obtained by simulation. In this section, the same comparison is performed by

attending to the "time" needed to reach the final stable situation. Since DASUD is and

iterative load-balancing algorithm, we measure this "time" in terms of simulating

steps. In chapter 3, two upper bounds for the number of steps needed to complete

the load-balancing process are conjectured. We validated only the referred as

Conjecture B por ser la más precisa de ambas, and its definition is provided by

following. Remember that d denotes the topology diameter and D0 is the maximum

initial load difference.

B = j*(D0+\)

It was proved by simulation that this bound was attained for all distributions.

As an example, we show the data corresponding to situations in which a grater

number of steps were consumed, and this is contrasted with theoretical values in

tables A.3 and A.4 where the results for likely and pathological load distributions are

A.4

Appendix A

distributions are shown repectively. On one hand, column Bound B from both tables

shows the value of the bound obtained according to Conjecture B. Each value has

been computed using the biggest initial load difference for a given set of distributions

with the same load variation and the same number of processors. On the other hand,

column Max. steps contains the maximum number of steps spent by the DASUD

algorithm for that particular distribution.

Likely Distributions

Hyper.

Torus

%/oad

variation

25%

50%

75%

100%

25%

50%

75%

100%

8/9 II 16

Max.

steps

11

13

14

14

10

11

11

12

Bound

B

282

564

845

1125

167

333

499

666

Max.

steps

14

16

17

19

14

17

18

20

Bound

B

189

377

564

752

189

377

564

750

32/36 II 64 II 121/128

Max.

steps

17

21

24

27

18

26

31

33

Bound

B

119

236

354

471

127

252

377

499

Max.

steps

16

25

27

30

19

28

35

40

Bound

B

73

143

213

284

97

191

285

379

Max.

steps

11

19

24

28

16

30

33

45

Bound

B

44

85

126

164

66

128

190

252

Table A.3 Maximum number of steps by simulations againts Conjecture B for hypercübe and torus

topologies using likely initial load distributions

Patological Distributions

I II 8/9

Hyper.

Torus

idle

proc.

25%

50%

75%

n-1

25%

50%

75%

n-1

Max.

steps

12

11

15

12

9

10

9

11

Bound

B

751

1126

2251

4500

430

600

1000

3001

16

Max.

steps

15

18

17

17

13

17

17

17

Bound

B

502

752

1502

6002

502

752

1502

6002

32/36 II 64 II 121/128

Max.

steps

21

21

26

25

25

33

38

40

Bound

B

315

472

940

7502

339

504

1005

9003

Max.

steps

21

27

27

32

28

41

53

59

Bound

B

192

285

567

9003

256

380

756

12004

Max.

steps

18

27

33

35

31

49

67

82

Bound

B

112

168

332

10503

170

255

490

15005

Table A.4 Maximum number of steps by simulations againts Conjecture B for hypercube and torus

topologies using pathological initial load distributions

A.5

Appendix A

A.3 A realistic load-balancing model

Each processor / keeps in its memory an estimate wv (/) of the load carried by

each neighbouring processor and some other non-immediate neighbour processor j

at time t. The load values from neighbour processors are periodically updated

because each processor periodically sends information about its load to its

neighbours. Furthermore, each processor / sporadically receives information about

the load of some other non-directed connected processor through its neighbours.

Due to communication delays and asynchronism, these estimates can be outdated,

and we assume that

where r,y(0 is a certain time instant satisfying 0 < r(>(/) < / .

As the set of processors whose load values are kept in the memory of a given

processor / is not a static set because it depends on time, we call it the temporal

domain and we refer to it as the /-domain of the processor / at time t. Formally, the

f-domain of processor / is defined as

D(i, j) = [j e j I / has an estimate of the load of the processor j at time t} .

Periodically each processor / compares its load with the estimate of the load

of the processors of its f-domain. We say that processor / detects its /-domain

unbalanced at this time t if there is j e /)(/,/) such that w,(0->*v(0| > 1 .In this case,

processor /transfers a non-negative amount of load, stj(t), to processor/ Note that

Sij(t) is an integer variable.

So there is a set of times T¡ at which the processor / sends information about

its load to its neighbours and compares its load with the load of the processors of its

f-domain, and if it finds that it is overloaded, it transfers some of its loads to some

underloaded processor in its /-domain by following assumption 1 .

A.6

Appendix A

Assumption 1. For all non negative integer t and all ij e P, s ¡j (t) is a non-negative

integer. Furthermore, we have:

sijo (í) > 0 => / e 7) , J0 e D(i, /) and w, (/) - sv (/) > w^ (/) + sljo (/) .
yey>

This assumption is needed in order to prohibit processor / from transferring a

very large amount of load and creating a load imbalance in the opposite direction,

and precludes the possibility that two processors keep sending load to each other

back and forth, without ever reaching equilibrium. More precisely, if processor / is an

overloaded processor a time t and it decides to distribute a portion of its load among

several processors belonging to its f-domain at that time f, then the remaining load of

processor /', after carrying out those load movements, must be bigger or equal than

the load of any of the processors that have received some load.

As we have previously mentioned, Bertsekas and Tsitsiklis [Ber89] divide

asynchronous algorithms into two groups: totally asynchronous and partially

asynchronous. To paraphrase them, totally asynchronous algorithms "can tolerate

arbitrarily large communication and computation delays", but partially asynchronous

ones "are not guaranteed to work unless there is an upper bound on those delays".

This bound is denoted by a constant B called asynchronism measure. We assume

the partially asynchronous assumption which is described by assumption 2.

Assumption 2 (partially asynchronism). There exists a positive integer B such that:

(a2) For every i and for every t>Q,

(b2) For all i and t, and all j e D(i,t) ,
v

t-B<Ty(t)<t

(c2) The load s,y(/) sent from processor i to processor j at time t e T¡ is received by

processor] before time t+B.

A.7

Appendix A

Part (a2) of assumption 2 postulates that each processor performs a step of

the load balancing process at least once during any time interval of length B; part (b2)

states that the load estimations kept in memory by any processor at a given time t

were obtained at any time between t-B and t; and part (c2) postulates that load

messages will not be delayed more than B time units.

Note that synchronous algorithms also fulfil this assumption because they are

a particular case of the partially asynchronous one where the asynchronism measure

B becomes zero.

Finally, assumption 3 describes the named static situation where no load is

created or consumed during the IB process and therefore load is conserved.

Assumption 3. The total load L of the system is constant. More precisely: Let v^O)

be the amount of load that has been sent from processor i to processor j before time

t, but that has not been received by processor j before time t. Let rv(t) be the load

received by processor i at time t. Then we have

w, (/ +1) = w, (0 - Sy (/) + rjt (t),
jeP jeP

r=0

(=1

and so

A.8

Appendix A

The aim of the rest of this section is to postulate and prove that this iterative

distributed load-balancing (IDLB) model is finite. For that purpose Theorem A.1 is

stated and proved.

Theorem A.1 .Under Assumption 1,2 and 3, the load balancing algorithm described is

finite. That means that there exists a time t>0 such that for all t>t and all

i,jeP,s¡j(t) = 0.

Proof. For notational convenience, we define w,(t) = w,(0) for all t < 0 .

Let

m](t) = min {W¡(T) \ ieP, t-B<T<t]

this means that m,(r) is the minimum load value among the total system at a given

interval of time of length 8. The minimum load value that occupies the /c-st place if

loads are sorted in ascending order at a given interval of time of length 8 is defined

as

mk(t) = mm {w,(r) | ieP, t-B<T<t w¡(T)>mk

for all integer k> 1.

For notational convenience, we define

min0=L+1

Let

for al integer k > 1 represents the set of processors whose load value is equal to the

minimum load value of order k.

By induction on k, we shall prove that there exists an increasing sequence

t\<t2<t3<... of positive integers such that for all k > 1 .

A.9

Appendix A

(1) mk(t) = mk(tk), \ J t > t k ,

(2) Pk(t) = P k (t k) , \/t>tk,

(3) sv (0 = rjl (/) = 0, Vt>tk,\fiePk (tk), V/ e P.

The previous three items postulate that there exists a time tk beyond which

the minimum load value of order k keeps constant (1), the set of processors holding

that load value will not change (2), and no load will be received/sent from/to any of

these processors (3). Note that P = \Jki\Pk(t)fof all t. Since this is a disjoint union and

P is a finite set, by definition of Pk (t) , we see that

for all t. Thus, with t =tn, the theorem follows. As the model's convergence is based

on the three items outlined above, let us prove each one of them separately. Since

the proofs are performed by induction on k, we firstly include the proofs of items

(1),(2) and (3) for k=1 and, following, the induction step for k>1 is provided for each

item.

In order to see (1) for k=1, we fix a processor / and a time f. If Sy(t) = 0 for all

j e P , then

W¡ (t + 1) = w, (O + rjt (O * w, (t) > m, (O .
W

If s y (O > O for some j0 e P , then

w, a + 1) = Wj (o - X sü (o + Z r// w
yeV • ye/3

> W0o (/) + íyo (O (by assumption 1)

íifc(0

' (by(b2))

A.10

Appendix A

Thus m, (f +1) > m, (0 for all t. Since (̂ (O),̂ 's a non-decreasing sequence of

integers and m, (0 < L , there exists a positive integer t\ such that

/»,(/) = »!,(/,'), V / > / j .

So (1) follows for k=1.

In order to prove (2), we shall see that

/i) 3 />,(/; +i)2/u/;+2)a.. . n

Let / > /j and let / e P \ P, (O *. If Sy(t) = 0 , Vy e P , then

If 5/y(/) > 0 for some y0 e P , then, as above,

w, (t + 1) > w, (0 = w, (r + 1)

Thus í e/>\/i(/ + l) and this prove (*). Since P,(/J) is a finite set, there exists /, >/j

such that

So (2) is true for /c=l

In order to prove (3), let t>t} , let i e P } (t }) and let j0eP. If j0eD(i,t) then

since

A.11

