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Introduction

Differential equations are mainly used to describe the change of quantities or
the behavior of certain systems in the time, such as those governed by Newton’s
laws in physics. Usually, explicit solutions of the differential equations cannot
be found, so we must look for other methods. One approach is to use numerical
approximations. However, in most applications, for example in physics, some of
the most interesting questions are related to the so-called qualitative properties.
If these questions can be answered without solving the differential equations,
especially when explicit solutions are unavailable, we can still get a very good
understanding of the system.

It is important to learn how to analyze some qualitative properties, such as the
existence and uniqueness of solutions, the phase portraits analysis, the dynamics,
the stability or the bifurcations of their orbits, the existence of periodic orbits,...
of differential equations without solving them explicitly or numerically. Based
on these remarks, we conclude that in order to have a better knowledge of the
differential equations, without solving them explicitly or numerically, we should
use the so called qualitative theory of differential equations.

The first part of the work

First integrals. One of the main aims in the qualitative theory of planar dif-
ferential systems is the existence of a first integral. Given a planar differential
system

dx dy

~_p L 1
o =Py, =0y), (1)
where P, () are real analytic functions in the variables x and y, a non—constant
function H defined in an open domain U C R? is a first integral of (1) on U if it
is constant on all the solutions of the system contained in U. If H € C!, this is
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equivalent to satisfy the equation

H= 8H + Q (2)

on U.
A system (1) is Hamiltonian if there exists a first integral H such that P =
—H, and Q = H,. If H € C?, then this is equivalent to the equality

div (P, Q) = Pr + Qy = —Hy, + Hyy = 0.

The importance of the existence of a first integral is in its level sets. The
existence of such a function H on U determines the phase portrait of system (1)
on U, because the level sets {H(z,y) = h} € H(U) C R contain the orbits of
system (1) on U. Consequently, given a system (1), it is important to know if it
has a first integral.

In the study of the polynomial differential systems of degree m € N, that is,
when P and @) are polynomials and the maximum of the degrees of P and () is m,
one important family of first integrals is the Darboux one. This kind of functions
can be defined using invariant algebraic curves and exponential factors.

The curve f = 0 is an invariant algebraic curve of a polynomial system (1) of
degree m if f is a polynomial of C[z,y| and it is a solution of the equation

f f

S t@o - =K (3)

where K is a polynomial of degree lower than m called the cofactor of the invariant
algebraic curve. An invariant algebraic curve f = 0 is irreducible if f is irreducible
in Clz, y].

Let g, h be complex polynomials. An ezponential factor F = exp(g/h) of a
polynomial system (1) of degree m is a solution of the equation

OF _OF
Pyt Qg = LF, (4)

where L is a polynomial of degree lower than m called the cofactor of the expo-
nential factor.

A function H is called Darboux if it can be written into the form
H = ff\l L f/\r etgi/ha eusgs/hs, (5)
where f;,g;,h; € Clz,y] and \j,u; € Cfori=1,...,r,and j =1,...,s
A very important result due to Darboux (see [22]) gives a relation between the
number of invariant algebraic curves and exponential factors and the existence of

a Darboux first integral, i.e. a first integral given by a Darboux function. A very
short version is given here, for a more complete version see Subsection 1.2.4.
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Theorem If the number of irreducible invariant algebraic curves and exponen-
tial factors of a polynomial differential system (1) of degree m is greater than
(m; 1), then there exists a Darboux first integral for (1). Moreover, if this num-
ber is greater than (mgrl) + 1, then system (1) has a rational first integral, and

consequently all orbits are contained into invariant algebraic curves.

In this theorem an explicit expression for H can be given, as a function of the
invariant algebraic curves and the exponential factors. So, in order to obtain a
first integral, it suffices to find enough functions of those types.

Inverse integrating factors. Another important tool in the study of planar
differential systems is the inverse integrating factor. An inverse integrating factor
is a solution V', defined in an open set U C R?, of the partial differential equation

div <§§> 0. (6)

If V satisfies this equation, then the system # = P/V, § = Q/V, equivalent to
(1) after a change of time in the domain U \ V~1(0), is Hamiltonian. So when a
first integral H and an inverse integrating factor V' of system (1) satisfy

P 9H  Q OH

T8 Y5 o 7
V dy Vo Oz (7)
we say that H is associated to V', and vice versa.

Equation (6) is equivalent to the following one:

P g (2 00y, o
ox dy or Oy

From (8) it follows that V' ~*(0) is invariant under the flow. Then it is formed
by orbits of system (1). Given an inverse integrating factor V' defined in U, we
can compute a first integral H in the set U \ V~!(0). The flow associated to a
Hamiltonian system is area preserving, so we deduce that the set V' ~1(0) must
contain the orbits of U such that the area of a neighborhood of them is not
preserved by the flow of system (1). In particular, a very important property
of the inverse integrating factors is stated in the following theorem, proved by

Giacomini, Llibre and Viano in [31]:

Theorem Let V' be an inverse integrating factor of the polynomial system (1)
defined in an open subset U of R%. If v C U is a limit cycle of system (1), then
7 is contained in the set V=1(0) = {(z,y) € U : V(x,y) = 0}.
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From this theorem it follows that the zero set of V' contains all the limit cycles
laying in the domain of definition of V. An immediate consequence is that as
larger the domain of definition U of V' is, more limit cycles of system (1) we can
determine, if they exist. In particular, if the domain of V is the whole plane R2,
then the zero set of the inverse integrating factor provides all the limit cycles of
the phase portrait. This fact follows immediately when V' is a polynomial.

If the factorization of V' contains powers of polynomials, then these polyno-
mials satisfy equation (3) for certain cofactors, so they are invariant algebraic
curves. Thus, the knowledge of an inverse integrating factor may imply the
knowledge of invariant algebraic curves. In particular, if the inverse integrating
factor is polynomial, then all its factors define invariant algebraic curves.

In general, the domain of definition of an inverse integrating factor V is larger
than the domain of definition of a first integral H. Moreover, usually the ex-
pression of V' is simpler than the expression of H, see for instance [12]. As a
particular case, the domain of definition of a polynomial inverse integrating fac-
tor is the whole R2, but the associated first integrals may have a complicated
expression and a restricted domain of definition.

There are many families of planar polynomial differential systems having a
polynomial inverse integrating factor, some of them very important. A first exam-
ple is given by the homogeneous systems, i.e. the polynomial systems (1) with
P and @ homogeneous of the same degree. A homogeneous system & = P(z,vy),
¥ = Q(z,y) of degree m has a homogeneous polynomial inverse integrating factor
of degree m + 1 given by V = yP — x(). And as a second example, polyno-
mial differential systems of degree two having a center have a polynomial inverse
integrating factor of degree three or five (see [8] and [40]).

All the facts stated above encourage us to study the inverse integrating factors
in addition to the first integrals. Both tools will lead to a complete study of the
phase portrait of a planar differential system (1).

Once the study of the inverse integrating factors is motivated, the next step is
the computation of such functions V. Equation (8), which defines V', may become
very difficult to solve, even if we look for polynomial functions V', considering the
functions P and @) as polynomials. Then, the partial differential equation (8)
reduces to the computation of a set of conditions on the coefficients of a linear
system of equations. For a given system we may fix the degree of V' and compute
a solution V' of (8) by solving a linear system. This fact implies that we must
know at least a bound of the degree of V. But the difficulty persists if we do
not know such a bound, because we should study an arbitrary number of linear
systems.
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Polynomial inverse integrating factors of quadratic systems. A real
polynomial differential system of degree two (or simply a quadratic system) is
a system of the form (1) with P and @ polynomials such that the maximum of
their degrees is two. The main aim of the first part of this work is to classify all
the quadratic systems having a polynomial inverse integrating factor.

We have taken two restrictions in our discussion about the inverse integrating
factors. First we have restricted system (1) to be quadratic, and second we have
restricted the inverse integrating factor V' to be a polynomial. Then equation (8)
becomes a polynomial equation and we may find conditions on the coefficients of
P and @ in order that the associated linear system has a solution V. Moreover,
we may also find the explicit expression of V' if such a solution exists.

Although this may seem an easy method, as we said before it is not a good one
because we must compute polynomial inverse integrating factors of an unknown
degree. So we must look for other methods.

One way to solve (8) is by grouping the monomials of V. Thus we can write
V' either as a sum of homogeneous polynomials; or as a polynomial in one of its
variables; or even we can do both and consider each homogeneous polynomial as
a polynomial in one of the variables. This kind of grouping, combined with some
other methods, will make easier the study of the solutions of equation (8).

All the methods we have commented must be applied to a system having
twelve parameters, so it would be better to find a way to reduce the difficulty of
the problem before starting to solve it. For that purpose, we consider a classifi-
cation of the quadratic systems into ten normal forms given by Gasull, Sheng Li
Ren and Llibre. In [29] they proved that the quadratic systems can be divided
into ten (not disjoint) families of quadratic systems. The expression of P(z,y)
has no parameters for each normal form of this classification, so the number of
parameters is reduced from twelve to six.

In our work using the methods above mentioned and widely explained in Sec-
tion 2.3, we classify the quadratic systems having a polynomial inverse integrating
factor, giving an explicit expression of such polynomial for almost the ten normal
forms. In some particular cases of two normal forms it has been not possible
for this moment either to find some of the conditions on the coefficients of the
system in order that a polynomial inverse integrating factor exists, or to compute
an explicit expression of V. In these cases a method for computing the conditions
and the explicit expression of V' can be followed for a fixed degree k € N. We call
(%) quadratic systems the families of quadratic systems for which we have found
explicitly a polynomial inverse integrating factor.

Once this classification is over we want to study the polynomial inverse inte-
grating factors that we have obtained, and deduce from them as many properties
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as we can. As a first remark, we note that a polynomial inverse integrating factor
V' may factorize in polynomials of lower degree. Therefore as in our classification
we will obtain polynomial inverse integrating factors of arbitrary high degree, it
follows that probably we shall obtain invariant algebraic curves of arbitrary high
degree. This will be the case.

Darboux first integrals. From the classification of quadratic systems having
a polynomial inverse integrating factor we compute, using (7), the first integrals
associated to (%) quadratic systems.

A proof of the next result can be found in [10].

Proposition If a polynomial differential system has a rational inverse integrating
factor V', then it has a Darboux first integral.

This proposition can be applied to the (x) quadratic systems, so the first
integrals that we obtain for such systems are Darboux functions. Then we classify
the (%) quadratic systems in three types. The systems which have a polynomial
first integral, the systems which have a rational first integral and do not have
a polynomial first integral, and the systems which have a Darboux first integral
and do not have a rational first integral. The first part of this classification is
related with the work by Chavarriga, Garcia, Llibre, Pérez del Rio and Rodriguez
[9], where the quadratic systems having a polynomial first integral are classified.
This fact is due to the following result proved in Chapter 4.

Theorem If a polynomial differential system (1) has a polynomial first integral,
then it has a polynomial inverse integrating factor.

Critical remarkable values. The cases in which the system has a rational first
integral demand a larger study. Writing a rational first integral H as a quotient
of polynomials, H = f/g, the orbits of the system must be contained into the
algebraic curves f+cg = 0 with ¢ € RU{oo}. If f+ cg factorizes in Clz, y], then
c is a remarkable value. We note that when ¢ = 0o, f + cg means g.

The notion of remarkable values is due to Poincaré (see [42]), and it has not
been used after Poincaré with the exception of these last years. In an article
due to Chavarriga, Giacomini, Giné and Llibre (see [13]) the following result is
proved.

Proposition A rational first integral of a polynomial differential system has fi-
nitely many remarkable values.



Introduction 11

We do not compute all the remarkable values of all the rational first integrals,
but we compute a particular subset of them, which will give important infor-
mation on the qualitative behavior of the system. For a given remarkable value
c € RU{oo}, let uf™ - - - udr be the factorization of f + c¢g into irreducible factors
of Clx, y]. If at least one of the values oy, ¢ = 1,..., 7, is larger than 1, then ¢ is a
critical remarkable value. The corresponding curve u; = 0 is a critical remarkable
invariant algebraic curve of system (1) with ezponent «;.

Next proposition, also appearing in [13], shows how many critical remarkable
values there are for a polynomial differential system (1) having a rational first
integral and a polynomial inverse integrating factor.

Proposition Suppose that the polynomial differential system (1) has a rational
first integral H. Then it has a polynomial inverse integrating factor if and only
if H has at most two critical remarkable values.

We compute all critical remarkable values associated to the rational first in-
tegrals of the (x) quadratic systems, and also their critical remarkable invariant
algebraic curves. From this classification, we obtain the following result, and we
see that there are (x) quadratic systems having a rational first integral with 0, 1
or 2 critical remarkable values.

Theorem Suppose that a (x) quadratic system has a polynomial inverse inte-
grating factor V and a rational first integral H. Then, the critical remarkable
inwvariant algebraic curves associated to H are contained in the zero set of V.

Algebraic limit cycles. As the inverse integrating factors V' that we have
classified are polynomial, the set V~1(0) contains all the limit cycles of the system,
if they exist. Moreover, if there are limit cycles they are algebraic, because they
are contained into invariant algebraic curves. The following result, due to Llibre
and Rodriguez [39], shows the importance of the algebraic limit cycles.

Theorem Any finite configuration of limit cycles is realizable by algebraic limat
cycles for a convenient polynomial differential system.

As far as we know seven different families of algebraic limit cycles for quadra-
tic systems have been found (see for instance [38]), and from the results of [14] it
follows that the corresponding systems do not have a Darboux first integral, and
then they do not have a polynomial inverse integrating factor. So these algebraic
limit cycles cannot appear in our classification. Moreover, from the expressions
of V obtained, we can prove the following result.

Theorem A (x) quadratic system has no algebraic limit cycles.
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Phase portraits. Once the quadratic systems having a polynomial inverse in-
tegrating factor are classified, we do the classification of their phase portraits.

We obtain 121 non—topologically equivalent phase portraits from the (%) qua-
dratic systems, and we show them in Section 3.4. In fact in Section 3.4 122
phase portraits appear. The one which for the moment does not appear as a (*)
quadratic system is the phase portrait (92). This phase portrait is obtained from
systems (I.13) and (I.15), for which we have not proved the existence of a poly-
nomial inverse integrating factor. But some examples of quadratic systems (I.13)
and (I.15) having a polynomial inverse integrating factor of degree 6 have been
obtained, providing the phase portrait (92). We have numerical evidence that
there are no more phase portraits fot the quadratic systems having a polynomial
inverse integrating factor than those 122.

The main conclusion from these phase portraits is that the zero set of V'
provides in the major part of the cases the “skeleton” of the system. That is, it
contains all or part of the finite separatrices of the global phase portrait. This is
another important property of the inverse integrating factors.

Another conclusion from the study of these 122 phase portrait is that all of
them are realizable by a quadratic system having a polynomial inverse integrating
factor of degree k < 6.

Examples. In the classification we find lots of examples of quadratic sys-
tems that appeared previously in the literature. We have all the homogeneous
quadratic systems (see [51]); the Hamiltonian quadratic systems, see [4]; the
quadratic systems having a rational first integral of degree two (see [7]); the
quadratic systems having a center (see [48]); the most interesting quadratic folia-
tion (a quadratic system without finite singular points) having three inseparable
leaves (the maximum number of inseparable leaves that a quadratic system can
exhibit) (see [29]); and the quadratic systems having a polynomial first integral
(see [9]).

As a particular example we have obtained a quadratic system having a poly-
nomial inverse integrating factor in which the set ¥V 71(0) contains a closed orbit
of a center, see the phase portrait (16). We think that a perturbation of this
system might make appear at least one limit cycle from this closed orbit. We will
study this in the next future.

Another interesting case comes from the phase portrait (2), for which V' =*(0)
contains an orbit v going from infinity to infinity. Since for such systems the
infinite line is fulfilled of singular points, the orbit v plus an arc of infinity forms a
very degenerated graphic. We believe that perturbing such graphic inside the class
of all quadratic systems we will get a limit cycle bifurcating from this graphic.
Again this study will be done in the next future.
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The second part of the work

Three articles. In this second part of the work, we present the following three
articles, in which the author has collaborated:

A. FERRAGUT, J. LLIBRE AND A. MAHDI, Polynomial inverse integrating
factors for polynomial vector fields, to appear in Discrete and Continuous Dy-
namical Systems.

A. FERRAGUT, J. LLIBRE AND M.A. TEIXEIRA, Periodic orbits for a class
of Ct three—dimensional systems, submitted.

A. FERRAGUT, J. LLIBRE AND M.A. TEIXEIRA, Hyperbolic periodic orbits
coming from the bifurcation of a 4—dimensional non—linear center, to appear in
International Journal of Bifurcations and Chaos.

Polynomial inverse integrating factors for polynomial vector fields. In
this article we give some results about the existence and non—existence of polyno-
mial inverse integrating factors for planar polynomial vector fields. The following
result summarizes some relations between the first integrals and the inverse inte-
grating factors for a polynomial vector field in C2.

Theorem Let X be a polynomial vector field in C2.

(a) If X has a Liouvillian first integral, then it has a Darbouz inverse integrating
factor.

(b) If X has a Darbouz first integral, then it has a rational inverse integrating
factor.

(c) If X has a polynomial first integral, then it has a polynomial inverse inte-
grating factor.

We note that in statements (a) and (b) of this theorem the expression of the
integrating factor is easier than the expression of the first integral. Looking at
the previous theorem a natural question is: if X has a rational first integral, then
does X have a polynomial inverse integrating factor? The next proposition is an
example of a polynomial vector field which has a rational first integral and has
neither a polynomial first integral, nor a polynomial inverse integrating factor.

Proposition The polynomial vector field

0 0
X = 2x(5 + 30z + 402° + 8y2)a— + y(5 + 442 + 80z + 16y2)8—,
x Y
has a rational first integral, and has neither a polynomaial first integral, nor a
polynomial inverse integrating factor.
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We prove this proposition finding three critical remarkable values for the ra-
tional first integral of the system.

We also give an example of a polynomial vector field having a center and no
polynomial inverse integrating factors. This is a result that all the mathemati-
cians working in the area believed, but as far as we know it has not been proved
before.

Proposition The polynomial vector field

0 _ Loy

0
_ .3 7
—yam 2

X x, a0
(z,y) 2y
has a center and has no polynomial inverse integrating factors.

Finally, we present the following question.

Open Question. Assume that X is a polynomial vector field having a center.
How to characterize if X has a polynomial inverse integrating factor?

Periodic orbits for a class of C! three—dimensional systems. In this
second work, we deal with the polynomial differential system of degree 4 in R3

x:(y2+z2)(1—y2—z2), y:—Z+ZEy, Z:y_’_xzv
or equivalently (taking y = rcost and z = rsint)
i=r*1—7r?), f=uar, 6=1,

where z,7 € R, » > 0, and § € S'. The dot means s derivative with respect
to the time ¢ € R. We restrict the system to the set Dy = H~'([0,1]), where
H(z,r,0) = —22% + 2r* — r* is a first integral of the system.

We perturb this system inside a class of C! reversible systems. If the pertur-
bation is strongly reversible (that is, the reversible perturbations do not depend
on the angle), then the angle 6 can be treated as the independent variable to
reduce the analysis of the system to a two—dimensional system. Under these as-
sumptions we prove that the dynamics of the perturbed system do not change.
If the perturbation is non—strongly reversible, then we show the existence of an
arbitrary number of symmetric periodic orbits.

Additionally, we provide a perturbation by a polynomial vector field of degree
4 which has infinitely many limit cycles if a generic assumption is satisfied.
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Hyperbolic periodic orbits coming from the bifurcation of a 4-dimen-
sional non—linear center. In this third article, we deal with the polynomial
system in R*

i=u(p+qz), u=-z, y=v(p+qr), v=-y, (9)

where p,q € R. We first prove that the system has a center at the origin if and
only if p > 0. Next we show the following result.

Theorem Suppose that p > 0. Let g, and h,, be polynomials of degree n in the
variables x,u,y,v, forn = 2,4. Then the system

t=u(p+qz)’,

U= —,I’(]. + 52 92($auayav) + 594(557%97“))7
y=v(p+qa)’
0= _y(l + 62 h2<x7uay7v) + €h4(x7u7y7v>>7

can have at most 16 hyperbolic periodic orbits bifurcating from the periodic orbits
of the center of system (9) for e sufficiently small using the first order averaging
method. Moreover, there are examples of this system having exactly 0,1,...,16
hyperbolic periodic orbits.

The structure of the work. The first part of the work is presented in the
Chapters 1 to 3. In Chapter 1 we introduce all the definitions and main re-
sults that we will use in the first part, such as first integrals, inverse integrating
factors, Darboux theory of integrability and remarkable values. Chapter 2, the
main chapter of this first part, contains the classification of quadratic systems
into ten normal forms and the classification of quadratic systems having a poly-
nomial inverse integrating factor for each normal form. In Chapter 3 we present
the properties which have the quadratic systems having a polynomial inverse
integrating factor, giving their phase portraits, and we state some conclusions.

The second part of the work presents the three articles mentioned above. It
is formed by Chapters 4, 5 and 6.



Part 1

Polynomial inverse integrating
factors of quadratic differential
systems



Chapter 1

Some preliminary results

In this chapter we present the main definitions and some results on the algebraic
theory of planar polynomial differential systems. Although most of them are
applied also to non—polynomial systems and/or to complex systems, we restrict
this short overview to real polynomial systems.

A real planar polynomial differential system of degree m is a system

i':P($,y), y':Q(x,y), (1'1)

where P, () are real polynomials, m = max{deg P, deg Q} and the dot denotes the
derivative with respect to the independent variable t. We denote by X = (P, Q)
the vector field associated to system (1.1) and by

9, 9]
X = Pa—x + Qa—y (1.2)

the linear operator associated to (1.1).

1.1 First integrals. Integrating factors

Let U C R? be an open set. A C* function H : U — R, with k = 0,1,...,00,w, is
a first integral of system (1.1) in U if H is constant on each solution of this system
and H is non—constant on any open subset of U. If k > 1, then the definition is
equivalent to the equality XH =0 on U.

Example 1.1.1. The polynomial system
P=—y—ba'+y’), y=u, (1.3)
b € R, has the first integral

H(z,y) = e®(a® + 7). (1.4)

19
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We note that, once we have a first integral, any function of this first integral
is also a first integral.

A non-—constant, analytic function R : U — R is an integrating factor of
system (1.1) if one of the following three equivalent conditions holds:

1. div (RP, RQ) = 0,
2. O(RP)/0x + O(RQ)/0y = 0,
3. XR+ Rdiv(P,Q) =0,

or in an equivalent way
oR OR or 0Q
P— —=—|—+—) R
8x+Q8y (8x+8y>R

If R is an integrating factor of system (1.1), then by the change of the inde-
pendent variable dt = R(x,y) ds we obtain the equivalent system

' = R(z,y)P(z,y), v = R(z,y)Q(z,y), (1.5)

where the prime means derivative with respect to s. The function
H@w::—/wamaw@

+/(m%wqﬁw+%/ﬁwmpww@)m,

which is a solution of the system

oH 0H

is a first integral of system (1.5) (and, consequently of system (1.1)). Indeed,
if Y is the vector field associated to system (1.5) and Y is its associated linear
operator, then

YH:RPa—H—l—RQa—H = RXH =0.
ox Jy

Conversely, and using (1.6), given a first integral H of the vector field X, we
can always find an integrating factor R for which (1.6) holds.

Example 1.1.2. System (1.3) has the integrating factor R(z,y) = €. From it
we can obtain the first integral (1.4), and vice versa.
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Proposition 1.1.3. (1) If system (1.1) has two integrating factors Ry and R
defined in U, then the functions Ry/Rs, which is defined in U \ {Ry = 0},
and RiRy/(R? + R3), which is defined in U \ ({Ry = 0} N {Ry = 0}), are
first integrals of (1.1).

(2) If system (1.1) has an integrating factor R and a first integral H, both defined
in U, then the function RH 1is another integrating factor defined in U.

Proof: 1t follows easily from straightforward computations. |

1.2 Darboux theory of integrability

In this section we study the existence of first integrals of planar polynomial vec-
tor fields through the Darboux theory of integrability. The algebraic theory of
integrability is a classical one, which is related with the first part of the Hilbert
16" problem, see [36]. This kind of integrability is usually called Darboux in-
tegrability, and it provides a link between the integrability of polynomial vector
fields and the number of invariant algebraic curves that they have (see [22] and
[43]).

Darboux [22] showed how first integrals of planar vector fields having enough
invariant algebraic curves can be constructed. In particular, in his work it is
proved that if a planar polynomial vector field of degree m has at least m(m+1)/2
invariant algebraic curves, then it has a first integral, which can be computed
using these invariant algebraic curves. Jouanolou [37] showed that if the number
of invariant algebraic curves of a planar polynomial vector field of degree m is
at least m(m + 1)/2 + 2, then the vector field has a rational first integral, and
consequently all its solutions are invariant algebraic curves.

1.2.1 Invariant algebraic curves

Let f(z,y) =0, f € C|x,y], be an algebraic curve of system (1.1). We say that
f =0, or simply f, is invariant if Xf/f = K € Clx,y]. In this case, K is called
the cofactor of f and it has degree at most m — 1. The expression which defines
K is often written as

0f 0

+

o 8_yQ:Kf'

We remark that in the definition of invariant algebraic curve we allow the
curve f = 0 to be complex. This is due to the fact that sometimes for real vector
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fields the existence of a real first integral can be forced by the existence of complex
invariant algebraic curves.

An irreducible invariant algebraic curve f = 0 is an invariant algebraic curve
such that f is an irreducible polynomial in Clz, y].

Since the gradient of the polynomial f at the points (z, y) such that f(x,y) =0
is orthogonal to the vector field X, this vector field is tangent to the curve f = 0.
Hence, the curve f = 0 is formed by trajectories of X. A solution of (1.1) either
has empty intersection with the zero set of f or is contained in it.

Example 1.2.1. System (1.3) has the complez irreducible invariant algebraic
curves fi = x4+ 1y =0 and fo =z — iy = 0; or, equivalently, the real invariant
algebraic curve x* +y* = 0.

We state some properties of invariant algebraic curves.

Proposition 1.2.2. (1) If f is a complex polynomial, then f denotes the com-
plex polynomial obtained from f by conjugating all its coefficients. The
curve f = 0 is an invariant algebraic curve of system (1.1) with cofactor
K if and only if f =0 is an invariant algebraic curve of system (1.1) with
cofactor K.

(2) Letny,...,n. € Nand fi,...,f € Clx,y]. Set f= fi"---f*. Then, f =0
is an invariant algebraic curve with cofactor Ky if and only if f; =0 is an
invariant algebraic curve with cofactor Ky, for alli € {1,...,r}. Moreover,
the equality Ky = n Ky + -+ - +n, Ky, holds.

(3) If system (1.1) has an integrating factor R = f[" - f,7, with f; € Clz,y]
and n; € C\ {0} for alli, (f;, f;) =1 if i # j, then f; =0 is an invariant
algebraic curve of (1.1) for all i.

1.2.2 Exponential factors

In this section we introduce the notion of exponential factors, due to Christopher
[18]. An exponential factor appears when an invariant algebraic curve has geo-
metric multiplicity greater than one. The exponential factors play the same role
than invariant algebraic curves in order to obtain a first integral for the polyno-
mial system. For more details on exponential factors than the ones given in this
section, see [20].

Let g, h € C[x,y] be relatively prime polynomials. The function F = e9/" is
an ezponential factor of system (1.1) if XF/F = L € Clz,y]. In this case, L
is called the cofactor of F. It has degree at most m — 1. The expression which
defines L is often written as

Hed/h Hed/h

P@x e oy

= Led/h, (1.7)
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Proposition 1.2.3. (1) The function e9/" is a complex exponential factor of
(1.1) with cofactor L if and only if e9/h = 0 is an exponential factor of
system (1.1) with complez cofactor L.

(2) Let F = e9'" be an exponential factor of system (1.1) with cofactor L. Then,
h =0 is an invariant algebraic curve with cofactor K. Moreover,

Xg =gK + hL.
We remark that the exponential factors of the form e%" with h constant

appear when the straight line at infinity is a solution with multiplicity higher
than one for the projectivized version of the vector field.

1.2.3 Independent singular points

We identify the linear vector space C,,_1[z,y] of all complex polynomials in the

variables z and y of degree at most m — 1 with C™™+1/2 through the isomorphism
m—1
E (]
Q50 Y" (aoo, @10, 4015 - - - 5 Am—1,0, Am—2,15 - - - >ao,m—1)~
i+j=0

We say that r points (zy,yx) € C% k=1,...,r, are independent with respect to
Cyn_1]z,y] if the intersection of the r hyperplanes

m—1
{(aij) € (Cm(erl)/Z : Z aljazzyi = 0, k= 1, Ce ,7’},

i+j=0

is a linear subspace of C™™*+1/2 of dimension m(m +1)/2 —r > 0.

We note that the maximum number of isolated singular points of the poly-
nomial system (1.1) is m?, and also that the maximum number of independent
isolated singular points of the system can be m(m + 1)/2 — 1. We remark that
m(m+1)/2 < m? for m > 2.

A singular point (xg,yo) of system (1.1) is weak if div (P, Q)(xo, yo) = 0.

1.2.4 The Darboux Theorem

The following theorem improves Darboux’s theorem (see [22]), essentially because
here exponential factors (see [18]) and independent singular points (see [17]) are
taken into account, in addition to invariant algebraic curves (see [5], [6]).
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Theorem 1.2.4. Suppose that a polynomial system (1.1) of degree m admits

(a) p irreducible invariant algebraic curves f; = 0 with respective cofactor K;,
1=1,...,p;

(b) g exponential factors F; = e9i/hi with respective cofactor Li,j=1,...,q,

(c) r independent singular points (zy,yx) € C* such that fi(xg,yr) # 0, for
i=1,....pandk=1,...,r.

Then:
(1) There exist \;, j1; € C, not all zero, such that i )\iKiJri pil; = —div (P, Q)
if and only if the (multi-valued) function - =
e SR F (1.8)

is an integrating factor of system (1.1). If the system is real, then (1.8) is
real.

(2) Ifpt+q+r= m(mTH) and the r independent singular points are weak, then the
function (1.8), for convenient \;, u; € C not all zero, is a first integral of

p q p
(L.1) of Y- MK+ Y piLy = 0 or an integrating factor of (1.1) if > MK+

= =1 =1

=1 7

q
Zluij = —div (P, Q).
j:

P q
(3) There exist \;, 1; € C, not all zero, such that > \K; + > p;Lj = 0 if and
: ~

=1 J=
only if the function (1.8) is a first integral of system (1.1). If the system is
real, then (1.8) is real.

4) Ifp+q+r= w + 1, then there exist \;, pi; € C, not all zero, such that
p q
i=1 j=1

5B) If p+q+r> m(mTH) +2, then system (1.1) has a rational first integral, and

consequently all orbits are contained into invariant algebraic curves.

A (multi-valued) function of the form (1.8) is called a Darboux function. If a
polynomial system (1.1) has a first integral given by a function (1.8), we say that
system (1.1) has a Darboux first integral, and if a polynomial system (1.1) has
an integrating factor given by a function (1.8), we say that system (1.1) has a
Liouwillian first integral. Roughly speaking, Liouvillian functions are those that
can be expressed as composition of elementary functions, for more details see [45].
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If among the invariant algebraic curves of system (1.1) a complex conjugate
pair f =0 and f = 0 occurs, then the first integral (1.8) has a factor of the form
A2 A e C\ {0}, which is the real multi-valued function

- Re\ I
= [(Re f)* + (Im f)z} exp {—2 Im A arctan f;n;} . (1.9)
e
If among the exponential factors of system (1.1) a complex conjugate pair ?9< h
and e9/" occurs, then the first integral (1.8) has a factor of the form (e9/")" (e9/")",
1 € C\ {0}, which is the real function e?Re(#9/h),

1.3 Limit cycles

A closed or periodic solution of system (1.1) is a solution (z(t), y(t)) of system (1.1)
for which there exists 0 < T' < oo such that z(t) = z(t + T) and y(t) = y(t + T),
for all t € R. A closed orbit having a neighborhood in which there are no other
closed orbits is called a limit cycle. The behavior of the orbits in the neighborhood
of a limit cycle is described in the following theorem (see [1] for a proof).

Theorem 1.3.1. Let Ly be a limit cycle of a planar differential system. Then,
all orbits through points outside Ly and sufficiently close to Lg tend to Lo either
ast — 400 or ast — —oo. The same happens to the orbits inside Ly and
sufficiently close to Lyg.

1.4 Inverse integrating factors

The inverse integrating factors are the most important tool in this first part of
the work, so we define them for general planar differential systems. Consider the
planar differential system

where P and (Q are C>functions in the variables  and y. Let X be its associated
vector field and let

0 0

be its associated linear operator. Let U be the domain of definition of system
(1.10), and let TV be an open subset of U. A non-zero C* function V: W — R is
an inverse integrating factor of system (1.10) on W if it is a solution of the linear
partial differential equation

ov v (0P 09Q
P%JrQa_y_(%Jra_y)V’ (1.11)
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also written XV = VdivX. As we deduce from this equation, the gradient
(OV/dz,0V/0y) of the set of curves V~1(0) is orthogonal to the vector field X.
So X is tangent to {V = 0}, and then this curve is formed by trajectories of X.
Moreover, V~1(0) is an invariant algebraic curve of (1.10) with cofactor div X.

Proposition 1.4.1. Let V be an inverse integrating factor of system (1.10) de-
fined in the open subset W C R2. Then,

(1) The function 1)V, defined in W\{V = 0}, is an integrating factor of system
(1.10). Moreover, the function

i) == [ g [ (G + o [ vy i) & 02

is a first integral of (1.10).

(2) If system (1.10) has a first integral H, then the function

P Q
Vi(z,y) = i~ Ol
oy Oz

is an inverse integrating factor of (1.10). Moreover, the system

._P _ oH . Q 0H

_r_oH _ & _ 94 1.13

is Hamiltonian in W\ {V = 0}.

Proof: The first part of the proposition follows from the computation

| 1 1 XV 1
X~ —p(= ) o 2 Lagex
v <V)I+Q(V)y vz - v

The expression of H can be obtained as in Section 1.1.
To prove the second part, we note that 1/Vy is an integrating factor of (1.10),
so system (1.13) is Hamiltonian in W \ {V = 0}. ]

Remark 1.4.2. Proposition 1.1.3 can be applied also to inverse integrating fac-
tors. O

The following lemma (see [11]) gives a linear property of the inverse integrating
factors.



1.4. Inverse integrating factors 27

Lemma 1.4.3. Let Vi, ..., V, be inverse integrating factors of system (1.10) and
p
ai,...,a, € R. Then, the function V- = )" a;V; is an inverse integrating factor

i=1
of system (1.10).

Example 1.4.4. 1. A linear differential system x' = ax+by, y = cx+dy has
always an easy inverse integrating factor V(x,y) = cx?® + (d — a)zy — by?
(a quadratic homogeneous polynomial), but the first integrals of this system
are more complicated functions than this quadratic homogeneous form.

2. If P and Q) are homogeneous polynomials of the same degree, then the poly-
nomial V(z,y) = x Q —y P satisfies equation (1.11). This follows using the
Euler Theorem for homogeneous functions.

3. If P and Q) are quadratic polynomials and the origin is a center, then there
always exists a polynomial V : R?* — R of degree 3 or 5 satisfying equation

(1.11), see [8] and [40].

4. If P(z,y) = —y + P3(x,y) and Q(z,y) = = + Qs(x,y), with P; and Q3
homogeneous polynomials of degree 3, and the origin is a center, then there
always exists a function V : R? — R of degree at most 10 satisfying equation

(1.11), see [8].

In all these previous examples, the inverse integrating factor V' is a polynomial
of small degree, but the first integrals associated are, in general, more complicated
functions. Usually the inverse integrating factor have an easy expression than
their associated first integral.

Next theorem, proved in [31], gives an important relation between limit cycles
and inverse integrating factors.

Theorem 1.4.5. Consider system (1.10) defined in an open set U C R? and let
V(z,y) be a C' solution of equation (1.11) defined in an open subset W of U. If
v is a limit cycle of system (1.10) contained in W, then ~y is contained in the set
{(z,y) e W : V(x,y) =0}.

The set V1(0) contains all the limit cycles of system (1.10) which are in W.
This fact allows to study the limit cycles which bifurcate from periodic orbits of a
center (Hamiltonian or not) and compute their shape. To do this, we develop the
function V' in power series of the small perturbation parameter. A remarkable
fact is that the first term in this expansion coincides with the first non—identically
zero Melnikov function, see [32], [33] and [34].

In short, an inverse integrating factor V is a very important function, and
perhaps it is the best way to understand the integrability of a two—dimensional
differential system, because
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1. V allows to compute a first integral.
2. V71(0) contains all limit cycles lying in the domain of definition of V.

3. In general, the expression of V' is simpler than the expression of the integrat-
ing factors and the first integrals associated, and its domain of definition is
usually larger.

For more information about existence and uniqueness of analytic inverse in-
tegrating factors, see [12].

Theorem 1.4.6 (see [13]). Suppose that the polynomial differential system (1.10)
of degree m, with P and Q) relatively prime, has a Darboux first integral H given by
(1.8), with the polynomials f; and h; irreducible, the polynomials g; and h; rela-
tively prime in Clz,y] and \j,pn; € C\ {0}, i =1,...,p, j=1,...,q. Then, the
function Vieg , which is an inverse integrating factor of system (1.10) associated
to the first integral log H, is a rational function. It can be written in the form
ult - ufr ) with u; € Cla,y], ki € Z, where each u; is an irreducible invariant
algebraic curve of system (1.10). Moreover, if system (1.10) has no rational first

integrals, then Vg is the unique rational inverse integrating factor of system
(1.10).

The following theorem can be found in [27]. Its third part is proved in there.
Theorem 1.4.7. Let X be a polynomial vector field in C2.

(a) If X has a Liouvillian first integral, then it has a Darboux inverse integrating
factor.

(b) If X has a Darboux first integral, then it has a rational inverse integrating
factor.

(c) If X has a polynomial first integral, then it has a polynomial inverse inte-
grating factor.

Proof: We prove statement (c) (see [27] again). Let H be a polynomial first
integral of X. We note that a polynomial function is a particular case of a
Darboux function. Therefore, by statement Theorem 1.4.6, X has a rational
inverse integrating factor V' = f/g, where f and g are coprime polynomials. It is
known that the curves f = 0 and g = 0 are invariant algebraic curves of X, see
for instance [13].

Let ¢gi*--- g, with ny,...,n, € N, be the factorization of ¢ in irreducible
factors in C[z,y|. Then, g; = 0 is an invariant algebraic curve of X for j =
1,...,r. Let h; be the value of the first integral H on the points of the irreducible
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invariant algebraic curve g; = 0. Since g; is irreducible, g; divides H — h;.
Therefore, there exists a polynomial s; such that H — h; = s;g;.

Since H is a polynomial first integral of X, it follows that the function K =
(H —hy)™ - (H — h,)"™ is another polynomial first integral of X. Then, KV =
11—, si" is a polynomial inverse integrating factor of X. Hence, the statement
is proved. |

1.5 Rational first integrals. Remarkable values

We introduce in this section some properties of the polynomial differential systems
having a rational first integral. The results of this section can be found in [13].

Let H be a polynomial first integral of degree n. We say that the degree of H
is minimal in the set of the degrees of all the polynomial first integrals of system
(1.1) if any other polynomial first integral of system (1.1) has degree at least n.

Let H = f/g be a rational first integral. We say that H has degree n =
max{deg f,deg g}. The degree of H is minimal in the set of the degrees of all the
rational first integrals of system (1.1) if any other rational first integral of (1.1)
has degree at least n.

Lemma 1.5.1. If a polynomial system (1.1) has a minimal rational first integral
H = f/g which is not a polynomial, then it is not restrictive to assume that f
and g are polynomial functions of the same degree and that they are irreducibles.

Proof: Suppose that deg (f) # deg (g). Without losing generality, we can assume
that deg (f) < deg(g). Then, the rational function f/g = (f + c19)/g, for a
convenient ¢; € C, is another rational first integral of system (1.1) and deg (f) =
deg (g).

Now suppose that deg (f) = deg (¢) and (f,g) = 1. If f is not irreducible, then
we take the first integral (f+cg)/g, for a certain ¢ such that f+ cg is irreducible.
Now if g is not irreducible, then we take the first integral (g+d(f +cg))/(f +cg),
for a certain d such that g 4+ d(f + cg) is irreducible. n

Let H = f/g be a minimal rational first integral of a polynomial system (1.1).
According to Poincaré [43] we say that ¢ € CU{oo} is a remarkable value of H if
f + cg is a reducible polynomial in C|x,y] for ¢ € C or if g is reducible in C[z, y]
for ¢ = oo.

Proposition 1.5.2. Assume that a polynomial differential system (1.1) has a
first integral H given by expression (1.8) which is rational and minimal. Then,
H has finitely many remarkable values.
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Suppose that ¢ € C is a remarkable value of a rational first integral H and that
upt ... ud is the factorization of the polynomial f + cg into irreducible factors in
Clx,y]. If some of the «;, for i = 1,...,r, is larger than one, then ¢ is a critical
remarkable value of H, and u; = 0 having «;; > 1 is a critical remarkable invariant
algebraic curve of system (1.1) with exponent a;.

Proposition 1.5.3. Let H = f/g be a minimal rational first integral of system
(1.1). Assume that f = f - fo and g = ¢o - g%, for some irreducible
polynomials f;, g;, + = 1,...,r, j = 1,...,s, and r,s € N. Let ; = deg f;,
v; = degg;. Assume that deg f = degg and (f,g9) = 1 and define the rational
first integral

H =

f _af+(aa+l)yg
g f+ag .

We take c1,co € C such that f and § are irreducible. Then,

(1) If f (resp. g) is reducible, then ¢ = —cy — ¢! (resp. ¢ = —c3) is a remar-
kable value of H.

(2) If a; > 1 for some i € {1,...,r} (resp. B; > 1 for some j € {1,...,s}),
then ¢ = —cy — ¢ (resp. ¢ = —cy) is critical, and f; = 0 (resp. g;) is a
critical remarkable invariant algebraic curve with exponent o, (resp. (3;).

Proof: The equation f+c¢j = 0 can be written as (c¢+¢)f + (c1(c+¢)+1)g = 0.
Then, the proposition follows. |

If f is a polynomial, let f be the homogeneous part of f of highest degree. If
H is the function given by the expression (1.8), we define

~ ~ ~ - 5n M1 ~ 5nq\ Mg
H:fl)‘lprp (691/h11> ...(egq/hq > .

Theorem 1.5.4. Suppose that the polynomial differential system (1.1) of degree
m, with P and Q relatively prime, has a Darbouz first integral H given by (1.8),
where the polynomials f; and h; are irreducible, the polynomials g; and h; are
relatively prime in Clz,y| and \;,u; € C\ {0}, i=1,...,p, j=1,...,q. Then,
the following statements hold.

(1) Suppose that H is a minimal rational first integral, H = f/g, and that
system (1.1) has no polynomial first integrals. It is not restrictive to assume
that f and g are irreducible. Then:
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(a) The rational function

2
Vi g

_= _H uqi_]_?
(2
7

where the product runs over all the critical remarkable invariant alge-
braic curves u; = 0 having exponent a; > 1, is an inverse integrating
factor.

(b) System (1.1) has a polynomial inverse integrating factor if and only if
H has, at most, two critical remarkable values.
(2) Furthermore, if we assume that f; and h; are different fori=1,...,p and
j=1,...,q, then the following statements hold.
If system (1.1) has no rational first integrals, then

Viegrr = fu - fp hi" - byt € Rz, y).
Moreover, if H is a multi—valued function and e%/" are exponential factors

for 7 = 1,...,q, then Vieew = f1-- [ hi" Lo hye ! 1s a polynomial of
g plh q
degree m + 1.



Chapter 2

Polynomial inverse integra-
ting factors of quadratic sys-
tems

In this first part of the work the quadratic systems are the polynomial real dif-
ferential systems of type (1.1) of degree m = 2. Our main objective is to classify
all the quadratic systems having a polynomial inverse integrating factor V(x,y).

In Section 2.1 we classify the quadratic systems into ten normal forms (see
[29]). Once this classification is done, in Section 2.2 we present the methods we
use to find quadratic systems having a polynomial inverse integrating factor. The
rest of the chapter is dedicated to find the quadratic systems having a polynomial
inverse integrating factor, using the classification of Section 2.1 and the methods
described in Section 2.2.

2.1 Normal forms of the quadratic systems

We classify the quadratic systems in ten normal forms, passing from a quadratic
system with the usual 12 parameters to a quadratic system with 6 parameters. We
use these normal forms to find the quadratic systems having an inverse integrating
factor. To do this classification we must transform the quadratic systems by using
affine changes and scaling time, but we must be sure that with these changes a
polynomial inverse integrating factor becomes a polynomial inverse integrating
factor.

If v(x,y) is an inverse integrating factor of a polynomial system and we apply
a change of time T" = ~t, then clearly v(z,y) is an inverse integrating factor of
the new system. The next proposition solves the question of the affine change.

Proposition 2.1.1. Any inverse integrating factor associated to a polynomial
system is transformed into an inverse integrating factor if the system is changed
by an affine transformation.

Proof: Consider the polynomial system

i':p(xvy% QZQ<I7y)' (21)

33
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Let z1 = ax + by + a, yy = cx + dy + 3, with ad — be # 0. Then,

d(zy — a) = b(y, — ) _ a(yy — B) — c(z1 — )
ad — bc Y= ad — be

and

¥ =pi(x1, 1) = ap(z,y)+bq(z,y), = q(z1,11) = ep(x, y)+dg(z,y). (2.2)

Let V(z1,y1) be an inverse integrating factor of (2.2) and let v(x,y) = V(x1, 11).
It is clear that v(z,y) is a polynomial if V' (z1,y;) is a polynomial. We want to
prove that v(x,y) is an inverse integrating factor of (2.1).

As V is an inverse integrating factor of system (2.2), it satisfies the equation

ov oV (0p1  Oq
p18_x1+q13_y1_<8x1+8y1)V (2.3)

We next write this equation in terms of p,q and x,y. First of all, the functions
Op1/0xy and 0q; /0y, are written as

%a@pd_ap ¢ >+b<3qd_<9q6>

ory Oxr ad—bc 8ym Oor ad—bc 0Oy ad—bc
= adl_bc<adgi—acg§+bd§z—bcgg>
and
gi:c<_g§adﬁbc+g§adibc>+d<_§zadﬁbc+gzadibc>
= adl_bc<—bcgi+acg§—bd§i+adgz>.

Adding these two expressions, we obtain

opp O dp  Oq
e T 2 R At 3 2.4
0x1 + Ooy1 Oz + dy (24)

On the other hand, the expressions of 0V /0z; and 0V/0y, are, respectively,

ov. 1 d@— v
or, ad—be \ Oz Cay

W (e o
Oy ad—bc Oz dy)

Then, the expression p; OV/dxy + ¢; OV /0y, becomes

ap+bq [, 0v v cp+dq ov dv\ _ Ov v
ad—bc(dé)x 087, +aal—bc b(‘)ix—i_a@iy _p8x+q8y' (25)

So by equations (2.4) and (2.5), v is an inverse integrating factor of (2.1). m

and
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Next proposition can be found in [29]. Since it plays a main role in our study,
we give its proof.

Proposition 2.1.2. Any real quadratic system is affine—equivalent, rescaling the
time variable if necessary, to system & = P(x,y), y = Q(z,y), where Q(z,y) =
d+ ax +by +lz* + may +ny? and © = P(x,y) is one of the following ten normal
forms:

(I) &=1+uay, (VI) z=1+2?%

(I1) &=y, (VII) =22
(III) &=y+a?  (VIII) ©=uzx,
(IV) &=y, (IX) =1,

(V) &=-1+2% (X) &=0.

Proof: We can write a real polynomial quadratic differential system as

& =d + ayx + by + La? + mizy + ny?,

. 2.6
U = dy + asx + boy + bz + moxy + noy?, (2.6)

where all the parameters are assumed to be real. We claim that we can take
ny = 0. Indeed, if nylys # 0 then system (2.6) becomes a quadratic system
without term y? in @ by the change of variables 1 = y — rx, y; = y, where r # 0
satisfies

I+ (my — 1) + (ng — my)r* — nyr® = 0. (2.7)

If I, = 0, that is, if the 2? term does not appear in 7, then it is sufficient to
interchange x and y. In short, we can assume that

i =dy + a1z + by + Liz? + myxy (2.8)

and that § = Q(z,y) is an arbitrary quadratic polynomial. If m; # 0, then we
introduce the translation  + b;m; " — x, and then (2.8) becomes = d’ + a'z +
I'z? + mizy. Now, the change a’ + I’z + miy — y converts this new system into
i =d +zy,y=Q(x,y). If d # 0, then we make the change (d')~'z — z to get
(I). If &’ = 0, then we have (II).

If m; = 0 and by # 0, then the change dy + a;x + byy — y converts (2.8) into
N T

Now if I; # 0, then we make the change I'y — vy, 1t — t to get (III). If
l; =0, then we have (IV).

If my = b, =0 and [; # 0, then we define k = a? — 4d,l;. If k # 0, then
by the change 20, |k|™Y?(x + a1(201)7Y) — z, 27Yk|[V?t — t we get (V) or (VI)
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according to whether k is positive or negative. If £k = 0, then by the change
T+ ay(2l) e — x, l;t — t we get (VII).

If my = by =1; =0 and a; # 0, then by the change x +dy(a;)™" — z, a;t — ¢
we get (VIII).

Lastly, suppose that m; = by =13 = a; = 0. If d; # 0, then we get (IX) by
change dit — t; if d; = 0, then we have (X). n

Remark 2.1.3. 1. The ten cases obtained in Proposition 2.1.2 do not need
to have empty intersection.

2. By Proposition 2.1.1, if a quadratic system has a polynomial inverse inte-
grating factor, then its normal form given in Proposition 2.1.2 has a poly-
nomial inverse integrating factor. So in order to find all the families of
quadratic systems having a polynomial inverse integrating factor we need
to compute the polynomial inverse integrating factors for the normal forms
obtained.

2.2 Methods for computing polynomial inverse
integrating factors

We consider the real planar quadratic system

i = P(x,y) = ag + a0 + any + asr? + a1y + agy?, (2.9)
( )

y = Qz,y) =d+ax+by+l2* + mxy + ny>.

We assume that P and () have no common factors, otherwise the system can be
transformed into a linear one. In order to find a polynomial inverse integrating
factor of this system, we use the classification of quadratic systems given in
Proposition 2.1.2. We will find polynomial inverse integrating factors of degree
k € N by using some different methods of solving the equation

ov ov oP 0Q
P— — ==+ V

Oz * oy (8I * 8y>
We denote this equation by (). As the term in y* of P(z,y) is zero in all the
normal forms, we take agy = 0 in (2.9).

Remark 2.2.1. 1. In case (X), equation (%) has always the polynomial so-
lution V' = ). The cases where P = 0 or () = 0 are not interesting for us,
so from now and on we exclude them from our classification.
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2. The equation div (P, Q) = 0P/0x + 0Q/Jy = 0 is equivalent to b = —ayy,
m = —2as, n = —aq1/2. In this case, the system is Hamiltonian, so V' =1
is always a polynomial solution of (¥ ). Moreover,

l
H(x,y) = dx — agoy + %$2 — G10TY — %QZ + 5133 — a20$2y — %ng

is a polynomial first integral of system (2.9), and also a polynomial inverse
integrating factor of the system.

This case appears for every normal form in our classification.
([

Next we describe the methods we use to find polynomial inverse integrating
factors of degree k > 0.

Method 1 Since we are looking for real polynomial inverse integrating factors
of degree k € N, we write V' as

k
V<:C7y) = Z /Ui,jxiyja

i+5=0

where v; ; € R. Equation (%) is a polynomial equation since P, @) and
V' are polynomial functions, and it can be written as a linear system with
unknowns v; ;, i + 7 =0,...,k.

If £ > 1, we define in a recursive way the matrix Ay,

Ay = , (2.10)
where
kaoo d
(k — ].)CL(]() 2d
Cip = : ; (2.11)
apo kd
(k‘ — 1)&10 —b a
ka01 (]C — 2)(110 2a

CQ’k; = (I{J — 1)@01 s (212)

. ka
apr —apo+ (k—1)b
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(k‘ — 2)@20 —m l
(k - 1)(111 —2n (k - 3)(120 21
(k—2)a;; —n
Cs = (2.13)
kl
—2as9 + (k‘ —1)m
—ai] + (k‘ — 2)n
and
—aip—b aoo d
—2a90 —m =b a
_ | —an—2n ao1 —a1o
A = 0 gy —m ! (2.14)
0 7271 72&20
0 0 —a11 — N

Let 0 be the zero vector, of convenient dimension wherever it may appear.
We state the following result.

Proposition 2.2.2. Let V(z,y) be a polynomial inverse integrating fac-
tor of degree k of system (2.9). Then, equation (%) is equivalent to the
homogeneous linear system

AVE =0,
where Ay, is the matriz defined in (2.10) and

(2.15)

k T
V= (Uo,o, V1,0, Vo,1, V2,0, V1,1, V0,2, - -y U1 k-1, Uo,k)

is the vector of the coefficients of V(z,y).

-5 Uk,05, Vk—1,1,--

Proof: Equation (%) is a polynomial equation of degree k + 1 in two varia-
bles. Then it can be written as

k+1

3 [(all(i — D) 40— 3)) i1 + (azoli — 3) + m(j — 1))vi_,

i4=0
+1(j + D)vi—g 1 + aoo(i + L)vip1; + (a0(i — 1) +b(j — 1)) v
Fao1 (i + 1)vig1 -1 +d(G + 1)vi jp1 +a(j + 1)Ui—1,j+1} z'y! =0,
(2.16)

where v, = 0 if r;s,r +s ¢ {0,...,k}. As all the coefficients of this
polynomial must be zero, we must take

(an(z' — 1) + n(j — 3))%,];1 + (azo(i — 3) + m(j — 1))/01‘71,]'

H1(J + Dvicaer + aoo(i + Dviers + (ar0(i — 1) +b(j — 1))viy
+ao1 (Z + 1)1]2'4_1,]'_1 + d(j + 1)1)1"3'4_1 + a(] + 1)7}2'_173'_;,_1 = 0,
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for 0 <i+j < k+ 1. In order to obtain equation (2.15), we just have to
write these equalities as a linear system with unknowns v; ;. |

Remark 2.2.3. 1. We note that, for a given k € N, the matrix A has
(k4+2)(k+3)/2 rows and (k+1)(k+2)/2 columns. Then, the (homoge-
neous) linear system is over—-determined and for each case we have to
eliminate some equations in order to get a non—trivial solution. Then,
we must take some conditions on the coefficients d, a, b, l, m,n (the co-
efficients of the polynomial @), see Proposition 2.1.2), in order to obtain
a polynomial inverse integrating factor of the corresponding system.

2. We look for conditions on the coefficients of Q(x,y) so that the null-
space of the matrix A, has dimension one.

3. This first Method is very tedious for k large, so we use it to compute
solutions of (¥ ) of small degree, usually degree k < 6.

4. This Method, adapted and improved, is used in [46] for finding invari-
ant algebraic curves of a given degree for planar polynomial systems.

O

Method 2 We compute a first integral H(z,y) of system (2.9) and then we

obtain an inverse integrating factor V' (z, y) from the equations P/V = —H,,
Q/V = H, (see Section 1.4). This Method is used in some cases when we
cannot bound the degree of V. The difficulty in this Method is to find
the convenient first integral such that the inverse integrating factor V is

polynomial.

Method 3 We write V' as a polynomial in the variable y (resp. x): V(x,y) =
Z?:O Wl<x> yi (l"eSp. V(a:,y) = Z;:O VVZ(Q) xi)v 0 < r,s < k. Thenv (*)
can be written as a polynomial equation in y (resp. in x), and we can solve
it starting by the terms of highest or lowest degree in y (resp. in x). This
Method is useful if we need to compute the degree of V' in y (resp. z).

Method 4 We write V as

where V;(z,y) is a homogeneous polynomial of degree i, fori = 1,...,k, and
Vo € R. Then, (%) becomes a system of homogeneous differential equations
of degree from 0 to k + 1, which are solved recursively. Moreover, from the
Euler Theorem for homogeneous functions, we have

k
Ve +yV, =Y 4V

J=0
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Then, equation (¥) is transformed, after multiplying by = (resp. y), into
a system of k + 2 ordinary differential equations, where there only appear
the polynomials V; and their derivative with respect to y (resp. x). This
Method is the one we more use to solve (% ). In Section 2.3.8 we combine
it with the decomposition of each V; in powers of linear polynomials, as
explained in Proposition 2.3.2, Corollary 2.3.3 and Lemma 2.3.4.

Method 5 We write V' as in (2.17) and then we write each homogeneous poly-
nomial V;(z,y) as a polynomial in y (vesp. x): Vi(z,y) = >\ vij ;7" 7y’
(resp. Vi(z,y) = Z}:o Uj,i—jyi_jxj)'

Remark 2.2.4. There are solutions of (%) of arbitrary degree k. In some of

these cases, it is very difficult for us to find an explicit expression for V. But in
these cases, this expression can be computed for fixed k& using Method 4. O

2.3 Finding polynomial inverse integrating fac-
tors

In this section we find the quadratic systems which have a polynomial inverse
integrating factor for each one of the nine normal forms (I)—(IX). For the normal
forms where P contains the monomial 22, we will use the following lemma.

Lemma 2.3.1. Consider the quadratic system
T =ap+any+ 2%, §=d+ax+by+lx* + mry + ny’. (2.18)
The following statements hold.

(1) Assume that agy € {0,1,—1}, agy € {0,1}, and n # 0. Let V(z,y) be a
polynomial inverse integrating factor of (2.18). Then, the degree of V(x,y)
with respect to y is two.

(2) Assume agy = 0, ag; € {0,1}, and n = 0. Let V(z,y) be a polynomial
inverse integrating factor of degree k > 4 of (2.18). Then,

m:1—g7&1,
p

where p € {—1,1,2,3,...,k —1}.

Proof: First we prove statement 1. We write V(z,y) = Y7, Wi(x)y". Then
equation () is a polynomial equation in y. The equation corresponding to y***
is

n(s — 2)Wy(z) + ap1Wi(x) = 0.
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If ag; = 1 then W,(z) = e "~2. As W,(z) is a polynomial and n # 0, we take
s = 2, and then Wy(z) = Wa(x) = 1. If a1 = 0, as n # 0 and W(x) # 0, again
we must take s = 2.

Next we prove statement 2. We write V' (x,y) as in (2.17). The homogeneous
equation of degree k + 1 of equation (%) is

8Lk 28Lk
_ NV 'k ZF .
(m +2)2Vi + z(lx + my) y—i—x . 0

If m = 1, then Vi(z,y) = 2*F(y/z — llogx), so deg (V}) = 3, in contradiction
with the assumption £ > 4. If m # 1, then

l

m—1

Vi(z,y) = 2™ *F ( 27"+ x‘my) :

where F' is an arbitrary function. As Vj(z,y) is a homogeneous polynomial of
degree k, the function F must be of the form F(z) = 27" with p € NU {-1}.
We discard p = 0 because, in this case, we would get k = 3. So

p+1
T+ y) .

Then &k = 3 — p(m — 1), and from this equality we get m = 1 — (k — 3)/p,

p € NU{—1}. We must also take p < k, because Vi(z,y) contains the monomial
xk—p—lyp-ﬁ-l‘ -

O

Next results can be found in [9]. The computations in the cases where P
contains the monomial zy are based in those results, so we also give their proofs.

Proposition 2.3.2. We consider the ordinary differential equation
NH+UH, = M°L, (2.19)

where N, U, M and L are polynomials. Assume that M is a polynomial of
degree T such that M divides U, and that M has neither common factors with
N+jM,U/M forj=0,1,...,s—1, nor with L. If equation (2.19) has a solution
H given by a polynomaial of degree m, then H = M*W where W is a polynomial
of degree m — st such that

U
[N + sMyM} W+ UW, = L.

Furthermore, if M and H are homogeneous then W is also homogeneous.
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Proof: Since M divides U but it does not divide N, from (2.19) it follows that
there exists j € N such that H = M7A, where A is a polynomial of degree
m —7j. Going back to (2.19) with this expression of H, we obtain that M7 ([N -+
JMU/M]A + UA,) = M*L. We have that j < s, otherwise M divides L in
contradiction with the assumptions. On the other hand, if 7 < s, then M must
divide [N + jM,U/M|A+ UA,. Then, since M divides U and does not divide A
we get that M divides N + jM,U/M, again in contradiction with the hypotheses.
Hence j = s, and furthermore A satisfies the equation [N +sM,U/M|A+UA, =
L. It M and H are homogeneous, then from H = M?®W we deduce that W is
homogeneous and the proof of the proposition is completed. |

Corollary 2.3.3. We consider the differential equation
KH+TH, = FIG°FE, (2.20)

where K and E are homogeneous polynomials of degree 1, F = m(p — 1)z + (k —
3+2p—1(n—1))y and G =ax+ By, T = FG.

(a) Suppose that ¢ > 0 and G does not divide K+ jG,F forj=0,1,...,s—1,
and that F' does not divide K + sG,F'+iF,G fori=0,1,...,q—1. If there exists
a solution of (2.20) given by a homogeneous polynomial H of degree m, then
H = FiG*V,,_s_,, where V,,,_s_, satisfies

DViysg +TVggy = E, (2.21)
with
D = K + sG,F + qF,G. (2.22)

(b) Suppose that ¢ =0 and G { (K+jG,F) forj =0,1,...,s—1. If there exists
a solution H of (2.20) given by one homogeneous polynomial of degree m, then
H = G*°V,,_s, where V,,,_; satisfies DV s + TV s, = E, with D = K + sG,F.

Proof: (a) Applying Proposition 2.3.2 with N = K, U = T, L = FE and
M = G (and hence t = 1), we have that H = G*W,,_,, where W,,_; is the
solution of [K + sG,F|Wy,_s + TW,,_s, = FIE. Applying again Proposition
2.3.2 to this equation with N = K + sG,F, U =T, L = F and M = F we get
Win—s = F1V_s_,, with V,,_s_, a solution of (2.21).

(b) This statement is the consequence of applying Proposition 2.3.2 with N =
K,U=T,L=FEand M =G. -
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Lemma 2.3.4. Let V = > a;z™ "y be a homogeneous polynomial of degree m

i=0
solution of DV + TV, = E, where T = da* + exy+ (f — 1)y*, D = eéx + fy and
m+1
E =5 qa™ "y . Let M(1 42,14 1) be the (I +2) x (I + 1) matriz
r=0
FHuf-1
etle  frU-1(f-1)
1d er(l—-De  F+U-2(f-1)
2d e+e f
d e
Then the coefficients a; of V' are the solution Z = (0, m_1,...,00)" of the

system M(m +2,m+1)Z = b with m + 2 equations and m + 1 unknowns, where
b = (Gms1sGm,---,q)". Furthermore, if there exists s € {0,1,...,m} such that
J?+j(f— 1) #0 and gj41 = 0 for all j > s, then the existence of V is equivalent to
the compatibility of system M(s+1, S)Z = b, where Z = (as_1,5_2,...,00)" and
b= (Gs,qs—1,---,q0)". Moreover, the coefficients of V are (0,...,0, s 1,..., ).

Proof: Taking into account the expressions of D, T" and V', we can write

DV +TV,
Zeatwm t+1 t
t

m
f e tytﬂ—i-thatxm_szt_l—l—
t=1

Ms

t(f _ 1)at$m—tyt+1

Ms!‘:

~
[e=]

m m
_ Z(f+t(f_ )) Lt t+1+z 6+t6 T t+1yt+
t=0 t=0

m
§ :tdata:m t+2 t—1
=1

m—2
= (dajy + €ag)z™ ™ + Z((j +2)dojio + (€4 (5 + 1)e)aji1 +
=0
(f +3(f = D)ag)a™ Iy + (€ +m)e)am +
(f + (m = D(f = D))am-1)zy™ + (f +m(f = 1))am-1y™ .
Then equation DV +TV, = E is equivalent to the linear system M (m+2, m+
1)Z =b.
Now, we suppose that there exists s € {0,1,..,m} such that f+ j(f —1) #0
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and g;41 = 0 for all 7 > s. If we define X as the matrix

]?+m(f—1) _
e+me  f4(m-1)(1) B
md e+(m-1e  f+(m-2)(£1)

E+(s+2)e f+(s+1)(f-1) _
(s+2)d e+(s+1)e  fs(t-1)

we can write M(m +2,m + 1) as

X 0
M(m+2,m+1) = ( Y M(s+1,s) >
On the other hand, we have Z = (au, Qm_1,., Qs |Qs_1, .., )" = (Qt|2t)t

and b = (0|qs, gs—1,--q0)" = (O\gt)t. Now, the system that corresponds to the first
m — s + 1 unknowns is X2 = 0 and since det (X) = H(f—i—](f — 1)) # 0 we

j=s
deduce that {2 = 0, that is, a; = 0 for all j > s. Finally, the remainder equations

becomes YQ + M(s+1,5)Z =b. As 2 =0, the proof is finished. n

From now on in this chapter, we find the quadratic systems having a poly-
nomial inverse integrating factor, taking into account the normal forms given in
Proposition 2.1.2.

2.3.1 The case P(z,y) =1

We consider the quadratic system

t=1, ¢=d+azx+by+1lz*+may+ ny?, (2.23)
where d,a,b,l,m,n € R. If n £ 0 then this system is transformed into
: . boo b b 5 o
-1 _ 200 _ 710 220 2.24
=1, y=-F - et ety (2.24)

by the affine change mz/2 + ny + b/2 — y, where byy = 4dn — b* + 2m, by =
bm — 2an and byy = 4n — m>.

The set of conditions on the coefficients of system (2.23) with n = 0 and
system (2.24) in order to have a polynomial inverse integrating factor are stated

in the following two propositions.

Proposition 2.3.5. A system of type (2.23) with n = 0 and having a polynomial
inverse integrating factor V(x,y) can be written, after an affine change of varia-
bles and a rescaling of the time if it is necessary, as © =1, § = Q(x,y), where Q)
15 one of the polynomials below.
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(IX.1) Q(z,y) = z(0 + x), where 6 = 0,1. The system is Hamiltonian, so we
have V(x,y) = 1.

(IX.2) Q(x,y) =y + 2% and we get V(z,y) =1+y+ (1 + ).

(IX.3) Q(z,y) = (bo1 +9z)y, where § = £1 and by; € R, and we get V(x,y) = y.
Proof: If b = m = 0, then the system is Hamiltonian. We also have [ # 0,
otherwise the system is linear. If @ # 0, then by the change lz/a — x, —dl*z/a’+

PPy/a® — y, lt/a — t we have y = x(1 + ). If a = 0, then by the change
—dx/l +y/l — y we get y = 2. We obtain statement (IX.1).

Assume b*> + m? # 0. Next we find the maximum degree in y of a solution V'
of degree k. For that purpose, we write V' as a polynomial of degree s > 0 in y:

Viw,y) =3 Wiy

We can write equation (%) as a polynomial equation in y. Then, all the coeffi-
cients of the new equation (which depend on x) must vanish. The coefficient of
y*t1 is zero and the coefficient of 3 is given by

(b4 mz)(s — 1)Ws(x) + Wi(x) = 0.
Solving this equation, we obtain Wy(z) = e~(s=Dlb+me/2)e  Ag 1 (1) is a poly-
nomial and we are assuming b? + m? # 0, we take s = 1. So we get V(z,y) =
Wo(x) + y. Now the whole equation (%) becomes

d+ az + x> — (b + mx)Wy(z) + Wi(z) = 0. (2.25)
We distinguish two cases. If m = 0 (and so bl # 0), then equation (2.25) becomes

d+ az + lo* — bWy(x) + W(z) = 0,

from which we obtain

1
- b_3(2l + ab + b*d + (ab + 20)bx + b*1x?) + Che',

Wo(z)
where Cy € R. As b # 0, we take Cy = 0. Then, we get the polynomial
V(x,y) =2l + ab+ b*d + (ab + 20)bz + b*lz* + b’y.

After the change (bz, abx/l+ by /l+ (a+db*)/1,bt) — (z,y,t), we get the system
and the solution stated in (IX.2).
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If m # 0, then from (2.25) we get

—bl+1

m2

[ (* +m)l = m(ab — dm) Jpaema? 2, (0 M@
2 mb/2 Vom )’

where ®(z) is the error function ®(x) f ING ~dt and Cy € R. As Wo(x) is

a polynomial, we take Cy = 0 and (b*> + m)l — m(ab — dm) = 0. We obtain the
polynomial

V(z,y) = am — bl + Imz + m?y.

After the change (y/|m|z,lx + my + (am — bl)/m, \/|m|t) — (z,y,t), we obtain
the system and the solution stated in (IX.3), where ¢ is the sign of m and by =

b/ /il .

Proposition 2.3.6. A system of type (2.24) having a polynomial inverse inte-
grating factor V(z,y) can be written, after an affine change of variables and a
rescaling of the time if it is necessary, as © =1, y = Q(x,y), where

(IX.4) Q(x,y) = 6 + y?, with 6 =

1,0, The expression of a polynomial
inverse integrating factor is V(x,y) =

Proof: First we write V' as a polynomial of degree s in y:

with Wy(z) # 0. The equation corresponding to the coefficient of y**! in (%) is
(s —2)W(x) = 0. Then, s = 2, which means k > 2. Next we write V(z,y) as in
(2.17). So equation (%) can be transformed into a system of k + 2 homogeneous
equations. The homogeneous equation of degree k + 1 is

oV,

Solving this equation we obtain Vi (z,y) = (byz? + 4y?) fr(x), where fi(z) is an
arbitrary non-zero function of x. As V}, is an homogeneous polynomial of degree
k, we take fi.(z) = 2%72, and then

Vi(z,y) = (bao? + 497) k2,
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The homogeneous equation of degree k is
—16b1gz" 'y — 8yVi_1 + (boo” + 4y*) 4 — =

from which we get
Vk_l(x, y) = —2b10$k_1 + Ck_l(b20$2 -+ 4y2) .Tk_g,

with C;_; € R. From the homogeneous equation of degree k — 1,

OV,
4LU (b Okl’ —2(2b100k 1—b00).§(7y 4<k' 2) ) 8ka 2+(620$C —|—4y ) 822 = 0’

we get

Vk,Q( ) Ck 2.1' (bgol' + 4y ) + xk 3((b00 — 2b100k 1)1‘ — 4y)+
2(k — D)™ *(byr® + 43?) ( 2y )
arctanh
v —bag vV —bax

if bgg < 0,

Vi—a(z,y) = Ci o " (bQOIB + 4y )+ zh 3((boo — 2b10Cr—1)r — 4y)—
_ k—4
2(k ) (bQOx + 4y ) arctan (
Vb2

2y
2% 520-75)
if bgo > 0, and
Vk,Q((E, y) Ck 2.’13 y — <2b100k 1— bog) —|— 4(]{ — 2)xk_5y

if boyg = 0. In all cases, Cy_o € R. As k > 2, we must take byg = 0. From the
homogeneous equation of degree k — 2, we obtain

2bgoCr—1 — b19Cl—2 k3
2

+ C_gz® 5y2—

Vis(z,y) = 4(k — 3)Cr_1z™ 1y —
2b10(2k — 3) k2
3y

Y

with Cr_3 € R. In order to obtain a polynomial, we must take b;o = 0. Then,
Y = boo/4 + y*. In this case we have a solution of degree 2, which is, after either
the change (\/|boo|z/2,2y/+/|bool, /|boo|t/2) — (x,y,t) if by # 0, or the change
(x/2,2y,t/2) — (x,y,t) if byg = 0, the solution stated in (IX.4). The parameter
0 corresponds to the sign of byg. ]
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2.3.2 The case P(x,y) ==«

We consider the quadratic system
t=x, ¢=d+ax+by+Ilz*+may + ny?, (2.26)

where d,a,b,l,m,n € R. If n = 0 and m # 0, then this system is transformed
into

where byg = (bI(b— 1) — m(ab — dm))/m?, by the affine change mz — z, lz/m +
y+a/m— (b—1)l/m? — y. If n # 0 then system (2.26) becomes

: o boo bio b 5

_ _boo b b2 9.2

=z, §=- 5 Tty (2.28)
where byg = 4dn — V%, by = (b — 1)m — 2an and by = 4in — m?, by the affine
change mz/2 +ny +b/2 — y.

The set of conditions on the coefficients of system (2.26) with n = m = 0,

system (2.27) and system (2.28) in order to have a polynomial inverse integrating
factor are stated in the following three propositions.

Proposition 2.3.7. A system of type (2.26) with n = m = 0 and | # 0 has
always a polynomial inverse integrating factor V(x,y) (the case b = d = 0 is
excluded because the system would be equivalent to a linear one). In order to get
its expression, we distinguish four cases, depending on the value of the parameter
b. The system can be written, after an affine change of variables and a rescaling
of the time if it is necessary, as © = xz, y = Q(x,y), where Q is one of the
polynomials below.

(VIIL.1) Q(z,y) = —y+x*. The system is Hamiltonian, so we have V (x,y) = 1.

(VIIL.3) Q(z,y

(

(VIIL.2) Q(z,y) = 0 + 2% where 6 = +1, and we get V(z,y) = .
( = dx 4+ y + 2% where § = 0,1, and we get V(z,y) = 22,
(

)
)
)
(VIIL4) Q(z,y) = by +a? with b # —1,0,1, and V(z,y) = ((b — 2)y + 2?).

Proof: Tt b = —1, then the system is Hamiltonian. By the change —ax/(2l) +
y/l —d/l — y, we get (VIIL.1). From system A;V! =0,

-1-b 0 d "
b a 0,0
_1 V1,0 =0,

Vo,1
l 0,
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we get V(z,y) = x and b = 0. So statement (VIIL.2) follows after the change
(Iz, —alz + ly) — (z,y), where ¢ is the sign of di # 0. From system A,V? = 0,

-1-0 0 d
—b a 0 d V0,0
-1 0 0 2 10
[ 1—-0 a 0 Vo,1 —0
0 2a V20 ’
0 b—-1 U1
l 0 Vo,2

21

we get V(z,y) = 2 and the condition b = 1. So statement (VIIL.3) follows after
applying either the change (lz/a,ly/a* + dl/a*) — (x,y) if a # 0, or the change
(lz,ly +dl) — (x,y) if a = 0. Finally, assuming b # —1,0, 1, we consider system
A3V3 = 0,

1-b 0 d
-b a 0 d
1 0 0 o Yo,0
I 1-b a 0 0 d 1,0
0 2 0 0 2d vo.1
0b-1 0 0 0 3d 2,0
I 0 2-ba 0 0 R =)
9 0 1 2 0 0,2
0 b 3a Y3,0
0 0 20—1 v21
I 0 0 1,2
2 0 o3

3l

We get the solution shown in statement (VIIL.4) after the change of variables
(lz,alz/(b—1) 4+ ly+dl/b) — (z,y). n

Proposition 2.3.8. A system of type (2.27) having a polynomial inverse inte-
grating factor V(x,y) can be written, after an affine change of variables and a
rescaling of the time if it is necessary, as & =z, §y = Q(x,y), where Q is one of
the polynomials below.

(VIIL5) Q(z,y) = dz + (z — 1)y where 6 = 0,1, and we get V(z,y) = 0(1 +
x) + xy.

(VIIL.6) Q(z,y) = (b+ x)y, and we have V(z,y) = xy.
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Proof: We write V(x,y) as in (2.17). The homogeneous equation of degree k + 1
of equation (¥) is

oV,
—xVi + xy—k = 0.
dy

We get Vi.(x,y) = 2*~1y. The homogeneous equation of degree k is

Vi1

dy =0.

(k —2)a*ty — 2V + 2y

From this equation,
Vica(z,9) = (Croa — (k= 2) logy)z"y,

Cik_1 € R. Then, a polynomial solution V' must have degree k = 2. Now system
A2V2 =0 is

—(b+1) 0 by V0,0
-1 —b 0 0 boo V1,0
0 -1 0 0 2b00 Vo,1 —0
-1 0 1-0b 0 0 V2.0 ’
0 0 b—1 U1
—1 0 0 Vo,2

From this system we get the polynomial V(x,y) = by + zy and the condition
(b+ 1)bgov11 = 0. If b = —1 then we obtain statement (VIIL.5) using the change
y/boo — 1 — y if byg # 0. If b = bgy = 0 then the system has a common factor. If
b# —1,0 and by = 0, then statement (VIIL.6) follows. [

Proposition 2.3.9. A system of type (2.28) having a polynomial inverse inte-
grating factor V(x,y) can be written, after an affine change of variables and a
rescaling of the time if it is necessary, as & = x, y = Q(x,y), where Q) is one of
the polynomaials below. The expression of a polynomial inverse integrating factor
s given in all the cases.

(VIIL7) Q(z,y) = —1/4 + 62 + y?, where 6 = —1,0,1. We get V(z,y) =
46x% + (2y — 1)2.

(VIIL.8) Q(z,y) = boo/4 + y*, where by € R. We have V (x,y) = z(bg + 4y?).

Proof: We write V (z,y) as in (2.17). Equation (3 ) can be written as a system of
k + 2 homogeneous equations. From the homogeneous equation of degree k + 1,
OV

—8yV, + (boor® + 49*)—= =0
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we get Vi(z,y) = (baoz? + 4y?) 2. The homogeneous equation of degree k is

OV
4247 ((k = 1)baox” + dbiozy — 4(k — 3) — 8yVir + (baor” + 4y?) a’; =0,

from which we obtain

Vie1(2,y) = Cro1a™ 3 (byo® + 4y?) — 22772 (byoz + 2y)—

2([{3 - 2)$k_3(b20$2 + 4y2) ( 2y )
arctan

Vbao baox

if byg > 0,

Viei(z,y) = Ck—1$k_3(520$2 + 4?/2) — 2ffk_z(blox + 2y)+
 oV,k-3 2 2
2(k — 2)x" 3 (bggx® + 4y*) arctanh ( 2y )
vV —bag vV —byox

if bog < 0, and
Vi1 (z,y) = Croo12" 3y — 21021 + 4(k — 3)a" 2y

if byg = 0. In all cases, Ciy_; € R. If kK = 2 then system A,V? =0,

—1 0 b00/4
0 0 —b10/2 0 b00/4
2 0 -1 0 0  by/2 vo,0
0 byp/d 1 =—bp/2 0 Y10
—2 0 0 0  —by Yo =g,
-1 0 0 ~1 v2,0
0 byp/d 0 L1
—2 0 b20/2 Yo,2
~1 0

gives us the conditions and the solution of statement (VIIL.7), using the change
V/|b2o|z/2 — x if byy # 0. The parameter § is the sign of by.

If £ # 2, then we must take byg = 0. From the homogeneous equation of
degree k — 1 we obtain the expression of Vj_s(x,y),

Viea(z,y) = Cp_ox® 9 + Ch_1 (k — )" 3y +

2 3y ’

Ci_o € R. In order to obtain a polynomial, we must take byg = 0, 80 § = bgo/4+y>.
In this case, the polynomial of degree 3 stated in (VIIL.8) is a solution of (¥).
We note that this case includes (VIIL.7) with ¢ = 0. ]
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2.3.3 The case P(z,y) =y
We consider the quadratic system
t=vy, U=d+ax+by+Ix*+may+ ny’ (2.29)

where d,a,b,l,m,n € R. If n = 0 and m # 0, then this system is transformed
into

T = ap + ar +y, Y= b+ bory + 2y, (2.30)

by the affine change m?x — z, (Az+y+B)m?® — y, t/m — t, where agy = —Bm?3,
ayg = —1, bgo = (d — (A+b)B)m*, byy =1+ bm and A =1/m, B = (am? — 1> —
blm)/m3. If n # 0 then system (2.29) becomes

@ = ago + awr +y, Y= b+ bioT + bar® + ¢, (2.31)
where
ago = —(m + 2bn) /2, ap = —m, boo = 4dn3 — (m + 2bn)? /4,
bio = —m? — 2n(bm — 2an), by = 4ln — m?,

by the affine change nx — x, mnx + 2n%y + (m + 2bn)/2 — y, 2nt — t.

The set of conditions on the coefficients of system (2.29) with n = m = 0,
system (2.30) and system (2.31) in order to have a polynomial inverse integrating
factor are stated in the following three propositions.

Proposition 2.3.10. A system of type (2.29) withn =m = 0 and [ # 0 having a
polynomial inverse integrating factor V(x,y) can be written, after an affine change
of variables and a rescaling of the time if it is necessary, as & =y, y = Q(z,y),
where

(IV.1) Q(z,y) = —boo + 2% where byy € R. The system is Hamiltonian, so we
have V(x,y) = 1.

Proof: Under the hypotheses of the proposition, if b = 0 then we get (IV.1) after
the change (2lx + a,2v2ly,t/v/2) — (x,y,t), where by = a® — 4dl.

We shall prove that (9 ) has no polynomial solution under the hypotheses of
the proposition and assuming b # 0. If k < 3, straightforward computations show
that there is no solution, so we assume k > 3. Now we transform our system into

=y, §=D+Ax+y+a®

by the change lz/b* — x, ly/b> — y, bt — t, where D = di/b* and A = a/b>.
Next we write a solution V'(z,y) of degree k as in (2.17). From the homogeneous
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equation of degree k+ 1 of equation (%), that is 220V}, /0y = 0, we get Vi(x,y) =

2%, From the homogeneous equation of degree k, which is

OVi_1
dy

we obtain Vi_1(z,y) = :pk*3(0k_1x2+xy—ky2/2), Cr1 €RIfj€{1,... k—1},
then the homogeneous equation of degree k — 7 is

ka* =ty — 2k 4 2 =0,

OMWVi—j1
9y
An easy induction argument shows that the degree in y of Vj_; is 27, for all j. Let
Uk—3j2j and vp_s;11,95-1 be the respective coefficients of the monomials k=32
and zF=31y2=1 of V.. Now we take, from equation (2.32), the two equations

associated to the coefficients of the monomials of maximum degree in y which
are, respectively, of degree 25 4+ 1 and 2j:

207 + Dvg—3(j+1).2(+1) T (k = 3))vk—352; = 0, (2.33)
(27 + Dvg—sj—22j+1 + (k= 3] + Dvp—zjt1.2j-1 + (2 — Dvp—sgj; = 0. (2.34)
We remark that v o = 1. From (2.33), we get for j =1,..., [k/3]

Vi Vi

+ 22

+ (Az 4 y) —0.  (2.32)

j—1

ity = gy [[ = 30) £0. (2.35)

i=0
If k =3p+1, pe N [ e {12}, then we consider equation (2.33) with j =
(k—1)/3=peN
2(p + 1)1}1_3,2(p+1) + lvp_3p9, = 0.

Since 0 < [ < 3, we have v;_35p4+1) = 0, and then v,_3,9, = 0 in contradiction
with (2.35). So we must take £k = 3p, p € N\ {1}. If 1 < j < p then we can
isolate vg(p_j),2; and v3(—j)41,2j-1 from equations (2.33) and (2.34), respectively:

3
Vao-9)2 = Ji—a) E)(p —1i) # 0,
U3(p—j)+1.2j-1 = —w%(pﬁﬂajs - <_23>J1 (2‘7&2_‘73_) {)%‘3_(191)—' )
Equation (2.34) with j = p, which is
V12p—1 + (2p — 1)vg2p = 0, (2.36)

can be rewritten as

1y <p> (g) Cp=2 - DITLGi+1) _

= \J T (2p—20+1)
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which is equivalent to

(2)" (6= HrO/Or/2-p)
57 T(1/6 — p) ’
where I is the Euler gamma function. This equation does not hold for p € N, so

we are again in contradiction. Then we do not obtain any polynomial solution
from equation (). n

Proposition 2.3.11. A system of type (2.30) having a polynomial inverse inte-
grating factor V(z,y) can be written, after an affine change of variables and a
rescaling of the time if it is necessary, as & =y, y = Q(z,y), where

(IV.2) Q(z,y) = z(0 +y) with 6 = £1, and we get V(x,y) =0 + y.

Proof: First we compute the solutions of degree k < 2. System A;V! =0 is

—(a10 4+ bo1) ano boo

-1 —bo; 0 5070 -0
1 —alg 1,0 -
1 0 Vo,1

From this system, we take ajg = bgg = 0 and agg # 0 (otherwise, the system has

a common factor). After the change ((z 4 bo1)/+/|aool, (¥ + a0o)/|acol; v/|@oo|) —
(x,y,t), we get statement (IV.2), where § is the sign of ago.

System A,V? = 0, which is

—(a + bo1) ago boo

—1 —bop1 0 2aqo boo V0,0
I —ayp 0 oo 2boo V1,0
-1 0 a0 — 601 0 0 Vo,1 —-0
2 0 0 V2.0 ’
0 1 bor —ap V1,1
—1 0 0 Vo,2
1

has no non-trivial solution.
In order to prove that there is no solution of degree k > 2, we write V(x,y)
as in (2.17). From the homogeneous equation of degree k + 1 of equation (%),

Vi
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we get Vi(z,y) = 2871y, The homogeneous equation of degree k is

oVi_
"2y ((k = 2)arpz + (k — 1)y) — aViey + 3y a’; L—o,

from which
Viea(z,y) = 2Py (Croa — (K = 1)y) — aro(k — 2)2*logy,

Ck—1 € R. As we are assuming k > 2, we take a;p = 0. Solving the homogeneous
equation of degree k — 1, we get

Via(@,y) = Crat® Py + (bor (k — 1) = G (k — 2))2" P+
k—1)(k—
( )2( 3) l,kf5y3 . aOO(k N 1)xk,3y logy,

Ck—o € R. Again, as we are assuming k > 2, we take agy = 0. Now from the
homogeneous equation of degree k — 2 we get

kag(l', y) = bOO(Ck—l — b01)l‘k73 + Ck—3xk74y+
(bo1C_1(k —2) — Cp_o(k —3) — b3, (k — 1))z"5y* +

k—6,,3

(Cuma(k = 2)(k = 4) = bor (k = 1)(2k = T) =5 —

ZEk_7 4

(k= 1)(k = 3)(k - 5) + bookz™*ylog y,

Cr_z3 € R. As k > 0, we take byg = 0 and then the system has a common factor.
]

Proposition 2.3.12. A system of type (2.31) having a polynomial inverse inte-
grating factor V(x,y) must satisfy the conditions

aobio — 2agoba = 0, a3y + (4boo + bao)aio — 2agobio = 0. (2.37)
Then, the expression of V(x,y) is
V(l’, ?J) = CL%O + 2bOO + blO + b20 + 2(b10 + bgo)l‘ - 2&10y + 2b201‘2 + 2y2

More precisely, by applying the conditions (2.37) on Q and V', five families of
systems arise:

(IV.3a) Q(x,y) =& + y* where 6* =1, and we get V = § + .
(IV.3b) Q(x,y) = dx + y* where §* =1, and we get V = 6(2z + 1) + 2y*.

(IV3C) Q(Zﬂ,y) =D+ (5332 + y2 where D = <4b00b20 — b%o)/(4b20|bgo|), 52 = 1,
and we have V = 2D + 6 + 26x(1 + x) + 2y>.
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(IvV.3d) Q(x,y) = D+ 1/4 +y + y* where D = byy/(4al,) # —1/4, and we get
V= 4D + (2y + 1)

(IV.3e) Q(x,y) = —(D +1/16) — y/2 + 4(D + 1/16)2* + zy + y*, where D =
bao/(16a3,) # —1/16, and we get V = 16D (2x + 1)> + (1 + 2z + 4y)*.

Proof: We first prove that a polynomial solution V' (z,y) must have degree k = 2.
We write V(z,y) as in (2.17). Equation (%) is a polynomial equation of degree
k41, so we can transform it into a system of k42 homogeneous equations. From
the homogeneous equation of degree k + 1,

oV,
—2yVi + (bzoﬂfz + yz)a—; =0,

we get Vi(z,y) = 2%72(byx? + 9?). The homogeneous equation of degree k is

l’k_S (algbgo(k} - 1)1’3 + (2b10 + bgok’)lEQy -+ Cl,lo(k’ - 3)!L‘y2 + (k} - 2)y3)—
Vi1

2yVie_1 + (booz® + 2 =0
YVi—1 + (baox™ + y°) Dy )

so we get

Vi—1(z,y) = Ok—lxk_g(bQ()xQ + y2) + xk_Q((bw + byo)z — a10y)—
k—2
5 l‘k_g(bgol'Q + y2) 10g(b20752 + y2) -
B 2 2
am(k 2)(1)20x Y )xk_?’ arctan ( y )
Vb Vb

if bog > 0,

Vi—i(z,y) = Ck—1$k_3(520$2 + y2) + fk_2((blo + bog)x — a10y)—

k—2
Tl’kig(bgoxz -+ y2) log(b20x2 + yQ) —

if by < 0, and
Vic1(z,y) = C’k_lmk_3y2 + a:k_g(blox + ayp(k—3)y) — (k— 2)mk_3y2 logy

if byg = 0. In all cases, Cy_1 € R. As Vj_; is a polynomial, we take k£ = 2. Now
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from system A,V? = 0, which is

—aip ap  boo

0 0 bio 2ap0 boo v
—2 1 —aig 0 aoo 2600 ’UO’O
0 by  aig bio 0 b0
2 0 2 0 2y Yo — o,
—1 0 1 —aq 52’0
0 bgo 0 L1
—2 0 2byg o2

we get the solution
V(LC, y) = a%o -+ 2b00 —+ b10 -+ b20 -+ 2(b10 + bgo)l’ — 2a10y -+ 2()20132 -+ 2y2

and the conditions G1ob1o — 2@00b20 = O, Clil))o + (4b00 + b20)@10 — 2@00b10 = 0. Next
we distinguish five cases, depending on the values of the parameters:

1. If a9 = agg = byy = bm = 0 and bgy # 0, then we get (IV.3a) by the change
(y/v/1bool, v/1boolt) — (y,1).

2. If ayp = agp = bayg = 0 and byg # 0, then we get (IV.3b) by the change
(2 + boo/b10, y/+/ D10, v/ |brolt) — (x,y,1).

3. If ajp = agp = 0 and byy # 0, then we get (IV.3c) by using the change
(2 + b1o/(2020), y//|b20|, /|20 |t) — (2, 9,1).

4. If ajp = by = byp = 0 and agp # 0, then we get (IV.3d) by the change
(_y/2a00 - 1/27 _2a00t) - (ya t)

5. If Q10 7é O, b10 = 2&00[720/&10 and boo = —(G%O + bgo)/4 -+ a%obgo/aﬁo, then by
the change (2 + ago/a0, —2/2 — y/(2a10) — ago/a10, —2a10t) — (z,y,t) we

get (IV.3e).
n

2.3.4 The case P(z,y) =y + x°
We consider the quadratic system

t=y+2% g=d+ar+by+I12®+may +ny’, (2.38)
where d,a,b,l,m,n € R. If n # 0 then this system becomes

b b b
& =ap+ar+y+1t, §=-—— —a— (2.39)

4 2 4
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by the affine change nx — z, mnz/2 + n®y + (m + 2bn)/4 — y, t/n — t,
where agy = —(m + 2bn)/4, a;gp = —m/2, byy = (4dn — b*)n* — m(m + 4bn) /4,
bio = m?/2 + n(bm — 2an) and byy = m(m — 2) — 4in.

The set of conditions on the coefficients of system (2.38) with n = 0 and
system (2.39) in order to have a polynomial inverse integrating factor are stated
in the following two propositions.

Proposition 2.3.13. A system of type (2.38) with n = 0 having a polynomial
inverse integrating factor V(x,y) can be written, after an affine change of varia-
bles and a rescaling of the time if it is necessary, as © = y + 22, y = Q(z,y),
where Q) is one of the polynomials below.

(IT1.1) Q(z,y) = boo + biox — 2xy where byy = (54d — 9al + 1*)/2 and by =
3(6a — 1?)/2. The system is Hamiltonian.

(I11.2) Assume 2b(m — 1) +1(m+2) =0, *m + 2al(m — 1)*> +4d(m — 1) =0
and m # —2. We distinguish four cases depending on the value of m.

(I11.2a) If m =0 and a # 0, then Q(z,y) = dz where §*> = 1, and we get
V(z,y) =0+ 2(y + 2?).

(II1.2b) If m =1, then Q(x,y) = boo + biox +xy where byg = —27d —9ab+
263, by = 9a + 3b?, and we get

V(z,y) = by + boox(2b1o + 3y + ) + (bio + y) (broz” — 7).

(IT1.2¢) If m = 2, then Q(z,y) = x(bio + 2y) where biy = 4a+ 612, and we
get V(x,y) = (bio + 2y)*.

(ITI.2d) Ifm # —2,0,1,2, then Q(x,y) = x(big+my) where byy = da(m —
1)? 4+ 3I*m, and we have V(z,y) = (big + my)(bio + 2y — (m — 2)z?).

(I11.3) Q(z,y) =1+ zy/2, and we get V(z,y) = (22 — y*)(2 + 3zy — y?).

(I11.4) Q(x,y) = 1+bigr+4xy where by = 2%/33(3a+1?)/(54d+9al+21%)%/3 € R,
and we have

V(z,y) =1+ 22(big + 3y — 2%) + (bio + 2y — 22°) (bioz” — (y — 2°)?).
(IIL1.5) Q(z,y) =1+ 8zy, and we get

Vz,y) = [(3x2 —y)? - 2$] [1 —2(32% — y)(3x — (32* — y)Q)].

Proof: The systems with n = 0 having a polynomial inverse integrating factor of
degree k < 4 are obtained solving the linear systems A;V*=0,7=1,...,4. The
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results are stated in (III.1) and (II1.2), where an affine change of variables has
been applied in each case.
Assume k > 4. We write V(z,y) as in (2.17). By Lemma 2.3.1, we get

l p+1
Vilog) =0 (Tt (2.40)
and m=1—(k—3)/p#1, wherepe {-1,1,2,... k- 1}.

If m =0 then as k > 4 we get a = d = 0 and b = [ after straightforward
computations and the system has a common factor. Then, from now on we
assume m # 0, 1.

The homogeneous equation of degree k — j of (%), 7 = —1,...,k, is

OVi—j— Vi Vi
(lz + my)z—I=L — (m + 2)xVi—j1+y ST (a4 by) e
ox Jy
Wi + dav’é—;j“ =0, (2.41)

taking V; = 0if i € {0, ..., k}. From (2.40), we can write Vj(z,y) = aF P~ 1yPT1 4
-+, where the dots mean lower order terms in y. If Vi_i(x,y) = verF T Ty
then equation (2.41) for j =0 is

(m(s — 1) — 2)va™ y* + (k — p — 1)z P 2Pt L ppakP-lyptt ... =0,

If k=p+1and b#0, then s =p+ 1. If p =4, then we obtain (II1.3) after the
change ((z +1)/v, (=2lx +y — 12) /7%, 4t) — (x,9,t), where v = —|d + I3/2|/3.
If p # 4, then after some computations we are under the conditions of (I11.2). If
k = p+1 and b = 0, then from straightforward computations we obtaind =1 = 0,
so we are in (II1.2) again. So from now on we assume k # p + 1.

We claim that the degree of V;,_; inyisp+j+1ifk—p—1-25>0. We
prove this claim using the induction principle. From the computations above, the
degree of Vj in y is p + 1 and the degree of Vi1 in y is p + 2. Next we write
Viejya(w,y) = v PP 20yP =t o VG (2, y) = ot PP 4o and
Vi—j(z,y) = voz*~*~Iy*+-- - s € Z. From the equality (2.41), as k—p+1—2j > 0
we get

(m(s — 1) = 2uez" ¥y + (k — p+ 1 — 2§ vt P~ 20yPHith 4. = 0,
so s =p-+ 7+ 1 as we wanted. Then we can write

_ k—p—1-2j k—p—1-2j p+j+1 k—p—2j k—p—2j, p+j
Viej (@, y) = vy Y TV T yri e (242)

We note that v;:f ~1 £ 0. From equation (2.41), the equations associated to the

terms of degree p+j+2, p+j+1,p+j and p+ j — 1 in y are, respectively,

o k—p—1-2j . k—p—3—24
(k—p—1- 2])”;;4-?4—1 T—(g+ DG+ 1)Up+§0+2 7 =0, (2.43)
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N k—p—2j . k—p—2-2j N k—p—1-2j
(k=p—=2))v, 777 = ((q+1)j + Vv, 7 7 +b(p+d)v, Ty 7+

. k—p—3—2j
p+Jj+2)v, 1 7 =0, (2.44)

(k—p+1— 2P (g +1)j — g+ Do 27 b(p+j — 1ol 77+

Up+j Uptj
. k—p—2—21 . k
Wp+j+ D " +alp+j+ Do b = (2.45)
and
. k—p+2-2j . k—p—2j , k—p+1-2;
(k—p+2—20)v, P75 —((q+1)j — 2¢+ Dy P77 +b(p+ § — 2)v, 777+
k—p—1-2j k—p—2j k—p—1-2j
Wp+iv, ;7 talp+i)o, s +dlp+ v, 7 =0 (2.46)
If & — p is even, then from equation (2.43) we obtain v;:f ~1 =0, a contradic-

tion. So in what follows we assume that &k —p is odd. Let C = (k—p—1)/2 € N.
From equations (2.43)—(2.46) we obtain

k—p—1-2j 2\ [C
Vptjt1 ]:<m) i) (2.47)

for 0 < j <

N TTi—1 .
P2 ZJ: (p +J — 1) Hs:1(k —p—2(j —3)) k—p+1—2(j+1—i)+

(N
T g+ D)(—s)+1) P
Jl<+j+1 drﬁﬂ%—p—zw—s»kﬁﬂﬁgH%
i+1 . Up+j+1_i 5 (248)
=0 I ((g+1)(j—s)+1)
for 0 <75 <
PP — a(p+j —1) Hls 1("7 —p+1-2(j — 3))Uk—p+;—2(j—i)+
P M@+ -5 —(@-1) "7

Z l(p+j — )L (k—p+1—=2(j — ) rpaii n

i=0 HPr1 ((g+1)(j—s5)—(¢g—1)) Uptj—i

S bp i —i = DT (k=p 120 =5) pag "
Z T (@ + DG = 5) = (a— 1)) pm 29
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for 0 <7< C+1; and

N i: p+j—i— DI (k—p+2—2(j —5) s pr1-2(-1-

2 T Uptj—1—i +
e = g+ 1) —s) = (2 - 1)) Y
i—1 .
e+ =i DI (k—p+2—-2(j - $)) k-p-26-1-i)
; : j—1—i
pary [I5 (g +1)( —5) - (2¢ - 1) -
i llp+j—i—1) Hs (k—p+2—-2(j — ))Uk*p7172(jflfi) n
i j—1—i
~  ILL(a+ DG —s) - (20— 1) o
i b(p +] —1— 2) Hs;l(k —p+ 2— 2( S))Uk—p—1—2(j—1—i) (2 50)
i . +j—1—1 ) :
Py [ ((e+1)(G —s) = (2¢ = 1)) Y
for 0 < j < C+1. We note that, as m # 0, 1, the only value of m for which some
denominators in the above expressions could vanish is m = —1. In this case,

straightforward computations show that we are under the conditions of (II1.2).
Equation (2.44) with j = C' and equation (2.46) with j = C' + 1 are, respec-
tively,

Ulc+p +0(C + p)vngerl =0 (2.51)
and
Vbip1 +0(C+p =10, +d(C+p+ 1)l =0. (2.52)

From these two equations we will obtain either the conditions of (II1.2) or two
new families of quadratic systems having a polynomial inverse integrating factor.
Equation (2.51) becomes, after some computations,

C
S [+ C =g+ 1(C =1 i)+ Db+ (p+ C+1-0)(2i + 1))

: (%)C (f) ﬁ@s—l) lg[ ((q+1)(c_1_3)+1)} 0,

s=1 s=i+1

where we have dropped the coefficient v;:f ~! £ 0. Factorizing this expression

with the help of Mathematica software (see [49]) we obtain

c
(k+p—2)Cl2bq + 1(q — 3)] [J(2i(g+ 1) — (¢ — 1)) = 0.
i=2
The factor 2bg + (g — 3) = 2b(m — 1) +1(m + 2) is the only one which can vanish
in this expression, so we must take 2b(m — 1) 4+ I(m + 2) = 0. We note that this
is the first condition of (IIL.2).



62 2. POLYNOMIAL INVERSE INTEGRATING FACTORS

Equation (2.52) becomes

Cc-1

d(C+p—i)[[i1 (25 +1) L 2+1)
. Z T (@ F (O +1—s)— (2g 1)) "

C

a(C+p—1) Hi:l(Qs +1) it
Z T (g1 1)(C +1—s)— (2g 1)) Coi T
(

C+1

CHp—DITa@s+1) 5
2 (@ D€+ 1-5)— (2g—1) 77
C+1

b(C+p—1—i) [ (25 +1) i
; Hs g+ 1)(C+1—-5)—(2¢—1)) Cp—i T

ZC: ab(Ct+p—D)(CHp+1-i2il ,

i=0 Hiﬁ((q +1)(C+1-35)—(¢g—1)) VCtpt1—i t

CZ“ bUC+p—1)(C+p+ 102D 5 4
I1

?9111(((] + 1)(C+ 1-— S) — (q _ 1)) VCipt1—i +

1=0

=0
CZ“ BAC+p—1)(C+p—i)2 i —1)! o 4

i=1 Hs (@+1)(C+1—-5)—(¢—1)) UCtpri—i T

C
d(C+p+1) <qi1> , (253)

where the condition b = —I(q — 3)/(2q) is to be applied. Using equations (2.47),
(2.48) and (2.49) in (2.53), we obtain an equation which is a linear combina-
tion of d, al and [ equaled to zero. Factorizing this equation with the help of
Mathematica software we obtain, after removing the trivially non—zero terms,

C

(¢ - 3) [1(2i(g +1) - 3(g — 1))
o (4d(k —3)° — 2alp(k —3)+ I*p*(k—3~p)) = 0.
I (ig+1) — (29— 1)

If g =3 then m = —2 and b = 0, so the system is Hamiltonian. The product
in the numerator vanishes if and only if p = —1 and either k =6 or k = 10. The
product in the denominator vanishes if and only if m = —1, but this case has been
discarded before. Otherwise, we get 4d(k—3)* —2alp(k —3)*+13p*(k—3—p) = 0,
which is 4d(m — 1)3 + 2al(m — 1)? 4+ I*m = 0, and then we are in (II1.2).

If k=6and p = —1, then m = 4 and b = —[. If 54d + (9a + 2[*)] = 0,
then we are in (III.2). Otherwise, we get a new solution, which is shown in
(ITL.4), after the change ((z — 61)/v, (lx/3 +y — [?/36)/7*,~vt) — (z,y,t), where
V3 =d+al/6+13/27 # 0.



2.3. Finding polynomial inverse integrating factors 63

If £k =10 and p = —1, then m = 8 and b = —5[/7. If d = 0, then we are
in (II1.2), so we take d # 0. In order to have a new solution, we must take
a =1 =0 (and then b = 0). We obtain statement (IIL.5) after the change
(z/d"3 y/d?3 dY3t) — (z,y,1). ]

Proposition 2.3.14. A system of type (2.39) having a polynomial inverse inte-
grating factor V(x,y) can be written, after an affine change of variables and a
rescaling of the time if it is necessary, as © =y + 2%, ¥ = Q(z,y), where Q(z,y)
18 one of the polynomials below.

(I11.6) Q(z,y) = —bio/4—brox+y+2xy—1y>/b1o where byg = 2/(3+4agy—a3,) €
R\ {0}, and we get V(z,y) = (bio — 2y)*.

(I11.7) Q(z,y) = y(2z +y), and we get V(z,y) = y*.

Proof: We can write V(z,y) = Vo(z) + Vi(z)y + y* using Lemma 2.3.1. Then
equation (%) is a polynomial equation of degree 2 in y. It can be transformed
into the system

—4(a10 + 2)Vo(z) + 4p2(2) Vg (2) + 2(2) Vi(2) = 0,
q2(x) — 4Vo(z) + 2V5 (@) — 2(a10 + 2)Vi(z) + 2p2(2)V{(z) = 0,
a0 + 2x + Vi(l’) — ‘G’(ZE) = O,

where po(2) = agy + a10x + 22 and ga2(x) = bog — 2b19T — bagz®. Solving the second
and third equations we obtain V(z) and Vj(z). From the first equation we get the
solutions stated in (IT1.6) and (IT1.7), depending on the value of 3+ 4ag — a?, and
after the change (—byo(z + (a0 +1)/2), b3 (—x +y + ago — (a0 +1)%/4), —biot) —
(x,y,t) for (II1.6) and the same change taking by = —1 for (II1.7). m

2.3.5 The case P(z,y) = 2°

We consider the quadratic system

i=2% §=d+ar+by+Ilz*+may+ny’ (2.54)
where d, a,b,l,m,n € R.
If b =d =n =0, then system (2.54) has a common factor. If b =n = 0 and
d # 0, then system (2.54) is transformed into one of the following three systems,
depending on the value of m.
If m = 0 then

t=a% =1+, (2.55)
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where § = 0, 1, by the affine change (az/d, (—lz +y)/a,dt/a) — (z,y,t) if a # 0,
or the affine change (y —lz)/d — y if a = 0.
If m =1 then

=2 §=1+62x*+uy, (2.56)

where 6 = —1,0, 1, by the affine change (y 4+ a)/d — y if [ = 0, or the affine

change (y/[dlle/d, (y + a)//[dl], dt//Idl]) = (x,y,) if 1 £0.
If m # 0,1 then

= y=1+may, (2.57)

by the affine change (z/d,lx/(m — 1) +y + a/m,dt) — (z,y,t).

If n =0 and b # 0, then system (2.54) is transformed into one of the following
two systems, depending on the value of the expression b — (m — 1)(ab — dm).
If oI — (m — 1)(ab — dm) = 0 then

i=2%  g=(1+ma)y, (2.58)

by the affine change (z/b, (ab — dm)x/b? + y + d/b,bt) — (z,y,1).
If oI — (m — 1)(ab — dm) # 0 then

T=x y=y+2®+may, (2.59)

by the affine change (z/b, B((ab — dm)xz/b* + y + d/b),bt) — (x,y,t), where
B=10/(b*l — (m — 1)(ab — dm)).

If n # 0, then system (2.54) becomes

T=x°, y=-————= x*+y°, (2.60)

by the affine change max /2 + ny +b/2 — y, where byy = b* — 4dn, byy = bm — 2an
and beg = m(m — 2) — 4in.

The set of conditions on the coefficients of the systems (2.55)—(2.60) above
to have a polynomial inverse integrating factor are stated in the following three
propositions.

Proposition 2.3.15. The following statements hold.
(VIL.1) System (2.57) with m = —2 is Hamiltonian.

(VIL.2) System (2.57) with m = —1 has the polynomial inverse integrating factor
V(z,y) = .

(VIL.3) System (2.57) with m # —2,—1,0,1 has the polynomial inverse inte-
grating factor V(z,y) = x(1 + (m + 1)xy).
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(VI1.4) System (2.55) has the polynomial inverse integrating factor V(z,y) =12

(VIL.5) System (2.56) has the polynomial inverse integrating factor V(z,y)=x3.

Proof: The solutions follow from straightforward computations of the linear sys-
tems A,V =0, fori =1,2,3. n

Proposition 2.3.16. The following two statements hold.

(VIL.6) System (2.58) has the polynomial inverse integrating factor V(x,y) =
%y,

(VIL.7) System (2.59) has a polynomial inverse integrating factor (of degree k >
3) if and only if m =k — 2. Its expression is given by

V(z,y) = 2%y + (k — 4)! .

Moreover, system (2.59) has no polynomial inverse integrating factors of
degree k < 3.

Proof: Statement (VIL6) follows easily from the computation of A3V3 = 0 for
system (2.58). Moreover, straightforward computations show that there is no
solution of degree k < 3 for system (2.59).
We write a polynomial inverse integrating factor V' (z,y) of (2.59) as in (2.17).
The homogeneous equation of degree k + 1 of equation (%) is
A%

(k—m —2)aVy + z(z+ (m — 1>y>8_y =0.

k—3 k-3
We get Vi(z,y) = 2" o=t (z + (m — 1)y)'"==1. Let p + 1 be the degree of V;
in y. Then, m = 1 — % € Q, where p € {—1,1,2,...,k — 1}. Next we find
the maximum degree in y of V. For that purpose, we write it as a polynomial of
degree s > 0 in y:

V(o) = 3 Wilaly'

We can write equation (%) as a polynomial equation in y. Then, all the coeffi-
cients of (¥ ) (which depend on ) must vanish. The coefficient of y*™ is zero
and the coefficient of y° is

(1 +ma)(s — 1) — 22)W,(z) + 2*W/(x) = 0.
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Solving this equation we get Wi(x) = els~V/@g3=s+(k=3)(s=D/p  Ag W, (x) is a
polynomial, we take s = 1. Then, V(z,y) = 2%y + Wy(x), and Wy(z) is a
polynomial of degree k > 3. As Vi(x,y) does not have any term in y, we have
p = —1, and then m = k — 2. Now we can solve the whole equation (%), which
is

ot — (1 + kx)Wo(x) + 2*Wi(z) = 0,

to get the solution in (VIL7). n

Proposition 2.3.17. System (2.60) has a polynomial inverse integrating factor
V(z,y) if and only if one of the following statements hold.

(VIIS) boo = bl() = bgo =0. Then V(ZL‘,y) = (J? - y)2
(VIL.9) by = bio = 0 and bog # 0. Then V(z,y) = x(byr? + dzy — 49?).
(VII]_O) boo # 0 and blO = bzo =0. Then V(CE, y) = 1'2(b00 — 4y2)

(VII.].].) bog = (k?-Z)(]{Z—4> >0, boo > 0 and by = (k:—Qp)\/% S R, with k > 4
andp € {2,...,k—2}. Then V(z,y) = 2*[pi(x)y +p3(2)] [pi(2)y +p3(z)],
where pi(x) and p?(x) are Laguerre polynomials of respective degree p — 2
and k — p — 2 and the expressions of the polynomials pi(z) and p3(x) are
obtained from pl(x) and p?(x).

We remark that under these conditions the system is simplified to
=2 g=—1—(k—2p)x—(k—4)ry+y’

applying the change (2x/v/boo, ((k — 4)x 4+ 2y)/v/boo, V'boot/2) — (x,y,1).

(VIL.12) by = (K —2)(k —4) > 0, by < 0 and by = 0, with k > 4 even.
Then V(z,y) = z*(fo(z) + fi(z)y + fo(z)y?), where fo(x) is a polynomial
of degree k — 4 and the expressions of the polynomials fo(x) and fi(x) can
be obtained from fo(x).

We remark that under these conditions the system is simplified to

it=a% g=1-(k—4zy+y*

by the change (2x/v/—boo, ((k — 4)x 4+ 2y)//—boo, vV —boot /2) — (x,y,1).
Proof: Let V(x,y) be a polynomial inverse integrating factor of (2.60) of degree

k. If k < 4, then straightforward computations show that there is no solution of
degree 1; there is a solution of degree 2 if and only if byg = b1g = byg = 0; there
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is a solution of degree 3 if and only if byy = byp = 0 and byy # 0; and there is
a solution of degree 4 if and only if byg # 0 and b1g = byy = 0. The respective
expressions of V(z,y) are shown in the proposition. From now on, we assume
k > 4 and b, + b3, > 0.

By Lemma 2.3.1, we can write V' as a polynomial of degree 2 in y:

V(z,y) = Wo(x) + Wi(z)y + Wa(z)y?,

where W;(x) is a polynomial of degree k —i, i = 0,1,2. We rewrite equation (%)
as the differential system (depending on x)

—8W0(£L’) + 41‘2W6(ZL’) — (boo + 2b10$ + b20$2)W1 (37) =
AWo(z) + 4aWy(x) — 22°W{(x) + (boo + 2b10T + bagx®)Wa(x) =
Wi(x) + 2aWso(x) — 2*Wi(z) =

9

. (2.61)

o oo

From the second and the third equations, we obtain the expressions of Wy(z) and
Wi(x) in terms of Wy(x) and its derivatives:

Wi(z) = —2x Wy(z) + 2> Wy (),

Wo(z) = —i ((boo + 2b10z + (bag + 4)2*)Wa(z) — 42*Wi(z) 4 22 W) (z)).

Observe that if Ws(x) is a polynomial of degree k — 2, then W (z) and Wy(x)
are polynomials of degrees k — 1 and k, respectively. From the first equation of
(2.61) we get

(2b0g + 310 + bagx?) W () — x(boo + 2b10x + baoz?)Wa(x) + 2° W5 (x) = 0. (2.62)
As Wy(x) is a polynomial of degree k — 2, we write Wy(x) = Z;:()Q a;z'. Then
equation (2.62) becomes

e

—2

((2 = 2)boo + (20 — 3)broz + (i — 1)(boo — i(i — 2))z°)a;z’ = 0. (2.63)

Il
=)

7

The equation corresponding to z* is (k — 3)(by — (k —4)(k —2)) = 0. As k > 4,
we take by = (k — 4)(k — 2) > 0. From the equations corresponding to z°, z*
and z2,

2b00a0 = 0,
booar + 3bipag = 0,
bioar + bypay = 0,

we get ag = a; = 0. So, we have

V(x,y) = a*(Wo(z) + Wi(z)y + Wa(z)y?),
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for some polynomials W;(x) of degree k —2 —4,i=0,1,2.

After all these simplifications, equation (2.63) can be written as a (k — 3) x
(k—3) homogeneous linear system with unknowns as, . .., ay_o. In order to obtain
a non—trivial solution, the determinant of the matrix M}:

b1() bOO
(k—4)(k —2) 3b1o 2boo
2(k —1)(k —5) 5b10 3boo
3k(k—5) Thio 4b00 :
4k — )(k: 4)  (2k—9bo (k- 4)boo
(k—4)(2k—7) (2k —T)b1o
which is the matrix of the linear system, must vanish. If byg = 0 then the

determinant vanishes if and only if b;g = 0, but this is a contradiction with the
hypotheses. So for the rest of the proof we take byg # 0.

As x = 0 is an invariant algebraic curve of system (2.60) with cofactor = and
the divergence of the system is 2z + 2y, we will find conditions on the coefficients
of system (2.60) for Wo(z) + Wy (z)y 4+ Wa(z)y? to be an invariant algebraic curve
of cofactor 2y.

The following lemma gives the expression of det (My). We define Q(z) the
integer quotient of z and 2 and M (k) = mod (k, 2).

Lemma 2.3.18. The expression of the determinant of My is
Q(k—3)
det (M) = b 3" chp3h(—byo) 2+, (2.64)
=0
where ¢ € N for all i.

Proof: We prove the lemma by using the induction principle. If & = 5 then
det <M5) = S(b%O - bog). If £ = 6 then det (M6) = 15b10(b%0 — 4[)00). If £ > 67 then
solving the determinant of M, by the last row and the last column, we get the
recursive expression

det (M) = (2k — 7) big det (My_) + (k — 4)2(2k — T)(—boo) det (My_s).

Observe that the constants appearing in the above expression are natural num-
bers. Applying the induction principle, we obtain
O(k—4)
det (M) = (2k — 7)b k)+1 Z cf—lb%(_boo)Q(k—fl)—i
i=0
Q(k—5)
+(k — 4)2(2k — T)bjg Y Z E202 (—boo) 2,

k—2 k-1

for some positive integers ¢;”“, ¢; ". After some computations, this expression

is rewritten as in (2.64). The coefficients cf come from sums and products of
natural numbers, so they are also natural numbers. |
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If b1y # 0 and byy < 0, then the sum in the expression of det (M) is a polyno-
mial in b3, with positive coefficients and then there is no solution of det (My) = 0
for byg. So, for byg < 0 the only solution of det (My) = 0 is bjp = 0 when k is even.
By Lemma 2.3.19 we prove that there is a polynomial solution V' in this case.

If boo > O then det (M) = 0 is a polynomial equation of degree k — 3 in
bip. By Lemma 2.3.20, we find k£ — 3 values of by for which there exist two
invariant algebraic curves fi(z,y) = 0 and fo(z,y) = 0, both linear in y and with
cofactors ki (z,y) and ko(x,y), respectively, such that deg (f1) + deg (f2) =k — 2
and ki (z,y) + kao(z,y) = 2y.

Lemma 2.3.19. System (2.60) with byy < 0, byg =0, byg = 4(p — 1)(p — 2) and
p=Fk/2 € N\ {1,2}, has an invariant algebraic curve f(z,y) = 0 of degree k — 2
and cofactor 2y.

Proof: Under the hypotheses of the lemma, system (2.60) writes as

b
p=a g=—"2—(p-p-2"+y" (2.65)

If f(z,y) = folz)+ filx)y + folx)y? = 0 is an invariant algebraic curve of system
(2.65) of degree k — 2 and cofactor 2y, then

2%_'_( bOO 8f

T 1 (p—1)p—2)x +y>ay 2yf,

so we obtain

Ao =A@, o) = = ("4 0= D - 20 falo) + 5 A0)

and
2aa) — (%4 0= 000~ 202%) i) =0

This last equation gives us an expression for fo(z),

pz% (2 = p); bl 2*@—27)
— 4711 (4 — 2p); )i (5/2 —p)i’

where (a); = a(a+ 1)---(a +i — 1). From the other equations, we obtain the
expressions of fo(z) and fi(z), and then we have the expression of the function

f(z,y). u
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Under the conditions of Lemma 2.3.19, the cofactor of the polynomial f is 2y,
so V(z,y) = 2?f(x,y) is a polynomial inverse integrating factor of system (2.60).
The following lemma, which is based in Theorem 2 of [15], finishes the proof of
the proposition.

Lemma 2.3.20. System (2.60) with byy = (k—2)(k —4), k € N, k > 4, by > 0,
bio = (k —2p)vVboo and p € {2,...,k — 2}, has two invariant algebraic curves,
of degrees p — 1 and k — p — 1, respectively. These invariant algebraic curves
are of the form pi(z)y + pa2(x), with (p1,p2) = 1, and the sum of their respective
cofactors is 2y. Moreover, pi(x) is a generalized Laguerre polynomial of degree
p — 2 for the curve of degree p — 1 and of degree k — p — 2 for the curve of degree
k—p—1.

Proof: Assume that h(x,y) = p1(z)y + p2(x) is an invariant algebraic curve of
system (2.60) and let T'(x) 4+ a2y = ap + a1 + axy € Clz, y] be its cofactor. Let
n > 0 be the degree of p;(z). Then the following equation must hold:

.Oh . Oh

o TV, (T(x) + agy)h = 0.

Writing this differential equation as a system of equations we get

(ay — Dp1(x) = 0,
2?py(x) = T(x)pr(z) — pa(x) = 0,
2?py(x) + N(z)pi(x) — T(x)pa(x) = 0,

where N(z) = —boo/4 — brox/2 — (k — 2)(k — 4)2%/4. Tt follows that ay = 1.
Observe that the expression of py(x) can be obtained from the second equation.
From the second and the third equations we get T'(x)? + N(z) = Az?, A =
(2n+1)as —n(n+1) (see Lemma 4 in [15]) and

(A = T'(@)p1(z) + 2(z — T(2))p) (z) + 2p{(z) = 0 (2.66)

(see Proposition 3 in [15]). Moreover, 4a2 —boy = 0, 4a? — 4\ — (k—2)(k—4) =0
and 4aga; — byg = 0. Then, ag = £v/by/2, a1 = (27] +1+ (k- 3))/2 and

bio = (20 + 1+ (k — 3))v/boo.

Both symbols + in this expression are independent each other. Now we consider
equation (2.66) with n = p — 2, ap = —v/beo/2 and a; = —(k — 2p)/2 and the
same equation (2.66) with n = k —p — 2, ag = v/boo/2 and a; = (k — 2p)/2.
According to Proposition 3 in [15], we get two invariant algebraic curves f; = 0
(of degree p—1) and f = 0 (of degree k —p—1), both linear in y. The respective
cofactors are —v/boo/2 — (k — 2p)x/2 +y and /boo/2 + (k — 2p)x/2 + y. Its sum
is 2y. Furthermore, in both cases big = (k — 2p)v/boo. n
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If by > 0 then there are k — 3 values of by for which there exist two invariant
algebraic curves f; = 0 and f; = 0, with respective cofactors k; and ks, such that
ki + ky = 2y. So, under the conditions of the lemma, V = 2%f, f> is a polynomial
inverse integrating factor of system (2.60), and there are no more polynomial
solutions than the ones we have found. |

2.3.6 The case P(x,y) = 1+ 2?

We consider the quadratic system
t=1+2% o§=d+ax+by+Ilz*+mry+ ny?, (2.67)
where d,a,b,l,m,n € R.
If n =0, then system (2.67) is transformed into one of the following systems,

depending on the values of the parameters b and m.
If m =b=0 then

=142 §=by+az, (2.68)

where byy = d — [, by the affine change y — [z — y.
If m =0 and b # 0, then

=142 §=box+by, (2.69)

where b1y = a + bl, by the affine change y — lz + (d — 1) /b — y.
If m =1 then

b=14+2% g§=|bly+ox*+ ay, (2.70)
where § = 0,1, by the change (b/[b|x,b/|b|((ab — d)(z — b)/((b* + 1)) + (y +
a)/l),b/|blt) — (z,y,t) if I # 0 and the change (b/|b|x,b/|b|((ab— d)(x —b)/(b* +
1)+y+a)b/blt) — (x,y,t)if [ = 0.

If m#0,1 and (b*> +m)l — (m — 1)(ab — dm) = 0, then
i=1+2% = (b+ma)y, (2.71)

by the affine change Ax +y + (a — Ab)/m — y, where A =1/(m — 1).
If m# 0,1 and (b* + m)l — (m — 1)(ab — dm) # 0, then

t=1+2% 9§=1+by+mzy, (2.72)

by the affine change B(Az + y + (a — Ab)/m) — vy, where A = [/(m — 1) and
B=m(m—1)/((b*> + m)l — (m — 1)(ab — dm)).
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If n # 0 then system (2.67) becomes
t=142% jg=-——"-—1 2% + 97, (2.73)

where byy = b* — 2m — 4dn, byg = bm — 2an and by = m(m — 2) — 4ln, by the
affine change mx /2 + ny + b/2 — y.

The case n = b =0, m = —2, for which system (2.67) is Hamiltonian, is not
to be considered in the above subcases. The set of conditions on the coefficients
of systems (2.68)—(2.73) in order to have a polynomial inverse integrating factor
are stated in the following two propositions.

Proposition 2.3.21. The following statements hold.

(VI.1) System (2.67) with n =b =0 and m = —2 is Hamiltonian. Moreover, it
can be written as

t=14+2% §=05§— 2y,

where 6 = 0,1, by either the change (2lx — 6y + 3a)/(2(1 — 3d)) — y if
l # 3d, or by the change 2lx — 6y + 3a — y if | = 3d.

(VL.2) System (2.68) has the polynomial inverse integrating factor V(x,y) =
1+ 2%

(VL.3) System (2.69) has a polynomial inverse integrating factor if and only if
bio =0 and b # 0. Its expression is V(z,y) = (1 + z%)y.

(VI.4) System (2.70) has a polynomial inverse integrating factor if and only if
6 = 0. Its expression is V(z,y) = (1 + 2?)y.

(VL5) System (2.71) has the polynomial inverse integrating factor V(x,y) =
(1+2%)y.

System (2.72) has a polynomial inverse integrating factor (of degree k > 3)
if and only if one of the following two statements hold.

(VI.6) b=0 and m = —2p, p € N\ {1}. Then,

Vie) = (T2 (aRi1/21 - p.3/2.1 + 1)

We note that k = 2p* + p+ 3 > 13. The function H is a polynomial first
integral of the system. Its expression is

H(z,y) = (14 2*)Py — pzi (p - 1> L2+

— i 21+ 1
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(VL7) m=k—2and b# 0. Then
) i a2 (k= 2\ (i — @)i(i+ )2
V<x’y):(1+x><y_(2¢)k—2;( j ) K211 b )

where i = \/—1. Moreover, V(z,y) is a polynomial function. We note that
system (2.72) has no polynomial inverse integrating factors of degree k < 3.

Proof: The cases (VI.2) to (VL.5) are obtained solving the respective linear sys-
tems A;V'=0,i=1,2,3. We just have to consider system (2.72). If ¥ < 3 then
straightforward computations show that there is no polynomial solution V', so we
assume k > 3. We write V' (z,y) as a polynomial in the variable y:

V(l’, y) = Z Wl(x)yz,

s € NU{0}. We can now write equation (%) as a polynomial equation in y.
Then, all the coefficients of the new equation, which depend on x, must vanish.
The coefficient of y*® is

(b(s = 1) + (m(s = 1) = 2)2)Wi(2) + (1 + 2*)W((x) = 0.
From this equation we get
WS(ZL') _ 6b(s—l) arctana:(l + x2)(2+m—ms)/2‘

As Wy(z) is a polynomial in x, we take b(s — 1) = 0. Let us assume first that
b = 0. In this case, we get the solution

V(r,y) = (L+2?)™* 1 F (1 +2%) ™2y — 2 o F1(1/2,m/2 + 1,3/2, —27))

where F' is an arbitrary function. The hypergeometric function oFi(a,b,c,z) is
defined as

2F1(a1,a2,a3,2) = ZM, (2-74)

>0 (CL3>Z’L'

where (a); = I'(a +1)/T'(a) is the Pochhammer symbol. Since the degree of V' in
y is s, F" must be a polynomial of degree s. Then we must take m = —2p, p € N.

It follows that
p—1\ z%
7 20+ 1

p—

2F1(1/2,1 = p,3/2, —a%) = )

1
=0
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We also take p # 1, otherwise we have n = b = 0, m = —2 and the system is
Hamiltonian. We take the polynomial function F' of degree p+ 1 in y

F(H(l’,y)) = H(x7y)p_1(2F1(1/27 1 - D, 3/27 1)2 + H(%,y)2)7

where 9F1(1/2,1 — p,3/2,1)> # 0 and H(z,y) = (1 + 2*)Py — z.F1(1/2,1 —
p,3/2, —2?%) is a polynomial first integral of the system. We claim that

H(x,y)
1+ 22

Vie,y) = ( ) (2Fi(1/2,1— p.3/2.17 + H(z,y)")

is a polynomial function.
Let f(p,t) = 2F1(1/2,1 — p,3/2,—t). To prove the claim, we have to prove
that

go(p,t) = f(p, )P (f(p, =1)* + tf(p,1)?)
has a zero of multiplicity at least p at ¢t = —1. That is,

g0
ote

(p,—1)=0, ¢g=0,...,p—1.

Observe that go(p,—1) = 0. We derive go(p,t) with respect to ¢t. Using the
equality f(p,t) + 2tfi(p,t) = (1 +t)P~!, we have

T = S (0= DA 0D 0] T2,
and then %2(p, —1) = 0. We define now

ailp.t) = Fp, )" 2 (f(p, —1)? + tf(p,1)?).

Observe that ¢;(p, —1) = 0, which implies that go(p, ) has a zero of multiplicity
at least 2. Also if %(p, —1) = 0 then the go(p,t) has a zero of multiplicity at
least 3 at t = —1. But

o1

=7 ) = F0 " (0= 2)filp, ) (f(p, =1 +tf (0. 1)°) + F (0. ) (L+)" ),

and then %(p, —1) = 0. In order to prove that go(p,t) has a zero of multiplicity
at least p at t = —1, it is sufficient to prove that g;(p,t) has a zero of multiplicity
at least p — 1 at t = —1. We can iterate this method and define the functions

9P t) = f(p, )" (p, 1) (f (0, =1)* +tf(p,1)%), ¢=0,....,p—1.

For ¢ = 0,1 the functions have been defined above. As g,(p, —1) = 0 for all ¢,
the claim is proved, and so the function V(x,y) defined above is a polynomial
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inverse integrating factor of our system. Also, it has 1 4+ 2% as a common factor.
It is easy to see that the degree of V (x,y) is 2p* + p + 3 and that its degree in y
isp+ 1.

Assume now b # 0 and s = 1. Then, V(x,y) can be written as
V(z,y) = Wy(x) + Wi(x)y.
We write equation (%) as a polynomial equation in y. The coefficient of y is
—2xWi(x) + (1 + 2*)W|(x) = 0.

Then, Wi(z) = 1 + 2% and (%) becomes

14+ 2% — (b + (m 4 2)x)Wo(x) + (1 + 2*)W(z) = 0. (2.75)
As Wy(z) is a polynomial of degree k, we can write Wy(z) = vpa® + -+ -, with
vy # 0. Then, (2.75) is (k — m — 2)vpz®™ + .- = 0. As v, # 0, we take

m = k — 2. With all these restrictions, we solve equation (%) to obtain the
expression of Wy(x):

WO(-CE) — _ebarctanx<1 _|_$2)k/2/€—barctanx(1 +£L’2)_k/2 dr.

After some computations, we obtain

422 K (k=2 (i —a) (i +a)k2
WO(I)—WZ( j )ikl(k—bi—Q(j+1))’ (2.76)

=0

where i = v/—1. Observe that the degree of Wy(z) is k. It only remains to prove
that it is a real polynomial.

If k£ is even, then the term of the sum for j = (k — 2)/2 in the expression
(2.76) is

()

and it is a real polynomial. For any k£ > 3, the terms of the sum for j = [ and
j =k —2—1in the expression (2.76) are, respectively:

()

k—2—1

l
- ("“ ; 2) ST k=20 —2—ib) Y (—1)rartaghir

p=0 ¢=0
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and

[ k=2 (i — ) 27 + )t
k=2 1)@ 1(k—21—21ib)
| k—2-1

k—2
— _< z )/(@'k—l(k —20—24ib)) Y Y (—1)Frepragheema
p=0 ¢q=0
By adding these two expressions to get

(o ZZ (1 (cph
- ik=1=p=a \ k-2l —2—bi k—20—2+bi

(R 2\ S S (R 20— 2)(1) — (=1
= (_1>< I >Z Z jk—1-p—q ( (k—21—2)2+b2 +

(2.77)

(k—20— 22112

If (k—2—q)+pis even, then (—1)? — (—=1)*7279 = 0, so the expression (2.77)
becomes

—2 i’“z“xk 2-p—q +9b
#F—2pa (k — 2 — 2)2 + b2’

which is a real expression provided that ¢ is powered to an even number. If
(k—2—¢q) +pis odd then (—1)? + (—=1)k¥=27% = 0 and the expression (2.77)
becomes

—2 Zl:ki:la;“l’q (k-2 —2)
Lo Lt T (=20 — 22 4 b

which is a real expression provided that ¢ is again powered to an even number.
Summarizing, Wy(z) is a real polynomial and the proof of the proposition is
finished. |

Proposition 2.3.22. System (2.73) has a polynomial inverse integrating factor
if and only if one of the following statements hold.

(VL.8) bog = —4, byg = by = 0. Then V(x,y) = (x —y)?.

(VI.Q) b()() +4 7é 0, b10 = bgo =0. Then V(l’,y) = (1 + I2>(b00 - 4y2)
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(VI 10) bgo = (k’ )(k’ ) blO ( — Zp) \/bog + (k‘ - 2p)2 — (k’ — 2)(k — 4),
boo + (K —2p)2 — (k —2)(k—4) > 0 withk > 4 and p € {2,...,k — 2}.
Then V(z,y) = (1+*)(pi(x)y + p3(2)) (pi(2)y + p3(x)), where pi(x) and
p3(z) are Jacobi polynomials of respective degree p — 2 and k —p — 2 and
the expression of pi and p3 can be obtained from pi and p?, respectively.

Proof: Let V(x,y) be a polynomial inverse integrating factor of (2.73) of degree
k. If k& < 4, straightforward computations show that there is no solution of
degree 1 or 3; there is a solution of degree 2 if and only if b9 = byg = 0 and
boo + 4 = 0; and there is a solution of degree 4 if and only if bjg = by = 0
and bgy + 4 # 0. The respective expressions of V' (z,y) are shown in Proposition
2.3.22. From now on, we assume k > 4. By Lemma 2.3.1, we can write V' as
V(z,y) = Wo(x) + Wi(z)y + Wa(x)y?. Equation (%) can be written as a system
of equations:

—8Wo(x) + 4(1 + 2)W(z) — (boo + 2b10x + o) Wi(x) = 0,
4W0($> + 4.TJW1(SC) 2( )Wll( ) + (b()(] + leox + bzoxz)WQ(LU) = 0,
Wi (x) + 22Wo(x) — (1 + 22)Wy(x) = 0.

(2.78)

We obtain expressions for Wy(z) and Wi (z) in terms of Wa(z) and its derivatives:
Wi(z) = =22 Wy(x) + (1 + 2°) Wy(x),
Wo(z) = —i (oo + 4 + 2broz + (bao — 4)2*)Wa(z) + (1 + 22)W(x)—
2(1 4 2%)*Wy (z)).

Observe that if Wy (z) is a polynomial of degree k — 2, then Wi (z) and Wy(z)
are polynomials of degrees k — 1 and k, respectively. We substitute Wi (x) and
Woy(z) in the remaining equation of system (2.78) to get the differential equation

<_b10 + (2b00 + 8 — bgo)]? —+ 3610372 + b20$3)W2(I)—
(1 + xz)(boo + 4 + 2()10% + bggl’g)WQ/(éﬂ) + (1 + l‘Q)SWQH/(ZE) =0. (279)

This is a differential equation with unknown Ws(x). We want to obtain from this
equation a polynomial solution of degree k — 2, so we write Wy(z) = Zf Jaat
Equation (2.79) can be written as a polynomial equation of degree £+ 1 in x, and
then we can transform it into a (k+2) x (k—1) homogeneous linear system. The
equation corresponding to x*1 is (k — 3)(by — (k —2)(k—4)) = 0. As k > 4, we
take bog = (K —2)(k —4) > 0.

We have a homogeneous linear system with k£ — 1 unknowns ay, ..., a;_o and

k+1 equations if we exclude the equation corresponding to z***. In order to have
a non—trivial solution, all the (k—1)—minors of the matrix of the system M, that
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is, the determinants of the matrices obtained by taking all the (k —1) x (k—1)—
submatrices of Mj,, must be zero. The matrix of the system is

k-1 Pr—2 0 Xk—1

Vg2 &2 20,3 O Xk—2
Sk+1 Vk-3 Ek—3 3pk—a O Xk—3
Kk—4 &  Ur—a Epa 4prs 0 Xk—4
My, = K4 &8 Uy §a (k—4)ps 0 X4 ;
K3 &7 U3 &3 (k —3)p2 0
K2 &6 U2 &2 (k—2)p1
K1 &5 1 &1
Ko &4 Yo

K_1 &3

where

Kik—i = (1 — B)bag + Xk—ites Uk—i = (i — 1)bog + (1 — 4) pr—i,
Xi—i = —i(t+1)(i +2), Pr—i = boo — Vi—i,
gk—i = (22 — ].)bl(), Vi = 3@2 — 151 + 14.

The following lemma is related to the roots of the (k — 1)—minors of Mj.

Lemma 2.3.23. There are at most k — 2 values of byy for which all the (k—1)—
minors of My vanish. Moreover, if all (k—1)-minors vanish for a non-zero value
bio, then they also vanish for —byg.

Proof: We first prove by induction that the (k — 1)-minors of Mj have degree
k—2or k—1in by. If & = 5, then it is easy to check that the degree in byq
is 3 or 4 for all the 4-minors. If £ > 5, then we compute the degree of every
(k — 1)—minor of M, distinguishing three cases:

1. If the minor contains the last row of M}, then we solve it through this row.
The degree in by of the minor is, using the induction principle, £ — 2 or

k—1.

2. If the minor does not contain the last row of M}, but the k**-row, then we
solve it through this row. Once, again, applying the induction principle,
the degree in by of the minor is k — 2 or k£ — 1.

3. The minor which does not contain the last two rows of M} has degree k — 2
in bl[).

Then the (k — 1)—minors of M}, have degree k — 2 or k — 1, and as a consequence
the first part of the lemma is proved.
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Suppose that all the (kK — 1)-minors vanish for a certain value by # 0. We
change the sign of all the components of the even rows (2"¢, 4% ..} and the odd
columns (1%¢,3",...) of M. This fact does not change the values for which the
(k — 1)~minors vanish. Now we change b1g by —bjo in this new matrix to obtain
M, again. So all the (kK — 1)-minors vanish also for —byy. n

System (2.73) has the invariant algebraic curves z ¢ = 0. The sum of their
cofactors is 2x, and the divergence of (2.73) is 2z+2y. We shall find a polynomial
inverse integrating factor of the form

V(z,y) = (1+2%)(Wo(x) + Wi(a)y + Wa(2)y?),

where Wz(yg) are polynomials of degree k — 2 — 4, i = 0,1,2, such that Wy(z) +
Wi(x)y + Wa(x)y? is an invariant algebraic curve with cofactor 2y.

Let p € {2,...,k —2} and b%) = (k — 2p)\/boo + (k — 2p)% — (k — 2)(k — 4).
We note that b2 = —b") for p = 2,... [k/2]. The following lemma is based
on Theorem 2 in [15].

Lemma 2.3.24. If by = bg’(’)) for a certain p € {2,...,k—2}, then system (2.73)
has two tnvariant algebraic curves, of respective degrees p—1 and k —p—1, and
of the form h(x,y) = p1(z)y + pa(x), (p1,p2) = 1. Moreover, pi(x) is a Jacobi
polynomial, of degree p — 2 for the curve of degree p — 1 and of degree k — p — 2
for the curve of degree k — p — 1, and the expression of ps(x) can be obtained
from py(z) and the cofactor of h(x,y). The product of both curves is an invariant
algebraic curve of degree k — 2 and cofactor 2y.

Proof: We assume that h(z,y) = p1(z)y + p2(2z) is an invariant algebraic curve of
(2.73). Let T'(z) 4+ asy = ag + a1z + azy € Clz, y] be its cofactor. Then,

.Oh . Oh
T +y8_y — (T(z) + agy)h = 0.

Writing this differential equation as a system of equations, we get

(a2 — )pi(x) = 0,
(14 2?)pi(z) — T(z)pr(z) — po(x) = 0,
(1 +2%)ph(z) + N(2)p1(x) — T(x)p2(z) = 0,

where N(x) = —bgy/4 — bigr/2 — (k — 2)(k — 4)x? /4. From the first equation, it
follows that a; = 1. The expression of py(x) can be obtained explicitly from the
second equation. From the second and the third equations we get T'(z)?+ N (z) =
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A1+ 2?), where A = (2n+1)a; —n(n+1), n = degp; > 0 (see Lemma 4 of [15]),
and

(A =T"(@)p1(z) + 2(z — T(2))pi(2) + (1 + 2%)p(z) = 0 (2.80)
(see Proposition 3 of [15]). Moreover, 4a3 —bgy = 4\, 4a? — (k—2)(k—4)—4XA =0
and 4aga; — big = 0. So, ag = F+/boo + 2202 + 2n+1)(1 £ (k — 3))]/2, a1 =
(2n+ 1+ (k—3))/2 and

bio = £(2n + 1 £ (k — 3))v/boo + 2[2n2 + (20 + 1)(1 £ (k — 3))].
By the change z =iz, i = v/—1, equation (2.80) can be transformed into

(a1 = Mpi(2) = 2((1 = a1)z — api)p! (2) + (1 = 2%)pf(2) = 0.
Taking o = —ay; — agt, B = —ay + agi, the solution of this equation is the

Jacobi polynomial Péa’ﬁ )(z). We solve this equation for a; = 2n — k + 4 and
n=p—2k—-—p—2,p € {2,...,k —2}. For the first value of 7, we take
ap = —+/boo + (k — 2p)? — (k — 2)(k — 4)/2; for the second one, we take ag =
Vboo + (k —2p)2 — (k — 2)(k — 4)/2. In both cases, bjg = bg%). So we obtain two
invariant algebraic curves, of degrees p — 1 and k — p — 1, respectively. Their
product is f(x,y) = 0, of degree k — 2 and cofactor 2y. |

Remark 2.3.25. From the properties of the Jacobi polynomials, the curve f =0
may have i = /—1 as a factor when we change z by iz. In this case, we change f
by i- f, which is a real polynomial of degree k — 2. So, the polynomial V(z,y) =
(1 + 2?)f(x,y) is a real polynomial inverse integrating factor of degree k for our
system. O

We have obtained k — 3 values of byy for which all the (k — 1)-minors of M},
vanish. We claim that there are no more of such values. To prove the claim, we
distinguish two cases. If k is even, then by = bg’g/ 2 — 0 is one of these k — 3
values. If there exists another value b§’5> + bﬁlg, 1=2,..., k=2, b§}? = 0, for which
all the (k — 1)—minors vanish, then, by Lemma 2.3.23, —55’3 is another one. So
there are k — 1 of such values, in contradiction with this lemma.

If k is odd and there exists another value b(lf)) =+ bgio), 1=2,...,k—2, b(fg) £ 0,
for which all the kK — 1-minors vanish, then, by Lemma 2.3.23, —bﬁ? is another
one. So there are k— 1 of such values, again in contradiction with the lemma, and
then the only value of byy which is not in contradiction with the Lemma 2.3.23 is
bg}? = 0. We next prove that not all minors vanish for by = 0.

If £k =5, then b%) = V/boo — 2 and bg?(’]) = —+/boop — 2. The 4-minor corre-
sponding to the 4 first rows of Mj is 3(b3, — boo +2) (3502, + 12(boo +2) (boo + 7/4))
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and the one corresponding to the last 4 rows is 9(b%, —boo+2)?. They both vanish

only for by = b%), bﬁ’}.

Assume that k£ > 5 is odd. Let M be the (k — 1)-minor corresponding to the
first £ — 1 rows of My, and M? be the (k — 1)-minor corresponding to the last
k — 1 rows of M,:

0 Pr—2 0 Xk—1
Vg—2 0 2pk—3 0 Xk—2
0 Vg3 0 3pK—4 0 Xk—3
Kk—4 0 Vg—a 0 4pr—5 0 Xk—4
M= . ... ...
K4 0 V4 0 (k—4)ps 0 X4
K3 0 193 0 (k - 3)p2 0
Ko 0 ) 0 (k—2)p1
K1 0 V1 0
0 Vg—3 0 3pk—4a 0 Xk—3
Kk—4 0 V-4 0 4pi—5 0 Xk—4
Kk—5 0 Vg—5 0 5pk—6 0 Xk—5
Kk—6 0 Fk—6 0 6pr—7 0 Xk—6
M? = K4 0 Vg 0 (k —4)p3 0 X4
K3 0 I3 0 (k — 3)p2 0
Ko 0 ) 0 (k—2)p1
K1 0 I 0
) 0 )
K_1 0

The degree of M!' and M? in by is k — 1. We note that the k — 3 values
b%), e ,bgg_z) vanish for both M' and M?. From the second column of M?,
as kg5 = 0 we get that M? = 0 for Cb}, + (boo — By) = 0, where C € R\ {0}
and By = 2(k? — 6k + 6). Observe that By # (k — 2)(k — 4) — (k — 2p)? because
k > 5. Now we consider the equation

(—1)lz+] B + 2] Eivs + (—1)L2] {% + 1} (k—i—1)pt

(—1)lz 1] H 9it + (—1)lz 72 B - 1} Kiig =0,

where [z] is the greatest integer less than or equal to x. This equation corresponds
to a linear combination of the even or odd rows of M! (for respective i even or
odd) equaled to zero, taking b1y = 0. We obtain, from this equation,

(k —2)(k —4)

1—k+i—2[]

If 7 is even, then byy = By = k* — Tk +9 — 3/(k — 1); if 7 is odd, then byy = By =
k? — 7k 4+ 8. These values of byy vanish M* for bjy = 0, and they are different

from B, because k > 5. So the expressions of M*' and M? are, up to a non-zero
constant,

600:k2—6k+4—|—

k—3

(C1bt— (boo = B1) (boo — Bz)) [ [ (0% = (k- —2p) (boo — (k= 2) (k= 4) + (k —2p)*))

i=1
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and

k=3

(Caby — (boo — Bo)) [ | (b6 — (k — 2p)*(boo — (k — 2)(k — 4) + (k — 2p)*)),

i=1

where C,Cy # 0. Then, there are no more than k& — 3 values of byy for which all
the (k — 1)—minors of M vanish. ]

2.3.7 The case P(z,y) = —1+ 2

We consider the quadratic system
bt =—14+2% g=d+ax+by+I12*>+may + ny? (2.81)

where d,a,b,l,m,n € R.

If n = 0 then system (2.81) is transformed into one of the following systems,
depending on the values of the parameters b and m.

If m =0b=0 then

@=-1+2" §=Q(), (2.82)

where either Q(x) = byy + x and byy = (d +1)/a # £1 if a # 0 by the affine

change (y —lx)/a — y, or Q(x) =1, if a = 0 and d + [ # 0, by the affine change

(y—Ilz)/(d+1) — y. In the case a = d + [ = 0, the system has a common factor.
If m =0 and b # 0, then

t=—1+2% 4=bx+by, (2.83)

where byg = a + bl, by the affine change y — lx + (d +1)/b — y.
If m =1 and b? # 1, then

i=—1+2% g=|bly+ o2+ 2y, (2.84)

§ = 0,1, either by the affine change (b/|b|z,b/|b|((x —b)(ab—d)/((b* — 1)) + (y —
a)/l),b/|blt) — (x,y,t) if [ # 0, or the change (b/|b|x,b/|b|((z — b)(ab — d)/(b* —
1)+y—a),b/blt) — (x,y,t) if | = 0.

If m=1and b =41, then

&=—1+a% §=bo+y+dx’+ay, (2.85)
where § = 0,1 and byg = (dFa)/l (if I # 0) or bgy = dF a (if [ = 0), by the affine

change (£z, (a £ y)/l, £t) — (z,y,t) if [ # 0 or the change (+z,a + y, +t) —
(x,y,t)if I =0.
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If m# 0,1 and (b* — m)l — (m — 1)(ab — dm) = 0, then
i=—1+2% 9= (b+ma)y, (2.86)

by the affine change Az 4+ y + (a — Ab)/m — y, where A =1/(m — 1).
If m# 0,1 and (b> —m)l — (m — 1)(ab — dm) # 0, then

=142 g=1+by+may, (2.87)

by the affine change B(Az +y + (a — Ab)/m) — y, where A = [/(m — 1) and
B =m(m —1)/((b* —m)l — (m — 1)(ab — dm)). Moreover, b can be assumed to
be positive; otherwise, we change de sign of z, y and ¢.

If n # 0 then system (2.81) becomes

b b b
. 2 = _200 7o, 20,2, 2
T=—-14+z% vy 1 5t~ % +y°, (2.88)

by the affine change mz/2 + ny + b/2 — y, where byy = b* + 2m — 4dn, by =
bm — 2an and byy = m(m — 2) — 4in.

The case n = b = 0, m = —2, for which system (2.81) is Hamiltonian, is
not considered in the subcases above. The set of conditions on the coefficients of
systems (2.82)—(2.88) to have a polynomial inverse integrating factor are stated
in the following two propositions.

Proposition 2.3.26. The following statements hold.

(V.1) System (2.81) with n =b =0 and m = —2 is Hamiltonian. Moreover, it
can be written as

t=—-14+2% §=06-—2xy,

where 6 = 0,1, either by the change —(2lx — 6y + 3a)/(2(1 + 3d)) — y if
l # —3d, or by the change 2lx — 6y + 3a — y if | = —3d.

(V.2) System (2.82) has the polynomial inverse integrating factor V(z,y) = —1+
2
x.

System (2.83) has a polynomial inverse integrating factor if and only if one of
the following two statements hold.

(V.3) bio=0. Then V(z,y) = (=1 + 2?)y.
(V.4) byg #0 and b = £2. Then V(z,y) = (z F 1)2.

System (2.84) has a polynomial inverse integrating factor if and only if one of
the two following statements hold.
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(V.5) |b| #1,3 and § = 0. Then V(x,y) = (—1+ 2%)y.

(V.6) |b| =3. Then V(z,y) = (z —1)3.

(V.7) System (2.85) has the polynomial inverse integrating factor V(x,y) =
(~1+2%)( — 1).

(V.8) System (2.86) has the polynomial inverse integrating factor V(z,y) =
(—1 4 2?)y. We note that if m = —1 and b = +1, then we also have
the polynomial inverse integrating factor V(x,y) = x F 1 of degree 1.

(V.9) If b = (m + 2) # 0,41, then system (2.87) has the polynomial inverse
integrating factor V(z,y) = (x — 1) (1 + (m + 1)(1 + 2)y).

System (2.87) has a polynomial inverse integrating factor of degree k > 3 if and
only if one of the following four statements hold.

(V.10) m=k—2andb#k—2j,5=1,...,[(k—1)/2]. Then,

P2 Tk —2—3j
V@w)=@4+x%(y—}jé&w;_%_gﬁr+@ﬁ-

i=0 L1lj=1

In the following three cases, the solution V(x,y) is given by
V(z,y) = (1421 =) F [=(V=D) (1 +2) (1 - 2)y—
2 poFi(1=rg—1—rq—r,(1+2)/2)],
for certain p,q,r and where F' a complex polynomial of degree p + 1 without

independent term and V s real. The expression of the hypergeometric function

o F 1s given below for each family.

(V.11) m=1—-q,b=q—1-2r,q€ Q\N,p>1landr =2,...,(k—p—2)/p € N.
In this case

2F1(1—rg—r—1q-r(1+2)/2) =

q—r—lrz_i (1+x)i(1—x)r_i_lﬁ r—j
2r—1 g—r+i—1 jzlq—r—i-j—2 '

1=0

(V12 m=1—-q¢,b=q—1-2r,qe Q\N,p>landgq—r—1=2,...,(k—
p—2)/p € N. In this case

oFi(l—r,qg—r—1,q—r,(14+2)/2) =
_2 g—r—1 q—r—2 . . 1 o
(—2) 11 q—r Jy

(1+z)"1(q - 2) r+j—1

—(q—r—1)

j=1

q_TZ_Q (1 r+121r1i[q_7ﬂ_1_j
: (14 x)ttr+4 r+j—1 '




2.3. Finding polynomial inverse integrating factors 85

(V13) m=4—k,b=k—2i—2, withp=1,k>T7andie€ {3,...,k—5}. In
this case

i—2 ~j
)(1 4+ x)?
oy (2—i, k—3—i, k—2—i, (14x)/2) = ; (M T 3—z+j Hl z—i—l)

Proof: The solutions stated in (V.1) to (V.9) follow from straightforward com-
putations. No more solutions of degree k < 3 are obtained, so we assume k > 3
and we consider system (2.87). Let V(z,y) = Zf:o Vi(z,y) be a polynomial in-
verse integrating factor of degree k > 3, where V; is a homogeneous polynomial
of degree i in x and y. From equation (¥ ) we obtain the system

(h—m— 2V + (m— 1)y _ g, (2.89)
dy
Wi R
(k—m —3)aVi_1 + (m — 1)y a’“y O A e B k (2.90)
ov; OV av;
(j—m—2)2*V;+(m—1)2?y—=2 i = bV —bay—— 9y L +2)Vj+2—(nc—&-y)34;27 (2.91)
oy oV
bVo + - — By = 0, (2.92)

where j =k —2,...,01in (2.91). From equation (2.89) we get

1— k=3

k=3
Vi(z,y) = 2" Fmmy! et

Then we take 1 — 22 = p+ 1 € NU{0}. Set ¢ = (k —3)/p € Q. Then, we
get m = 1 — % =1-¢q forpe {-1,1,2,3,...,k— 1}, ¢ € Q\ {0,1}, and
‘/k(x, y> — xk—p—lyp-i-l'

Assume p = —1. Then, m = k£ — 2. We claim that V; does not depend on y if
7 > 3 and that the degree in iy of V' is 1. We prove the claim by using the induction
principle. Easily we can check that Vi (z,y) = 2% and V}_;(z,y) = —bx*~1. Now
assume that Vj o and Vj;; depend only on z, for 3 < j < k — 2. Then equation
(2.91) is

, oV, .
—(k = 7)a*V; + (k - 3)932.@3—; = baVip + (J + 2)Vjsa.

From this equation, we obtain

bV () + (7 + 2)Viga(2)
(k—j)z?

where f;(x) is an arbitrary function. If j > 3, then =L < 1, so we must take
f; =0, and then V; does not depend on y. The degree of V3 in y is, at most, 1.

Vi(z,y) = + f(2)yes,
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In a similar way we obtain that V5 does not depend on y and that the degree in
y of V1 is 1. So V can be written as

V(z,y) =W(z)+ (=1 +2%)y,

where W (z) is a polynomial of degree k in z. It remains to find the expression
of this polynomial. From (¥) we write

(=1+2*) + (b + k)W (z) + (-1 + 2*)W'(z) = 0.

Then, after some computations, we obtain

- Hl 1(k_2_j) i
W(z) = (-1 +2?) Z Z+1(b_k+2j)(1+$),

1=

assuming b # k — 275, 5 = 1,...,k — 1. Otherwise, no solution is obtained. The
polynomial V' is

k2 )
V(z,y) = (=1+ 2?) (y — Z gﬂrl ((k 2 —Jb)) (1+ x)’) .

So we get (V.10). We note that we can restrict j to the interval {1,...,[(k —

1)/2]}.

Next we assume p > 0. We first prove by induction that the degree in y of V' is
p+1. The degrees of V}, and V,_; in y are not bigger than p+1. Let Vi o(z,y) =
o)yt + -5 Vipa(@,y) = bo(x)yP™ + -5 and Vi(x,y) = ao(@)y?™ + -+,
where ag # 0, by, ¢y are polynomials and s € Z. Equation (2.91) can be written
as

((¢+7 = 3) —a(p+ s5))ao(z)x*y?** + (bpbox + (p — j — V)eo)y? ™ +--- = 0.

If p+s > p+ 1 then we obtain p + s —p+1— p < p+ 1 because a; Z 0,
and we have a contradiction. As the degree of Vj is p + 1, the degree of V in y is
p+ 1.

Next we write V as a polynomial in y: V(z,y) = S0 Wi(z)y’. Then, we
have

Wyia(x) = (1 — x)(k*pflfbp)/Q(l 4 x)(kfpflerp)/?'

This is a polynomial, so we (k —p—1—1bp)/2 =i € {0,...,k —p— 1}, and the
expression of b can be rewritten as

b=q—2r—1,

where ¢ = 0,...,k—p—1and r = (i — 1)/p. We classify the existence of a
solution V' and its degree depending on the parameters:
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1. ¢ = 1. Then m = 0, but we are assuming m # 0, 1.
2. ¢ = 2. Then m = —1. In this case, because p > 0, the expression of V;_»

6.

contains a logarithm, and then the solution is not polynomial.

q=3. Theni =p+1,som = —2 and b = 0, and then the system is
Hamiltonian.

q=4. Then m = —3 and b = +1, so b* = (m + 2)? and there is a solution
of degree 3.

If p>1,¢q€ N\{1,23,4} and then there exists a solution of degree k
with parameters (k,p, i), then k — 3 = pg € N and there exists a solution
of degree p + 3 < k with parameters (p + 3,1,7'), for i’ =1 = (i —1)/p. If
pl(i —1), then i € N. If p|(k —2 —4), then (k—3—(i—1))/p=q—i € N.
In both cases, i/ € N. So the case (k,p,7) can be considered as the case
(p+3,1,7).

Assume that p > 1 and ¢ ¢ N. In this case, there is a solution of degree k if
and only if either r or ¢ —r —1 belong to the set {2,...,(k—p—2)/p} C N.

p=1k>T7and i€ {3,...,k—5}. Then, there is a solution of degree k.

The general solution V', when it does exist, is

V(iz,y) = 1 +2)> (1 —2)"7"F [-(V-D)™M (1 +2)" (1 - 2)"y—
2r 1y By l-rqg—1—r,qg—r,(1+ 3:)/2))] ,

where F' is an arbitrary function and oF7 is the hypergeometric function defined
in (2.74). The function F' must be a polynomial of degree p 4 1, because V has
degree p+1iny: F(Y)=ao+aY +- -+ a1 YPT

We next prove cases 5 and 6.

Case 5 Ifie {2p+1,....k—p—1} pl(i — 1) and r € N\ {1}, then the
hypergeometric function in V' becomes

2F1(1—7“,q—7"—1,q—7‘,(1+$)/2) =

q—r—li (1+a7)i(1—a7)Tilﬁ r—7j
2r—1 g—r+i—1 q—r+j—2)"

i=0 j=1
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Ifie{0,....k —3p—2}, pl(k—2—1i) and r € N, r < g — 2, then the
hypergeometric function in V' becomes

2F1(1_T7q_T_17q_T7<1+x)/2) =

—r—2
(=2 yrg-r—1-j
g 11 s

—(g—r—1) T2y 1(g— e

j=1

qif (1 — )+ 21~ ’“li[q—r—1—j
(1+93’+17"+z r+j—1 '

1=0

In both cases, solving an under-determined linear system we find a set of
values a;, © = 0,...,p+ 1, for which V is a polynomial. Moreover, ag = 0 and
the rest of the unknowns can be written as a linear combination of a,41.

Case 6 The existence of solutions is related to the value of i € {0,...,k — 2}.
If i = 0 or ¢ = 1, then the hypergeometric function becomes oF(2,k — 3,k —
2,(1+2)/2) or oF1(1,k—4,k—3,(1+4x)/2) (respectively). Then no polynomial
solution is obtained. If ¢ = 2 or ¢ = k — 4, then there exists a solution of
degree 3. If i = k — 3, then b = m. We have the hypergeometric function
oF1(5—Fk,5—k,6—Fk,2/(1+x)), so there is no polynomial solution. If i = k — 2,
then the hypergeometric function becomes 9F;(—1,4 — k,0, (1 + x)/2), so there
is no solution. If 3 <7 < k — 5, then the hypergeometric function becomes

i—2 . P J
k3 k9 . _ (k—3—-9)(1+=x) .

Solving an under—determined linear system we find a set of values a;, for ¢ =
0,...,p+ 1, for which V is a polynomial. Moreover, ag = 0 and the rest of the
unknowns can be written as a linear combination of a,,. n

Proposition 2.3.27. System (2.88) has a polynomial inverse integrating factor
if and only if one of the following statements hold.

(V.14) b()() = 4, blO = b20 = 0. Then V([E, y) = (ZL‘ - y)2

(V.15) boo = b20+4, b10 = —bgo 7é 0. Then V([E, y) = (I:l: 1)(b20(l’— 1)2 +4<CL’—
Yy —1).

(V.16) bo() —4 7é 0, blO = bgo =0. Then V(l’,y) = (—]. + l’z)(b()o — 4y2)

boo — (k —2p)2 + (k—2)(k —4) >0, with k >4, p € {2,...,k—2}. Then
V(z,y) = (=1+2%) (pi(x)y +p3(2)) (0 (x)y +p5(x)), where pi(x) and pi(z)
are the Jacobi polynomials of degree p — 2 and k — p — 2, respectively, and
the expressions of py and p3 can be obtained from pt and p?, respectively.
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Proof: 1f k < 4 then straightforward computations show that there is a solution
of degree 2 if and only if byg = byy = 0, byg — 4 = 0; there is a solution of degree
3 if and only if byy = bgy + 4, by = Fbyg # 0, and we can assume bjg = —byg
(otherwise we change the sign of x, y and t); and there is a solution of degree 4
if and only if byg = byg = 0, bgo — 4 # 0. The respective expressions of V' (z,y) are
shown in Proposition 2.3.27.

The proof of this proposition follows the same steps as the proof of Proposition
2.3.22. From now on, we assume k > 4. Let V(x,y) be a polynomial inverse
integrating factor of system (2.88) of degree k > 4. By Lemma 2.3.1, we can
write V' as a polynomial of degree 2 in y:

V(z,y) = Vo(z) + Vi(z)y + Va(z)y™.

Equation (9 ) can be rewritten as the system

—8Vo(w) +4(=1+ 2*) Vi (2) — (boo + 2b107 + booz*)Vi(z) = 0,
AVo(x) +4aVi(z) — 2(=1 4+ 2*)V{(z) + (boo + 2010z + baoa®)Va(z) = 0,
Vi(z) + 22Va(z) — (=1 + 23 Vy(z) = 0.

(2.93)

We obtain expressions for Vy(z) and Vi (x) in terms of V,(z) and its derivatives:

Vi(z) = =22 Va(z) + (-1 +2%) V(2),
Vo() = — (boo — 4+ bro + (bao — 4)a”)Valr) + dar(~1 + 2*)V(x) -
21+ 2V (1)),

Observe that if V5(x) is a polynomial of degree k — 2, then Vi(x) and Vy(x) are
polynomials of degrees k — 1 and k, respectively. We substitute Vi (x) and Vy(z)
in (2.93) to get

(bl() + (2b00 — 8 —I— bgo)l’ + 36101'2 + b20$3)‘/2($)—
(=1 + 22)(boo — 4 + 2b1ox + boez®) V3 (z) + (=1 + 22)*Vy" (z) = 0. (2.94)

This is a differential equation with unknown V5(x), which must be a polynomial
solution of degree k — 2, so we write Va(z) = Y202 .

Equation (2.94) can be written as a polynomial equation of degree k+ 1 in z,
and then we can transform it into a (k+2) x (k — 1) homogeneous linear system.
The equation corresponding to x¥+1 is (k—3)(bgyy — (k—2)(k—4)) = 0. As k > 4,
we take by = (k —2)(k —4) > 0.

We have a homogeneous linear system with k& — 1 unknowns ag, ..., ar_o and
k + 1 equations if we exclude the equation corresponding to z**!. In order to
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have a non-trivial solution, all the (k—1)-minors of the matrix M, of the system,
given by

—E—1 Pr—2 0 Xk—1

U2 —Ep—2 2pp—3 0 Xk—2
Skr1 Yp—3 &3 3pka O Xk—3
Kk—4 &k Up—a —Epa 4pp—s 0 Xk—4
My, = K4 &s Uy =& (k—4)ps 0 X4 :
K3 &r U3 —&3 (k —3)p2 0
K2 &6 o —&2 (k—2)p1
K1 &5 U1 —&1
Ko &4 Yo

K_1 &3

where

Ki—i = (1 — B)bao — Xk—ites Uk—i = — (1 — 1)bao — (i — 4) pi—i,
Xi—i = 1(1 + 1)(1 + 2), Prk—i = —boo — Vi—i,
§k—i = (22 - 1)b10, Vp_; = 322 — 151 + 14.

must be zero. The following lemma is related to the roots of the (k — 1)-minors
of M. Its proof follows the same steps than the proof of Lemma 2.3.23.

Lemma 2.3.28. There are at most k — 2 values of byg for which all the (k—1)—
minors of My vanish. Moreover, if all the (k — 1)—minors vanish for a non—zero
value by, then they also vanish for —byg.

System (2.88) has the invariant algebraic curves & 1 = 0. The sum of their
cofactors is 2z and the divergence of (2.88) is 2x + 2y. We will find a polynomial
inverse integrating factor of the form

V(,y) = (=1+2°) (Vo(a) + Vi(2)y + Va()y®),
where Vj(z) are polynomials of degree k — 2 — i, i = 0,1,2, such that Vg(z) +

Vi(z)y + Va(z)y? is formed by invariant algebraic curves and the sum of their
corresponding cofactors is 2y.

Let p € {2,...,k—2} and b = (k — 2p)\/boo — (k — 2p)% + (k — 2)(k — 4).
We note that b2 = —b*™ for p = 2,... [k/2]. The following lemma is based
on Theorem 2 of [15].

Lemma 2.3.29. If by = bg%) where p € {2,...,k — 2}, then system (2.88) has
two invariant algebraic curves of respective degrees p — 1 and k —p — 1, and of
the form h(z,y) = p1(x)y + pa(z), (p1,p2) = 1. For each curve h(z,y), pi(z) is
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a Jacobi polynomial, of degree p — 2 for the curve of degree p — 1 and of degree
k—p—2 for the curve of degree k—p—1. The expression of pa(x) can be obtained
from pi(x) and the cofactor of h(z,y). The product of both curves is an invariant
algebraic curve of degree k — 2 and cofactor 2y.

Proof: We assume that h(x,y) = p1(z)y + p2(z) is an invariant algebraic curve of
(2.88). Let T'(x) + agy = ag + a1x + asy € Clx,y] be its cofactor. Then

_Oh . 0h
P Vg, (T(x) + agy)h = 0.

Writing this differential equation as a system of equations, we get

(ag — 1)271(53) = 0,
(=1 +2*)ph () — T(2)p1(x) — pa(x) 0,
(=1 + 2?)ph(z) + N(2)p1(x) — T(z)pa(z) = O,

where N(z) = —bgo/4 — biox/2 — (k — 2)(k — 4)2%/4. From the first equation
it follows easily that a; = 1. The expression of ps(z) can be obtained explicitly
from the second equation. From the second and the third equations we get
T(z)?>+ N(z) = M—1+ 2?), where A\ = (2n+ 1)m —n(np + 1), n = degp; €
{0,...,k — 4} (see Lemma 4 of [15] for a proof), and

(T'(z) = Npa(@) = 2T (x) — 2)py (@) + (1 — 27)p(z) = 0
(see Proposition 3 of [15]). Moreover, 4a2—boy = —4\, 4a?—(k—2)(k—4)—4\ =0

and 4@0@1 — b10 = 0. SO, ag = :t\/boo - 2[27’]2 + (27’]+ 1)(1 + (k — 3))]/2, ay =
(2n+ 1+ (k—3))/2 and

bio =20+ 1+ (k—3))vboo — 2[202 + (20 + 1)(1 % (k — 3))].

We note that here the first £ corresponds to ag, and the others correspond to ay;
they are independent each other. Taking o = —a; —ag, 8 = —a1+ag, the solution
of this equation is the Jacobi polynomial Péa’ﬁ ) (x). We solve this equation for
ap =2n—k+4and forn=p—2k—p—2,p€{2,...,k—2}. For the first
value of 7, we take ag = —\/boo — (k — 2p)? + (k — 2)(k — 4)/2; for the second
one, we take ag = \/boo — (k — 2p)% + (k — 2)(k — 4)/2. In both cases, we obtain
bio = b%). Then we obtain two invariant algebraic curves, one of degree p—1 and
one of degree k — p — 1; their product is an invariant algebraic curve f(x,y) =0
of degree k — 2 and cofactor 2y. |
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The curve f(z,y) = 0 has degree k — 2 and cofactor 2y. Then, the polynomial
V(x,y) = (=1 + 2?) f(x,y) is a polynomial inverse integrating factor of degree k
for our system.

We have obtained k — 3 values of byy for which all the (k — 1)-minors of M},
vanish. By Lemma 2.3.28, there are at most k — 2 values of byo for which all these
(k —1)-minors vanish. The arguments used in Proposition 2.3.22 show that there
are no more families for which we have a polynomial inverse integrating factor.

We note that if p € {2,k — 2} and bog = bag + 4, then byg = +byg # 0. In this
case we already have a polynomial inverse integrating factor of degree 2 or 3.

There are exactly k—3 values of byp which vanish all the (k—1)-minors of M,
and then there are k£ — 3 families of system (2.88) for which there is a polynomial
inverse integrating factor of degree k. The proof is finished. |

2.3.8 The cases P(z,y) =7+ xy

We deal in this section with systems (I) and (II). These two families of systems
correspond to the quadratic systems

&= Plr,y) =r+azy, §=Q(x,y)=d+ax+by+Ilz*+mzy+ny®, (2.95)

where r € {0,1} and d, a,b,1,m,n € R. First we study the subfamilies of systems
(2.95) which have a polynomial inverse integrating factor of degree k < 5. We
split the results into two propositions depending on the value of r. The proofs
follow from straightforward computations of the linear systems A;V¢ = 0, for
1 =1,...,5, followed by affine changes and possibly rescaling time.

Proposition 2.3.30. A system of type (2.95) with r = 0 having a polynomial
inverse integrating factor V(x,y) of degree k <5 can be written, after an affine
change of variables and a rescaling of the time if it is necessary, as © = xy,
Uy = Q(x,y), where Q is one of the polynomials below.

(I1.1) Q(z,y) = d+azx+12* —y?/2 with d*+a®*+1* # 0. In this case the system
1s Hamiltonian. We distinguish four subcases in order to give a simpler

expression of Q(x,y).

(IL.1a) If al # 0, then Q(z,y) = boo + « + 02% — y*/2 where § = +1
and byy = d|l|/a®> € R. This expression is obtained by the change
(lUz/a, /Ty /a, at/\/NI]) = (2,y,1)

(I1.1b) Ifa =0 andl #0, then Q(x,y) = o+02%—y?/2 where § = +1 and

= —1,0,1. We have used the change (\/|l/d|z,y//|d|,/|d]t) —
(x,y,t) if d #0, or the change \/mg: —x ifd=0.
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(IL.1c) Ifa # 0 and =0, then Q(z,y) = 0+ — y?/2 where 0 = —1,0, 1.
We have used the change (ax/|d|,y/~/|d|,\/|d|t) — (x,y,t) if d # 0,
or the change axr — x if d = 0.

(I1.1d) Ifa=1=0 and d # 0, then Q(x,y) = 6 — y*/2 where 6 = —1, 1.
This expression is obtained by the change (y/+/|d|, v/|d|t) — (y,1).

(I1.2) Q(z,y) = d + ax + la?, with d # 0. Then, V(z,y) = . We distinguish
two subcases in order to give a simpler expression of Q(x,y).

(I1.2a) If a # 0 then Q(x,y) = § + x + boox?® where & = +£1 and by =
d|l|/a® € R, by the change (az/|d|,y/+/|d|,\/|d]t) — (z,y,t).

(IL.2b) If a = 0 then Q(z,y) = § + ox? where 6 = £1 and 0 = —1,0, 1,
after the change (\/|l/d|x,y/~\/|d|,\/|d|t) — (x,y,t) if | # 0, or after
the change (y/+/|d|, \/|d|t) — (y,t) if { = 0.

(I1.3) Q(z,y) = d+ax+12*+y?/2 withd*+a*+1*> # 0. Then V(z,y) = 2*. We
distinguish four subcases in order to give a simpler expression of Q(x,y).

(IL.3a) If da # 0 then Q(z,y) = 0 + x + byx* + y*/2 where § = +1
and by = d|l|/a®* € R. This expression is obtained by the change

(azx/ldl, y/v/ld], /1d[t) — (2,y,1).
(IL.3b) If d = 0 and a # 0, then Q(z,y) = = + oz? +y2/2 where o=

—1,0, 1, after the change (|l|z/a,\/|lly/a,at/\/]l]) — (z,y,t) if | #0,
or after the change (x/a,y/a,at) — (x,y,t) if | = 0.

(II.3c) Ifd #0anda =0, then Q(z,y) = 0+ox*+y*/2 where 6 = +1 and

—1,0,1, after the change (\/|l/d|x,y/+/|d],\/|d|t) — (x,y,t) if

l 7é 0, or after the change (z/+/|d|,y/+/|d|, \/|d|t) — (x,y,t) if | = 0.

(I1.3d) Ifd=a=0 andl # 0, then Q(z,y) = dz*+y*/2 where 6 = —1, 1.
This expression is obtained by the change \/Wx — .

(I1.4) Q(z,y) = (14+0x)(boo +y) where 6 = 0,1, bpy # 0 and we obtain V(z,y) =
z(boo + ).

(I1.5) Q(x,y) = d+ax+I1x*+y?, with d*+a*+1* # 0. Then, V(z,y) = 23. We
distinguish four subcases in order to give a simpler expression of Q(x,y).

(IL.5a) If da # 0, then Q(z,y) = 6 + x + bypa® + y* where § = £1 and
b20 = d|l|/a2 € R.
(IL.5b) Ifd =0 and a # 0, then Q(x,y) = z+ oz’ +y? where 0 = —1,0, 1.

(I1.5¢c) Ifd # 0 and a = 0, then Q(z,y) = § + ox? + y? where § = +1 and
o=-1,0,1.

(IL.5d) Ifd=a=0 andl #0, then Q(z,y) = dx*> +y?/2 where § = —1, 1
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All these expressions are obtained using the same changes as in system
(11.3).

(I1.6) Q(z,y) = (byox +y)(6/bao + ) + y* where 6 = 0,1, byy € R\ {0} and we
get V(z,y) = 22(byox + 7).

(IL7) Qz,y) =z +y+y* and V(x,y) = 2°(x +y).
(IL.8) Q(z,y) = boo + 0z +y + y* where § = 0,1, byy € R\ {0} and we get

V(z,y) = 2((boo + 6x)2 + (boo + 0z)y + boo?f)‘

(I1.9) Q(x,y) = 0 + 61 + box? + ny* where ¢ = —1,0,1, § = 0,1, byy € R,
n#—1/2,0,1/2,1 and we have

. 20m bgon 2 2
V(:U,y)—a:(a—l—Qn_laH—n_lx +y° ).

(I1.10) Q(z,y) = d + by + ny* where d # 0 and n # 0,1. We get V(x,y) =
x(d + by + ny?).

(I1.11) Q(z,y) = baed(n —1)/n+bed(2n — 1)x/n + 0y + bagx? + zy + ny? where
d=0,1, byo € R\ {0}, n #0,1, and we get

Viz,y) = x(5(b20(n—1)2+2b20n(n—1)x+n(n—1)y)+n2(bgom2+xy—|—(n—1)y2)).
(I1.12) Q(z,y) =z — 62%/25 + 2y + y*/3 and
V(z,y) = (362> — 30x(2y + 5) + 25y%) (2162° — 125y°—
2702*(2y + 5) + 752(25 + 3y(2y + 5))).
(I1.13) Q(x,y) = —2/3 +x —y/3 — 62%/25 + xy + y*/3 and
V(z,y) = (6 — 5y — 5)(362* — 30z(2y + 5) + 25(y — 2)°)
(362 — 15z(dy + 7) + 25(y + 1)(y — 2)).

(I1.14) Q(z,y) = bpod+0(1—0) —dx+ oy — x>+ 3zy —y?* where byy € R, 0 = +1,
0 =0,1, and we get

V(z,y) = x(booéa(l —0)—z(0+x —y)) (b0060(1 —0)—(x —y)(é—i—x—y)).
(I1.15) Q(z,y) = boo + y + d2* + 2y* where byy € R, § = +1, and we get

V(z,y) = a:((bgo +02%)% + (boo + 62%)y + 2b00y2).
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Proposition 2.3.31. A system of type (2.27) with r = 1 having a polynomial
inverse integrating factor V(x,y) of degree k <5 can be written, after an affine
change of variables and a rescaling of the time if it is necessary, as & = 1 + xy,
y = Q(z,y), where Q is one of the polynomials below.

(I.1) Q(z,y) =d+ax+1z*—y?*/2. The system is Hamiltonian. We split it into
two systems:

(I.1a) & = 1+agr?+2xy, § = x+byr®—2a00ry—1y? where agyy = (2/a)??d,
bao = (21 — 3d?)/(2a*)?® and a # 0.

(I.1b) & = 1 + o2® + 22y, § = byx® — oxy — y? where 0 = —1,0,1 and
boo = 1/(2]d]) —3/4 if d # 0, or by = sign(l) if d = 0.

(I.2) Q(z,y) =y(0 + byx —y) where § = 0,1, by € R, and we get V(z,y) = y.

(I.3) Q(z,y) = 1+ by + b1z + y + biizy where byy € R, and we get V(z,y) =
142+ 2y.

(I.4) Q(z,y) = boo + bror + 0y + y* where by, by € R, 6 = 0,1, and we have

V(I y) = —b10 — b00(5 + (bz 610(5>$ — (boo + (S)y + 2b00b101’2+
(6005 3b10)$y — 25y + b OZL‘ + bl()(SZL' Yy + blol’y — y

(I.5) Q(z,y) = d+ax+0y+I1x?+biyxy +ny® where by € R, n # —1,—-1/2,0,1,

@2+ 1)2 (n—-1)2n+1) T (n—1)2n+1)2 "’
; bin(n+1)
(n—1)(2n + 1)2
0=0,1. We get

= (( n? —1)8 +byn(n+ Dz +n(n — 1)(2n + 1)y)
(( —1)(2n+1) + (n? — 1)dx + bin(n + 1)z® + (n* — 1)(2n + 1)zy).

(I.6) Q(z,y) = boo + y + y*/2 where byy € R\ {3/8}, and we get
V(z,y) = (2boo + 2y + ¥*) (2boo (27 — 1) — (y + 2)*).

(I.7) Q(x,y) = bgo + 6% + y*/2 where § = £1, by € R, and we get

V(z,y) = 85(1 4 zy)? — (2bgo + 202 + 3*)*.
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(1.8) Q(z,y) =8+ y*/3 where 6 = +1, and we get

V(z,y) = (30 +y?) (92 — 90y — 2y°).

(1.9) Q(x,y) = boo +y + y*/3 where byy # 12/25, and we get

V(z,y) = (3boo + 3y + y*) (9b50x + Yboo (62 — y — 5) — 2(y + 3)*).

(I.10) Q(x,y) = 3b3,/25 + = + bo1y — bo1x? /5 + 2y* where by € R, and we get

V(z,y) = (3bo1 + 10y — 52%) (5 + 3borx + 15zy — 52°).

In the rest of this subsection we assume k > 5. We consider the quadratic
differential system

&= Plx,y) =r+zy, §=Q(x,y)=d+ax+by+Ila®+mry+ny®, (2.96)

with 7 € {0,1} and d,a,b,l,m,n € R. Assume [> + m? # 0, otherwise interchan-
ging x and y we are in cases (III) to (X), which have already been studied. Assume
that V(z,y) = Zf:o Vj(x,y) is a polynomial inverse integrating factor of system
(2.96) of degree k > 5, with V4 € R and Vj(z,y) a homogeneous polynomial of
degree j, for j =1,...,k. By using the equation of definition () of the inverse
integrating factor (multiplied by z) and the Euler’s formula

we obtain the equation
k
. oV ov .
P (;ﬂ/} — y8_y> + an—y —div (P, Q)zV =0,

where div (P, Q) = 0P/0x + 0Q /0y = b+ mx + (2n — 1)y; or equivalently,

k k
Z(jr —br+azN;)V; + Z (R+zS+ ZET)%_‘;] = div (P, Q)zVo, (2.97)

j=1 =1

where N; = —max+(j—2n—1)y, R=dz—ry, S = ax+by and T = lz* + may+
(n — 1)y Equation (2.97) can be written as a system of differential equations,
one equation for each degree in x and y. Next we write the equations of degree
k+2 k+1,j4+2 (forj=k—2,...,0) and 1:

Vi

eNp Vi + 2T
dy

0, (2.98)
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oV aV;
N1 Vi1 + 2T = baV — 25— (2.99)
Ay dy
oV Vi , Vi
xN;V; + xTa—yJ =baVjy1 — xS (;y —r(j+2)Vj2e — R 8Jy , (2.100)
rVi + R% = bl. (2.101)

Jy

We denote by E; the equation (2.100), for j = k—2,...,0. We solve this sys-
tem of differential equations recursively, starting by equation (2.98) and finishing
by equation (2.101). We main follow the results 2.3.2, 2.3.3 and 2.3.4 given in
Section 2.3. These results can be found in [9].

First we study equation (2.98).

Proposition 2.3.32. Equation (2.98) has a polynomial solution Vi, if and only
if one of the following statements hold.

(@) I#0,m=0andn=1—(k—3)/(2(p—1)) withp € NU{0}, 2p <k, p # 1.
Then Vi(z,y) = x*=2PTP. Under these conditions system (2.96) is

k—3
T =r+uxy, y=d+ax+by+l$2+(1——)y2- 2.102
2(p—1) (2102

(b) m#0, 1= (p—1)(p+q—1)(2p+q—2)m*/(¢*(k —3)) andn =1 — (k-
3)/(2p+q—2) wherep e NU{0}, g € N, 2p+q <k, 2p+q # 2. Then
Vi(z,y) = 2k~ FPGPYa. Under these conditions system (2.96) is

(p—1)p+q—1)2p+q— 2)$2+
¢*(k —3)

k—3 )
mxy + 1- — . 2.103
Yy < 2p+q_2>y ( )

t=r+zxy, y=d+axr+by+

Proof: We write Vi, = TPW, where p € NU {0}, 2p < k and W is a homogeneous
polynomial of degree k — 2p such that T'f W. Equation (2.98) becomes

ow
FW+T——=0 2.104
where FF=m(p— 1)z +ny, n =k —3+2(p—1)(n —1). Observe that if p =0
then W = Vi, F = Ny and (2.104) is just (2.98). If F =0 and p = 1, then we get
k = 3, but we are assuming k > 5. If F =0 and p# 1, then m =0, [ # 0 and

_ k=3
2(p—1)



98 2. POLYNOMIAL INVERSE INTEGRATING FACTORS

As T # 0, by (2.104) we have W, = 0, and then W = 2*=?P. The expression of
Vi is given by Vi(z,y) = 2*~?PTP and case (a) follows.

If F#0, then as T 1 W we have T' = FG, where G = ax + 0y, o, € R.
Moreover, G|W. From T'= FG we compute «, 3 and [:

_k=3+(@-1)(n-1

n—1
= | = —1).
- m, [ = am(p—1)

«

The expressions of a and 3 above are well defined because if n = 0, then n = 1
and k = 3, which is not possible. Equation (2.104) becomes

ow
W+G—— =0.
Ay
As G|W, we have W = GYW, where ¢ € N, 2p +¢q < k and W is a certain
homogeneous polynomial of degree k — 2p — ¢ such that G 1 W. We obtain the
equation
- oW
1 W+ G— =0.
(1+gB)W + o
As G+ W, we must take 1 +¢8 =0. If 2p + ¢ —2 = 0, that is p = 0 and ¢ = 2,
then k = 3. So 2p+ q — 2 # 0, and then

k-3
2p+q—2

The expressions of «, # and [ can be rewritten as

_ (p+e-1@+q-2) g1
¢*(k —3) ’ q
; (=D +q-1)2p+q-2) ,
¢*(k —3) '

We also take m # 0. Finally, as G # 0, we have W, = 0, so W = 2*~2P=9, The
expression of Vj, is given by Vi (z,y) = 28~2P~9FPGPT4 and case (b) follows. m

We study cases (a) and (b) of Proposition 2.3.32 separately. Case (a) is the
easiest one, and from it we just obtain a solution V of degree k = 7, as the
following proposition shows.

Proposition 2.3.33. A system of type (2.102) having a polynomial inverse in-
tegrating factor V(x,y) can be written, after an affine change of variables and a
rescaling of the time if it is necessary, as © =1+ zy, §y = Q(x,y), where
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(I1.11) Q(z,y) = d2* + 3y* with § = £1, and we get

Vi(z,y) = 3y — 62°) (1 + 4y — 62*).

Proof: Equation (2.99) can be written as
NpaViey + TViyy = TP'L, (2.105)
where

L =a"*T —pST,) =

k—2p o, ap(k —3) b(2p —1)(k=3) ,
T (blx—l— P— xy + 20— 1) y>.

If p=0, then L = ba*T. We apply Lemma 2.3.4 to (2.105) to get b = 0 and
Vi_1 = 0. Under these conditions, there already exists a quadratic system having
a polynomial inverse integrating factor of degree k < 3 for r = 0, as it follows
from cases (IL.1), (I1.2), (IL.3), (I.5) and (I1.9) of Proposition 2.3.30, so we take
r = 1. Equation Ej_o is

—2yVi g + TVy_g, = —ka" .

By Lemma 2.3.4, we must take k = 7. We get Vj,_o = V5 = —Tz'y/l. Equation
E4 is
Ta

—3yVy +TVy, = Tx5.

We get a = 0 and V; = 0. Solving equation Es, we get Vi = %%an‘ + v1 2y,

v12 € R. We must also take d = 0. From equation Fs, we get Vo = 0. From
equation Fy, we get V| = 3y/l2 and vy o = 12/[2. Solving equation Ej, we obtain
Vo = 0, and equation (2.101) gives the identity 0 = 0. So we obtain (I.11) after
the change (|I|"4z, y/|l[*4, |I|"/4t) — (z,y,1).

Assume p > 1. From (2.105), as [ # 0 we have T'|Vj_1, so there exist j € N
and a homogeneous polynomial W such that T'{ W and V,_; = T'W. Equation
(2.105) is then equivalent to

T/ ((Ny_y + jT,)W + TW,)) = T L.

We must take j = p — 1. The equation becomes, after simplifying,

k—
(—3—1)yW+TWy:L.
p—1
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Applying Lemma 2.3.4, we get b = 0 and

k72p71Tp71
;

where k — p — 2 # 0 because k > 5. Equation Ej_ is
Nk—QVk—Q + TVk—Q,y = TP—2L7

k—2p—1(

where L = z aort + a1’y + asx?y? + azxy® + aqyt),

_ p(k = 3)(di(k —p—2) +a*(k - 3)(p — 1))

= —kl’, a;=
wom T k201 |
Cbe3kop) Ak (k)3
T T ST a2 YT a1y

We have Vj,_y = TP~2W, where W is a homogeneous polynomial such that 7" W.
Then, we must solve the equation

k—p—2
2y~ Zw W, = L.
p—1
Applying Lemma 2.3.4, we obtain k = 3p. Then, n = —1/2 and b = m = 0, so
the system is Hamiltonian and we are in (IL.1). ]

The rest of this section is dedicated to the proof of the following proposition.

Proposition 2.3.34. Under the hypotheses of Proposition 2.3.32(b), a system of
type (2.103) having a polynomial inverse integrating factor V(z,y) can be written,
after an affine change of variables and a rescaling of the time if it is necessary,
as T =r1+uzy, y=Q(x,y), where r € {0,1} and Q(x,y) are stated below.

(1.12) r =1 and Q(x,y) = —53/7 — 152% /98 + dxy + y*/5 where § = +1 and

V(z,y) = (26250z + 337562° + 367500y — 94502y + 88206zy>—
2744y) (1531250 + 525000022 + 506252 + 2450002y —
18900052y — 6860008y> + 264600xy* — 1646400xy” + 38416y).

(I.13) 7 =1 and Q(z,y) = bood — (s — 1)x?/(25%) + dzy — y?/(2(s — 1)) where
0 ==1, bpp € R and s € N.

(I.14) r =1 and Q(z,y) = d=bu(¢—2)x/q+y—(¢—2)b%,2° /¢*+buay—y*/(¢—2)
where 6 = 1, byy #0 and q € N, g > 3. Moreover, d satisfies

0% (g —2)(q—2—j)* —jalg — 2 — j)(¢ — 2 — 2j)°d —
(g—2)(g—2—25)%(" — (¢ —2)(j +1))bi1 =0,

forje{1,2,3,... [q¢—3]/2}.
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(I.15) 7 =1 and Q(x,y) = bood + (¢ + 2)2*/¢* + dzy + y*/(q + 2) where 6 = +1,
boo € R and g € N\ {1}.

(I.16) r =1 and Q(z,y) = d—bii(¢+2)x/q+y+(q+2)b},2° /¢* +bnzy+y* /(q+2)
where byy # 0. Moreover, d satisfies

q7°(q+2)(q+2— 5 +qjlg+2—4)(g+2—2j)2d+
(g+2)(g+2-2§)°(G" = (¢+2)(F — 1))bu =0,

forje{1,2,3,...,[(¢+1)/2]}.

(I.17) }7; = %ani%?(x,g) = 10(b11+2) /94700112 /27+y+10b%, 22 /27+by 2y —Yy? /5
where byy an

V(z,y) = (60 + 10b11z — 9y) (45 + 60z + 10b1;2* + 36zy) (236196zy° —
98415(102(6 + byyz) — 3)y* + 145800(6 + by 2)(102(6 + byy2) — 9)y> —
81000(6 + by12)*(102(6 + byyx) — 27)y? — 1620000(6 + by12)3y +
50000(2b3, 2% + 60b7, 2% 4 9b3, (80 4 by1)z> + 21663, (20 + byy)x? +
648b11(20 + 3b11)x + T776(2 + b11))).

(I.18) r =1 and Q(z,y) = —(2p — 1)6/2 + p(2p — 1)2?/2 + dzy + y*/(2p — 1)
where 6 = +1 and p € N, p > 2.

(I.19) r =1 and Q(z,y) = (2p + ¢ —2)5/(2q) + (p — 1)(2p + q — 2)2°/(2¢°) +
dxy — qy*/(2p +q —2), where § = £1 and p e NU{0}, ¢ €N, p+ ¢ > 2,

p# 1
(I.20) 7 =1 and Q(z,y) = §/6 — 22 /18 + dxy — 3y where § = +1 and

V(z,y) = (6z — 6y) (3 + z(dz — 6y)) (54 + 302*(3 — 2zy) + 7).

(I1.16) r =0 and Q(z,y) = 6+ (p—1)(p+q—1)2*/(2¢*) + 2y — y* where § = +1
and p € NU{0}, p#1, ¢ € N, 2p+q > 3. We have an expression for
V(x,y) in the case p = 0:

V(w,y) = - (102020200 — (g — 1o — 2a0))'—
271206 — (¢ — D)z (z — 2qy)][20¢* — x((q — 1)z — 2qy)])-
(I1.17) r =0 and Q(z,y) = d = —bm(q—2)x/q+ by — (¢ — 2)m?z?/¢* + mxy —

v*/(q — 2), where m # 0 and q € N, ¢ > 3. In order to give a simpler
expression of (), we distinguish two cases, depending on the value of b.
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(IL.17a) If b # 0 then Q(z,y) = —boo — (¢ — 2)x/q +y — (¢ — 2)2?/¢® +
vy — y?/(q — 2) where byg = —d/b*. Here we have used the change

(ma/b,y/b,bt) — (z,y,t).
(IL.17b) Ifb =0 then Q(z,y) = 6—(¢—2)2?/¢*+xy—y*/(q—2) where § =
+1. This is due to the change (mx/\/|d|,y/+/|d|,\/|d|t) — (z,y,t).

(IL.18) r =0 and Q(z,y) = + (¢ + 1)(¢ + 2)2*/(¢*(¢ — 1)) + zy + 3y* /(¢ + 2)
where 6 = +1 and g € N\ {1}.

(I1.19) r =0 and Q(z,y) = d+ax+y+1z* +xy+3y?/(g+2) where ¢ € N\ {1}
and

g a2 +2-5) g+ De+2)e-4 _(¢+1)g+2)

(q+2—2j)> 3¢%(q — 1) ’ *(g—1)
forje{1,2,3,...,[(¢+1)/2]}.

Remark 2.3.35. 1. In systems (I.13) and (I.15) we assume that b = 0, but
this condition is not proved. In systems (I.14), (I.16) and (I1.19) the condi-
tion on d is not proved. In all these cases, there is numerical evidence that
the conditions hold.

2. Systems (II1.17) and (II.18) are not proved to have a polynomial inverse
integrating factor, as we will show in the proof.

3. We do not have an expression of V' (z,y) in cases (1.13)—(1.16), (1.18), (1.19)
and (I1.16)—(I1.19). In case (1.19), using Theorem 1.4.7 it is possible to find
an expression for V', as we explain in the proof.

Equation (2.99) can be written as
N1V + FGV;gfl,y = Fp—le-Hl—lL’

where L = 2*72P=9(agx® + ayzy + agy?),

S bm(p—1)(p+q—1)(2p+q—2)—aq2(k—3)m
0 (]2(]{3—3) )
a(2p +q)(k —3) b2 +q—1)(k—3)

a = R Ao =
! 2p+q—2 2 2p+q—2

As (G, Ny_1) = (F,Ny_1) = 1, there exist i,7 € NU {0} and a homogeneous
polynomial W such that V,_; = F'G/W. Equation (2.99) is

F'G'((Nj—1 4+ iGF, + jEG,)W + FGW,) = FP'GPHi7 1L,
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We must take j =p+qg— 1. If p =0, then ¢ = 0 and the equation becomes

k _
(—Tx + (—3 — 1) y) W+ FGW, = F7'L.
q q—2

If p > 0, then ¢ = p — 1 and the equation becomes
2(k—3
(—mw—i— ((—) — 1) y) W+ FGW, = L.

In both subcases, two cases must be considered:
(b.1) If k =2p+ g+ 1 then b =0 from Lemma 2.3.4.
(b.2) If k # 2p+q+ 1 then a =bl(2n — 1)/(mn) from Lemma 2.3.4. Moreover,

Vk_l(ff, y) =

a(2p+q) b(2p+q—1) k—2p—q pp—1 -1
k _ P qu p+q
( z”(%—ap—q—4x+k—2p—q—ﬁ’x S

where k # (2p+ ¢ + 4)/2 because k > 5.
The case (b.1) is studied in the following proposition.

Proposition 2.3.36. Under the conditions of case (b.1), system (2.103) has no
polynomial inverse integrating factor.

Proof: Assume p = 1. Then we must take ¢ > 2, a = 0 and Vj_;(z,y) = v12yGY,
where v; € R. Equation Fj_s is

Ni—oVieo + FGVj_g, = GL,

where L = (—dmz?+ (¢ +2)(d —mr)zy +ry?). As g > 2, we have (G, N;_») = 1,
and then V,_, = G'W, where W is a homogeneous polynomial. We must solve
the equation

G'((Ny_2 + jFG,)W + FGW,)) = GIL.

We take j = ¢ — 1, so the equation becomes —q(W — yW,) = L, from which we
get d = mr, and the system has a common factor.

Assume p # 1. Then

2p+q—1)
p—1)(p+q—1)

kal(l', y) =a ((217 + q)x + m( Z/) rFP-lgrta—1.
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Equation Ej_5 writes as
Ny oVi o+ FGVy_g, = FP2GPTI2L,

where L is a certain homogeneous polynomial of degree 4. We have V,_o, =
FiGIW, where W is a homogeneous polynomial. We obtain

F'G'((Ny_o +iGFE, + jFG,)W + FGW,) = FP2GPHa—2,

We must take i = p —2 and j = p+ ¢ — 2. Then the equation becomes (—2mx +
2y)W + FGW, = L. Applying Lemma 2.3.4 we get d = mr and

Vies(2,y) = (002® + 0122y + vomy? + y) FP2GPHe-2,

for certain coefficients v;, i = 0,1,2. If r = 0 then the system has a common
factor, so we take r = 1, and then d = m. Equation E;_3 is

Ni—3Vies + FGVj_3, = FP3GPH3L,

where L is a certain homogeneous polynomial of degree 5. We have V;_3 =
F'G'W , where W is a homogeneous polynomial. We must solve the equation

F'G!((Ny_3 +iGFE, + jFG,)W + FGW,) = FP3GPHa—3,

Now we apply Lemma 2.3.4 again. If p=0and¢=>5,thenj=1. lfg=p—1>0
then j = p+ ¢ — 2. Otherwise, 1 =p — 3 and j = p+ ¢ — 3. In all cases, we get
a=0and L =0, so V,_3 =0. Equation E,_4 is

Ny 4Via+ FGVy_y, = FP2GPTI 2L,

where L is a certain homogeneous polynomial of degree 2. We have V;_, =
FiG'W , where W is a homogeneous polynomial. We must solve the equation

F'G((Ny_y + iGF, + jFG,)W + FGW,) = Fr2Grta-2[,

If p=0and ¢ = 6, then j = 1. In this case, we must solve the equation
—6W + FW, = F2G?L, from which we obtain m = 0, a contradiction. If
=2(p—1) >0 then j = 3p — 5. In this case we obtain m(3p — 2) = 0, another
contradiction. So we must take i = p—2 and also j =p+qg—2 (if p > 1) or
j=q—2 (if p=0). If p > 1 then the equation becomes —2mazW + FGW, = L.
Applying Lemma 2.3.4, we get m?*(p—1)(p+¢—1)(2p+ q+2) = 0, which is not
possible. If p = 0 then the degree of W is zero and the equation becomes

2 —1
(__mx _ Qy) W _m<q_3>,
q q

from which W = 0, and then m(q — 1) = 0, which is a contradiction because
m#0and k=q+1>5. ]
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From now on we assume case (b.2). Equation Fj_ is
NyoVioo+ FGVy_g, = FP2GPTI2L,

where L is a certain homogeneous polynomial of degree k — 2p — ¢ + 3. We have
Vi_s = F'GIW, where W is a homogeneous polynomial. We must solve the
equation

F'G/((Ny—2 +iGF, + jFG,)W + FGW,) = FF2GPT1 2L, (2.106)

If p=0and k =q=7, then j = 4. In this case, we get the solution (I.12).

Assume p = 1. From Fj_5 we obtain r = 1 and d = m, and from E}_3 we get
b= 0. Finally, from E;_4 we have (k+ 1)(k — ¢ — 3)m? = 0. Then the only case
from which we could obtain a solution is k = ¢ + 3, but in this case we would be
in case (b.1), so there is no solution. From now on we assume p # 1.

We take i = p—2and j =p+ g — 2 in (2.106). Then the equation becomes

2k — 3) B

Applying Lemma 2.3.4, we get three subcases:
(b.2.1) If k =4p + 2q — 1 then r = 0.
(b.2.2) If k=p+q+ 2 then p=0,2.

(b.2.3) If k #4p+2g—1,p+ g+ 2, then r =1 and

(p—Dp+q-1)2p+q—2)
?k—-2p—q—1)

a(k? — 3 + k(4 — 10p) + 6p(3p — 1)))

d=

b2+ (206 = 3p)((k —2p — (P — 1) — *)+

2p+q—2)m )
(k—3)(k —4p — 2¢ + 1)¢?

In all cases,
Viea(z,y) = ps(z, y)xk_Qp—q—lpp—QGerq—{

where p3(z,y) is a homogeneous polynomial of degree 3.
In the following three propositions we deal separately with cases (b.2.1),
(b.2.2) and (b.2.3). These propositions will finish our proof.

Proposition 2.3.37. Under the conditions of (b.2.1) the only case for which
system (2.103) has a polynomial inverse integrating factor is (11.16).
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Proof: Equation E}_3 writes as
Ni—3Vi—s + FGVy_g = FP3GPT93L,

where L = x?PT9=2p5(x, ), for a certain homogeneous polynomial ps of degree 5.
We take Vj,_3 = F'G'W, with i, 5 € NU {0} and W a homogeneous polynomial.
If p=0and g = 5, then we take 5 = 3, but we obtain b = d = 0 and the system is
homogeneous, so there is a solution of degree 3. Taking j = p+¢g—3 and i = p—3,
we get (=3mz + 9y)W + FGW, = L. If b #0, then d = b*(p — 1)(p+q—1)/¢*
and we obtain a solution of degree at most 3. If b = 0 (and d # 0), then V,_3 = 0.
We note that all the computations hold also for p = 0.

The polynomials Vj_o; 1 are identically zero for all . We obtain the poly-
nomials Vj_9;, 2 = 1,...,2p 4+ g — 1, solving equations Ej_o; in a recursive way.
The integration constant must be taken as zero in every step, except for V3. The
integration constant appeared in the computation of V3, denoted by C, can be
obtained from equation (2.101), which is V; , = 0 because this equation is linear
in C; and its coefficient is sign(d)q(p — 1)/2(p+ ¢ — 1) # 0. The system is

(p—Dp+qg—1)

2 m*z® + may — 7, (2.107)

rT=uzy, y=d+

with d # 0. The polynomials Vj,_o; have the factor 2?79=1=¢ for i = 0,...,2p +
q—2. As Vi, = 0, the polynomial V(x,y) vanishes at z = 0. Applying the

change (mx/+\/|d|,y/\/|d|, \/|d|t) — (z,y,t), we obtain (I1.16).

We can compute an expression of V(z,y) for system (2.107) in the case p = 0.
First we compute the expression of V;_o;, for i =1,...,¢— 1. By a linear change
of variables, we transform our system into

t=z(x—y), y=s+y((2¢—3)x+y),

where s? = 1. Equation Ej_o;, for 0 < i < ¢ — 2, is given by

ist , : . .

i1 (3) g =2z +y)" =20 + (¢ — 0)y) V2 +
2y((q — 2)&3 + y)ka%,y = 0.

From this equation, we get

S

Viei(z,y) = Z((‘.’)xq“((q—2>x+y)“+

2i \ i
Cixq—i—lyi/(q—%((q — 2z + y)q—i—i/(q—2).
As i < g — 2, we take ¢; = 0. Equation Fj is

sVsy —2((q—2)x +y)Vs + 2y((q — 2)x + y) V3, = 0,
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from which we get
Va(z,y) = 2((¢ — 2)z + y)(krz + Cry),

where k; = (¢ — 1)(q — 2)s772/277 ! and C; € R. In order to compute V;(x,y) =
vox + v1y, we must solve the linear system

vo+ v =C1s, 2v9(q—1) =kis+ Cis(q—2),
which is obtained from F,. We get

Ol(q — 2) + kl{L‘ i SClq — kly
2(¢—1) 2(q—1)

Finally, from (2.101) we have C} = k;/q. So we obtain the polynomial inverse
integrating factor

Vi(z,y) =s

Q
.

_ s (q g—i—1 q—i
V(z,y) = ;w(s + @z +y)((a-2z+y)+ ) = <Z> ((g—2)z+y)",

-
I
o

with s? = 1. Back to the initial system, which is

m*(q—1)

2 x? + mxy — yQ,

the polynomial inverse integrating factor can be written as
1
V(z,y) = - (4d2“’q2(2“’) [2dg® — max(m(g — )z — 2qy)]*~
x

29[2dq* — m(q — 1)z(mz — 2qy)][2dg” — mz(m(q — 1)z — 2qy)]>-

Proposition 2.3.38. Under the conditions of (b.2.2) the cases for which system
(2.103) has a polynomial inverse integrating factor are (1.13)-(1.16) and (11.17)-
(11.19).

Proof: Assume p = 0. If ¢ # 3, then from E; we get an expression for V; in
a recursive way, and without new conditions. If i = 3, then we must solve the
equation

(K12® + Kyry + Kay®) (z +y)° — (x +29)Va(z,y) + y(z +y)Vay(z,y) =0,
for certain expressions K, Ky, K3. This equation has the solution

Vs(z,y) = —Kory(z +y) Iny + Va(z,y),
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where ‘73(33, y) is a homogeneous polynomial of degree 3; so we must take Ky = 0,
which means that either 7 = 0, or » = 1 and b = 0 (only if ¢ is even), or r = 1
and

j%(q — 2)(q — 2 — §)*b* — jqlg — 2 — j)(q — 2 — 2j)?d—
(q—2)(q—2-2))*(* = (¢ —=2)(j +1))m =0, (2.108)

J€41,2,3,...,]¢g — 3]/2}. From equation (2.101) we get the expression of Ci.
The system is

(q—2) 2 2 y2

b -2
Mm—i—by— s—m-x” +mxy — ,
q q—2

T=r4+zy, y=d-—

taking into account the conditions given above. We note that we do not have a
proof from which we get the conditions derived from K5 = 0 and the expression
of V(z,y).

If » = 0, then by the change (ma/b,y/b,bt) — (z,y,t) we get (IL17). If r =1

and b = 0, then by the change (\/|m|x,y/\/|m|, \/|m|t) — (z,y,t) we get (1.13).
If » = 1 and equation (2.108) holds, then by the change (bx,y/b,bt) — (x,y,t)
we get (1.14).

Assume p = 2. If ¢ # 3, then we get an expression for V; in a recursive way.
If + = 3, then from equation E; we must solve the equation

(K12® + Kyzy + Kay®)y*—
( +2(q + Dy)Vs(z,y) — y(z + (¢ + 1)y)Vay(z,y) = 0,
for certain expressions K, Ky, K3. This equation has the solution

(¢+1)°

Va(z,y) = zy(z + (¢ + Dy) In(z + (¢ + 1)y) + Va(z,y),

where 173(:15,3/) is a homogeneous polynomial of degree 3; so we must take (¢ +
1)Ky — 2K3 = 0, which means that either b = 0, or b # 0 and

g7 (q+2)(g+2— ) +qj(g+2—4)(qg+2—25)%d+
(¢+2)(q+2 -2 — (¢+2)(j — 1))mr =0,

je{1,2,3,...,[(¢g+1)/2]}. The system is

(2.109)

T = r+ay,

bm(q + 2 +2 3y?
Lx+by+q72m2m2+mmy+ J
q q+2

y = d- )
taking into account the conditions given above. Again, we do not have a proof
from which we get the conditions from (¢ + 1)Ky — 2K3 = 0 and the expression
of V(z,vy).
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If r =0 and b = 0, then by the change ( mx/\/ﬁ y/\/w ld|t) — (z,y,t)
we get (I1.18). If r = 0 and equation (2.109) holds, then by (mz/b,y/b,bt) —
(x,y,t) we get (I.19). If r = 1 and b = 0, then by ( \/Wx y/\/Iml, /Imlt) —
(x,y,t) we get (I.15). If r = 1 and equation (2.109) holds, then by the change
(bz,y/b,bt) — (z,y,t) we get (1.16). m

Proposition 2.3.39. Under the conditions of (b.2.3) the cases for which system
(2.103) has a polynomial inverse integrating factor are (1.17)-(1.20).

Proof: Equation Fj_3 writes as

Ni_3Vies + FGV_y = FP3GPTa-3L,

where L = 2¥=%~9"1p;(x 1), for a certain homogeneous polynomial ps of degree

5. We take Vi_3 = F'G'W , with 4, j € NU{0} and W a homogeneous polynomial.
Taking j =p+q— 3 and i = p — 3, we get the equation

k—3
-3 —(3-6——-—— W+ FGW, = L.
( mx ( 2p+q—2)y) + y

By applying Lemma 2.3.4, some values of k£ and b must be distinguished. If k =
3p+q or k = 3p+2q, then there exists a solution of degree 3. If k = 3(2p+q—1),
then no solution is obtained. If &k = 3(p + ¢ + 1)/2, then there is a solution only
in the case p = 2, ¢ = 3, which is (I.17) after the change (bx,y/b,bt) — (z,y,1t).
If £ =3(2p+ q+2)/4, then in order to obtain a solution we must take p = 0 and
q = 6. But then we must take b = 0, otherwise there is a solution of degree 3.
If k =3(2p+ q)/2, then we obtain b = 0. The last case is b = 0, which includes
these two cases above, and from which we obtain V,_3(x,y) = 0. So from now
and on we assume b = 0. Equation Ej_4 is given by

NysVia + FGV_y = FP2GPH2],

where L = zF=%=9"2p;(x,5), for a certain homogeneous polynomial ps of degree

3. We take V4 = F'GIW , with i, 7 € NU{0} and W a homogeneous polynomial.
We distinguish two cases.

If k= (4p+ 4q +5)/3, then we can take j =p+ ¢ —3 and i = p — 2. But in
this case later computations show that we must take p = 2 and either ¢ = 5 or
q = 8. In the first case, there is a solution of degree 3. In the second one there is
no solution.

Assume that k # (4p + 4g + 5)/3. Then, we must take j = p+ ¢ — 2 and
1 = p — 2. We obtain the equation

k—3
omp — (4—4—"T2 FGW, = L.
( mx ( 2p+q—2) y>W+ GW,
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By applying Lemma 2.3.4, four subcases must be distinguished, depending on £,
p and q.

Assume k = 2p 4+ 1, ¢ = 1. The polynomials V;, i > 3, can be obtained
recursively for all 7, without new conditions. The expression of V3(z,y) is

Va(z,y) = (2C1(2p — D)a + Coy) FG,

where C € R is to be determined and Cy € R depends on Vs(z,y). From equation
E; we obtain an expression for V;, and from (2.101) we obtain

Co(p — 2)m
dip—-1)

so we get (1.18) after the change (\/|m|z,y/+/|m|, \/|m|t) — (z,y,t). We note

that we cannot find the expression of V' (z,y).

C = -

Assume k = 2p+2q+1 and p # g+ 1. Once again, the polynomials V;, i > 3,
can be obtained recursively for all 7, without new conditions. The expression of
Va(z,y) is

V;(x,y) = (GOCL’JUF +p2(x7y))G7

where ap € R is known, C; € R is to be determined and py(x,y) is a known
homogeneous polynomial of degree 2. From equation F; we obtain an expression
for V1, and from (2.101) we obtain the expression of C7. So we get (1.19) after the

change (v/|ml|z,y/+/|m|, /|m|t) — (x,y,t). Again, we cannot give the expres-
sion of V'(x,y). If p > 1, then we have a polynomial first integral (see Proposition

3.1.3) given by H(z,y) = fi(z,y)?f2(z,y)P~ !, where
fila,y) = (2p + ¢ —2)(q — 3(p — 1)2*) + 2¢(p — D)z,
fol,y) = 0(2p +q—2)*(2p + ¢ — 2+ 8(p — 1)2*)+
2¢°(2p+ q — 2)0xy — 4¢°(p+ ¢ — 1)y*.
Then, applying Theorem 1.4.7 we can obtain a polynomial inverse integrating

factor of the form V(x,y) = fi(z,y)f2(x,y)s(x,y), where s(z,y) is the solution
of the equation

H(z,y) — h=s(z,y)g(z,y).

In this equation, g(x,y) = (2p + ¢ — 2)dz — 2qy is contained in the level set
H(z,y) = h, and it is the denominator of the rational inverse integrating factor
P/(log H), (see Proposition (1.4.1)).

Assume k = 8p + 4¢ — 5. Then there exists solution only in the case

p = 0,q = 3, which is (I1.20) after the change (\/|m|x,y/+/Im|, /|m|t) — (z,y,t

Finally, assume k£ = 49 + 3 and p = ¢ + 1. Then there exists a solution of
degree 3. |
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2.4 Algebraic limit cycles

This section is related to (x) quadratic systems, which are the quadratic systems
from which we have obtained a polynomial inverse integrating factor in Section
2.3. We remark that the systems from which we do not have a polynomial inverse
integrating factor are subfamilies of systems (I) and (II). For systems (I1I)—(X)
we always have an explicit polynomial V.

As we stated in Theorem 1.4.5, the limit cycles of a planar system having an
inverse integrating factor V(x,y) are contained in the set V~1(0) if they belong
to the domain of definition of V. For (x) quadratic systems, the polynomial in-
verse integrating factors contain all the limit cycles of the corresponding systems.
Moreover, these limit cycles must be algebraic. The following theorem provides
more information about limit cycles of quadratic systems.

Theorem 2.4.1 (see [51]). If a quadratic system possesses a limit cycle, then
there exists a unique singular point inside the bounded region limited by this limit
cycle, and it is a focus.

The only systems from which we can find limit cycles are (I), (II), (III) and
(IV). Systems (V)—(X) do not have limit cycles, because of the expression of .
From this fact, following Theorem 2.4.1 and from the study of the expressions of
V' of normal forms (I) to (IV) we state the following theorem.

Theorem 2.4.2. A (%) quadratic system has no algebraic limit cycles.



Chapter 3

Quadratic systems having a
polynomial inverse integrat-
ing factor

In this chapter we study some of the properties of the quadratic systems having a
polynomial inverse integrating factor V (z,y). We compute a first integral H (z,y)
for each one of the (x) quadratic systems, and we study the critical remarkable
values when the first integral is rational.

3.1 Classification of the first integrals

Consider the planar polynomial differential system

where P and () are polynomials in the variables x and y. As we know, from a
polynomial inverse integrating factor V' of system (3.1), we can find a first integral
H defined on R? \ V~1(0). The following proposition sets the type of this first
integral.

Proposition 3.1.1 (see [10, 44]). If system (3.1) has a rational inverse integrat-
ing factor then it has a Darboux first integral.

The polynomial functions are included in the rational ones, so the quadratic
systems we found in Chapter 2 having a polynomial inverse integrating factor
have a Darboux first integral.

We distinguish in our classification three types of systems, depending on the
type of their first integrals: systems having a polynomial first integral; systems
having a rational first integral and not having a polynomial first integral; and
systems having a Darboux first integral and not having neither polynomial nor
rational first integrals. They are listed in the three propositions below.

Remark 3.1.2. 1. The system

@ = agot+awr+any+apr’+anzy, Y= d+ar—apy+lz®—2anry—any®/2,

113
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with max{deg (%), deg (y)} = 2, is Hamiltonian and has the polynomial first
integral of degree 3

a a l a
H(IW) = dz — agoy + sz — ATy — %92 + 3x3 - agox Y- %xy

This system appears in all cases of the classification of Chapter 2.

2. We have not been able to compute first integrals for some of the systems
of the classification. This is either due to the expression of V', or because
there is no expression for V| or because it is very difficult for us to solve
the equation XH = 0.

O

Proposition 3.1.3. The (x) quadratic systems having a polynomial inverse inte-
grating factor and a polynomial first integral are:

(VIIL4) with b= —p/q € Q~\ {—1}. Writing V(z,y) = 2 f(z,y), where
fla,y) = (b—2)y + 27,

we have
H(z,y) = 2" f(z,y)".

(IL.2d) with m = —p/q € Q" \ {=2}. Writing V(z,y) = fi(z,y)fo(z,y),
where

fi(z,y) = biog + 2qy + (p + 2¢)>
fa(z,y) = biog — py,

then
H(z,y) = fi(z,y)" folz,y)*
(VIL3) withm+1=—p/qe Q™ \ {—1,0}. We have
H(z,y) = «"(q — pry)*.
(VL5) with b= 0 and m = —p/q € Q. We have
H(z,y) = (1 + %)y
(VI.6). We have

21—4—1

H(z,y) = (1+22)Py — 2( > 7
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(V.8) withm = —p/qge Q ,b=r/s€Q, ¢,s>0andm <b< —m. We
have

H(xa ?/) = (1 — :L‘)ps*qr(l + m)szrqrqus.
(V.9) with m + 1= —p/q € Q" \ {~1}. We have

H(z,y) = (x F1)"(q — (z £ Lpy)*.
(V.11) withm € Q=, b€ (m,—m)NQ and r € N. We have

Hiz,y) = (x+ 17> {% SRS eI (r ; 1) W] .

= J q—r—14j

(V.12) withm € Q=, b€ (m,—m)NQ and g —r — 1 € N. We have

= J r+J

Hz,y) = (x~ 1) [(m Ty = Y (=) (q e 2) @—1)] .

(IL.9) with 2n = —p/q € Q~. Writing V(z,y) = xf(z,y), where f(x,y) =
o4 22+ 20%02 2 we have

H(z,y) = 2 f(z,y)".

(I1.10) with b/v/b?> —4dn =p/q e QN (=1, 1)\ {0}, n=—r/s € Q~, ¢q,1,s €
N. We have

H(z,y) = 2" (bs(p — q) — 2pry) """ (bs(p + q) — 2pry) """,

(I1.10) with b =0, n=—r/s € Q~. We have

H(z,y) = x> (ds — ry®)°.

(IL11) with m/y/m? —4l(n — 1) = p/q € QN (=1,1)\ {0} and n = —r/s €
Q" ¢,y s € N Writing V(z,y) = 2 f1(x, y) fa(z,y), where

filz,y) = (p — q)s(6(r + s) +rz) — 2pr(r + s)y,
fo(z,y) = (p+ q)s(0(r + s) +rz) — 2pr(r + s)y,

we have
H(ZC, y) = qurfl (l‘, y)(qu)sz (l’, y>(q+p)s'
(I1.16) with p > 1, then

H(l',y) = (25q2 + (p _ 1)1,((]9 +q— 1)ZE . 2qy>)p+qfl
(20 + (p+ g — Dx((p — Dz +2qy))" .
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(I5) withn = —p/q € Q- N(—1,0). Writing V(z,y) = fi(z,y)f2(z,y), where

filz,y) =0(n* —1) + bun(n+ )z +n(n — 1)(2n + 1)y,
folz,y) =(n—1)2n+ 1)(1 + (n+ Day) + (6(n — 1) + byynz)(n + 1)z,

we have
H($7 y) = fl(xv y)q—pr(x’ y)p‘

(L17). Writing V(z,y) = fi(x,y) f2(x,y) f3(2,y), where

fi(z,y) = 60 + 10b112 — 9y,

fa(z,y) = 45 + 60z + 10by12° + 362y,

f3(z,y) = 2361962y — 98415(102(6 + byyz) — 3)y*+
145800(6 4 by1x)(102(6 + byyx) — 9)y® —
81000(6 + by12)%(102(6 + by x) — 27)y* — 1620000(6 + by1z)>y +
500002 (265, 2° + 60b]; 2" 4 963, (80% + byy)x® + 21663, (202 + by )x? +
6482b11(20% + 3by1 )z 4 77763(22 + b1y)),

we have
H(l’,y) = fl(xa y)4f2(l',y)
(I.19). Let

filz,y) = 2p+q—2)(g—d(p—1)2*) +2q(p — 1)y,

folz,y) =062p+q—2°2p+q—2+6(p — 1)a*)+
2¢*(2p + q — 2)dzy — 4¢°(p + ¢ — 1)y*.

If p > 1, then

H(z,y) = fi(x,y) fa(z, y)" "

In the following proposition we give the (x) quadratic systems having a rational
first integral, and also the expression of such functions. We also give, when they
exist, the critical remarkable values associated to these first integrals. In order
to compute the critical values, we must write the rational first integral H = f/g
as H = f/§ = (cof + (c1 +1)g)/(f + c1g9), where ¢; and ¢, are taken such that f
and g are irreducible and ( 1, g) = 1. See Lemma 1.5.1 for more information.

Proposition 3.1.4. The rational first integrals which rise from polynomial in-
verse integrating factors of (x) quadratic systems are:

(IX.4) with § = 0. We have

1+ 2y
H(x,y) = o
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H has no critical remarkable values.
(VIIL.3) with 6 = 0. We have

y — a?

H(:C,y): z

H has no critical remarkable values.

(VIIL.4) with b =p/q € QT \ {1,2}. Writing V(z,y) = xf(z,y), where

fla,y) = (b—2)y + 22,

we have
H(z,y) = a7 f(z,y)".
Ifp>1, then c = —cy — c;' is a critical remarkable value of H. The associated
curve is x = 0, and it has exponent p.
If ¢ > 1, then ¢ = —cy is a critical remarkable value of H. The associated curve

is f(x,y) =0, and it has exponent q.
(VIIL.8) with by = —p?/q®> € Q~, ¢ € N. We have

H(z,y) = 2"(p + 2qy)*(p — 2qy) "

Ifp>1o0rq>1, thenc = —cy is a critical remarkable value of H. The associated
curves are x = 0 with exponent p and p + 2qy = 0 with exponent q.
Ifp<—1orq>1, thenc= —cy —ci" is a critical remarkable value of H. The
associated curves are x = 0 with exponent —p and p — 2qy = 0 with exponent q.

(II1.2d) with m = p/q € QT \{1,2}. Writing V(z,y) = f1(z,y)fa(x,y), where

fi(@,y) = bio + 2y — (m — 2)a?,
f2($7y) = blO + my,

then
H(Q], y) = fl(xu y)pr(x7 y)_Qq'
Ifp>1, then c = —cy — ¢, is a critical remarkable value of H. The associated
curve is fi(x,y) = 0 with exponent p.
Moreover, ¢ = —co is another critical remarkable value of H. The associated

curve is fo(x,y) =0, and it has exponent 2q.

(IIL.3). Writing V(x,y) = fi(x,y) fa(z,y), where

filz,y) =2z — ¢,
folz,y) =2+ 3wy — o,
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we have
fl (:Ea y)3
H(z,y) = 7——=3
f2 (1’, y>2
The value ¢ = —cy s a critical remarkable value of H. The associated curve is
fi(z,y) =0, and it has exponent 3.
The value c = —cy—c; ' is another critical remarkable value of H. The associated

curve is fa(x,y) =0, and it has exponent 2.

(IIL.5). Writing V(x,y) = fi(x,y) fa(z,y), where

filz,y) =1 —=2(32 —y)(3z — (3% — y)?),
fo(z,y) = (32° —y)? — 2,

we have
fl (ZL‘, y>2
H(z,y) = —-==.
f2 (ZE, y>3
The value ¢ = —cq is a critical remarkable value of H. The associated curve is
fi(z,y) =0, and it has exponent 2.
The value ¢ = —cy—cy* is another critical remarkable value of H. The associated

curve is fo(x,y) = 0, and it has exponent 3.

(VIL3) with m+1=p/q € QT \ {1}. We have

H(zx,y) = 2 P(q + pxy)?.

If p > 1, then ¢ = —cy is a critical remarkable value of H. The associated curve
1s © = 0 with exponent p.
If ¢ > 1, then c = —cy — ¢ is a critical remarkable value of H. The associated

curve is ¢ + pry = 0, and it has exponent q.

(VIL.4) with 6 = 0. We have

142y
H(z,y) = )

T

We note that this first integral is also associated to the system & = 2%, = 1,
which is equivalent to (IX.4) with bog = 0. H has no critical remarkable values.

(VIL5) with 6 = 0. We have

1+ 22y
TR

H(z,y) = .

The value ¢ = —cy —c; ' is a critical remarkable value of H. The associated curve
1s x =0, and it has exponent 2.
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(VIL.8). We have

Yy
-y

H(z,y) =

H has no critical remarkable values.

(VIL9) with /by + 1 =p/q € Q. We have

_ o (la=p)z—2qy !
Hiz.y) = ((q+p)w—2qy)'

Ifp>1o0rq>1, thenc = —cy is a critical remarkable value of H. The associated
curves are © = 0 with exponent p and (¢ — p)x — 2qy = 0 with exponent q.

If ¢ > 1, then ¢ = —cy — ¢;' is a critical remarkable value of H. The associated
curve is (¢ + p)xr — 2qy = 0, and it has exponent q.

(VL.4) with b=0. We have

y2

T 1ta?

H(z,y)

The value ¢ = —cy —c; ' is a critical remarkable value of H. The associated curve
15y = 0, and it has exponent 2.

(VL5) with b =0 and m = p/q € QT \ {1}. We have

H(x,y) = (1+ %)y~

Ifp>1, then c = —cy — ¢, is a critical remarkable value of H. The associated
curve is 1 + x? = 0, with exponent p.
Moreover, ¢ = —co is another critical remarkable value of H. The associated

curve is y = 0, and it has exponent 2q.

(VL.8). We have

14+ 2y
H(z,y) = pr—

H has no critical remarkable values.

(V.3) withb=p/q e Q\ {0}. We have
H(x,y) = (1+x>py2q.

11—z

If p?> > 1, then ¢ = —cy — ¢ * is a critical remarkable value of H. The associated
curve is either 1 —x =0 or 1 + x = 0, with respective exponent either p or —p.
Moreover, ¢ = —co is another critical remarkable value of H. The associated
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curves are y = 0, with exponent 2q and, in the case p*> > 1, the curve 1 +x = 0
with exponent p or the curve 1 — x = 0 with exponent —p.

(V.5) with b=p/q € Q\ {0}. We have
H(z,y) = (1+2)"" (1 —2) "7 7y™.
We distinguish three cases in order to compute the critical remarkable values:

(p > q) The value ¢ = —cy is a critical remarkable value of H. The associated
curves are y = 0, with exponent 2q and, in the case p —q > 1, the curve
1+ 2 =0 with exponent p — q.
The value ¢ = —cy — ¢ ' is another critical remarkable value of H. The
associated curve is 1 —x = 0, with exponent p + q.

(p < —q) The value ¢ = —co is a critical remarkable value of H. The associated
curves are y = 0, with exponent 2q and, in the case —(p+q) > 1, the curve
1 —x =0 with exponent —(p + q).
The value ¢ = —cy — ¢y is another critical remarkable value of H. The
associated curve is 1 +x = 0, with exponent q — p.

(»* < ¢*) The value ¢ = —cy — c;* is a critical remarkable value of H. The
associated curves are 1 —x = 0, with exponent p + q and, in the case
q—p>1, the curve 1 — x = 0 with exponent q — p.

The value ¢ = —cy is another critical remarkable value of H. The associated
curve is y = 0, with exponent 2q.

(V.5) with b =0. We have
%

H<x7y) = 1_1_2'

The value ¢ = —co s a critical remarkable value of H. The associated curve is
y =0, and it has exponent 2.

(V.6) with 6 =0. We have

r+1
H = — Q0.
(z,y) CEIE
The value ¢ = —cy —c; ' is a critical remarkable value of H. The associated curve

1sxF1=0, and it has exponent 2.

(V.8) withb=r/s,m =p/q€Q, ¢,s >0, 17 #0 and not m <b < —m. We
have

H(z,y) = (1— )" P (1+ z)" Py,
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Ifqr +ps > 1 orps—qr > 1, then c = —cy — ci " is a critical remarkable value
of H. The associated curves are 1 —x = 0, with exponent qr + ps, and 1 +x =0
with exponent ps — qr.

If —(qr +ps) > 1 or qr — ps > 1, then ¢ = —cy is another critical remarkable
value of H. The associated curves are y = 0, with exponent 2qs, 1 — x = 0 with
exponent —(qr + ps), and 1 + x = 0 with exponent qr — ps.

V.8) with b =0 and m = p/q € Q. We have
(

H(x,y) = (1 - 2%) 7y,

Ifp>1, then c = —cy — ¢ ' is a critical remarkable value of H. The associated
curve is 1 — x? = 0, with exponent p.
The value ¢ = —cy is another critical remarkable value of H. The associated

curve is y = 0, with exponent 2q.

(V.9) withm+1=p/qe Q. We have

(zF 1P
H(z,y) = )
) (¢ + (z £ L)py)
If ¢ > 1, then ¢ = —cy 1s a critical remarkable value of H. The associated curve
is ¢ + p(x £ 1)y = 0 with exponent q.
Ifp>1, then c = —cy — ¢;' is a critical remarkable value of H. The associated

curve 1s * F 1 =0, and it has exponent p.

(V.14) with byg = 4 and byg = byg = 0. We have

11—y
H(z,y) = p—

H has no critical remarkable values.

(V.15) with byg + 1 = p/q € Qt. We have

pleF1) —qlz£1 —2y))q
plzF1)+qlxz+1-2y)

o) = (o217

Ifp>1o0rq>1, thenc = —cy is a critical remarkable value of H. The associated
curves are v = 0 with exponent p and (¢ — p)x — 2qy = 0 with exponent q.

If ¢ > 1, then c = —cy — ¢! is a critical remarkable value of H. The associated
curve is (q + p)x — 2qy = 0, and it has exponent q.

(V.16) with \/boo = p/q € Qt. We have

1+2\’ (p—2qy 29
D+ 2qy
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The value ¢ = —cy s a critical remarkable value of H. The associated curves are
p—2qy = 0, with exponent 2q and, if p > 1, the curve 1 +x = 0 with exponent p.
The value ¢ = —cy—cy " is another critical remarkable value of H. The associated

curves are p + 2qy = 0, with exponent 2q and, if p > 1, the curve 1 — x = 0 with
exponent p.

(IL.3¢c). We have

—26 + 2022 + y?

H<37>y): T

H has no critical remarkable values.

(I1.3d). We have

2022 — 32

H(z,y) = "

H has no critical remarkable values.

(IL.5) with | = 0. We have

d+ 2ax + y?
2 Y

H —
(z,9) .
where the conditions of the subcases are to be applied.

The value ¢ = —cy — ¢; " is a critical remarkable value of H. The associated
curve 1s x = 0, and it has exponent 2.

(IL.8) with B = 1//1 —4byy = p/q € Q. We have

H(zx,y) = 2*((p — q)(boo + 2) + 2boopy)” " (0 + ) (boo + 0) + 2boopy) " *
We distinguish three cases in order to compute the critical remarkable values:

(p > q) The value ¢ = —cy is a critical remarkable value of H. The associated
curves are x = 0, with exponent 2q and, in the case p — q > 1, the curve
(p — q)(boo + 0z) + 2bgopy = 0 with exponent p — q.
The value ¢ = —cy — ¢;' is another critical remarkable value of H. The
associated curve is (p + q)(boo + 0x) + 2bgopy = 0, with exponent q + p.

(p < —q) The value ¢ = —cy is a critical remarkable value of H. The associated
curves are x = 0, with exponent 2q and, in the case —(q+p) > 1, the curve
(p+ q)(boo + dz) + 2boopy = 0 with exponent —(q + p).
The value ¢ = —cy — ¢;' is another critical remarkable value of H. The
associated curve is (p — q)(boo + 0x) + 2bgopy = 0, with exponent q — p.
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(P <) Ifqg+p>1orqg—p>1, then c = —cy — ¢ is a critical remarkable
value of H. The associated curves are (p + q)(boo + 0x) + 2bgopy = 0, with
exponent q + p, and (p — q)(boo + 0x) + 2bgopy = 0 with exponent q — p.
The value ¢ = —cy 1s another critical remarkable value of H. The associated
curve 1s x = 0, with exponent 2q.

(I1.9) with 2n = p/q € Q. Writing V(z,y) = xf(x,y), where f(x,y) =
o+ 20nx/(2n — 1) + bynz?/(n — 1) + y?, we have

H(z,y) = 2" f(z,y)".

Ifp>1, then c = —cy — ¢;' is a critical remarkable value of H. The associated
curve 1s x = 0, with exponent p.
If ¢ > 1, then ¢ = —c5 is another critical remarkable value of H. The associated

curve is f(x,y) =0, with exponent q.

(I1.10) with b =0, n =r/s € Q*. We have

H(x,y) = 2 (ds + ry)".

The value ¢ = —cy —c; ' is a critical remarkable value of H. The associated curve
1s x =0, and it has exponent 2r.
If s > 1, then ¢ = —cy 1s a critical remarkable value of H. The associated curve

is ds +ry* = 0, and it has exponent s.

(I1.10) with b/v/b* —4dn = p/q € Q\ {0} andn = —r/s € Q, ¢,s € N, such

that either p* > ¢ orr < 0 and p*> < ¢*>. We have

r —P)s tp)s
H(z,y) = " (bs(p — q) — 2pry) " (bs(p + q) — 2pry) """
We distinguish five cases in order to compute the critical remarkable values:

(r>0,p>¢q) The value c = —cy is a critical remarkable value of H. The asso-
ciated curves are x = 0, with exponent 2qr and, in the case (¢ + p)s > 1,
the curve fi(x,y) =0 with exponent (q + p)s.
If (p — q)s > 1, then ¢ = —cy — ;" is another critical remarkable value of
H. The associated curve is fo(x,y) = 0, with exponent (p — q)s.

(r>0,p<—q) The value ¢ = —cy is a critical remarkable value of H. The
associated curves are x = 0, with exponent 2qr and, in the case (q—p)s > 1,
the curve fo(x,y) = 0 with exponent (¢ — p)s.
If —(g+p)s > 1, then c = —cy — ¢, ' is another critical remarkable value of
H. The associated curve is fi(x,y) =0, with exponent —(q + p)s.
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(r<0,p>¢q) The value c = —cy — cit is a critical remarkable value of H. The
associated curves are x = 0, with exponent —2qr and, in the case (p—q)s >
1, the curve fy(x,y) = 0 with exponent (p — q)s.
If (q+p)s > 1, then ¢ = —co is another critical remarkable value of H. The
associated curve is fi(x,y) = 0, with exponent (q + p)s.

(r <0,p<—q) The value ¢ = —cy — ¢;* is a critical remarkable value of H.
The associated curves are x = 0, with exponent —2qr and, in the case
—(q+p)s > 1, the curve fi(z,y) = 0 with exponent —(q + p)s.

If (¢—p)s > 1, then ¢ = —cy is another critical remarkable value of H. The
associated curve is fo(x,y) = 0, with exponent (¢ — p)s.

(r <0,p* < ¢*) Thevalue c = —cy —cfl is a critical remarkable value of H. The
associated curve 1s x = 0, with exponent —2qr.
If (g+p)s>1or(q—p)s>1, then ¢ = —cy is another critical remarkable
value of H. The associated curves are fi(x,y) = 0, with exponent (q + p)s
and fy(x,y) = 0 with exponent (¢ — p)s.

(IL11) with 1/4/1 — 4by(n — 1) = p/q € Q\{0} andn = —r/s € Q, ¢,s € N,
such that p* > ¢*. Writing V(z,y) = xf1(x,y) f2(z,y), where

filz,y) = (p+q)s(0(r +s) +rz) = 2pr(r + s)y,
fo(z,y) = (p — q)s(d(r + s) +rz) — 2pr(r + s)y,

we have

H<x> y) = qurfl (l‘, y)(q+p)3f2 (:Ca y>(qu)s'

The computations of the critical remarkable values are exactly the same as in case
(11.10) above.
(I1.12). Writing V(z,y) = fi(z,y) fo(z,y), where
filz,y) = 1502 — 362° + 602y — 25y,
fo(z,y) = 18752 — 13502% + 2162° + 11252y — 5402y + 4502y — 1251,

we have
fl (:Ea y)3
H(z,y) = —F—=.
f2 (.17, y>2
The value ¢ = —co s a critical remarkable value of H. The associated curve is
fi(z,y) =0, and it has exponent 3.
The value ¢ = —cy—cy " is another critical remarkable value of H. The associated

curve is fo(x,y) = 0, and it has exponent 2.
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(IIl3) Wmtzng V(ﬂ?,y) = .fl(x?y)fZ(xay)fS(x>y>; where

fi(z,y) = 62 — by — 5,
fo(z,y) = 3622 — 15x(dy +7) +25(y + 1)(y — 2),
fa(z,y) = 3627 — 302 (2y + 5) + 25(y — 2),

we have
H(I y) — f2($7y)2 .
’ fl(x7y>2f3<x7y)
The value ¢ = —co is a critical remarkable value of H. The associated curve is
fo(z,y) =0, and it has exponent 2.
The value ¢ = —cy —cy* is another critical remarkable value of H. The associated

curve is fi(x,y) =0, and it has exponent 2.
(I1.14) with 6 = 1, 14 4bgo > 0, boo # 0. Writing V(z,y) = z f1(z,y) fo(z,y),
where
fi(z,y) =boo — (1 +z —y),
fo(z,y) = boo — (z —y)(1 + 2 —y),

we have
2
x f2<£L', y)
H(z,y) = ———--.

fl (.%’, y)2
The value ¢ = —cy—c; ' is a critical remarkable value of H. The associated curve
1s x = 0, with exponent 2.
The value ¢ = —cy is another critical remarkable value of H. The associated

curve is fi(x,y), with exponent 2.

(IL.14) with 6 = 0. Writing V(x,y) = xfi(z,y) f2(x,y), where

filz,y) = +1 —z(x —y),
folz,y) = 1 — (x —y)?,

we have
2* fa(z, y)
H(z,y) = ———2".
fl (ZL‘, y)2
The value ¢ = —cy —c; ' is a critical remarkable value of H. The associated curve
1s x = 0, with exponent 2.
The value ¢ = —co is another critical remarkable value of H. The associated

curve is fi(x,y), with exponent 2.
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(IL.15) with 1 — 8bgy > 0 and 1/+/1 — 8byy = p/q € Q\ {0,1}, ¢ > 0. Writing
V(l’,y) = xfl(xvy)fé(xay): where

filx,y) = (p+ q)(boo + 52*) + 4bgopy,
fa(z,y) = (p — q)(boo + 53:2) + 4bgopy,

we have

H(ZL‘7 y) = x_4qf1 (23, y)q-l-pr(x’ y)q—p‘

We distinguish three cases in order to compute the critical remarkable values:

(p > q) The value ¢ = —cy is a critical remarkable value of H. The associated
curve is fi(x,y) = 0 with exponent ¢ +p > 1.
The value ¢ = —cy — ¢;' is another critical remarkable value of H. The

associated curves are x = 0, with exponent 4q and, if p —q > 1, the curve
fo(x,y) = 0, with exponent p — q.

(p < —q) The value ¢ = —cy is a critical remarkable value of H. The associated
curve is fa(x,y) =0, with exponent g — p > 1.
The value ¢ = —cy — ¢;' is another critical remarkable value of H. The

associated curves are x = 0, with exponent 4q and, if —(q + p) > 1, the
curve fi(x,y) =0, with exponent —(q + p).

(P*<q¢®) Ifq+p>1o0rq—p>1, then c = —cy is a critical remarkable value
of H. The associated curves are fi(z,y) = 0, with exponent ¢ + p and
fa(z,y) = 0 with exponent ¢ — p.

The value ¢ = —cy — ¢;' is another critical remarkable value of H. The
associated curve 1s x = 0, with exponent 4q.

(I1.16) with p =0 and ¢ > 3. We have
(20¢* — x((g — D) — 2qy))*""
20¢° = (g — Dz(z — 2qy)

The value ¢ = —cy s a critical remarkable value of H. The associated curve is
26¢> — x((q — 1)z — 2qy) = 0, with exponent q > 3.

(I.5) withn =p/q € Q\ [-1,0]. Writing V(x,y) = fi(x,y)f2(x,y), where

filz,y) = (n* = 1)+ byn(n + Dz +n(n —1)(2n + 1)y,
folz,y) = (n—=1)2n+ 1)(1 + (n+ Day) + ((n — 1) + byynz)(n + 1)z,

H(z,y) =

we have

H(z,y) = filz,y)"" folz,y) 7.

We distinguish two cases in order to compute the critical remarkable values:
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(p > 0) The value ¢ = —cq is a critical remarkable value of H. The associated
curve is fi(x,y) =0, with exponent p + q.
If p > 1, then ¢ = —cy — ¢;' is a critical remarkable value of H. The

associated curve is fo(x,y) = 0, with exponent p.

(p<—q) If —(p+q) > 1, then c = —cy — c; " is a critical remarkable value of
H. The associated curve is fi(z,y) = 0, with exponent —(p + q).
The value ¢ = —cy is a critical remarkable value of H. The associated curve
is fo(z,y) = 0, with exponent —p.

(1.6) with byy < 1/2 and 1/v/1—2byy = p/q € Q. Writing V(z,y) =
filz,y) fa(z,y) f3(2, y), where
fi(z,y) = 2boo(1 — 2z) + (y + 2)%,
fa(@,y) = /1= 2boo + (y + 1),
f3(z,y) = /1 —2bog — (y + 1),
we have
H(z,y) = fi(z,y) " fala, )" fs(z, y) "

We distinguish three cases in order to compute the critical remarkable values:

(p > q) The value ¢ = —cq is a critical remarkable value of H. The associated
curve is fo(x,y) = 0 with exponent ¢ +p > 1.
The value ¢ = —cy — ¢ ' is another critical remarkable value of H. The

associated curves are fi(x,y) = 0, with exponent q and, if p—q > 1, the
curve f3(x,y) = 0, with exponent p — q.

(p < —q) The value ¢ = —cy is a critical remarkable value of H. The associated
curve is f3(x,y) =0, with exponent g — p > 1.
The value ¢ = —cy — ¢;' is another critical remarkable value of H. The

associated curves are fi(z,y) = 0, with exponent q and, if —(q¢+p) > 1, the
curve fo(x,y) = 0, with exponent —(q + p).

(P <q¢®) Ifg+p>1o0rq—p>1, then c = —cy is a critical remarkable value
of H. The associated curves are fo(z,y) = 0, with exponent ¢ + p and
fs(x,y) = 0 with exponent q — p.

The value ¢ = —cy — ¢ ' is another critical remarkable value of H. The
associated curve is fi(x,y) = 0, with exponent q.

(L7) with 6 = 1, boy < =2, V/—boo — v/2//~beo + V2 = p/g € QN (~1,1)\
{0} WT’Lthg V(Z’,y) = fl(aj?y)f2($7y)f3(xay)f4(x7y); where
fro(z,y) = 2°%q £ /@2 — p2(V2z — y),
faa(z,y) = 22/ p £ /a2 — p2(V2z +y),
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we have

men=(gm) (o)

We distinguish two cases in order to compute the critical remarkable values:

(p > 0) The value ¢ = —cq is a critical remarkable value of H. The associated
curves are f3(x,y) = 0, with exponent q and, if p > 1, the curve fi(x,y) =0
with exponent p.
The value ¢ = —cy — ¢;' is another critical remarkable value of H. The
associated curves are fy(x,y) = 0, with exponent q and, if p > 1, the curve
fo(z,y) = 0 with exponent p.

(p <0) The value ¢ = —cq is a critical remarkable value of H. The associated
curves are f3(x,y) = 0, with exponent q and, if —p > 1, the curve fo(x,y) =
0 with exponent —p.
The value ¢ = —cy — ¢;' is another critical remarkable value of H. The
associated curves are fy(x,y) = 0, with exponent q and, if —p > 1, the
curve fi(z,y) = 0 with exponent —p.

(1.8). Writing V(x,y) = fi(x,y)fa(z,y), where

filz,y) =36+ 47,
fo(z,y) = 96z — 96y — 2y°,

we have
fl (.I, y)3
H(z,y) = —F—==.
f2 (QJ, y)2
The value ¢ = —cy is a critical remarkable value of H. The associated curve is
fi(z,y) =0, with exponent 3.
The value c = —cy—c; ' is another critical remarkable value of H. The associated

curve is fo(x,y) = 0, with exponent 2.

(Ig) with bOO > 3/4 and 9/\/9—12b00 — p/q c Q Wm’tz’ng V(l‘,y) _
fi(z,y) fo(x,y) f3(z,y), where

fi(z,y) = 3(p + 3q) + 2py,
foz,y) = 3(p — 3q) + 2py,
fa(,y) = 108(13p* — 45¢°)p*—
243(p” — ¢*)3(p* — 9¢°)x — 4p”y) + 32p" (9 + y)y*,

we have

H(z,y) = fi(z,y)* " fo2,y)* P f3(z, y) "

We distinguish three cases in order to compute the critical remarkable values:
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(p > 3q) The value ¢ = —cy is a critical remarkable value of H. The associated
curve is fi(x,y) = 0 with exponent 3¢ +p > 1.

The value ¢ = —cy — c;' is another critical remarkable value of H. The

associated curves are fs(x,y) = 0, with exponent 2q and, if p—3q > 1, the

curve fo(x,y) = 0, with exponent p — 3q.

(p < =3q) The value ¢ = —cy is a critical remarkable value of H. The associated

curve is fo(x,y) = 0, with exponent 3¢ —p > 1.

The value ¢ = —cy — ¢;' is another critical remarkable value of H. The
associated curves are f3(x,y) = 0, with exponent 2q and, if —(3q + p) > 1,

the curve fi(x,y) =0, with exponent —(3q + p).

(P> <9¢?) If 3¢ —p > 1 o0r3q+p > 1, then c = —cy is a critical remarkable
value of H. The associated curves are fi(x,y) = 0, with exponent 3q + p

and fy(x,y) = 0 with exponent 3q — p.

The value ¢ = —cy — ¢ ' is another critical remarkable value of H. The

associated curve is f3(x,y) = 0, with exponent 2q.

(I.10). Writing V(z,y) = fi(x,y) f2(x,y), where

fl(xu y) - 3b01 - 55(:2 + 10%
fo(z,y) = 5+ 3borz — 52° + 15y,

The associated curve s

we have
fl (ZE, y>3
H(x,y) =+—F7—""%
S A
The value ¢ = —cy s a critical remarkable value of H.
fi(z,y) = 0, with exponent 3.
The value c = —cy—c; ' is another critical remarkable value of H. The associated

curve s fo(x,y) = 0, with exponent 2.

(L11). Writing V(z,y) = fi(z,y) fo(z,y), where

filz,y) =1—0x* + day,
fQ(Iay) = 5$3 - 3y7

we have
fl (.Z‘, y>3
H(z,y) = —F—=.
( ) f2 (‘7:7 y>4
The value ¢ = —co is a critical remarkable value of H.

fi(z,y) =0, with exponent 3.

The associated curve s
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The value c = —cy—c; ' is another critical remarkable value of H. The associated
curve s fo(x,y) = 0, with exponent 4.

(L.12). Writing V(z,y) = fi(z,y) fo(z,y), where

fi(z,y) = 1531250 + 525000822 + 5062521 + 2450002y —
189000523y — 6860008y? + 26460022y — 1646406zy> + 38416y,
fa(z,y) = 26250z + 33756x> + 367500y — 945027y + 88208xy? — 2744y°,

we have

_ f1($7y)3
f2<-17,y>4.

The computations of the critical remarkable values are exactly the same as in case
(1.11) above.

(I.18). Let
filz,y) = 6(p(d2® +2) = 1)(1 = 2p)* +20(2p — V)xy — 4(p — 1)y°,
fo(z,y) = (2p — 1)(p2® + 1) + 2pxy.

Then, we have

H(z,y)

p
H(I,y) — fl(x7y> )
f2 (‘7;7 y)
The value ¢ = —co s a critical remarkable value of H. The associated curve is

fi(z,y) = 0, with exponent p > 2.

(I1.19) with p = 0. Let
filz,y) = (g = 2)(q + d27) — 2quy,
foz,y) = 6(q — 2)*(q — 2 — 62°) + 2¢*(q — 2)dzy — 4¢*(q — 1)y>.
We have

fa) = 2L

The value ¢ = —co s a critical remarkable value of H. The associated curve is
fi(z,y) = 0, with exponent q¢ > 2.

(1.20). Writing V(x,y) = fi(x,y) fo(z,y) f3(x,y), where

filz,y) = ox — 6y,
fo(z,y) = 54 + 302%(3 — 2xy) + 6%a?,
fa(z,y) =3+ 0a® — bay,
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we have
_ fl(xvy)2f2('r7y)
H(I, y) - 3 '
f3 (.l’, y)
The value ¢ = —co s a critical remarkable value of H. The associated curve is
fi(z,y) = 0, with exponent 2.
The value ¢ = —cy—cy " is another critical remarkable value of H. The associated

curve is f3(x,y) = 0, with ezponent 3.

Proposition 3.1.5. The Darbouz first integrals which rise from polynomial in-
verse integrating factors of (x) quadratic systems are:

(IX.2). We have

H(z,y) =V(z,y)e ™.
(IX.3). We have

H(z,y) = V(x,y)e 0%/,

(IX.4) with § = 1. We have

H(z,y) = (ﬁ;’?) =3

(IX.4) with § = —1. We have

1+2
H(z,y) = el e”.
1—2y
(VIIL.2). We have

H(I,y) — 1'26 e*y+m2.

(VIIL.3) with 6 = 1. We have

2

y—x

H(z,y)=xe = .
(VIIL.4) with b & Q. Writing V(x,y) = xf(z,y), where
flay)=(—2y+a7
we have

H(z,y) =a""f(z,y).
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(VIIL.4) with b= 2. We have
H(z,y) =ze 2.
(VIIL5). We have
H(z,y) =V(z,y)e ™.
(VIIL.6). We have
H(z,y) =2 ye ™.
(VIIL.7) with 6 = 1. We have

H(z,y) = (%)a

(VIIL.7) with 6 = —1. We have

r+(1-2y) _,
H(z,y) :me

(VIIL.8) with byy > 0. We have

H(z,y) = (—booz il QyZ:) o,
Vbooxr — 241
(VIIL.8) with by < 0 and boy # —p*/q* € Q. We have
H(z,y) = YOI T2 g
vV —b()()ZL‘ — 2y

(VIIL.8) with byy = 0. We have
H(zx,y) =zev.

(IV.2). We have

_ 6(1‘272y)
2

H(x,y) = V(r,y)e
(IV.3a), (IV.3b), (IV.3c). We have
H(z,y) =V(x,y)e >,

(IV.3d) with D > 0. We have

arctan 2yl

H(z,y) =e e VD 8 (2y+1)*+4D).
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(IV.3d) with D <0, D # —1/4. We have

2v/—D+1 2v/—D-1
H(z,y) = e *V=De (1 +2v—-D + 2y> <1 —2v-D+ 2y>
(IV.3d) with D = 0. We have
H(z,y) = e (2y + 1)
(IV.3e) with D > 0. We have
arct: 2z+4y+1
L 7dl‘Ctdn<4\/§<2z+1)) ) )
H(z,y) =e e 2vD (16D(2z + 1)* + (22 + 4y + 1)?) .

(IV.3e) with D < 0, D # —1/16. We have
H(x,y) = e P
(4V/=D +1)(2z + 1) + 4y) V=P ((4y/=D — 1)(2z + 1) — 4y)*V-P1,
(IV.3e) with D = 0. We have

7412 —8yx+2x+2

H(z,y) =e  zrwii (20 +4y+1)%
(III.2a). We have
H(z,y) = V(x,y)e ™.

(III.2¢c). We have

bio —242

H(z,y) = V(x,y) e’ o

(II1.2d) with m ¢ Q. Writing V(x,y) = fi(z,y) f2(x,y), where

fi(z,y) = big + 2y — (m — 2)2?,
fZ(xvy) = blO + my,

we have
H(l‘,y) = fl(xvy)_me(x>y)2‘

(II1.6). We have

2+2a00 +a10+a101+21y

H(:L‘, y) = V(:L‘7 y) e 24a19+2z—2y

(IIL.7). We have

H(z,y) =ye "y,
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(VIL.2). We have
H(z,y)=V(x,y)e ™.

(VIL.3) with m +1 ¢ Q. We have
H(z,y) =V(z,y)a""

(VIL.4) with 6 = 1. We have
H(zx,y) =V (x,y)e 20tew)/z

(VIL5) with 6 = £1. We have

__olt2zy

H(z,y) =V(z,y)e 326522

(VIL.6). We have
H(x,y) =x Mye'/®.

(VILT). We have
H(x,y) =V(z,y)z *e/?,

(VIL.9) with byy = —1. We have
H(z,y) = xe 2w/ (@=2y)

(VIL9) with /by + 1 & Q. We have

Hiz,y) = o/t (L= Vo ¥ D =2

(VIL.10) with byy > 0. We have

Vboo + 2y VB /2
Vboo — 2y

(VIL.10) with bgy < 0. We have

H(z,y) = ——boo * 2yZ: e~V boo/z,
V —boo - 2yl

(VI.2). We have

H(x,y) =

1 . —boot
H(z,y) = (14 2%)" ( +m) e,

1—1x

(14 by + 1)z — 2y
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(VL3). We have

1+ x bi
H(x,y)=y2< ) :

1—x

(VI.4) with b # 0. We have

2 . bi
Y 14z
) = (T )

1422 \1—ix

(VL5) with b # 0. We have

H(z,y) =y*(1+2*)™™ (1 iL Z)bl :
(VL5) with b= 0 and m ¢ Q. We have
H(z,y) = y*(1+ %)™,
(VL7). We have

(1 +?:f1/')(_k+ib)/2
H(z,y) =V(z,y) (1 — iz)(ktd)/2

(VL.9) with byg > 0. We have

H —
(z,y) o 12

(VL.9) with by < 0, bog # —4. We have

1—x

H(z,y) = T

vV —boo + 2y2
(VI.9) with boy = 0. We have

(V.2). We have
H(z,y) = (1 —2)""7(1+2)" %%,

where 0 =byy if a # 0 and 0 =0 if a = 0.

Vboo — 2y <1—|—ix) booi/2

V—boo — 2yi (1+m)“700/2
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(V.3) with b ¢ Q. We have

H(z,y) = Gj:x)by?

X

(V.4). We have

H(x,y) = (1 £ x)b0e~Fotethy)/(@F1)

).

(
(V.5) with b & Q. We have
H(z,y) = (1—2) "7 (1+2) 2
)

(V.6) with 6 = 1. We have

z, y) ( N 1)56(3672xy72(25x+y))/(2(x71)2).

(V.7). We have

H(z,y) = (x4 1)b0t0=1 (g — 1)1boo+3052(1=boo—=0=2y)/(x—1)

(

)

(

(V.8) with b € Q or m ¢ Q. We have
H(z,y) = (1 —2) ™1 4+ z)""™m2

(V.9) with m ¢ Q. We have

H(z,y)=@@F1) " 1+ (m+1)(z+1)y).

(V.10)—(V.13). Let A\=—(b+m)/2 and u = (b —m)/2. We have

H(z,y) = (1—2)* (1 +a2)'y = 2718((1 - 2) /2, ),

where
S = [ P
0

We note that, in some cases, a rational first integral can be obtained.
(V.15) with byg + 1 > 0 and byy ¢ Q. We have

Vg1 Voo +1(z F1) — (x:l:l—?y)
Vo +1(zF1)+a+1-2y
(V.15) with byy +1 < 0. We have

- ot (Vb — L(e F 1) —i(z+1—2y)\’
H(z,y) = (z £ 1)V (m(xqcl)w(xil—%))'

H(z,y)=(x£1)
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<V15) w’[;th b20 fd _1 We ha:'Ue
H(z,y) = (v £ 1)@72(9”3F1)/(zi172y)'

(V.16) with byg > 0, v/boo & QF. We have

Voo — 2y <1+x)\/%/2
Vboo +2y \1 -2 '

(V.16) with byy < 0. We have

H(x,y)

H(z,y) = (1 - 9”) e (w—_boo T zzy)
Y7 = 1+x \/—b00—2iy ‘
(V.16) with byy = 0. We have

H(z,y) = 672/141—’__%’

1—a
(IL.2a). We have
H(Qf, y> — x25621’+b20x2—y2‘
(I1.2b). We have
H(z,y) = 2%’V
(I1.3a). We have
H(x,y) = wel720+202=y")/(20),
(IL.3b). We have
H(z,y) = pel2rr=v)/2s),
(IL.4) with 6 = 1. We have
H(z,y) = x(boo +y)"™e" .
(I1.5a) with by # 0. We have
H,) = e 0205,
IL.5b) with o # 0. We have
(

H(z,y) = a7 @o+y9)/(2a%)
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(IL.5¢) with o # 0. We have
Hiz,y) = a7e- G+

(IL.5d). We have

H(z,y) = 2o v?/(22%)
(I1.6). We have

H(x,y) = 2%~ (byow + 5y)5ee " 1T00/7,
(I1.7). We have

(IL.8) with B =1/y/1 —4byo € R\ Q. We have

V(iL‘, y) < V 1-— 4boo(d + (S.T) -+ (bog + ox + 2b00y) )B
1‘3 vV 1— 4b00(b00 + 51’) — (b()() + (SZL‘ + ngoy)

(IL.8) with 1 — 4byy < 0. We have

Bi
H(z,y) = V(z,y) [ /—(1 —4bgo)(boo + 0x) + i(boo + 0 + 2b00y)
7 v’ V/ — (1 = 4bgo) (boo + 0) — (boo + dz + 2booy) ’

H(z,y) =

where B = 1/y/4by — 1.
(11.8) with bog = 1/4. Writing V(z,y) = xf(x,y)?, where f(z,y) =1+ 40z +
2y, we have

Hiay) = 120 vasoy s

(I1.9) with 2n ¢ Q. Writing V(z,y) = zf(z,y), where f(z,y) = o/n +
20x/(2n — 1) + byz?/(n — 1) + y*, we have

H(x,y) = 2" f(x,y).
(I1.10) with 4dn — b* > 0. We have
Vadn —0? +i(b+ Qny))
Vadn —b? —i(b+ 2ny)
(I1.10) with 4dn —b* < 0 and n € Q or b//b*> — 4dn € Q. We have

Vb2 — 4dn + (b + 2ny) > PV
Vb2 — 4dn — (b + 2ny) .

bi/v/Adn—b2

H(z,y) = 72 (d + by + nyQ) (

H(z,y) = 2~ 2"(d + by + ny?) <
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(I1.10) with d = b*/(4n) # 0. We have
H(z,y) = 27"(b + 2ny)e? O+2m),
(IL.11) with L = 4byy(n—1)—1 > 0. Writing V(z,y) = xf(x,y)f(z,y), where
flz,y) = VL(6(n — 1) +nz) +i(6(n — 1) + nz + 2n(n — 1)y),
we have
H(z,y) = 272" f () f )V

(IL11) with L = 1 — 4by(n — 1) > 0. Writing V(z,y) = xfi(z,y)fa(z, y),
where
(0(n —1) +nx)+ (6(n— 1)+ nx + 2n(n — 1)y),
(0(n—1)+nz)— (0(n—1) +nz+2n(n — 1)y),

we have
H(z,y) = 272" f1(z,y) TV o, y) YV
(I1.11) with byy = 1/(4(n —1)). Writing V(z,y) = xf(x,y)?, where
f(z,y) =6(n— 1) + nx + 2n(n — 1)y,
we have
H(z,y) = 27" f(x,y) @ DHna)/f@y),

(I.14) with 6 = 1, 1 + 4bgy < 0. We have

w(—boo + o —y +2% — 2wy +yP) e
(boo — & — 2% + xy)?

H(z,y) =

(I1.14) with 6 =1, boy = 0. We have

H =
(I1.14) with 6 =1, bog = —1/4. We have

(42? —dyx + 4o +1) __
e 2x—2y+1 .
x(2x — 2y + 1)

H(z,y) =
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(IL.15) with 1 — 8byy > 0 and 1//T—8byy € R\ Q. Writing V(x,y) =
xfi(z,y) fo(z,y), where

fi(z,y) = (14 /1 — 8bgo)(boo + 62%) + 4bgoy,
f2($, y) = (1 — \/ 1 — 8600)(1)00 + (5I2) + 4b00y,
we have

H(w,y) = o fi(w, y) Y00 fy (, ) VIS0,
(I1.15) with 1 — 8bgy < 0. Writing V(x,y) = z fi(z,y) fo(z,y), where

Fi(@,y) = /8boo — L(boo + 622) + i(boo + 02 + 4bgoy),
fo(x, ) = v/8boo — 1(bgo + 62%) — i(bgo + 622 + 4bgoy),
we have
H(a,y) = o™ fia,y) VS0 fy ) V0,
(11.15) with boo = 1/8. Writing V (z,y) = zf(x,y)?, where
f(x,y) =1+ 852* + 4y,

we have

x’ 148622

f(z,y)
(I.2). We have

H(z,y) = y? e 220+bua—2y)
(L.3). We have
H(z,y) =V(x,y) M=V,
(I.5) with n & Q. Writing V(x,y) = fi(z,y) fo(x,y), where

filz,y) =n* —14+byun(n+ Dz +n(n —1)(2n + 1)y,
fo(z,y) =(n—=1)2n+ 1)1+ (n+ Day) + (n — 1 + byynx)(n + 1)z,

we have
H(:L’, y) = f1($, y)inilfQ(ly y)n
(1.6) with bog > 1/2. Writing V(x,y) = fi(x,y) f2(z,y) fo(z,y), where

fl(.’E, y) = 2b00(1 — 2.17) + (2 + y)2,
fg(x,y) = 2b00—1+z(1+y),
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we have
f2 (x, y>1-|—i/\/2()00—1f3<1.7 y)l—i/\/2b00—1
fl (.17, y) ‘

(L.6) with byg < 1/2, by # 0 and 1/y/1 —2byg € R\ Q. Writing V(z,y) =
fi(z,y) fo(x,y) f3(x,y), where

H(z,y) =

filz,y) = 20o(1 — 22) + (24 y)?,
fa(z,y) = /1 —=2byo + (1 +y),

fg(ﬂ?,y) =+/1- 2b00 — (1 + y),

we have

f2 (.27, y)1+1/mf3 (.27, y>1_l/m
f1<x>y) .

(1.6) with by = 1/2. Writing V(x,y) = fi(x,y)?f2(z,y), where

H(z,y) =

fl(xay> :5—2$+4y+y2,
fQ(may) = 1+y7

we have

H(x,y) = —;;1((;:’5))2 e 2/ (@),

(1.6) with by = 0. We have

H(r.y) = oo

(1.7) with neither 6 = 1, byg < —v/2 and \/—boo — \/5/\/—1700 ++v2 € Q, nor
0 =1 and by = 2. Writing V(z,y) = fi(z,y) f2(z,y) fs(2,y) falz,y), where

f1,2<l’,y) = \/5 —bgo — \/%:t (\/%ZL’ —+ y),
faal@,y) = V2\/ —boo + V20 £ (V26z — y),

we have

H(z,y) = (f1(l’ay)) ooty (;ig:z;) —boo—\/ﬁ'
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(I.7) with 6 = 1 and byy = V2. Writing V (z,v)
where
filz,y) = Vox —y,
fo(z,y) = 27" +i(V2x +y),
we have
fg(l',y)
(I.7) with § = 1 and byy = —/2. Writing V (z, y)
where
filz,y) =2z +y,
falw,y) =29/ + (V2 — ),
fa(x,y) = 274 = (V2z — y),

we have

f2<x7 y) 29/4
H — 22\ J) /fi(z,y)
9= 5w ©

= filz,y)? folz,y) fo(z,y),

= f1<l’,y)2f2($,y)f3($,y);

(1.9) with byy < 3/4 and 1/4/9 — 12byy € R\ Q. Writing

V(x,y) = f1($,y>f2($,y)f3(l’,y),

where

fi(z,y) =342y + /9 — 12bg,
fa(z,y) = 3+ 2y — /9 — 12bqo,

f3(z,y) = 9(6 + 5boo) — 9(6 + boo) (boox — y) + 2(9 + y)y?,

we have

fi(z, y)3+9/mf2(x, y)3—9/m

H(iL’,y) = fg(x,y)2

(1.9) with by = 0. Writing V(z,y) = yf(x,y), where f(x,y) = (3 +y)*, we

have

H(m,y) = f(x’y) 6_3(3(11_6I)+15y+2y2)/(2f(x,y)3)
(]

(IQ) with > 3/4 WTZthg V(l‘,y) = fl(xay>f2(x7y)f3<x7y); where

fl(ZE,y> =3 + 2y —+ ’i\/ 12b00 — 9,
fo(z,y) = 342y — i3/ 12bg — 9,

fa(z,y) = 9(6 + 5bog) — 9(6 + bgo) (boox — y) + 2(9 + y)y?,
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we have

i, y)3=9VIB00=9 f, () 3+9i/V/ 12000 =9
f3<l’, y)2 .
(1.9) with byg = 3/4. Writing V(x,y) = fi(x,y)? f2(z,y), where

filz,y) =3+ 2y,
fo(x,y) = 1404 — 7292 + 972y + 288y? + 323,

H(x,y) =

we have

Hiay) = L2 oo,

We remark that all the first integral provided in the proposition above are
real, due to equality (1.9).

3.2 Phase portraits

In this section we give the phase portraits of the quadratic systems having a
polynomial inverse integrating factor. Asin Chapter 2, we follow the classification
into the normal forms of Proposition 2.1.2.

First we introduce the basic definitions, notations and results that we need for
the analysis of the local phase portraits of the finite and infinite singular points
of the quadratic systems and then we define the Poincaré compactification. The
results of Sections 3.2.1 and 3.2.3 can be found in [1]. The results of Section 3.2.2
can be found in [12].

3.2.1 Singular points

Consider an analytic planar system & = P(z,y), ¥ = Q(z,y) and its associated
vector field X = (P, Q). A point p € R? is a singular point of X if P(p) = Q(p) =
0. We define, for a singular point p € R?, A = P,(p)Q,(p) — P,(p)Q.(p) € R and
T = P,(p) + Q,(p) € R. They correspond, respectively, to the determinant and
the trace of the Jacobian matrix DX (p).

The singular point p is non—degenerated if A # 0 and it is degenerated other-
wise. Then, p is an isolated singular point. Moreover, p is a saddleif A < 0, a node
if T2 > 4A > 0 (stableif T < 0, unstable if T > 0), a focus if 4A > T? > 0 (stable
if T < 0, unstable if T' > 0), and either a weak focus or a centerif T =0 < A (for
more details, see [1]).

The singular point p is called hyperbolic if the two eigenvalues of the Jacobian
matrix DX (p) have nonzero real part. So, the hyperbolic singular points are the
non—degenerate ones except the weak foci and the centers.
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A degenerate singular point p such that T' # 0 is called semi-hyperbolic, and
p is isolated in the set of all singular points. Next we summarize the results on
semi-hyperbolic singular points, see Theorem 65 of [1].

Proposition 3.2.1. Let (0,0) be an isolated point of the vector field (F(x,y),
y+G(z,y)), where F' and G are analytic functions in a neighborhood of the origin
starting at least with quadratic terms in the variables x andy. Lety = g(x) be the
solution of the equation y+ G(x,y) = 0 in a neighborhood of (0,0). Assume that
the development of the function f(z) = F(z,g(x)) is of the form f(x) = px™+-- -,
where m > 2 and p # 0. When m is odd, then (0,0) is either an unstable node,
or a saddle depending if p > 0 or u < 0, respectively. If m is even, then (0,0)
1s a saddle—node, i.e. the singular point is formed by the union of two hyperbolic
sectors with one parabolic sector.

The singular points which are non—-degenerate or semi—hyperbolic are called
elementary.

When A = T = 0 but the Jacobian matrix at p is not the zero matrix and
p is isolated in the set of all singular points, we say that p is nilpotent. Next we
summarize some results on nilpotent singular points (see Theorems 66 and 67
and the simplified scheme of Section 22.3 of [1]).

Proposition 3.2.2. Let (0,0) be an isolated singular point of the vector field
(y + F(z,y), G(z,y)), where F and G are analytic functions in a neighborhood
of the origin starting at least with quadratic terms in the variables x and y. Let
y = f(x) be the solution of the equation y + F(x,y) = 0 in a neighborhood of
(0,0). Assume that the development of the function G(x, f(x)) is of the form
Kzt + -+ and ®(x) = (OF |0z + 0G/0y)(x, f(x)) = Lz* + -+, with K # 0,
k> 2 and X\ > 1. Then the following statements hold.

(1) If k is even and

(a) k> 2\+1, then the origin is a saddle-node.
(b) Kk <2X+1 or ® = 0,, then the origin is a cusp, i.e. a singular point
formed by the union of two hyperbolic sectors.
(2) If Kk is odd and K > 0, then the origin is a saddle.
(3) If Kk is odd, K <0 and
(a) X even, kK =2X+1 and L> +4K(A+1) > 0, or X even and k > 2\ +1,,
then the origin is a stable (unstable) node if L <0 (L >0).

(b) X odd, k=2 \+1 and L?> + 4AK(A+ 1) > 0, or X odd and k > 2\ + 1,
then the origin is an elliptic—saddle, i.e. a singular point formed by
the union of one hyperbolic sector and one elliptic sector.
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(c) k=2 +1and L> +4K(A+1) <0, or k < 2\ + 1, then the origin is
a focus or a center, and if ®(x) = 0 then the origin is a center.

Finally, if the Jacobian matrix at the singular point p is identically zero, and
p is isolated inside the set of all singular points, then we say that p is linearly
zero. The study of its local phase portrait needs a special treatment using the
directional blow—ups technique, see for more details [3]. But if a quadratic vector
field has a finite linearly zero singular point, then it is equivalent to a homogeneous
quadratic vector field doing if necessary a translation of the linearly zero singular
point to the origin, and the global phase portraits of the quadratic homogeneous
vector fields are well known, see for more details [51].

The definitions of hyperbolic, parabolic and elliptic sectors near a singular
point can be found in [1]. Roughly speaking, in a hyperbolic sector there are two
orbits one starting and the other ending at the singular point and all the other
orbits between them and in a neighborhood of the singular point approach to the
singular point and after this they go away. A sector such that all curves in a
sufficiently small neighborhood of the singular point tend to it as either ¢ — 400
or t — —oo is known as a parabolic sector. Finally, a sector containing loops to
the singular point, and moreover only nested loops, is known as an elliptic sector.

The number of elliptic sectors and the number of hyperbolic sectors in a
neighborhood of a singular point are denoted by e and h, respectively. The rest
of the sectors are parabolic. The (topological) index of a singular point p is
defined as

i(p) = +1. (32)

For a proof of the formula (3.2), see [1].

3.2.2 Separatrices and canonical regions

Consider the planar differential system

where P and ) are C" maps, » > 1 from an open subset U C R? to R. For
a differential system (3.3) the following three properties are well-known, see for
more details [47].

1. For all p € U there exists an open interval I, C R where the unique maximal
solution ¢, : I, — U of (3.3) such that ¢,(0) = p is defined.

2. If g=y,(t) and t € I, then I, = [, —t = {r —t : r € I,} and ¢,(s) =
p(t+s) for all s € 1,
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3. The set D = {(t,p) : p € U,t € I,} is open in R?* and the map ¢ : D — U
defined by ¢(t,p) = p,(t) is C".

The map ¢ : D — U is a local flow of class C" on U associated to system
(3.3). It verifies:

1. p(0,p) =pforallpeU.

2. (t,p(s,p)) = @(t+s,p) for all p € U and for all s and ¢ such that s,t+s €
L,

3. @p(—t) = @, (t) for all p € U such that t, —t € I,

We consider C"-local flows with » > 0 on R%. Of course, when » = 0 the flow
is only continuous. Two such flows, ¢ and ¢', are C*-equivalent, with k > 0,
if there exists a C* diffeomorphism which takes orbits of ¢ onto orbits of ¢/
preserving sense (but not necessarily the parametrization).

Let ¢ be a C"local flow with r > 0 on R%2. We say that ¢ is C¥—parallel if it
is Ck-equivalent to one of the following flows:

1. R? with the flow defined by 2’ =1, ¢/ = 0.
2. R?\ {0} with the flow defined (in polar coordinates) by v’ =0, §' = 1.
3. R?*\ {0} with the flow defined by ' =r, § = 0.

We call these flows as strip, annular and spiral, respectively.

Let p € R?2. We denote by v(p) the orbit of the flow ¢ through p, more
precisely v(p) = {pp(t) : t € I,}. The positive semiorbit of p is v (p) = {p,(t) :
t € I,,t > 0}. In a similar way we define the negative semiorbit v~ (p) of p.

We define the a-limit and the w-limit of p as (y*(p)) and let

a(p)=c (v (p) =7 (),  wlp)=cd((p) -7 (),

respectively, where cl denotes the closure of the set.

Let v(p) be an orbit of the flow ¢. A parallel neighborhood of the orbit v(p) is
an open neighborhood N of v(p) such that ¢ is C¥—equivalent in N to a parallel
flow for some k > 0.

We say that v(p) is a separatriz of ¢ if it is not contained in a parallel neigh-
borhood N satisfying the following two assumptions:

1. For any ¢ € N, a(q) = a(p) and w(q) = w(p).

2. cl(N)\ N consists of a(p), w(p) and exactly two orbits v(a), y(b) of ¢, with
aa) = a(p) = a(b) and w(a) = w(p) = w(b).
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We denote by Y the union of all separatrices of ¢. X is a closed invariant
subset of R2. A component of the complement of ¥ in R?, with the restricted
flow, is a canonical region of .

The following lemma can be found in [41].

Lemma 3.2.3. Every canonical region of a local flow ¢ on R? is C°-parallel.

3.2.3 The Poincaré compactification

Let X be a real planar polynomial vector field of degree n. The Poincaré compac-
tified vector field p(X) corresponding to X is an analytic vector field induced on Y2
as follows (see, for instance [35]). Let £2 = {y = (y1,92,y3) € R : ¢ + 92 + 42 =
1} (the Poincaré sphere) and T, %2 be the tangent plane to X2 at point y. Identify
R? with T{g,1)2?. Consider the central projection f : T(o01y%? — X2. This map
defines two copies of X on Y2, one in the northern hemisphere and the other in
the southern hemisphere. Denote by X’ the vector field Df o X defined on 2
except on its equator X' = {y € X% : y3 = 0}. Clearly X! is identified to the
infinity of R?. Usually, when we talk about the circle of the infinity of X we
simply talk about the infinity.

In order to extend X’ to a vector field on X2 (including ¥!) it is necessary that
X satisfies suitable conditions. If X is a real polynomial vector field of degree n,
then p(X) is the only analytic extension of y5~* X’ to X2. On X2\X! there are two
symmetric copies of X, and knowing the behavior of p(X) around X!, we know the
behavior of X in a neighborhood of the infinity. The Poincaré compactification
has the property that 3! is invariant under the flow of p(X). The projection of
the closed northern hemisphere of X2 on y3 = 0 under (y1,y2,y3) — (y1,92) is
called the Poincaré disc, and it is denoted by D?.

Two polynomial vector fields X and Y on R? are topologically equivalent if
there exists a homeomorphism on ¥.2 preserving the infinity X! carrying orbits of
the flow induced by p(X) into orbits of the flow induced by p(Y).

As Y22 is a differentiable manifold, for computing the expression for p(X), we
can consider the six local charts U; = {y € X% : y; > 0}, and V; = {y € 2* :
y; < 0}, i = 1,2,3. The diffeomorphisms F; : U; — R? and G; : V; — R? for
1 =1, 2,3 are the inverses of the central projections from the planes tangent at the
points (1,0,0), (-1,0,0), (0,1,0), (0,—1,0), (0,0, 1) and (0,0, —1), respectively. If
z = (u,v) is the value of F;(y) or G;(y) for any i = 1,2, 3 (so z represents different
things according to the local charts under consideration), then we obtain the
following expressions for p(X):

NG <Q (% %) —uP <% %) P <% %)) in Uy, (3.4)
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wa (r(20) e (52) e (21)) e o)
A(z) (P(u,v),Q(u,v)) in Us,

where A(z) = (u® +v? +1)~2""1_ The expression for V; is the same as that for
U; except for a multiplicative factor (—1)"'. In these coordinates for i = 1,2,
v = 0 always denotes the points of X!, We can omit the factor A(z) by scaling
the vector field p(X). Thus, the expression of p(X) becomes a polynomial vector
field in each local chart.

3.2.4 Construction of the phase portraits

In our study of the phase portraits of quadratic systems having a polynomial
inverse integrating factor, we follow some steps. First we compute and classify
all the singular points (finite and infinite) of the system to obtain the local phase
portrait at them, using the results of Subsections 3.2.1, 3.2.2 and 3.2.3 and blow-
ups if necessary. Once this classification is finished, we look for the separatrices
of the system. As (x) quadratic systems have no limit cycles, we just have to look
for the separatrices of the hyperbolic sectors. Using the first integral associated
to the system we determine the global behavior of these separatrices, and then
the global phase portrait is completed and we can draw it. The pictures of the
phase portraits of this work have been done using the program P4 (see [23]). The
program has also been used to verify the study of the phase portraits.

We deal with systems of the form
& = agy + a0 + agry + azgx’ + anxy, Y =d+ax+by+ 1z’ +may + ny’,

where all the parameters are real.

The finite singular points We solve the system of equations © = 3 = 0. The
solutions (g, yo) of this system are the singular points of the phase portrait. In
cases (IV) and (VI)—(IX), the maximum number of finite singular points is two.
The other four systems have at most four finite singular points. The number of
finite singular points and their multiplicity for systems (I) and (III) depend on a
discriminant A. In case (I),

A = —27a*n? +2a3b(20*> — In(d — m)) + (a®b*((d — m)? — 6In)+
4n(d — m)(36in — (d — m)?)) + 2abl(8n(5(d — m)? + 12In)—

0B2(d — m)) — 1(27b" + 4b2(d — m)((d — m)? — 361n)— (36)
16n((d — m)? — 4in)?).
In case (III),
A = 256d3n3 — n?(27a* + 144a%d(b — 1) — 192ad*m + 128d*(b — 1))+
2n(2(b — 1)3(a2 + 4d(b — 1)) + am(b — 1)(9a2 + 40d(b — 1)) — (3.7)

3dm?(a® +24d(b —1))) +m?(4a®m + a®(b — 1)? + 18adm(b — 1)+
d(4(b —1)3 — 27dm?)).
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For the rest of the systems we deal with the discriminant of a polynomial
equation of degree 2, so it gets an easier expression.

Once all the finite singular points are found, we want to know their behavior.
For that purpose, we use the results given in Section 3.2.1. Different behaviors
will lead to different phase portraits.

The infinite singular points In order to compute the singular points on the
line of the infinity, we use the Poincaré compactification, see Subsection 3.2.3.
We note that the singular points at the infinity appear by pairs, one of them on
the chart U; and the other one on V;. Each pair is formed by two diametrally
opposed infinite singular points.

In order to compute the singular points at infinity on U; and V;, we must
compute the singular points of type (u,0) of the system

i = v? {Q (1,3) —uP (1,9)}, 0= 0P (1,9)
v v v v v v

This is equivalent to solve the quadratic equation
(n —apn)u* + (m — ag)u +1 =0, (3.8)

with unknown wu.
To compute the singular points at infinity on U; and V5, we must find the
singular points of type (u,0) of the system

o)) e elc)
v v v v v v

which is equivalent to solve the cubic equation
u(lu? + (m — ag)u+ (n —ayy)) =0, (3.9)

with unknown u. Observe that the point A = (0,0) on the chart U, is always an
infinite singular point, and also A" = (0,0) on V5.

Remark 3.2.4. 1. If I =0, m = agy and n = a1, then all the points at
infinity are singular. In this case, we say that the infinity is degenerated.

2. A non—zero solution (u,0) of equation (3.8) corresponds to the non—zero
solution (1/u,0) of equation (3.9). So, if the infinity is not degenerated,
then there are at most three pairs of infinite singular points for each phase
portrait.

3. If the infinity is degenerated, the infinite singular points of the system that
is obtained by dropping the factor v (scaling time), give all the information
of the phase portrait at infinity.
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4. In general, when we refer to an infinite singular point in the study of the
phase portraits we mean the corresponding pair of singular points.

The phase portraits are grouped by topological equivalence, and shown de-
pending on the numbers of pairs of singular points at infinity. Figures (1)—(11)
correspond to phase portraits of systems with degenerated infinity. Figures (12)—
(41) correspond to phase portraits of systems with one pair of singular points
at infinity. Figures (42)—(82) correspond to phase portraits of systems with two
pairs of infinite singular points. Figures (83)—(122) correspond to phase por-
traits of systems with three pairs of singular points at infinity. The pictures are
shown in Section 3.4.

Remark 3.2.5. In the most of the cases, the systems depend on several para-
meters, so the phase portrait may vary with these parameters. In these cases we
compute a bifurcation diagram, from which we know the behavior of the system
for all the possible values of the parameters. a

In the following subsections, we compute the phase portrait of the (x) quadra-
tic systems. We also show the who the set ¥V 71(0) is in the phase portrait.

3.2.5 Systems (IX)

These systems were studied in Subsection 2.3.1. We use the notation given in
that subsection. As & = 1, the systems of this section have no finite singular
points, so the study of the local phase portraits is reduced to the behavior of the
singular points at infinity.

(IX.1) The only singular point is the point A at infinity, and it is a non—
elementary singular point of index i(A) = 1, without elliptic and hyperbolic
sectors. The phase portrait is shown in (12).

(IX.2) Again, the only singular point at infinity is the point A, which is a
non—elementary singular point, with e = h = 1, so i(A) = 1. The phase portrait
is shown in (33). The set V~!(0) is the parabola separating the two canonical
regions.

(IX.3) There are two singular points at the infinity: A (non-elementary) and
the semi-hyperbolic singular point p; = (0,0) on chart U;. For § = 1, we have
i(A) = 2, with (e,h) = (2,0), and p; is a saddle. If § = —1, then i(A) = 0, with
(e,h) = (0,2), and p, is a node.
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The phase portraits are shown in (44) and (42), there is one phase portrait
for each respective value of § = —1,1. The set V71(0) is, for § = 1, the straight
line y = 0 separating the two elliptic sectors.

(IX.4) Two singular points appear at the infinity: A which is a node, and
a non—elementary singular point p; on chart U;. In all cases, i(p;) = 0, with
(e,h) = (0,2).

If 6 = 1, then there is only one canonical region. The set V~1(0) is, for 6 = 0,
the straight line y = 0 separating two canonical regions. The other separatrices
correspond to the set H~1(0). If § = —1, then the set ¥V ~1(0) is formed by the
straight lines y = #+1, which divide the phase portrait in three canonical regions.
The phase portraits are shown in (47), (46) and (44), one phase portrait for
each respective value of 6 = —1,0, 1.

3.2.6 Systems (VIII)

These systems were studied in Subsection 2.3.2. We use the notation given in
that subsection.

(VIIL.1) The origin is the only finite singular point, and it is a saddle. The
only singular point at infinity is the point A, and it is a non—elementary singular
point of index i(A) = 2, with (e,h) = (2,0). The phase portrait is shown in
(36). The separatrices correspond to the set H~1(0).

(VIIL.2) There are no finite singular points. The only singular point at infinity
is the point A, which is a non—elementary singular point, with i(A) = 1. If
d = —1, then we have (e,h) = (2,2). If 6 = 1, then we have e = h = 0.

The phase portraits are shown in (34) and (12), there is one phase portrait
for each respective value of § = —1,1. The set V~1(0) is, for § = —1, the straight
line x = 0 separating the two elliptic sectors.

(VIIL.3) The origin is the only finite singular point, and it is an unstable node.
The only singular point at infinity is A, which is a saddle-node. The phase
portrait is shown in (37), it is the same for both values of §. The set V~1(0) is
the straight line x = 0 which is, for y < 0, the finite separatrix of A.

(VIII.4) The origin is the only finite singular point. It is a saddle if b < 0 and
it is an unstable node if b > 0. The only singular point at infinity is A, and it is
a non—elementary singular point. If b < 0, then i(A) = 2, with (e,h) = (2,0). If
b > 0, then i(A) = 0, with (e,h) = (0,2). Moreover, if 0 < b < 2, then A is a
saddle-—node.
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The phase portraits are shown in (36) (for b < 0), (37) (for 0 < b < 2) and
(38) (for b > 2). If b < 0, then the set V~1(0) forms the separatrices of the
saddle at the origin, separating the four canonical regions, two of them elliptic
sectors. If 0 < b < 2, then V~1(0) contains the separatrix z = 0, y < 0 of A. If
b > 2, then V~1(0) divides the open disc in two canonical regions.

(VIIL.5) The origin is the only finite singular point, and it is a saddle. There
are two singular points at infinity: A, which is non—elementary with i(A) = 2,
(e,h) = (2,0); and a saddle-node p; in U;.

The phase portraits are shown in (59) if § = 0 and in (58) if 6 = 1. If § = 0,
then V71(0) contains the separatrices of the origin, defining two elliptic sectors
in z > 0. If § = 1, then the set V~!(0) contains the separatrices of the origin.

(VIIL.6) The origin is the only finite singular point. It is a saddle if b < 0 and
an unstable node if b > 0. There are two singular points at infinity: A, which is
non—elementary; and a saddlenode p; in U;. The point A has index i(A) = 2
for b < 0, with (e,h) = (2,0), and the phase portrait of the system is equivalent
to the phase portrait (59) of (VIIL5) for § = 0. If b > 0, then i(A) = 0, with
(e,h) = (0,2). Its phase portrait is shown in (60). The set V~1(0) contains the
separatrix y = 0, x > 0 of the saddlenode and the straight line x = 0 which is
the separatrix of A, so it divides the phase space into three canonical regions.

(VIIL.7) We have two finite singular points, a saddle and an unstable node.
The number of infinite singular points depends on 4. In addition to A, which
is a node, we have a non—elementary singular point p; on U; if 6 = 0. It has
index i(p;) = 0 (with (e,h) = (0,2)). If § = —1, the point p; splits into two
saddle—nodes on U;. No infinite singular points except A appear if § = 1.

The phase portraits are shown in (101), (71) and (20) if 6 = —1,0, 1, respec-
tively. The set ¥V 1(0) contains the separatrices of the saddle-nodes for 6 = —1
and the straight line y = 1/2 (which is the separatrix of p;) for 6 = 0. The
separatrices of the finite saddle are not contained in V1(0).

(VIIL.8) The number of finite singular points depends on the value of by.
There are no finite singular points if bgg > 0, and there is a saddle-node at the
origin for byy = 0 which splits into a saddle and an unstable node for byy < 0.

At infinity, and in addition to A which is a node, we have a non—elementary
singular point p; on U;. It has index i(p;) = 0, with (e, h) = (0, 2).

The phase portraits are shown in (71) if by < 0, in (56) if by = 0 and in (44)
if bgg > 0. If byy = 0, then V~1(0) contains the separatrices of the saddle-node
and of py, so it divides the phase space into three canonical regions. If byy < 0,
then V~1(0) divides the phase space into six canonical regions, and it contains
the separatrices of the saddle and of p;.
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3.2.7 Systems (IV)

These systems were studied in Subsection 2.3.3. We use the notation given in
that subsection.

(IV.1) There are no finite singular points if byg < 0. If byg = 0, then a non—
elementary singular point of index 0 appears, splitting into a saddle and a center
for bpg > 0. At infinity, A is a non—elementary singular point (a triple solution
of equation (3.9)). The phase portraits correspond to (12) if byy < 0, to (13) if
boo = 0 and to (16) if byy > 0.

(IV.2) There is only one finite singular point, which is a saddle if § = 1 and a
center if § = —1. At infinity, A is non—elementary with i(A) = 1 and there is a
semi—hyperbolic singular point p; on Uj, which is a node if § = 1 and a saddle if
§=—1.

The phase portraits are shown in (62) and (52), for the respective values
§ = —1,1. The set V~1(0) is, for 6 = —1, the straight line y = 1 separating the
two canonical regions.

(IV.3a) There are no finite singular points and there is an infinite singular
point p; on chart U; which is non—elementary of index 0. If § = —1, then V~1(0)
is formed by two horizontal straight lines which contain an elliptic sector. The
phase portraits are shown in (49) and (44), for 6 = —1, 1, respectively.

(IV.3b) There is only one finite singular point, which is a saddle if § = 1 and a
center if 6 = —1. At infinity, A is a node and there is a non—elementary singular
point p; on Uy, with (e,h) = (1,1) if § =1, and (e,h) = (0,4) if § = —1.

The phase portraits are shown in (63) (for 6 = —1) and (52) (for 6 =1). In
the first case, the set V—1(0) is the parabola separating the two canonical regions.

(IV.3c) Six possible phase portrait appear in this case, three of them for 6 = 1
and other three for 6 = —1. For § = 1, the behavior of the system depends on
the parameter D. It is the same as in case (IV.1).

If 9 = —1, there are no finite singular points if D < 0, and a non—elementary
finite singular point appears when D = 0, splitting into a saddle and a center if
D > 0. There are two infinite saddle-nodes p; and p, on U;. The corresponding
separatrices are contained in V~1(0) in all cases. A is always a node.

The phase portraits for § = —1 are shown in (83) if D < 0, in (89) if D = 0)
and in (104) if D > 0. In this last case, V~1(0) is the curve separating the period
annulus of the center from the other canonical regions. If D < 0, then if divides
the phase space into three canonical regions.
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(IV.3d) There are no finite singular points, and there is a non—elementary
singular point p; on U;. If D > 0, then the phase portrait is (44), which has
been studied above. If D = 0, then the point p; is a saddle-node, and V~1(0)
is its separatrix, the straight line y = —1/2. This straight line splits into two
straight lines for D < 0, and an elliptic sector appears between the two lines.

The phase portraits for D < 0 are shown in (49) if D < 0 and in (46) if
D =0.

(IV.3e) The bifurcation values of D are, in this case, D = —1/16 and D = 0.
There are two finite singular points for all possible values of D. One of them is
always a saddle. The behavior of the other one depends on D: if D < —1/16,
it is a center; if —1/16 < D < 0, it is a stable node; and it is a stable focus if
D > 0.

If D < 0, then there are two singular points on Uj, say p; and py. They
collapse into a point ps for D = 0, and disappear for D > 0. All these points are
saddlenodes. The point A is a node in all cases.

The phase portraits are shown in (100) if D < —1/16, in (101) if —1/16 <
D < 0, in (71) if D = 0 and in (19) if D > 0. In the first case, V71(0) is
formed by the separatrices of the saddle (two of them are also separatrices of
the saddlenodes at infinity), and it divides the phase space in four canonical
regions. In the second and third cases, V~(0) contains the separatrices of the
infinite saddle-nodes. If D > 0, then ¥V 1(0) is the focus.

3.2.8 Systems (III)

These systems were studied in Subsection 2.3.4. We use the notation given in
that subsection.

(III.1) We start studying the infinity. The point A is a non—elementary singular
point, with (e, h) = (1,1). Moreover, there is a node p; on U;.

In order to study the finite region, we must consider the sign of A = —2(2b3,+
27b3,), which is the discriminant (3.7) up to a positive constant. If A < 0, then
the system has one finite singular point, a saddle. If A = 0, then in addition
to the saddle a non—elementary singular point appears in the finite region. We
must also study the particular case bgg = b1g = 0, for which there is only a finite
singular point, which is non—elementary and defines four hyperbolic sectors in a
neighborhood. Finally, if A > 0 then the non—elementary singular point of the
case A = 0 splits into a saddle and a center, and the saddle persists.

The phase portraits are shown in (52) if A < 0, in (52) if bgg = bjp = 0, in
(69) if A =0 and in (80) if A > 0.
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(ITI.2a) The origin is a saddle if 6 = 1 and a center if 6 = —1. In this second
case, the set V71(0) separates the period annulus of the center from the rest of
the phase space.

The point A is in all cases a non—elementary infinite singular point, with
(e,h) =(1,1)if 6 =1 and (e,h) = (0,4) if § = —1. Moreover, there is a node on
U.

We note that the behavior of the system in this case is the same as in (IV.3b),
so the phase portraits are the same.

(III.2b) In this case, the infinity is degenerated. At the finite region, the
number of singular points is related to the sign of the discriminant A = 4b3, —
27b%,. If A < 0, then we have an unstable focus. If A = 0, then we get a
saddlenode and an unstable node. In the particular case bgg = b1g = 0, we have
a non—elementary singular point, with (e,h) = (1,1). Finally, if A > 0 then we
have a saddle, a stable node and an unstable node.

The phase portraits are shown in (3) if A < 0, in (4) if byg = byo = 0, in
(10) if A =0 and in (11) if A > 0. If A < 0, then V~'(0) contains the focus.
In the case by = byp = 0, the set V~1(0) is the straight line y = 0, which is
a separatrix of the singular point. There are two more separatrices, which are
included in H~*(0) and define the elliptic sector. If A = 0, then V~'(0) contains
the separatrices of the saddle-node. Finally, if A > 0, then VV~1(0) contains the
separatrices of the saddle.

(III.2c) In the finite region, the number of singular points is related to the
sign of byg. If by < 0, then we have a center. If b;; = 0, then we have a non—
elementary singular point, with (e,h) = (1, 1). Finally, if by > 0 then we have a
saddle, a stable node and an unstable node.

At infinity, A is a non—elementary singular point with (e,h) = (1,1). There
is also a saddle on Uj.

The phase portraits are shown in (62) if b;p < 0, in (53) if bjp = 0 and in (81)
if byp > 0. In all cases, V~!(0) contains the separatrices of the infinite saddle.

(II1.2d) In the finite region, the number of singular points is related to the sign
of bypm. At infinity, in addition to A, there is a singular point p; on the chart
U;. A is non—elementary, and the behavior of p; depends on the sign of m — 1.

We first study the finite points. Assume that b;g < 0. If m < 0, then there
are three finite singular points: two saddles and one center. If m > 0, then there
is one center.

Assume that b = 0. The origin is, in this case, a non—elementary singular
point. It has four hyperbolic sectors if m < 1 and a hyperbolic and an elliptic
sector if m > 1.
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If by > 0, then we have a saddle if m < 0 and there are a saddle, a stable
node and an unstable node if m > 0.

Next we study the infinite singular points. With respect to A, if 0 < m < 1
and bjp # 0, then (e,h) = (0,4). Otherwise, (e,h) = (1,1). The point p; is a
node if m < 1 and a saddle if m > 1.

We finally give the relation of phase portraits. If bjg,m < 0, then we have
(77). V71(0) contains the separatrices of the saddles, dividing the phase space
into five canonical regions. If bjp < 0 and 0 < m < 1, then we have (63). In
this case, V~1(0) defines the period annulus of the center. If b;y < 0 and m > 1,
then we have (62). The set V' 71(0) contains the separatrix of the infinite saddle,
defining again the period annulus of the center.

If byp = 0 and m < 1, then we have (52). If bjp = 0 and m > 1, then we
have (54). In both cases, the set V71(0) contains all the separatrices of the finite
singular point.

If b1y > 0 and m < 0, then we have (52). If bjp > 0 and 0 < m < 1, then we
have (76). In this case, V~1(0) separates two hyperbolic sectors of A. Finally, if
bip > 0 and m > 1, then we have (81). The set VV1(0) contains the separatrices
of the infinite saddle. In these three cases, the separatrices of the finite saddle
are contained in a level set of H.

(III.3) At the finite region, we have an unstable node. At infinity, A is non—
elementary with four hyperbolic sectors, and there is a node on the chart U;. The
phase portrait is shown in (64). The separatrices of A are contained in the level
set H~1(—1).

(III.4) In the finite region, the number of singular points is related to bjp—3. If
bip < 3, then there is a focus. If b;g = 3, then we have a node and a saddle-node.
If by > 3, then we have a saddle, a stable node and an unstable node.

At infinity, A is a non—-elementary singular point with (e,h) = (1,1). There
is also a saddle on Uj.

The phase portraits are shown in (65) (b < 3), (70) (byp = 3) and (81)
(bio > 3). If byy > 3, then V~1(0) contains the separatrices of the finite singular
points. If b1y < 3 then V=1(0) contains the focus.

(III.5) At the finite region, we have an unstable node. At infinity, A is non-
clementary with (e,h) = (1,1), and there is a saddle on the chart U;. The phase
portrait is shown in (65). The separatrices of A are contained in the level set
H™'(4).

(III.6) At the finite region, the number of singular points is related to the
discriminant 16b%,(1 — 2b1g). If b1y < 0, then there are two saddles, an unstable
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node and a stable node. If 0 < b1y < 1/2, then there are no finite singular points.
If byp = 1/2, we have a non—elementary singular point, which splits in a saddle
and a center for by > 1/2.

At infinity, A is a node and there are a saddle and a node on U;. The set
V~1(0) contains the separatrix of this infinite saddle. For the finite singular
points, the separatrices are contained in level set H'(0).

The phase portraits are shown in (93) if b1y < 0, in (84) if 0 < by < 1/2, in

(III.7) There are a saddle and a non—elementary singular point at the finite
region. At infinity, we have a saddle and two nodes. The phase portrait is shown
in (94). The set V71(0) is the straight line y = 0.

3.2.9 Systems (VII)

These systems were studied in Subsection 2.3.5. We use the notation given in
that subsection.

(VII.1) There are no finite singular points. At infinity, A is non—elementary,
with two hyperbolic sectors and there is a node on U;. The phase portrait is
shown in (45).

Remark 3.2.6. We note that (45) is an example of a quadratic polynomial
foliation with three separatrices of hyperbolic sectors (see [29]). 0

(VII.2) The behavior of this system is similar as in (VIIL.1), the only difference
is the number of parabolic sectors in a neighborhood of A. The phase portrait is
shown in (46). The separatrix is contained in V~1(0).

(VIL.3) Once again, there are no finite singular points. At infinity, A is a non—
elementary singular point. It has two hyperbolic sectors if m < 1 and it has two
elliptic sectors if m > 1. There is also a singular point on U;. It is a node if
m < 1 and a saddle if m > 1. The set V~!(0) contains the finite separatrices of
the infinite singular points.

The phase portraits are shown in (45) if m < —1, in (46) if —1 < m < 1 and
in (43) if m > 1.

(VII.4) The study of the phase portraits is the same for both values of 4. Its
behavior is the same as in (VIL.3) for —1 < m < 1, so we get (46).
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(VIL.5) Once again, there are no finite singular points. The infinite singular
point A, which is non—elementary, defines two elliptic sectors for 6 = —1. If
0 = 0, then the infinity is degenerated, and A is a non—elementary singular point.
In this case, the w—limit of the left half-plane is A, and the a—limit of the right
half-plane is the infinite singular point A’. Both half planes are separated by
V=H0).

If 6 = —1, then we have (35). If § = 0, then we have (1). If § = 1, then we
have (12).

(VIL.6) The origin is a saddlenode. The point A is non—elementary, and there
is a singular point p; on Uy, which is a node if m < 1 and a saddle if m > 1. In
the case m = 1, the infinity is degenerated.

The phase portraits are shown in (56) if m < 1, in (5) if m = 1 and in (55)
if m > 1. All the separatrices are contained in V~1(0).

(VIL.7) The origin is a non—elementary singular point with two hyperbolic
sectors, defined by V=1(0). The point A is also non—elementary, and it has two
elliptic sectors. Moreover, there is a saddle on U;. The phase portrait is shown
in (51).

(VIL.8) The origin is a non-elementary singular point with two hyperbolic
sectors, defined by H~'(0). The point A is a node. Moreover, there are a saddle
and a node on U;. The separatrices of this infinite saddle are contained in V1(0).
The phase portrait is shown in (88).

(VIL.9) The behavior of the system for by > —1 is the same as in (VILS),
but in this case all the separatrices are contained in V71(0). If byg = —1, then
the origin is a non—elementary singular point and an infinite point p; on U is a
saddle-node. A is a node. Finally, if byy < —1 then A is the only infinite singular
point, and the origin is a non—elementary singular point. The separatrices of all
the singular points are contained in V=1(0).

The phase portraits are shown in (13) if byy < —1, in (66) if byy = —1 and in
(88) if byg > —1.

(VII.10) There are no finite singular points if byy < 0 and two finite saddle—
nodes if byy > 0. The separatrices are contained in V~1(0). At infinity, A is a
node and there are two singular points on chart U;. One of them is a node and
the other one is a saddle. The separatrices of the saddle are contained in a level
set of H.

The phase portraits are shown in (85) if byy < 0 and in (91) if by > 0.
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(VIL.11) The behavior of the system is the same as in (VII.10) for byy > 0, so
its phase portrait is (91).

(VII.12) The behavior of the system is the same as in (VII.10) for byy < 0, so
its phase portrait is (85).

3.2.10 Systems (VI)

These systems were studied in Subsection 2.3.6. We use the notation given in
that subsection.

As i = 1+22 > 0, there are no finite singular points in the following systems,
so we just have to study the infinity.

(VI.1) Aisanon-elementary singular point with two hyperbolic sectors. More-
over, there is a node on U;. The phase portrait is shown in (44).

(VI.2) The behavior of this system is the same as in (VL.1).
(VL.3) The behavior of this system is the same as in (VI.1).

(VI.4) The infinity is degenerated. After removing the line of infinite singular
points, if b # 0 then A is a focus, and if b = 0 then it is a center. The phase
portrait is shown in (2).

Remark 3.2.7. A perturbation of system (2) could give a limit cycle from the
graphic formed by the infinite line of singular points and the set V' =1(0). O

(VL5) A is non—elementary; it has two elliptic sectors if m > 1 and two hyper-
bolic sectors if m < 1. Moreover, there is an infinite singular point p; on U;. It
is a saddle if m > 1 and a node if m < 1. In the case m > 1, the straight line
y = 0 is contained in ¥V 1(0), separates the plane into two canonical regions, and
the phase portrait (42) is obtained. In the second case, we have a phase portrait
as in (VL1).

(VI.6) The behavior of this system is the same as in (VI.1).

(VL.7) The point A is non—elementary, and it has two elliptic sectors. Moreover,
there is a saddle on chart U;. The phase portrait is shown in (43). The set V~1(0)
is not relevant for this system.
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(VI.8) The point A is a node. Moreover, there are a saddle and a node on Uj.
The separatrices of this infinite saddle are formed by V' =1(0). The phase portrait
is shown in (84).

(VI.9) For all possible values of by, the behavior of the system is the same as
in (VIL.12), so we have the phase portrait shown in (85).

(VI.10) The behavior of this system is the same as in (VI.9).

3.2.11 Systems (V)

These systems were studied in Subsection 2.3.7. We use the notation given in
that subsection.

(V.1) There are two finite saddles. At infinity, A is a non—elementary singular
point with two elliptic sectors. Moreover, there is a node on U;. The phase
portraits are shown in (73) if 6 = 0 and in (72) if § = 1. The difference between
the two phase portraits is that in the case 6 = 0 the saddles are connected.

(V.2) There are no finite singular points. At infinity, A is a non—elementary
singular point with two hyperbolic sectors, and there is a node on U;. The phase
portrait is the same for the two possible systems, and it is shown in (47). V~1(0)
contains the two straight lines which separate the phase space in three canonical
regions.

(V.3) At the finite region, there are a saddle and an unstable node. At infinity,
A is non—elementary, with two hyperbolic sectors. Moreover, there is a node on
U;. The set V71(0) contains the separatrices of the saddle and the straight line
x = 1 which defines the hyperbolic sectors of A. The phase portrait is shown in
(71).

(V.4) The behavior of the system is the same as in (V.3). In this case, the
separatrices of the saddle are contained in a level set of H, and V~1(0) is the
straight line x = 1.

(V.5) The infinity is degenerated. Removing the line of singularities, A is a
node if |b| > 1 and a saddle if [b] < 1. At the finite region, there are a saddle
and an unstable node if [b| > 1 and two nodes (of different stability) if |b| < 1. If
|b| > 1, then the separatrices of the saddle are contained in V~'(0). For [b| < 1,
V=1(0) defines two hyperbolic sectors. The phase portraits are shown in (9) if
|b| > 1, and in (8) if |b] < 1.
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(V.6) If 6 = 0, then the phase portrait is the same as in (V.5) for [b] > 1.
In this case, the separatrices of the saddle are not contained in V~1(0), but we
have another inverse integrating factor, which is W(x,y) = (=1 + 2?)y, and the
separatrices are contained in W~!(0). We have here an example of a system hav-
ing two different polynomial inverse integrating factors, one of them containing
separatrices and the other one not.

Assume § = 1. We have a saddle and an unstable node at the finite region, and
A is the only infinite singular point. It is non—elementary, with (e,h) = (1, 1). Its
phase portrait is shown in (18). The separatrices of the saddle are contained in
a level set of H, and V~1(0) contains the separatrix which defines the hyperbolic
sector of A’.

(V.7) An unstable node is the only finite singular point. If 6 = 0, then byy # 0,
so by an easy change of variables we transform it into 1. In this case, the infinity
is degenerated, and A’ is a saddle node. The set V~1(0) contains the finite
separatrix which define it. The phase portrait is shown in (6).

If 6 = 1, then A is the only infinite singular point, with (e,h) = (1,3) if
boo < —1 and (e,h) = (0,2) if byg > —1. The set V1(0) contains the separatrices
which define all the sectors. The phase portraits are shown in (40) if byy < —1
and in (39) if by > —1.

(V.8) There are two finite singular points. If m < —|b|, then we have two
saddles. If either —|b] < m < |b| and m < 1, or 1 < m < |b|, then we have a
saddle and an unstable node. If either m > |b| and m > 1, or |b] < m < 1, then
we have two nodes of different stability.

At infinity, the point A is non—elementary, and there is a singular point on
Uy, which is a saddle or a node depending on the values of m and b.

In all cases, V~1(0) contains all the finite separatrices of the phase portrait.
The phase portraits are (73) if m < —|b|, in (71) if —|b| <m < |b|,1, in (67) if
1 <m < |b], in (74) if m > [b[,1 and in (75) if [b| <m < 1.

(V.9) There are two finite singular points. If m < —1, then we have two
saddles. The separatrices of the saddle laying on z = 1 are contained in V~1(0).
If m > —1, then we have a saddle and a node. In this case, the separatrices are
not contained in V1(0).

At infinity, A is non—elementary. If |m| > 1, then it has two elliptic sectors.
If |m| < 1, then it has two hyperbolic sectors. There is a singular point on Uy,
which is a saddle if m > 1 and a node if m < 1. In the saddle case, its separatrices
are contained in V1(0).

The phase portraits are shown in (72) if m < —1,1in (71) if =1 <m < 1 and
in (68) if m > 1.
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(V.10) The behavior of the system if |b| < k—2 is the one of (74), explained in
(V.8), but in this case V' *(0) contains the separatrices on the straight lines z =
+1. If |b] > k — 2, the phase portrait is the one corresponding to (68), explained
in (V.9), but in this case the straight line x = —1, formed by separatrices, is
contained in V1(0).

(V.11) If g—r—1> 0, then the behavior of the system is the same as in (V.1)
for 6 = 1, so its phase portrait is (72). The straight lines = +1 are contained
in V71(0). If ¢ —r — 1 < 0, then the phase portrait is equivalent to the one in
(V.3), but in this case only the separatrices on x = +1 are contained in V~1(0).

(V.12) If r > 0, then the behavior of the system is the same as in (V.11) for
g —r —1 >0, so its phase portrait is (72). If r < 0, then the phase portrait is
equivalent to the one in (V.11) for ¢ —r — 1 < 0.

(V.13) The behavior of the system is the same as in (V.11) for ¢ —r — 1 > 0,
so its phase portrait is (72).

(V.14) There are four finite singular points, two saddles and two nodes of
different stability. The separatrices of the saddles are not contained in V1(0).
At infinity, A is a node. There are two singular points on U;: a node and a
saddle. The separatrices of the saddle are contained in V~1(0).
The phase portrait is shown in (93).

(V.15) There are two finite singular points if byy < —1 (a node and a saddle),
three if byy = —1 (a node, a saddle and a saddle-node) and four if by > —1 (two
saddles and two nodes of different stability).

At infinity, A is a node. If byy = —1, then there is a non—elementary singular
point p; on Uy, which splits into a saddle and a node if byg > —1.

If byy < —1, then V71(0) contains the node, and the phase portrait is (20).
If byy = —1, then V1(0) contains the separatrices of the saddle-node and py,
and the phase portrait is (78). If byy > —1, the phase portrait is as in (V.14),
but in this case V71(0) contains the separatrices of the infinite saddle and the
separatrices of the finite saddle with x = —1.

(V.16) If byg > 0, then the phase portrait is the one appearing in (V.14), but
now V~1(0) contains only the separatrices of the finite saddles.

If by = 0, then we have two finite saddle-nodes. Their separatrices are
contained in V~1(0).
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At infinity, A is a node, and there are a saddle and a node on U;. The
separatrices of this saddle are not contained in V~!(0). The phase portrait is
(91).

If byo < 0, the behavior of the system is the same as in (VI.10).

(V.17) The phase portrait is equivalent to the one of (V.14). The set V~1(0)
contains the separatrices of the finite saddles which are on the straight lines
r = =£1.

3.2.12 Systems (II)

These systems were studied in Subsection 2.3.8. We use the notation given in
that subsection. In the study of the phase portraits of systems (II) we must
take into account, for n # 0,1 and [ # 0, three discriminants. The first one is
m? —4l(n — 1), which corresponds to the infinite singular points. The second one
belongs to ¢ = 0 assuming x = 0, and it is b — 4dn. And the third one belongs
to ¢y = 0 assuming y = 0, and it is a* — 4dl. If n € {0,1} and/or [ = 0, it is not
necessary to compute some of these discriminants, so the study is a priori easier.

We summarize the study of these systems in tables, following this notation:
F.S.P.: finite singular points. [.S.P.: infinite singular points. P.P.: phase portrait.
(): no singular points. S: saddle. C: center. N: node. F: focus. SN: saddle-node.
n € Z: non—-elementary singular point of index n. D.I.: degenerate infinity.

(IT.1) We first consider the systems (II.1a). As n # 0,1 and | # 0, we must
study all the discriminants. The first one is a constant, and the others are, up
to a non—zero constant, byy and 1 — 4byed. So, depending on byy and 6 = +1, we
may have ten different phase portraits.

For the systems (II.1b) we must consider the six cases which appear from the
combinations of the values of ¢ and §. So six phase portraits appear.

For the systems (II.1c¢) we must consider the three cases corresponding to the
different values of o.

For the systems (II.1d) two different phase portraits may appear.

In Table 3.1 we show the different systems which arise from system (I1.1). We
give the corresponding number of their phase portrait figure.

(I1.2) In the following systems, the infinite singular point A is semi-hyperbolic.
We first consider the system (II.2a). The discriminants to study are, up to a
non-zero constant, by, (1 — 4byd). So, depending on by and J, we may have ten
different phase portraits.
For the systems (I1.2b) we consider the six systems which appear from the
combinations of the values of o and 9.
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Subcase | Range of parameters F.S.p. | IL.S.P. | PP
(a) 0= 1, boo < 0 S,S N,N,N 95
(a) 0= 1, bgo =0 S,—]_ N,N,N 95
(a) d=1,0<bg < 1/4 S,5,5,C | NNNN | 115
(a) d=1,byp=1/4 S,S,0 | NNNN | 116
(a) d=1,0byp>1/4 S,S N,N,N | 105
(a) d=—1,byp < —1/4 0 N 12
(a) 5:—1, b00:—1/4 0 N 13
(a) 5:—1, —1/4<b00 <0 S,C N 16
(a) 0= —]_, bog =0 C,—]_ N 16
(a) 0=—1,byp>0 S,5,C,C N 22
(b) d=—-1,0=-1 0 N 12
(b) 0=—-1,0=0 0 N 13
(b) 0=—-1lo=1 S,S,C,C N 22
(b) 0=1,0=-1 S,S N.N,N | 95
(b) 0=1,0=0 -2 N,N,N | 90
(b) 0=10=1 S,S N,N,N | 105
(c) o=-—1 S N,1 52
(c) c=0 -1 N,1 52
(c) c=1 S,S,C N,1 7
(d) 0=-1 0 N,0 44
(d) 0=1 S,S N,2 73

Table 3.1: Relations between the parameters of cases (II.1) and the phase portraits.

In Table 3.2 we show the different systems which arise from system (I1.2). The
set V1(0) is the straight line z = 0. It plays an important role in the systems
where 0 = 1, because it is the separatrix of the infinite saddle. If 6 = —1, then
the set V~1(0) is not relevant.

(I1.3) For systems (II.3a) the discriminants are, up to a non-zero constant, by,
d and (1 — 4bygd). So, depending on by and J§, we may have ten different phase
portraits. The different systems are summarized in Table 3.3. For the rest of
the systems, as the parameters take discrete values, we consider all these values.
The set V1(0) is the straight line x = 0. Tt plays an important role in all the
systems, because it contains the separatrices of the infinite saddle.

(I1.4) The number of finite singular points is 0 + 1. Moreover, the kind of
singular points depend on the sign of byg. The discriminants depend on byy # 0.
When saddles or saddle-nodes (finite or infinite) appear, the set V~1(0) con-
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Subcase | Range of parameters | F.S.P. | I.S.P. | P.P.

a 0=1,byp <0 C,C S 27
a 0= 1, bgo =0 C S,l 62
a 0= 1,0< bay < ]./4 S,C S,N,N 99
a 0= 1, bgo = 1/4 0 S,N,N 87
a 5 =1, by >1/4 @ |SNN | 84
a 5= —1, by < —1/4 ] N | 12
a 5:—1, b20:—1/4 0 N 13

a 0= —1, b20 =0 N,]_ 52
a 0=—1,byp>0 S,S N,N.N | 95
b 0=—-1,0=-1 0 N 12
b 5=—1,0=0 ] N0 | 44
b p—p— SS [NNN| 9
b 5=10=—-1 cC | S |27
b 5—=10=0 ] S2 | 42
b b=1,0=1 0 SN,N | 84

|||~ ||| || || |
~— [ — — | — | — | — | — | — | — | — | — | — | — | — | — | —

Table 3.2: Relations between the parameters of cases (I1.2) and the phase portraits.

tains their separatrices, except for the finite saddle when § = 1 and by < 0. So,
as we can see in the phase portraits, V' =1(0) plays a very important role in the
sense that it defines almost all the canonical regions of the system. The results
are shown in Table 3.4.

(I1.5) For systems (II.5a) the relevant discriminants are, up to a non-zero con-
stant, d, (1 — 4byd). Moreover, if by = 0, then the infinity is degenerated. So,
depending on byy and 9, we may have ten different phase portraits. When by < 0,
the set V1(0) contains the separatrices of the infinite saddle. Otherwise it is not
relevant.

For systems (II.5c), if o = 0 then the infinity is degenerated. After removing
the line of singularities, if 6 = 1 then the point p; = (0,0) on U; is a center, and
if § = —1 then it is a saddle. The set V~1(0) does not play an important role if
o=0.

The different systems are summarized in Table 3.5.



166 3. QUADRATIC SYSTEMS

Subcase | Range of parameters F.S.P. | IL.SP. | P.P.
(a) 0=1,byp<0 C,C S 27
(a) 0=1,byy=0 C S,1 62
(a) d=1,0<by <1/4 S,C SN.N | 99
(a) 0= 1, bgo = 1/4 0 S,N,N 87
(a) 0 =1, by > 1/4 0 SN.N | 84
(a) 0=—1, by < —1/4 N,N S 30
(a) d=—1,byp=-1/4 N,N,0 S 31
(a) d=-1,—-1/4<byp <0 | S,CN,N S 32
(a) 0= —1, b20 =0 S,N,N S,l 81
(a) 0= -1, bag > 0 S,S,N,N S,N,N 93
(b) o=-1 C,1 S 25
(b) o=0 1 S,1 53
(b) oc=1 S,1 S,N,N | 94
(c) 0=—-1,0=-1 N,N S 30
(c) 0=—-1,0=0 N,N S,0 74
(c) 0=—-lo=1 S,S,NN | SNN [ 93
(c) 0=1,0=-1 C,C S 27
(c) b=1,0=0 0 S,2 42
(c) d=1,0=1 0 SNN | 84
(d) =—1 2 S 24
(d) 0=1 0 SN,N | 88

Table 3.3: Relations between the parameters of cases (I1.3) and the phase portraits.

Range of parameters | F.S.P. L.S.P. P.P.
(5 = 0, boo < O N SN,SN 60
0 =0, by >0 S SN,2 59
0=1,bp <0 S,N | N,SN,SN | 101
0=1, by >0 S,C | N,SN,SN | 100

Table 3.4: Relations between the parameters of cases (I1.4) and the phase portraits.
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Subcase | Range of parameters F.S.p. | I.S.P. | P.P.
(a) 0=1,by <0 C,C S 27
(a) 0= 1, b20 =0 C D.I. 7
(a) 0=1,0<by < 1/4 S,C N 16
(a) (5:1, b20:1/4 0 N 13
(a) d=1,byp>1/4 0 N 12
(a) d=—1,byp < —1/4 N,N S 30
(a) 0= —1, bgo = —1/4 N,N,O S 31
(a) 0= -1, —]_/4: < b9y <0 S,C,N,N S 32
(a) 0= —]_, bgo =0 S,N,N D.I. 11
(a) 0=—1,by>0 S,S,N,N N 21
(b) o=-—1 C,1 S 25
(b) c=20 1 D.I. 4
(b) oc=1 S,1 N 17
(c) d=-1,0=-1 N,N S 30
(c) )=-1,0=0 N,N DIS | 8
(c) 0=—-1lo=1 S,S,N,N N 21
(c) 0=10=-1 Cc,C S 27
(c) 0=10=0 0 DI,C| 2
(c) 0=1,0=1 0 N 12
(d) 0=-—1 2 S 24
(d) 0=1 0 N 13

Table 3.5: Relations between the parameters of cases (I1.5) and the phase portraits.

(I1.6) The number of finite singular points is 20 + 1. Moreover, the local be-
havior at the singular points depends on the sign of byy. The discriminants are
always constant, so they do not affect in the study of the systems. If § = 1 and
boo < 0, then the infinite saddle is semi—hyperbolic.

The set V~1(0) contains all the separatrices appearing in the phase portraits,
except the separatrices of the saddle when 6 = 1 and byy > 0. The results are
shown in Table 3.6. For ¢ = 0, the system is homogeneous of degree 2, so the
Jacobian matrix at the origin is the zero matrix.

(I1.7) The infinity is degenerated. At the finite region, there are a saddle-—node
and a stable node. The set V71(0) contains the separatrices of the saddle-node.
The phase portrait is shown in (10).
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Range of parameters | F.S.P. | L.S.P. | P.P.
0=0,by<0 2 S,SN 50
0=0, by >0 0 N,SN 66
0=1,by<0 C,N,SN | S,SN | 79
0=1,by >0 S,N,SN | N.SN | 78

Table 3.6: Relations between the parameters of cases (I1.6) and the phase portraits.

(I1.8) The infinity is degenerated. After removing the line of singularities, and
in the case § = 0, A is a saddle if byy < 0, a node if 0 < by < 1/4 and a focus if
boo > 1/4. The set V—1(0) contains all the separatrices of all the phase portraits.
The results are shown in Table 3.7.

Range of parameters | F.S.P. | .S.P. | P.P.
o= 1, boo < 0 S,N,N - 11
5:1,0<b00<1/4 S,N,N - 11
0=1, byg = 1/4 N,SN - 10
0 =1, byg > 1/4 F - 3
0= 0, boo < 0 N,N S 8
5:0,0<b00<1/4 S N 9
5=0,bpw=1/4 | SN | N | 5
0= O, boo > ]_/4: @ F 2

Table 3.7: Relations between the parameters of cases (I1.8) and the phase portraits. The
infinity is degenerated.

(I1.9) We distinguish six cases, depending on the values of § and o. The first
discriminant, affecting the infinite, is always —4byo(n — 1). The second one is
—4on. The third one is d —40byy. So depending on their values, we have different
behaviors. The set V~1(0) contains the straight line. Moreover, there is a conic
in V71(0), which may contain separatrices of the saddles, when they exist. If
such conic is an ellipse, then it is formed by more than one orbit.

For each one of these six systems which arise from the values of § and o we
have done a table specifying the singular points, the conditions on the parameters
and the number of the corresponding phase portrait.
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Range of parameters F.S.p. | IL.S.P. | PP
bay < 0,n<0 S,S,C,C N 22
by =0,n<0 S,5,C N,1 77

0<byp<1/4,n<0 S,S,S,C | NNN)N | 115

by =1/4,n<0 S,S,0 N,N,N | 116
by >1/4,n <0 S.S N.N,N | 105

by <0,0<n<1 C,C S 27

by =0,0<n<1/2 C S,1 62

620:07 1/2<n<1 C S,]. 82

0<byp<l1l/4,0<n<l1 S,C S,N,N | 99

by =1/4,0<n<1 0 S,N.N | 87

boo > 1/4,0<n <1 0 SNN | 84
by <0, m>1 C,C S,S,N | 106
by = O,n>1 C N.-1 63

0<by<l/4,n>1 S,C N 16

620:1/4,n>1 0 N 13
bgo>1/4,n>1 0 N 12

Table 3.8: Relations between the parameters of cases (I1.9) with § = ¢ = 1 and the phase

portraits.

Range of parameters F.S.P. I.S.P. | P.P.
b20<—1/4,n<0 0 N 12
b20:—1/4,n<0 0 N 13
—1/4 < by <0,n<0 S,C N 16
byo =0,n <0 S N,1 52

boyog >0, n <0 S,S N.NN | 95

boo < —1/4,0<n<1 N,N S 30
boo=—-1/4,0<n<1 N.,N.0 S 31
—1/4 <byy<0,0<n<1|SCNN S 32
by =0,0<n<1 S,N,N S,1 81
byg>0,0<n<1 S,SN.N | SN.N | 93
bay < —1/4, n>1 N,N S,S7N 107
by =—1/4,n>1 N,N,0 S,S,N | 111
—1/4 <by <0,n>1 S.C_NN| SSN | 117
boo=0,n>1 S,N.N N,-1 76

boog >0, n>1 S,S,N,N N 21

Table 3.9: Relations between the parameters of cases (I1.9) with § = 1, 0 = —1 and the phase

portraits.
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Range of parameters | F.S.P. | 1.S.P. | P.P.
bay < 0,n<0 C,—l N 16
byo =0,n<0 -1 N1 52
by >0, n <0 S.-1 N,N.N | 95

by <0,0<n<1 C,1 S 26

b2020,0<n<1 1 S,l 54

by >0,0<n<1 S.1 S,N.N | 96
bay < O,n>1 C,l S,S,N 97
bgo =0,n>1 1 N,—]_ 57
byo >0,n>1 S.1 N 17

Table 3.10: Relations between the parameters of cases (I1.9) with § = 1, ¢ = 0 and the phase
portraits.

Range of parameters | F.S.P. | I.S.P. | P.P.
bag < O, n <0 S,S,C,C N 22

boo=0,n<0 S,S N,2 73
byy > 0,n<0 S,S N,N,N | 105
by <0,0<n<1 C,C S 27
by =0,0<n<1 0 S,2 42
by >0,0<n<1 1) S,N,N 84
byg <0, >1 C,C S,S,N | 106
Do =0, > 1 0 NO | 44
b20 >0,n>1 0 N 12

Table 3.11: Relations between the parameters of cases (I1.9) with § = 0, ¢ = 1 and the phase
portraits.
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Range of parameters | F.S.P. | I.S.P. | P.P.
by < O, n <0 0 N 12
bQ() =0,n<0 0 N,O 44
byo >0,n <0 S,S N.NN | 95

by <0,0<n<1 N,N S 30

by =0,0<n<1 N,N S,0 74
by >0,0<n<1 |SSNN]|SNN]| 93
b < 0,1 > 1 NN | SSN | 107
Do =0, 1 > 1 NN | N-2 | 75
bog >0, n >1 S,S,N,N N 21

Table 3.12: Relations between the parameters of cases (I1.9) with § = 0, 0 = —1 and the
phase portraits.

Range of parameters | F.S.P. | 1.S.P. | P.P.
by <0, n <0 0 N 13
by <0,0<n<1 2 S 24
by <0, m>1 2 S,S,N 86
bag > 0,n<0 -2 N,N,N 90
by >0,0<n<1 0 S,N.N | 88
byo >0, n>1 0 N 13

Table 3.13: Relations between the parameters of cases (IL.9) with § = ¢ = 0 and the phase
portraits.
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(I1.10) The number of finite singular points depends on the sign of A = b?—4dn.
Moreover, the behavior of the singular points depends, when A > 0 on the relation
between b and VA.

At infinity the behavior of A depends on the sign of n and n — 1. There is
another infinite singular point p; on U; which is non—elementary.

The set V~1(0) contains all the separatrices of all the phase portraits. The
results are shown in Table 3.14.

Range of parameters F.S.P. | L.S.P. | P.P.
A<0,n<0 0 N,0 | 44
A<0,0<n<l1 0 S,2 | 42
A<0,n>1 0 N,0 | 44
A=0,n<0 SN N.0 56
A=0,0<n<1 SN S,2 55
A=0,n>1 SN N,0 56

A>0,n<0b<—VA SN | No | 71
A>0,n<0,b < VA SS | N2 | 73
A>0,n<0,b>VA SN | No | 71
A>0,0<n<l,b<—VA| SN | S2 | 67
A>0,0<n<l1,|bf<vVA| NN | S0 | 74
A>0,0<n<1,b>+vVA | SN | S2 | 67
A>0,n>1b<—VA SN | No | 71
A>0,n>1, b < VA NN | N2 | 75
A>0,n>1b>VA SN | No | 71

Table 3.14: Relations between the parameters of cases (I1.10) and the phase portraits.

(I1.11) The number of singular points and their behavior depends on 4, n and

A =1—4by(n—1). The set V1(0) contains all the separatrices of all the phase

portraits with 6 = 0. When 6 = 1, V1(0) contains all the separatrices if there

is a center. If § = 1 and the system does not have a center, V' ~1(0) contains the

separatrices of the infinite saddles, saddles or saddle-nodes which are on x = 0.
The results are shown in Tables 3.15 and 3.16.

(I1.12) The origin is a non—elementary singular point. There is also an unstable
node at the finite region. At infinity we have two saddles and one node. The set
V~1(0) contains the separatrices of the origin. The phase portrait is shown in
(98).
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Range of parameters | F.S.P. | L.S.P. | P.P.
AZR, n<0 0 N 13
AZR 0<n<1 2 S 24
AZR, n>1 0 N 13
A=0,n<0 0 N,SN | 66
A=0,0<n<1 2 S,SN | 50
A=0,n>1 0 N,SN | 66
0<A<1,n<0 0 S,N.N | 87
0<A<1l,0<n<l1 2 S,S,N | 86
0<A<1l,n>1 0 S,N,N | 87
A>1,n<0 -2 N,N,N | 90
A>1,0<n<1 0 S,N.N | 87
A>1,n>1 2 S,S,N | 86

Table 3.15: Relations between the parameters of cases (IL.11) with § = 0 and the phase
portraits.

Range of parameters F.S.P. I.S.P. | P.P.

AZR n<0 S,F N 19
AgR 0<n<1 CF S 28
AZR n>1 S,F N 19
A=0,n<0 S,N.SN | N.SN | 78
A=0,0<n<1 C,N,SN | S,SN 79
A=0,n>1 S,N.SN | N.SN | 78

0<A<1,n<0 S,S,N,N | SN,N | 93
0<A<1l,0<n<1|SCNN]| SSN | 118
0<A<l,n>1 S,S,N,N | SN,N | 93

A>1,n<0 S,S,S5,C | NNN,N | 119
A>1,0<n<1 S,S,N,N | SN,N | 93
A>1,n>1 S,CN,N| S,SN | 118

Table 3.16: Relations between the parameters of cases (I1.11) with § = 1 and the phase
portraits.

(I1.13) There are four finite singular points: one saddle (whose separatrices are
contained in V~1(0)) and three nodes, two of them unstable. At infinity, we have
two saddles and one node. The phase portrait is shown in (120).

(I1.14) If 5 =1 then we have five phase portraits, which are discussed in Table
3.17. The separatrices of the infinite saddle are not contained in V' ~1(0), but this
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set contains the separatrices of finite saddles and saddle-nodes. The subcases
depend on the value of by.

If ) = 0 and 0 = —1, then the phase portrait is the same as the one for § = 1
and byg < —1/4. If § = 0 and o = 1, then the phase portrait is the same as the
one for 6 = 1 and byy > 0.

Range of parameters F.S.p. | I.S.P. | P.P.
0=1, by < —1/4 0 S,N.N | 85
d=1, b =—-1/4 SN,SN | SSN,N | 91

d=1,-1/4<byp<0|SSNN|SNN]| 93

5 =1, by = 0 SNSN [SNN | 112
0=1, by >0 S,S,N,N | SNN | 121
5=0.0=—1 0 |SNN| 8
=0 o=1 SSNN | SNN | 121

Table 3.17: Relations between the parameters of cases (I1.14) and the phase portraits.

(I1.15) Following the values of the discriminants, the behavior of the singular
points depends on the value of §, byg and 1 — 8byy.

We remark that one of the nodes in the case § = —1 and bgy = 0 is semi—
hyperbolic. It is a node for byy < 0 and it bifurcates into two nodes and one
saddle for 0 < byy < 1/8. This saddle and the other node become a saddle-node
for boy = 1/8, disappearing for byy > 1/8.

In the case 0 = 1, a similar behavior happens. The two saddles and one node
in the case byg < 0 become a semi—hyperbolic saddle when byg = 0.

The set V71(0) contains the separatrices of the finite saddles and saddle—
nodes. The results are shown in Table 3.18.

We recall that we do not have the expression of V(x,y) for the following four
families.

(I1.16) Following the values of the discriminants, the behavior of the singular
points depends on the sign of 9, and p — 1 # 0. The results are shown in Table
3.19.

(I1.17) For system (I1.17a), the behavior of the singular points depends on the
values of byg and 4byy + ¢ — 2. For system (I1.17b) it depends on §. The results
are shown in Table 3.20.
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Range of parameters F.S.p. | IL.S.P. | P.P.
0=—1,bpn<0 N,N S,S,N | 107
0=—1,bypp=0 N,N S,N.N | 107

0=—-1,0<byp <1/8 | SN.NN | S;SN | 120
d=—1,byp=1/8 N,N,SN | S;S,N | 113
0= -1, boo > 1/8 F.F S,S,N 108

0=1,by <0 S,S,N,N N 21
5 = 1, b(]o - 0 S,N N 20

5:1,0<b00<1/8 S,N N 20
d=1,byp=1/8 SN N 14
(5:1, b00>1/8 @ N 12

Table 3.18: Relations between the parameters of cases (I1.15) and the phase portraits.

Range of parameters | F.S.P. | I.S.P. | P.P.
0=—-1,p=0 0 S,N,N | 85
0=1,p=0 S,S,N,N | SN,N | 121
o=-1,p>1 S,S N,NN | 95
o=1,p>1 S,S N,N,N | 105

Table 3.19: Relations between the parameters of cases (I1.16) and the phase portraits.

Subcase | Range of parameters | F.S.P. | I.S.P. | P.P.
(a) boo < 0 S,S,N,N S,N,N 121
(a) b()() =0 S,N,SN S,N,N 112
(a) 0<byp<(g—2)/4 | SSSN.N|SNN | 93
(a) boo = (¢ —2)/4 SN,SN | SN.N | 91
(a) boo > (q — 2)/4 0 S,N7N 85
(b) 0=-1 0 SN.N | 85
(b) 0=1 S,S,N.N | SN,N | 121

Table 3.20:

Relations between the parameters of cases (I1.17) and the phase portraits.
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(I1.18) At infinity, we have a saddle and two nodes. The behavior of the finite
singular points depends on the sign of §. If 6 = —1, then there are two finite
saddles and two finite nodes. The corresponding phase portrait is (93). If § = 1,
then there are no finite singular points. We have phase portrait (84).

(I1.19) We have two not connected saddles and two nodes. At infinity, there
are two nodes and one saddle. The corresponding phase portrait is (93).

3.2.13 Systems (I)

These systems were studied in Subsection 2.3.8. We use the notation given in
that subsection. In the study of the finite singular points of systems (I), we must
take into account the discriminant of the polynomial equation of degree at most
4 1t + ax® + (d — m)a?® — bx + n = 0, which is shown in (3.6) for [ # 0. The
discriminant m? — 41(n — 1) corresponds again to the infinite singular points. If
n =1 and/or [ = 0, the study is a priori easier.

We summarize the study of the systems in tables, following the same legend
as for systems (II).

(I.1) We first study (I.1a). In order to know the behavior of all the singular
points, we must take into account the sign of the discriminants Ay = 3a3, + 4by
and Ay = T5aS,+220a3,b20 — 116a3, +208a3,b3, — 144asnbag +64b3, +54. In Figure
3.1 we show the bifurcation diagram of the system. We denote by ~; the blue
curve; by 7 the black one above ~;; by 73 the green one; and by 74 the black and
red below ;. The curve v; corresponds to the equation A; = 0; the others to the
equation Ay = 0. Table 3.21 shows the different cases which arise from system
(IT.1a). In this table, Ry is the region between ~, and 3. Ry is the intersection
of {A; < 0} and the region between -3 and 74. Rj3 is the region under ~,.

Next we consider the system (I.1b). The bifurcation values are bog = —1, —3/4
for o = 1, bpg = —3/4 for 0 = —1 and byy = 0 for ¢ = 0. Table 3.22 shows the
different cases which arise from this system.

(I.2) First we study the infinity. If b;; = 0, then we have a non—elementary
singular point p; = (0,0) on U;. If by # 0, then there are two on U;. One of
them is py, which is semi—hyperbolic. The point A is always a node.

At the finite region the bifurcation values are by; = 0 and, if § = 1, the value
bll == 1/4

The set V71(0) is the finite separatrix of p; for b;; > 0. Table 3.23 shows the
different cases which arise from system (I1.2).
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Figure 3.1: Bifurcation diagram of system (I.1a). We have agg in the horizontal axis and by
in the vertical one.

Region F.S.p. | IL.S.P. | P.P.
{Al > 0} \ Ry S,S N,N,N 95
Ry S,C N 16

Rs 0 N 12

RN {Al < O} S,S,C,C N 23
RN {Al > 0} S,5,5,C | NNNN | 122

{Al = 0} \ {Rl N ’73} S N,l 52
(AT =0}NR; SS.C | N1 | 80

Y1 M3 S,O N,l 69

Yo M3 S,-l N,N,N 95

3 N{A; > 0} SS0 | NNN | 114

Yo SS0 |NNN | 114

Y3 M {Al < 0} S,S,C,C N 41

Table 3.21: Relations between the parameters of cases (I.1a) and the phase portraits.

(I.3) The bifurcation values are by; = —1/4,0. The set V~1(0) contains the
finite separatrices of the infinite saddle—nodes. Table 3.24 shows the different
phase portraits which arise from system (I1.3).



178

3. QUADRATIC SYSTEMS

Range of parameters FS.P. | IL.S.P. | P.P.
o=—1, by < —3/4 0 N 12
o=—1, by =—3/4 0 N.0 44
o= —1, by > —3/4 S,S N,N,N 95
=20, b()() <0 0 N 12

g = 0, boo =0 @ N,O 45
=20, by >0 S,S N,N,N 95
o=1, by < —1 0 N 12
o=1,bypy=—-1 0,0 N 15
o=1,—-1<by < —3/41S,5,C,C N 23
g = 1, bog == —3/4 S,S N,Q 72
o=1, boo > —3/4 S,S N,N,N 95

Table 3.22: Relations between the parameters of cases (I.1b) and the phase portraits.

Range of parameters | F.S.P. | I.S.P. | P.P.
0= 0, b1 <0 S,S N,N,N 95

5 - 0, bll =0 @ N,O 46
0=0,b;1 >0 0 S,N,N 84
0= 1, b1 <0 S,S N,N,N 95
0=1,b71=0 S N,1 61
0= 1,0< b1 < 1/4 S,C S,N,N 99
d=1,b=1/4 0 S,N,N | 87
d=1,b;>1/4 0 S.N.N | 84

Table 3.23: Relations between the parameters of cases (I.2) and the phase portraits.

Range of parameters | F.S.P. [L.S.P. P.P.
b1 < —1/4 0 N,SN,SN 83

by =—1/4 0 N,SN,SN | 89
—1/4 <b; <0 S,C N,SN,SN 103
b1 =0 S SN,2 58

bi1 >0 S,C N,SN,SN 104

Table 3.24: Relations between the parameters of cases (I.3) and the phase portraits.
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(6=1) (6 =0)
Figure 3.2: Bifurcation diagram of system (I.4).

(I.4) The infinity is degenerated. At the finite region the discriminants that
must be considered are Ay = byg and Ay = 4b3, + 27b%, — (b2, + 4b1g — 18bagb10)d.
The bifurcation diagrams on the plane (bgg, b1g) are shown in Figure 3.2. The set
V~=10) contains all the separatrices appearing in the phase portraits.

The different cases are shown in Tables 3.25 and 3.26. In Table 3.25, we denote
by 71 the curve A; = 0 (in blue at the picture) and by 72 the curve Ay = 0.
Ry and Ry are the regions outside and inside 7, respectively. A; = (aq,0) is
the intersection point of the green and the blue curves. Ay = (a2,0) is the
intersection point of the green and the red curves. Az = (a3, 0) is the intersection
point of the blue and the red curves. The curve 73 is the line byg = (2 — 9by) /27,
boo > a2 = 1/3, in black in the figure. We denote by L; = (—o00,a1) x {0},
Ly = (ay,a3) x {0} and L3 = (a3, 00) x {0} the three segments, from left to right,
in which v, is divided by 7,.

In Table 3.26, we denote by v, the curve A; = 0 (in blue at the picture)
and by 79 the curve Ay = 0. R; and R, are the regions outside and inside 7y,
respectively. We denote by L; and L, the two segments, from left to right, in
which 7, is divided by ~s.

We note that all from this system we obtain all the phase portrait with de-
generated infinity of Section 3.4.

(I.5) If 0 = 1 then the bifurcation values of by are by; = 0, byy = —1/(4(2n+1))
and by; = (1—n?)/(4n*(2n+1)). If § = 0 then we have the bifurcation value by; =
0. Moreover in all cases we must take into account the values n = —1,—1/2,0, 1.
The bifurcation diagram in the case § = 1 is shown in Figure 3.3. In this figure, we
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Region | F.S.P. | L.S.P. | P.P.
R,y F - 3
Ry S.N,N - 11

S\ I NSN| - |10
V3 C - 7
Ay N SN 6
4, 1 4
Ly N,N S 8
L, 0 F 2
Ls SN N 9
As SN N 5

Table 3.25: Relations between the parameters of cases (I.4) and the phase portraits for § = 1.

Region | F.S.P. | IS.P. | P.P.
R, F - 3
R, |SNN| - |11
L4 N,N S 8
L, 0 C 2

Y1 M Y2 0 1 1

v \m | N,SN - 10

Table 3.26: Relations between the parameters of cases (I.4) and the phase portraits for § = 0.

denote by 7, the red curve and by =5 the green one. They correspond, respectively,
to the bifurcation curves by = —1/(4(2n + 1)) and by, = (1 —n?)/(4n?*(2n + 1)).
The blue one is b;; = 0. The vertical straight lines are, from left to right,
n=—1,-1/2,0,1. For n < —1, up to down, the respective regions between the
curves are Ry, Ry, R3 and Ry. For —1 < n < —1/2, up to down, we have Rj to
Rg. For —]./2 <n <0, Rg to Ris. For 0 < n < 1, Rq5 to Ryg. And for n > 1,
R17 to RQQ.

The set V~1(0) contains all the separatrices appearing in the phase portraits.
The different cases are summarized in Tables 3.27 and 3.28.
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A

Figure 3.3: Bifurcation diagram of system (I.5) for § = 1.

Range of parameters F.S.p. | I.S.P. | P.P.
n<-—1,b1>0 0 S,N,N 84
n<-—1,b1<0 S,S,N,N | S,N,N 93

—1l<n<—=1/2,b1; >0 S,S N,N,N | 105
—1l<n<-=1/2,b; <0 S,S N,N,N | 95
—1/2 <n<0,b71>0 S,S N.NN | 95
—1/2 <n<0,b1<0 S,S N,N,N | 105

0<n<l1,b1>0 C,C S,S,N | 106
0<n<l1,b1<0 N,N S,S,N | 107
n>1, bi1 >0 S,S,N,N S,N,N 93
n>1, by <0 0 SNN | 84
n<-—1,b;=0 0 N,0 46
—1<n<0,b17=0 0 N,0 45
O<n<l1l,by1=0 0 S,2 43
n > 1, b11 =0 1) N,O 46

Table 3.27: Relations between the parameters of cases (I.5) with § = 0 and the phase portraits.
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Region F.S.P. ILSP. | PP

Ry 0 SN.N | 84

R, S,C S,N,N | 99

Rs S,SSNN | SN,N | 93

R SSNN | SNN | 93

Rs S.S N,N,N | 105

Ry S,S,S,C | NNN,N | 109

R S,S,S,C | NNN,N | 115

Rg S,S N,N,N | 95

Ry S,S N,N,N | 95

Ry S,S,S,C | NNN)N | 115

Ry S,S,S,C | NJN,N | 109

Rio S.S N,N,N | 105

Ri3 C,C S,S,N | 106

Ry S,CNN | SSSN | 117

Ris S,C,NN | SSS,N | 110

R N,N S,S,N | 107

Ri7 S,SSNN | SN,N | 93

Rig SSSSNNN [ SN,N | 93

R S,C S.N.N | 99

R 0 SN.N | &4

{n < —=1}Ny 0 S.N.N | 87

{n < —=1}Ny S,1 S,N.N | 96
(C1<n<-1/2'0m | SS0 |NNN| 116
{-1<n<-=1/2}N S,-1 N,N,N | 95
{-1/2<n<0}N S,-1 N,NN | 95
{-1/2<n<0}nNm S,5,0 | N,N,N | 116
{0<n<1}tnmy C,1 S,S,N | 97
{0<n<1}nm N,N,O | S,S,N | 111
n>11N7 S1 | SNN| 94
{n>1}Nm 0 S,N,N | 87

{n <=1} N{by; =0} S,N N,0 71
{—1 <n< O} N {bll = 0} S,S N,2 72
O<n<1In{bn=0] | SN S2 | 68
{n>1}N{by; =0} S,N N,0 71

Table 3.28: Relations between the parameters of cases (I.5) with § = 1 and the phase portraits.
For more information about the definition of the regions, see the legend of Figure 3.3.
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(I.6) The bifurcation values are boy = 0 and byg = 1/2. At infinity, A is always
a saddle and there is a singular point p; on the U;. If byy < 0, then the set V‘l(O)
contains the finite separatrices of p;. If 0 < byy < 1/2, the horizontal separatrices
of the finite saddle are contained in V~'(0). The results are shown in Table 3.29.

Range of parameters | F.S.P. | .S.P. | P.P.
boo < 0 N,N S,0 74

b(]o == 0 N S,l 48

0 < by < 1/2 SN S,2 68
boo = 1/2 SN S,2 51

boo > 1/2 1) 8,2 43

Table 3.29: Relations between the parameters of cases (I.6) and the phase portraits.

(I.7) The bifurcation values are byy = 0 for the infinite singular points and
boo = —+/2 for the finite singular points. The set 1V ~1(0) contains the separatrices
of the finite singular points. The results are shown in Table 3.30.

Range of parameters | F.S.P. | 1.S.P. | P.P.
§=1,byp<—-v2 |SSNN|SNN]| 93
6=1,bpo=—v2 | SN,SN |SNN | 91
6 =1, byy > —2 0 SNN | 85

5= 1 F.F S 29

Table 3.30: Relations between the parameters of cases (I.7) and the phase portraits.

(I.8) If 6 = —1 then there is a singular point p; on the Uy; it has two hyperbolic
sectors, determined by the set V~1(0). The point A is a saddle, and there are
two finite nodes. We are in the phase portrait (74).

If 6 = 1 then p; has two elliptic sectors, determined by the finite separatrices
of A, a saddle. There are no finite singular points. The phase portrait is (43).

(I.9) The study of this system is exactly the same as in (I1.6). The only differ-
ence is that all the separatrices of finite saddles or saddle-nodes are contained in

V=10).



184 3. QUADRATIC SYSTEMS

(I.10) The bifurcation values are byy = 0 for the infinite singular points and
boo = 5 for the finite singular points. The set V=1(0) is relevant only for by = 5.
In this case, it contains the two separatrices of the hyperbolic sector of the non—
elementary finite singular point. The results are shown in Table 3.31.

Range of parameters | F.S.P. | I.S.P. | P.P.
bor < 0 S,N N 20

boo =0 N N,.-1 | 64
0<byp<h C,N S,S,N | 102

boo =5 N,1 S,S,N | 98

boo > 5 S,N,N,N | S;S,N | 120

Table 3.31: Relations between the parameters of cases (I.10) and the phase portraits.

(I.11) If § = —1 then there are two saddles on U;. The point A is a node, and
there are also two finite nodes. We have phase portrait (107).

If § = 1 then the only infinite singular point is A, which is a node. There are
no finite singular points. The corresponding phase portrait is (12).

In both cases, the set V~1(0) is not relevant in the global phase portrait.

(I.12) The behavior of the system is, in all the cases, the same as in (I.11) with
§=-1.

We recall that we do not have the expression of V(z,y) for the following
families, except for (1.17).

(I.13) The bifurcation values are by = (Q —1)/(Q(2Q —1)),(Q+1)/Q if s =1
and by = (Q —1)/Q if 6 = —1. The results are shown in Table 3.32.

(I.14) The bifurcation values are by; = §; and by; = o, where

72q(q —2)(q —2 —j)
(q—2—2j)"

7q(q —2)(q — 2 —j)
4(q —2 —2j)?

01 = — <0, 09= > 0.
The results are shown in Table 3.33.

(I.15) The bifurcation values are byg = 1 —2§/q. The results are shown in Table
3.34.

(I.16) The study is the same as in (I1.14).
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Phase portraits
Range of parameters F.S.P. | IL.S.P. | P.P.
§=—1,byp < (Q—1)/Q SSN.N|[SNN /| 93
d=—1,bpp=(Q—-1)/Q SN,SN | SSN,N | 91
d=—1,bpp>(Q—-1)/Q 0 S,N,N | 8
d=1,bep < (Q—-1)/(Q(2Q —1)) 0 S,N,N | 85
5= 1, oo — (@ — D/(Q2Q 1)) 0 | SNN| 84
5=1,(Q-D/QRQ—1) <bw<(Q+1/Q@| 6 |SNN| 5
6=1,bp=(Q+1)/Q SNSN [SNN | 92
6=1,byp > (Q+1)/Q SSNN|SNN| 93

Table 3.32: Relations between the parameters of cases (I.13) and the phase portraits.

Range of parameters | F.S.P. | I.S.P. | P.P.
by < 1 0 SN.N | 85

biy =1 SN,SN | SN,N | 91

01 < bny 7é 09 S,S,N,N S,N,N 93
b1 = 6 S,N,SN | SN,N | 112

Table 3.33: Relations between the parameters of cases (I.14) and the phase portraits.

Range of parameters F.S.P. | IL.S.P. | P.P.
d=—1,bpp <1+2/q 0 S,N.N | 85
d=—-1,bpp=1+2/¢q | SN,SN | SNN | 91
d=—1,bpp>14+2/q | S,SN,N|SNN | 93

0=1,byp <1-— 2/q S,S,N,N | SN.N 93

d=1,bpp=1-2/q | SNSSN | SN)N | 92

d=1,byp>1-2/q 0 S,N.N | 85

Table 3.34: Relations between the parameters of cases (I.15) and the phase portraits.

(I.17) The bifurcations values of b;; are —5/12 and 10. The set V' ~1(0) contains
the separatrices of the connected saddles if b;; < 10, and the separatrices of the
non-elementary singular point if b;; = 10. Otherwise V~1(0) is not relevant. The

results are shown in Table 3.35.

(I.18) First we study the finite region. If 6 = —1, then there are no finite
singular points. If 6 = 1, then we have two saddles and two nodes. At infinity,
the point A is a saddle, and there are also two nodes on U;. The corresponding
phase portraits are (85) if 6 = —1 and (121) if § = 1.
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Range of parameters | F.S.P. | L.S.P. | P.P.
b1 < —5/12 S,S N,N,N | 105
b1 = —5/12 S,5,0 | NNN,N | 116
—5/12 < b3 <10 | S,S,S,C | N.NN | 115
by1 = 10 S-1 N.N,N | 95
b1 > 10 S,S N,N,N 95

Table 3.35: Relations between the parameters of cases (I.17) and the phase portraits.

(I.19) The behavior of the singular points depends on the values of §, and p.

The results are shown in Table 3.36.

Range of parameters | F.S.P. | I.S.P. | P.P.
0=—-1,p=0 S,S,N,N | SNN | 121
0=1,p=0 0 S,N,N | 85
o=—-1,p>1 S,S N,N,N | 105
')=1p>1 S,S N,NN [ 95

Table 3.36: Relations between the parameters of cases (I.19) and the phase portraits.

(I.20) The behavior of this system is the same as (I.18), interchanging the

values of §.

3.3 Conclusions

From the study of the polynomial inverse integrating factors and the correspon-
ding first integrals and phase portraits, we extract some conclusions.

3.3.1 On the polynomial inverse integrating factors

Phase portraits.

From all the families of quadratic systems of the classification

of Section 2.3 we have obtained 122 topologically different phase portraits. In our
classification there are few quadratic systems having a polynomial first integral,
which makes explicit that the inverse integrating factor has, in general, an easier
expression (and a bigger domain of definition) than the first integral.

Invariant algebraic curves of arbitrary degree. The classification of the
polynomial inverse integrating factors of Chapter 2 provides examples of invariant
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algebraic curves of arbitrarily high degree, see for example cases (VI.7), (VI.10) or
(I1.16). There are in the literature some examples of such curves of high degree,
but as far as we know all of them have a Darboux first integral, as the ones that
we have found.

Some other examples of invariant algebraic curves of arbitrary degree can be
extracted from the expressions of the polynomial and rational first integrals. For
this purpose, we take an example of (polynomial or rational) first integral H of
arbitrary degree and a convenient A € R such that the factorized expression of
H(x,y) — h contains a polynomial of arbitrary high degree. This can be done
with 17 of the 18 polynomial first integrals appearing in Proposition 3.1.3 (the
exception is (I.17)) and with 26 of the 49 rational first integrals appearing in
Proposition 3.1.4.

The degree of V and the phase portraits. From the study of the phase
portraits and the expressions of V', we can state the following result.

Theorem 3.3.1. For each one of the phase portraits shown in Section 3.4 there
18 a quadratic system having a polynomial inverse integrating factor of degree at
most Six.

We remark that (92) is the only phase portrait for which we have not given an
explicit expression of a polynomial inverse integrating factor. This phase portrait
corresponds to systems (1.13) and (I.15). As the phase portrait does not change
if we vary the degree k of V', we have computed a polynomial inverse integrating
factor of degree six for system (I.13). So Theorem 3.3.1 does not need to be
restricted to (x) quadratic systems.

3.3.2 On the phase portraits

As we see in the pictures of Section 3.4, the behaviors of the quadratic systems
having a polynomial inverse integrating factor can be very different, in the sense
that many different topological phase portraits are found in these systems, and
then the existence of a polynomial inverse integrating factor is not restricted to
a certain kind of quadratic systems, except for the fact that all of them have a
Darboux first integral.

We have obtained 122 topologically different phase portraits for the quadratic
systems having a polynomial inverse integrating factor. In these phase portraits
it has been clearly shown the importance of the inverse integrating factor in the
behavior of the orbits of the system. In the most of the cases, the inverse inte-
grating factor contains all or almost all the finite separatrices of the system and
many singular points, so the knowledge of such function gives a lot of information
about the phase portrait.
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The phase portrait (45) corresponds to an example given in [29]. It is a
foliation (a system without finite singular points) of degree two having three
inseparable leaves. With this example, the claim that a quadratic system has at
most two inseparable leaves given in [21] becomes false.

3.3.3 On the non—existence of algebraic limit cycles

As we explained in the introduction, one important property of an inverse inte-
grating factor V' (z,y) is that all the limit cycles of the system which are in the
domain of definition of V(x,y) are contained in the set V~1(0). In our study,
the domain of definition of V(z,y) is the whole plane, so V~1(0) contains all the
limit cycles of the system whenever they exist. Moreover, as our inverse inte-
grating factors are polynomials, the limit cycles must be algebraic; that is, they
are contained in an invariant algebraic curve f = 0. It is proved that the known
quadratic systems having an algebraic limit cycle mentioned in the introduction
do not have a Darboux first integral, so they cannot have a polynomial inverse
integrating factor.

From the classification of Chapter 2 we stated Theorem 2.4.2: a (x) quadratic
system having a polynomial inverse integrating factor has no algebraic limit cycles.

We believe that this theorem is true for all the quadratic system having a
polynomial inverse integrating factor.

3.3.4 On the critical remarkable values

In Proposition 3.1.4 of Section 3.1, we have listed the rational first integrals as-
sociated to the quadratic systems having a polynomial inverse integrating factor.
For some of these first integrals, there exist one or two critical remarkable values.
These values are always either ¢ = —cy or ¢ = —cy — ¢;* (see Proposition 1.5.3),
and then the corresponding critical remarkable invariant algebraic curves are fac-
tors of the numerator or the denominator of the first integral. The following
theorem gives more information about these curves. Its proof is a consequence of
Proposition 3.1.4.

Theorem 3.3.2. Let & = P(x,y), y = Q(z,y) be a (x) quadratic system having a
polynomial inverse integrating factor V(x,y) and a rational first integral H(z,y).
Assume that uy, . .., u, are critical remarkable invariant algebraic curves associa-
ted to H. Then, the curve u; = 0 is completely contained in the curve V=0, for
alli e {1,...,r}.

3.3.5 Homogeneous quadratic systems

If a quadratic polynomial system has a finite linearly zero singular point, then
it is equivalent to the homogeneous quadratic system & = Py(z,y),y = Q2(z,y),
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where P, and (), are quadratic homogeneous polynomials, doing if necessary a
translation of the linearly zero singular point to the origin. The global phase
portraits of the quadratic homogeneous systems are well known, see [51].

As we know from Example 1.4.4, such homogeneous systems have a polynomial
inverse integrating factor of degree 3, which is yP, — Q2. Then these systems
appear in our classification. They correspond to the phase portraits (13), (24),
(66), (50), (90), (86) and (88).

3.3.6 Hamiltonian quadratic systems

The topologically equivalent phase portraits of the Hamiltonian quadratic systems
have been classified in [4]. There are 28 topologically equivalent phase portraits
of such systems. In two of them the component of & is zero and in another one
the system has a common factor. The other 25 systems are contained in our
study. They correspond to the phase portraits (16), (22), (23), (41), (77),
(80), (115), (109), (119), (122), (12), (44), (45), (13), (36), (52), (72),
(73), (69), (90), (116), (95), (105), (114) and (15).

3.3.7 Quadratic systems having a center

The topologically equivalent phase portraits of the quadratic polynomial systems
having a center have been classified in [48]. As we know from Example 1.4.4, such
systems have a polynomial inverse integrating factor, so all these systems appear
in our classification. There are 32 non-topologically equivalent phase portraits
of quadratic systems having a center, but one of them is a linear system and
another one has a finite line of singularities, so we do not consider them. The
others correspond to the phase portraits (16), (22), (23), (77), (80), (41),
(115), (109), (119), (122), (62), (63), (82), (7), (104), (100), (103), (99),
(27), (106), (26), (25), (97), (32), (117), (118), (110), (28), (79) and (102).

In Example 1.4.4 it is said that these systems have a polynomial inverse in-
tegrating factor of degree 3 or 5. With our classification we show that some of
the phase portraits may correspond to quadratic systems having a polynomial
inverse integrating factor of degree k < 3. The only one for which we have a
polynomial inverse integrating factor of degree k > 3 is (102). In this case, we
have a polynomial inverse integrating factor of degree 5.

3.3.8 Quadratic systems having a polynomial first integral

The classification of the quadratic systems having a polynomial first integral is
done in [9]. As we mentioned in Section 2.3, we have used some of the techniques
of that work.
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In Chapter 3 we show the first integrals appearing from our classification,
distinguishing their type. That is, either polynomial, or rational, or Darboux
but neither polynomial nor rational. In Proposition 3.1.3 we show the quadratic
systems having a polynomial inverse integrating factor and a polynomial first
integral, giving the expression of such functions. As the systems having a poly-
nomial first integral have a polynomial inverse integrating factor (see [27]), the
classification in [9] is strongly related with a part of our classification. Moreover,
in [30] it is proved that the set of phase portraits of these systems is included in
the set of Hamiltonian quadratic systems.

3.3.9 Quadratic systems having a rational first integral of
degree 2

In [7] the global phase portraits of the quadratic systems having a rational first
integral of degree 2 are classified. There are 25 non topologically equivalent phase
portraits. Six of these phase portraits correspond to quadratic systems with a
finite curve of singularities. The others are contained in our classification, and
they correspond to the phase portraits (1), (2), (4), (7), (8), (9), (11), (12),
(24), (27), (30), (37), (42), (46), (71), (74), (84), (88) and (93).

3.3.10 Quadratic systems with degenerated infinity

We know from Subsection 3.2.4 that a quadratic system having degenerated in-
finity can be written into the form
I = agy+ a10T + ao1y + asox® +anzy, Y = d+ax+by+ axry + a1y’ (3.10)

where all the parameters are real. The following result characterizes this family
of systems.

Proposition 3.3.3. Any quadratic system having degenerated infinity has a poly-
nomial inverse integrating factor of degree 3.

Proof: By using Proposition 2.1.2 and after an affine change of variables and a
rescaling of the time, we can transform system (3.10) into a family or a subfamily
of systems (II1.2b), (VIL5), (VIL6), (VI.4), (V.5), (V.6), (V.7), (IL.5a), (II.5b),
(IL.5¢), (IL.7), (II.8) and (I.4), and as we proved in Chapter 2 we have a polynomial
inverse integrating factor of degree 3 for each one of them. |

The phase portraits obtained from system (3.10) are the phase portraits (1)—
(11) given in Section 3.4. They are also obtained only from system (1.4),
t=1+wzy, ¢="boo+bor+dy+y’,
where § € {0,1} and bgg, b1 € R.
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3.4 List of phase portraits

We finally show the phase portraits of the quadratic systems having a polynomial
inverse integrating factor. We have used the program P4 for drawing them. In
the pictures, a blue (red) curve means stable (unstable) separatrix, green means
curve of singularities, black means regular orbit. For the singular points, see
Table 3.37.

’ Symbol ‘ Behavior of the singular point
Green square (rhombus) Saddle (center)
Green triangle Semi-hyperbolic saddle
Violet triangle Saddle-node
Blue (red) square Stable (unstable) node
Blue (red) triangle Stable (unstable) semi-hyperbolic node
Blue (red) rhombus Stable (unstable) strong focus
White cross Non—elementary singular point

Table 3.37: Legend of the singular points of the phase portraits.
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Figure 3.4: Phase portraits corresponding to the quadratic systems having a polynomial
inverse integrating factor.
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Chapter 4

Polynomial inverse integra-
ting factors for polynomial
vector fields

In this first article, we present some results and one open question on the existence
of polynomial inverse integrating factors for planar polynomial vector fields. This
is a joint work with Jaume Llibre and Adam Mahdi, and it has been accepted for
publication in Discrete and Continuous Dynamical Systems.

4.1 Introduction

A polynomial vector field defined on C? (respectively R?) is a vector field of the
form

X(.9) = Pla) 5. + Qo) (41)

where P and ) are complex (respectively real) polynomials in the variables z and
y. The maximum of the degrees of P and @ is called the degree of X. Sometimes
to simplify notation we shall write that X = (P, Q).

For simplicity, in the whole paper we will assume that the polynomials P and
Q@ are coprime in the ring of all complex polynomials C|x,y]. If they are not
coprime, doing easy arguments, we can extend all the results to that case.

We remark that since the real polynomial vector fields are particular cases of
the complex ones, the results for the complex are also true for the reals. In what
follows we shall give several definitions for polynomial vector fields in C?, but in
a similar way they can be given for polynomial vector fields in R2.

Let U be an open subset of C2. If there exists a non—constant C' function
H : U — C, eventually multi-—valued, which is constant on all the solutions of
X contained in U, then we say that H is a first integral of X, and that X is
integrable on U. Then, we have XH = (0 on U.

If V:U — C is a function satisfying the linear partial differential equation

oV oV (0P  0Q
P%—FQa—y—(%-i-a—y)V (4.2)
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on U, then V is called an inverse integrating factor of X on U. From its definition,
it follows that the curve V' = 0 is formed by trajectories of the system.

We say that the inverse integrating factor V is associated to the first integral
H of the vector field X given by (4.1) on U if we have

P OH Q OH

v oy

Vo Oz
on U.

One of the main open problems in the qualitative theory of planar polynomial
vector fields X is to characterize the integrable ones. A good way to study
integrable vector fields is through the inverse integrating factor V', for more details
see [4]. Moreover, if X is real and V' : U — R is an inverse integrating factor of
X on the open subset U of R?, then V becomes very important because {V = 0}
contains the limit cycles of X which are in U, see [9, 10]. Moreover if V is
polynomial, then it is defined on the whole R? and consequently knowing such
kind of V’s we can control all limit cycles of X, see for instance [10].

In this paper we are mainly interested in studying the polynomial vector
fields having a polynomial inverse integrating factor. But we start presenting the
known relationships between the nature of the first integrals and the nature of
their associated inverse integrating factors.

Let fi,..., fp, g, h be complex polynomials in the variables z and y and let
A1, ..., Ay be complex numbers. Then, a function of the form

e fyrexp (g/h)

is called Darbouz.

For a definition of Liouvillian function see Singer [14], roughly speaking a
Liouvillian function comes from the integral of a Darboux function.

The following theorem summarizes some relations between the first integrals
and the inverse integrating factors for a polynomial vector field X in C2.

Theorem 1. Let X be a polynomial vector field in C2.

(a) If X has a Liouvillian first integral, then it has a Darbouz inverse integrating
factor.

(b) If X has a Darboux first integral, then it has a rational inverse integrating
factor.

(c) If X has a polynomial first integral, then it has a polynomial inverse inte-
grating factor.

Statement (a) of Theorem 1 was proved in [14] and [6]. Statement (b) was
proved in [5]. Note that statement (c) corresponds to statement (b) of the Main
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Theorem of [5], but there is a misprint in [5], because in the proof of this statement
is shown the existence of a polynomial integrating factor, instead of the existence
of a polynomial inverse integrating factor. Statement (c) of Theorem 1 is proved
in Proposition 8, see Section 4.2.

Note that in statements (a) and (b) of Theorem 1 the expression of the inte-
grating factor is easier than the expression of the first integral. So, in these cases
the study of the integrability of such systems is easier looking for their inverse
integrating factors instead of looking for their first integrals.

Looking at Theorem 1 a natural question appears: Suppose that the polynomial
vector field X has a rational first integral. When does X have a polynomial inverse
integrating factor? Such X’s were characterized in the next result proved in [5].
For the precise definitions of the notions which appear in it, see Section 4.3.

Theorem 2. Let X be a polynomial vector field. Suppose that H = f/g is
a canonical rational first integral and that X has no polynomial first integrals.
Then, X has a polynomial inverse integrating factor if and only if H has at most
two critical remarkable values.

We mention here that if X has a rational first integral, then it always has a
canonical rational first integral, for a proof see Section 4.3.

As far as we know Theorem 2 was not complete in the sense that there were
no examples of polynomial vector fields satisfying its assumptions and without
a polynomial inverse integrating factor. In what follows we provide such an
example.

Proposition 3. The polynomial vector field

0 0
X = 22(5 + 30z + 402* + 8y2)a—x + y(5 + 442 + 80z + 16y2)a—y, (4.3)

has a rational first integral, and has neither a polynomial first integral, nor a
polynomial inverse integrating factor.

In Section 4.3 we present some preliminary results that we need for proving
Proposition 3 in Section 4.4. We remark that the polynomial vector field of
Proposition 3 also has been studied for other reasons in [5], see there system (23)
with a = 1.

As we will see in the next result many families of polynomial vector fields in
R? with a center have a polynomial inverse integrating factor. The definitions of
the notions which appear in the statement of these results are given in Section
4.5, where we also give either references for their proofs, or prove them.

Theorem 4. Assume that X is a polynomial vector field in R?. Suppose that X
satisfies one of the following conditions:
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(i) It is homogeneous.
(i) It is quasi—-homogeneous.
(iii) It has degree 2 and a center.
Then, X has a polynomial inverse integrating factor.

All polynomial vector fields of Theorem 4 having a center; of course, also have
a polynomial inverse integrating factor. But, as the following result shows, there
are polynomial vector fields having a center which do not have polynomial inverse
integrating factors.

Proposition 5. The polynomaial vector field

0 11)2(2'1: - yz)% )

— .3 =
Y or 2 (44)

X(z,y)

has a center at the origin and has no polynomial inverse integrating factors.

The polynomial vector field of Proposition 5 was studied by Moussu [11] in
order to provide a degenerate center for which does not exist a local analytic first
integral. Proposition 5 will be proved in Section 4.6.

We have the following question.

Open Question. Assume that X is a polynomial vector field having a center.
How to characterize the X ’s having a polynomial inverse integrating factor?

There are other papers which deal with polynomial inverse integrating factors,
but considering distinct aspects of those studied here, see for instance [2, 11, 39].

4.2 X has a polynomial first integral

In the rest of this paper X will always denote a polynomial vector field.

Let f € C[z,y]. The algebraic curve f(z,y) = 0 is invariant for X if X f/f is
a polynomial of C[x,y]. It is known that if the algebraic curve f = 0 is invariant,
then it is formed by orbits of X, for more details see [7]. We note that the
invariant algebraic curves will play a key role in this paper. In fact, they play a
main role in the Darboux theory of integrability, and our paper is dedicated to
a particular case of this theory, to study the systems which have a polynomial
inverse integrating factor.

Proposition 6. Let g be a polynomial and ¢\ - -- g its decomposition in irre-
ducible factors in Clx,y]. Then, g = 0 is an invariant algebraic curve if and only
if all the g; are invariant algebraic curves for j = 1,...,r. Moreover, if K and
K; are the cofactors of f and f;, then K = n Ky + -+ n, K.
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Proof: See [7]. i
We shall need the following result.

Lemma 7. Let X be a polynomial vector field, H be a first integral of X, and V
be an inverse integrating factor of X. Then, V H is another inverse integrating
factor of X.

Proof: 1t follows easily from the definition (4.2) of inverse integrating factor. |
Now we prove statement (c) of Theorem 1.

Proposition 8. Let X be a polynomial vector field X in C2. If X has a polyno-
maal first integral, then it has a polynomial inverse integrating factor.

Proof: Let H be a polynomial first integral of X. We note that a polynomial
function is a particular case of a Darboux function. Therefore, by statement (b)
of Theorem 1, X has a rational inverse integrating factor V' = f/g, where f and
g are coprime polynomials. It is known that the curves f = 0 and g = 0 are
invariant algebraic curves of X, see for instance [5].

Let gi*--- g’ be with n; € N the factorization of g in irreducible factors
in Clz,y]. By Proposition 8, g; = 0 is an invariant algebraic curve of X for
j =1,...,r. Let h; be the value of the first integral H on the points of the
irreducible invariant algebraic curve g; = 0.

The Hilbert’s Nullstellensatz (see for instance, [8]) states: Set A, B; € Clz,y]
fori=1,---,s. If A vanishes in C* whenever the polynomials B; vanish simul-
taneously, then there exist polynomials M; € Clx,y| and a nonnegative integer n
such that A™ = MyBy + -+ - + MyB,. Taking A= H — hj, s=1 and B; = g;, we
get that ¢; divides (H — h;)" for some nonnegative n. Since g; is irreducible, g;
divides H — h;. Therefore, there exists a polynomial s; such that H — h; = s;g;.

Since H is a polynomial first integral of X (i.e. H is constant on the solutions
of X), it follows that K = (H — hy)™ --- (H — h,)™ is another polynomial first
integral of X. By Lemma 7, VK is an inverse integrating factor of X. Since
H — h; = sjg;, it follows that VK is a polynomial. Hence, the proposition is
proved. [

4.3 Some preliminary results

Let H = f/g be a rational first integral of the polynomial vector field X. We say
that H has degree n if n is the maximum of the degrees of f and g. We say that
the degree of H is minimal between all the degrees of the rational first integrals
of X if any other rational first integral of X has degree > n.

Let H = f/g be a rational first integral of X. According to Poincaré [13] we
say that ¢ € CU{oc} is a remarkable value of H if f+cg is a reducible polynomial
in C[x,y]. Note that for all ¢ € C the curve f + cg = 0 is an invariant algebraic
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curve. Here, if ¢ = oo, then f + cg denotes g. In [5] it is proved that there are
finitely many remarkable values for a given rational first integral H.

Now suppose that ¢ € C is a remarkable value of a rational first integral H
and that ui" - - - u?" is the factorization of the polynomial f + cg into irreducible
factors in C[x,y]. If some of the a; for i = 1,...,r is larger than 1, then we say
(following again Poincaré) that ¢ is a critical remarkable value of H, and that
u; = 0 having «; > 1 is a critical remarkable invariant algebraic curve of X with

exponent ;.

Now, if H = f/g is a minimal rational first integral of X of degree n which is
not polynomial, then

_gtolftag) Q (4.5)

1
Ho=— ¢
' ? f+ag g1

ca+flg

for any ¢y, co € C, is also a rational first integral of X. It is known that there are
complex values of ¢; and ¢y for which the numerator and the denominator of H;
are irreducible polynomials of degree n. One way to see this is the following. We
claim that there are finitely many values of ¢; and ¢y such that g + co(f + ¢19)
and f + c;g are reducible. In order to prove the claim assume that it is not
true. Then, in particular there are infinitely many values of ¢; and ¢, for which
g+ co(f +c1g) and f + ¢;g factorize in polynomial factors of degree smaller than
n. Consequently, the rational first integral H; has infinitely many remarkable
values, and this is a contradiction.

We say that a rational first integral H; = f1/g1 of a polynomial vector field
X is canonical if H; is minimal and f; and ¢, are irreducible polynomials in
Clx,y] having the same degree. Note that the previous arguments show that
if a polynomial vector field has a rational first integral, then it has a canonical
rational first integral.

Theorem 9. Let X be a polynomial vector field. Suppose that H = f/g is
a canonical rational first integral and that X has no polynomial first integrals.
Consider the rational function

2

g
Vig = —"o »
flg Huiozi—l

where the product runs over all critical remarkable invariant algebraic curves
u; = 0 having exponent o; of X. Then, Vi, is an inverse integrating factor of

X.

For a proof of Theorem 9 see the Main Theorem in [5].
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4.4 Proof of Proposition 3

In all this section X is the polynomial vector field of Proposition 3. Then, it is
easy to check that X has the rational first integral

Bz +122% —4y?)? (x + 222 +24%)°
Y10 )

H(z,y) =

i.e. XH = 0. From (4.5) and for convenient complex numbers ¢; and ¢, we have
that Hy = fi/g: is a canonical rational first integral of X, where

fi(z,y) = 9cpx® +126c52% + 684 co " + 1800 ¢y 2® + 2304 co ¥ +
1152 ¢5 2% 4+ 30 ¢ 2 y2 + 408 ¢5 2° y2 + 1944 ¢y 2° y2 +
3840 ¢o 27 y? + 2688 ¢ 2% y? — 20 ¢ 2yt + 24 o 2t yt +
768 co 2° y* 4+ 1280 ¢o 2%y — 120 ¢y 2% ¥ — 768 ¢ 2 y® —
768 co 2t y® — 384 cy 2?9 + (1 + 128 ¢y + 1 o) y',

gi(z,y) = 92°+1262° + 68427 + 1800 2° + 2304 2° + 1152 2" +
30 2% y? + 408 2° y? + 1944 2%y + 384027 % +
2688 2%y — 20 23yt + 24 21yt + 768 25yt + 1280 2° y* —
12022 % — 768 2 9% — 768 2% y® — 384 2% y® + (1 + 128) y'°.

Now we show that X has no polynomial first integrals. Assume that F' is a
polynomial first integral of X of degree m. Let F}, be the homogeneous part of
F of degree m. Then, since X F' = 0, taking only the higher order terms of X F',
we get that

oF, oF,
9 4 2 2 m 2 1 2 m o_
z (40 +8y)—ax +y (802% + 6y)—ay 0,
or equivalently,
oF,, n oF,, 0
rT—— — =0.
ox Jy

Since the general solution of this linear partial differential equation is an arbitrary
function in the variable y/x, and F,, must be a homogeneous polynomial of degree
m, it follows that X cannot have a polynomial first integral.

We remark that H; is a canonical rational first integral of X, and that X
has no polynomial first integrals. So, X satisfies the assumptions of Theorem 2.
Therefore, if we prove that H; has at least three critical remarkable values, by
Theorem 2(a), it follows that X has no polynomial inverse integrating factors.
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For ¢ = —cy, we have that f; +cgi = y'°. So, —c, is a critical remarkable
value of H; and y = 0 is the corresponding critical remarkable invariant curve of
X with exponent 10.

For ¢ = —(1 4+ 128¢ + ¢1¢2)/(128 + ¢1), we have that

.CE2

Ji+ecg = 19816

h(x,y),

where

h(z,y) = 92°+1262* +6842° 4+ 18002° 4 2304 27 + 1152 2% +
302° y? +4082%y* + 19442 y* + 3840 2° y* + 2688 2° y* —
20z y* + 2427 y* + 768 2% y* + 12802t y! — 1204° —
768z y® — 768 22 y® — 38445,

Hence, —(1 4 128¢y + ¢1¢9)/(128 + ¢1) is a critical remarkable value of H; and
x = 0 is the corresponding critical remarkable invariant curve of X with exponent
2.

For ¢ = —(1 + ¢1¢9)/c1, we have that

1
Jitep =——
(&]

(3x+ 12 22 —4y2)2 (m+2x2 +2y2)3.

Therefore, —(1 + cycp)/c; is a critical remarkable value of Hy, and 3z + 1222 —
49% = 0and z+222+2y? = 0 are the corresponding critical remarkable invariant
curves of X with exponent 2 and 3, respectively.

In short, we have proved that the polynomial vector field X given by (4.3)
has a rational first integral and does not have a polynomial inverse integrating
factor. Therefore, Proposition 3 is proved.

In fact, we can prove that H; has exactly these three critical remarkable
values. This follows from statement (c.1) of the Main Theorem of [5], because
the rational function

V= 9
Yr(Bx+ 1222 —4y?)(x + 222 + 2y?)?

is the inverse integrating factor of the polynomial vector field (4.3), having in its
denominator all the critical remarkable invariant algebraic curves.

4.5 Proof of Theorem 4

In all this section we assume that X is a polynomial vector field in R? having a
center.
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First we provide all the definitions that appear in the statement of Theorem
4.

Let p € R? be a singular point of X. We say that p is a center if there is a
neighborhood U of p such that all the orbits of U \ {p} are periodic.

If X given by (4.1) has the polynomials P and ) homogeneous with the same
degree, then we say that the polynomial vector field X is homogeneous.

In what follows p and ¢ will denote positive integers. We say that a func-
tion F(x,y) is (p, q) ~quasi-homogeneous of weight degree m > 0 if F({Px, (1Y) =
("F(x,y) for all £ € R.

A polynomial vector field X given by (4.1) is (p, q¢)—quasi-homogeneous of
weight degree m > 0 (or simply quasi—homogeneous) if P and @ are (p, ¢)—quasi—
homogeneous functions of weight degrees p — 1+ m and ¢ — 1 + m, respectively.

Note that the (1,1)-quasi-homogeneous polynomial vector fields of weight
degree m coincide with the homogeneous polynomial vector fields of degree m.

We also note that if X is (p, ¢)—quasi-homogeneous, then the differential equa-
tion dy/dr = QQ/P (another way to work with X)) is invariant by the change of
variables (z,y) — (Pz, (%y).

If condition (i) of Theorem 4 holds by X, then it is easy to check that
zQ(z,y) —yP(z,y) is a polynomial inverse integrating factor of the homogeneous
polynomial vector field X.

If condition (ii) of Theorem 4 holds by X, then it is easy to check that
prQ(z,y) — qyP(x,y) is a polynomial inverse integrating factor of the (p,q)-
quasi-homogeneous polynomial vector field X.

If condition (iii) of Theorem 4 is satisfied by X, in [1] and [12] it is proved that
X has a polynomial inverse integrating factor of degree 3 or 5 for any quadratic
vector field X having a center.

In short, we have proved Theorem 4.

4.6 Proof of Proposition 5

In all this section X will be the polynomial vector field (4.4) of Proposition 5.
The origin is a center of X because it is a monodromic singular point, and X
is p-reversible with respect to the involution p(z,y) = (z, —y); i.e. X satisfies

De(p)X(p) = —Xop(p), peR”:

Suppose that X has a polynomial inverse integrating factor V' of degree k.
Then, it satisfies equation (4.2). Writing V' as a sum of homogeneous polynomials;
ie,

V(ZL’,y) = Vo + Z‘/z(xay)a

=1
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where V5 € R and V; € R[z,y| are homogeneous polynomials of degree i for
i = 1,...,k, we obtain a system of partial differential equations. The partial
differential equation of degree k + 3, using the Euler formula for homogeneous
functions, becomes

yoVi\
7y (Vk(l‘;y) 58_y) =0.

From this equation and since V' can be determined unless a constant, we get
Vi(z,y) = 2" 7%y*.

Now we can substitute this expression in the partial differential equation of degree
k+2, and again using the Euler formula for the homogeneous functions, it becomes

22y (Ik5(_2x4 + (k= 2)y") + Vi (2, y) — ga?y ! (x, y)) =0.

JFrom this equation, we obtain
Viei(z,y) =2*7° (—21’4 + e’y® — (k — 2)194) ,

where ¢; € R. Finally, substituting the expressions of V};, and Vj,_; into the partial
differential equation of degree k + 1, we obtain

x2y( — 2"(2c12% — 2(k — 3)a'y? — 3c1(k — 3)2%y* + (k — 2)(k — 5)y%)

Yy OVi_o o
Vialz,y) + 575 2 (@,9)) =0

Therefore, we have

Vieo(z,y) = —2ci2"2 + ( (k —3)2" *logy + coax™™ 4) >
—c1(k — 3)a*Sy* + (k — 2)(k — 5)2* 8y /2,
where ¢y € R. This function must be a polynomial, and then we must take £ = 3.

Finally, direct computations show that there is no polynomial inverse inte-
grating factor of degree 3 for the vector field (4.4).

Acknowledgments. We must thank Javier Chavarriga for his good comments
related with Propositions 3 and 8.
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Chapter 5

Periodic orbits for a class
of C! three—dimensional sys-
tems

In this second article, we perturb a reversible polynomial differential system of
degree 4 in R?® by C! functions. If the perturbation is strongly reversible, the
dynamics of the perturbed system do not change. Otherwise, if the perturba-
tion is non—strongly reversible, we prove the existence of an arbitrary number of
symmetric periodic orbits. This is a joint work with Jaume Llibre and Marco
Anténio Teixeira, and it has been submitted for publication.

5.1 Introduction

A vector field X : R® — R3 of the form X = (P,Q, R) is called a polynomial
vector field of degree m if P, () and R are polynomials of degree < m and at least
one of them has degree m.

A diffeomorphism ¢ : R? — R3? is called an involution if ¢ o o = Id. A vector
field X is reversible if there exists an involution ¢ such that 0, X = —X o p; i.e.,
de,(X(p)) = =X (e(p)). Let S, be the set of fixed points of ¢. An orbit 7 is
symmetric if ¢(y) = 7. Hence, every singular point of X in S, is symmetric.
Some classical properties of reversible systems are:

(i) The phase portrait of X is symmetric with respect to S,.

(ii) A symmetric singular point or a symmetric periodic orbit cannot be an
attractor or a repellor.

(iii) If X(p) =0 and p € S, then X (¢(p)) = 0.
(iv) If an orbit +y intersects S, in two distinct points, then 7 is a periodic orbit.
(v) If v is an orbit of X such that v ¢ S, and p € v N S, then X (p) & T,5,.

vi All periodic orbit Y of X not crossin S s has a symmetric one given l)y
Y g Oy Y g
@( )‘

217
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(vii) Let v be an orbit having stable manifold W?*(v) and unstable manifold
W*(~). Then,

e(W*(7)) = W*(p(7)), ©W"(7))=W?(p(7))

In this paper we perturb a polynomial system in R3 by C! functions and we
use the symmetry to prove that the perturbed system has an arbitrary number
of symmetric periodic orbits.

Let Xq be the vector field associated to the polynomial differential system of
degree 4

t=+ A0 -y =22, y=—z2+mxy, F=y+az, (5.1)
where z,y, 2z € R, or in cylindric coordinates (taking y = r cosf and z = rsin )
g=r*(1—=r?), F=ar, =1, (5-2)

where 2,7 € R, r > 0, and § € X!. In both cases, the dot means derivative with
respect to the time t € R.
System (5.2) has a first integral H : R? x 3! — R defined by

H(z,r,0) = —22% + 2% — ™. (5.3)

We denote H. = H™!(c), for ¢ € [0,1]. The level H, is, topologically, a sphere
with two different points identified at the origin. The origin is a singular point,
and all the other orbits in Hy are homoclinic orbits at the origin. The level H; is
the periodic orbit z = 0, r = 1, see Figure 5.1.

We denote D3 the bounded region H~'((0,1)) C R®. If 0 < ¢ < 1, then H.
is an invariant torus inside Ds3. In the whole paper, all the three-dimensional
systems considered are studied only in the bounded region D3 = H~1([0,1]) =
H() U D3 U Hl.

Systems (5.1) and (5.2) are reversible with respect to the linear involution ¢
defined by

p(r,y,2) = (2,9, —2) (5-4)
for system (5.1), and

o(x,r,0) = (—x,r,—0) (5.5)
for system (5.2). The set S, of fixed points of ¢ is the segment x = z

= p— 0
y € [-V2,v2]. In polar coordinates, S, can be written as z = 0, r € [0,/2]
6 € {0,7}.

)
b
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Q x

[¢]

Figure 5.1: Phase portrait of system (5.2) in the region D3.

We say that a p-reversible system of the form
i=f(a®r0), F=axgr0), 6=1+h(2>r0),

is strongly reversible if f, g and h do not depend on 6.
For a strongly ¢-reversible perturbation Y. of the vector field Yy = X, defined
by system (5.2), we prove the following theorem.

Theorem 1. Let Y. be the strongly ¢-reversible vector field associated to the
system

T =r*1—r%) +ef(are),
= alr + gl 1.2). (5:5)
0 =1+ ch(2? re),

with f,g,h € C', f(0,0,e) = 0. Suppose that Hy and Hy are invariant by the
flow of Y., and that the system (i,7) restricted to D3 N {0 = constant} has only
two singular points, (x,r) = (0,0) and (x,r) = (0,1). Then, Ds is fulfilled of
wmvariant tori.

Let X, be the non—strongly ¢-reversible perturbation of X associated to the
system

t=r*1—-r})+ef(z,r 0, ¢),
= 2+ eg(x,7,0,2), (5.7
0 =1+c¢ch(x,rb,e),

with f, g, h € C'. The main goal of this paper is to prove that, for e > 0 sufficiently
small and under convenient conditions there exist an arbitrary number of periodic
orbits for system X..

Let 7 be a periodic orbit of period P such that there exist m,n € N, (m,n) =1
satisfying the relation

2mn = mP.
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We define the rotation number of vy as m/n. If a periodic orbit v of system (5.2)
has rotation number m/n, then after a time 27n it has made m turns to the
periodic orbit Hj.

We prove the following theorem.

Theorem 2. Let (5.7) be a non—strongly @-reversible C'—perturbation of system
(5.2) such that Hy and Hy are invariant by the flow of (5.7) and f(0,0,0,¢) = 0.
Let m/n € (0,v/2), m,n € N, (m,n) = 1. Then, there exists ¢, > 0 such that
if € € (0,e,), then X. has two periodic orbits of period 2mn and rotation number
m/n.

Let T, n,e be the n—th return map of the Poincaré function of system (5.7); that
is, the image of the section § = 0 under the flow of system (5.7) after a time 27n.

Corollary 3. Under the hypotheses of Theorem 2, all the periodic orbits v of
system (5.7) with period < 2mn and rotation number m/n, satisfy

Te(v) — Ta(v),

e—0

where fn =T

The paper is structured as follows. In Section 5.2 we study the dynamics of
the vector field X,. In Section 5.3 and 5.4 we prove Theorem 1 and Theorem
2, respectively. Finally, in Section 5.5 we relate Theorem 2 with the well-known
Poincaré-Birkhoft Theorem.

5.2 The dynamics of X, on Ds

As we said in Section 5.1, the level H is formed by homoclinic orbits at the
origin. These homoclinic orbits are 7, = {(x,(t),r,(t),t) : t € R}, where

_ 2(M B t) r (t) _ \/5

L+2(u—1)2 " VI+20u—t)?
for all 4 € R. Then, Hy \ {(0,0,0)} = {7, : © € R}. The set H; can be written
as Hy = {(0,1,t) : t € Refod 27)}.

The phase portrait of system (5.2) comes from a rotation of the phase portrait
of the system

z,(t)

t=r*1-1?, 7=rz, (5.8)

defined in R% = {(x,r) € R* : r > 0}, see Figure 5.1. This planar system has the
first integral K : R2 — R given by

K(z,7) = =22 + 2r* — . (5.9)
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We note that K is the same function as the first integral H defined in Section
5.1, but we write different names in order to distinguish the space where they are
used, R? for H and R? for K.

System (5.8) has a degenerate saddle at the origin, and the curve K~*(0) is
a homoclinic loop of this saddle. It also has a center at x = 0, »r = 1, with
cigenvalues +iv/2, where i = /—1. This center corresponds to K (1), and
becomes the periodic orbit H; when we consider system (5.2).

System (5.8) is reversible with respect to the linear involution

U(x,r) = (—x,7). (5.10)

The set Sy of fixed points of 1 in the region Dy = K~([0,1]) is the segment
z =0, r €[0,v/2]. The phase portrait of system (5.8) restricted to Ds is shown
in Figure 5.1.

We can derive the dynamics of system (5.2) restricted to D3 from the dynamics
of system (5.8) restricted to Dj just observing that the angle § can be taken as
the time modulus 27. The flow of system (5.8) at t = 27 gives the first return
map of system (5.2) at the transversal section § = 0.

Lemma 4. The period function of the periodic orbits v. = K~ *(c), c € (0,1), s
given by

P(c) (V2m, +00).

2w c
V2e
Proof. Let P(c) be the period of .. The curve 7. cuts S, at the points
Py=(0,v/1—+1—¢)and P, = (0,/1+ 1 —¢). We will compute the time
spent by the flow os system (5.2) for going from P, to P, through ~.. Because of
the symmetry 1, this time corresponds to half the period. From K(v.) = ¢, we
have x = £,/ % We take x > 0; if x < 0, then we get the other half of the

period. Substituting x in the expression 7 = xr and integrating, we obtain

\V 1++v/1—c
P(c)/2
Péc):/ dt = / V2 g
0
V1-v1—c

Then, the lemma follows. |

If 21/P(c) = v2¢ = m/n € Q, for certain m,n € N such that (m,n) = 1
and m/n € (0,+/2), then the corresponding torus H. is fulfilled of periodic orbits.
This happens if ¢ = m?/(2n?). Otherwise, it has a dense orbit, see Appendix 1
of [1].
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Proposition 5. Let m,n € N, (m,n) = 1, such that m/n € (0,v/2). Let ¢ =
m?/(2n?) € (0,1). Then, there exist two symmetric periodic orbits of system
(5.2) in the torus H. with rotation number m/n. These kind of orbits tend to Hy
as n tends to infinity, for fixed m.

Proof.  Let 1, 72 be the orbits of H, such that (0,v/1++/1—¢,0) € v and
(0,v/1—+1—1¢,0) € 7. As ¢ =m?/(2n?), we have 2rn = mP(c), so these two
orbits, after a time ¢t = nm, have done exactly m/2 turns to the periodic orbit
H;, and then they cut S, twice. So they are closed orbits by the property (iv) of
reversible systems stated in Section 5.1.

If n — oo, then ¢ — 0, so y; and v, get closer to Hy as n increases, for fixed
m. u

Consider the image of the section § = nm (mod 27) by the flow of system
(5.2) at time n7 and let S, be the image of the curve S, under the flow of (5.2)
at time nr. In Figure 5.2 we draw 5, for n = 0,1,2,3. As H; is invariant and
the origin is a singular point, S, always cuts the axis {z = 0,0 =7} at r =0
and r = 1.

At time t = 0, we have Sy = S,. At timet = 7, S, cuts the axis {x = 0,0 = 7}
four times (two of them at r = 0, 1), so there exist two symmetric periodic orbits
of period 27. On these orbits, we have H = 1/2 because m = n = 1, and the
rotation number is 1.

At time t = 27w, Sy, cuts the axis {x = 6 = 0} six times, two of them at
r = 0,1 and two of them corresponding to the curves with rotation number 1.
So, there exist two symmetric periodic orbits of period 47, and on these curves
H =1/8 (the rotation number is 1/2).

At time t = 37, S3, cuts the axis {x = 0,0 = 7} ten times. Two of them are
at 7 = 0,1 and two of them correspond to the curves of rotation number 1, so
there are six symmetric periodic orbits of period 67, and on these curves either
H=1/18 or H=2/9 or H = 8/9 (the respective rotation numbers are 1/3, 2/3
and 4/3).

As time tends to infinity increasing by multiples of 7, we find more symmetric
periodic orbits, corresponding to H = m?/(2n?), (m,n) = 1, m/n € (0,V/2).
We can ensure that at least two of such orbits exist, because (1,n) = 1, for any
n € N.

In the following proposition we prove that, for any n € N, S,,, cuts the y—axis
transversally.

Proposition 6. Let ¢ € (0,1) and v € H.. Let P = (0,79,0) € v NS, 19 €
(0,4/2). Let Q be the image of P by the flow of system (5.2) at time nw. Suppose
that Q =€ S, is on the y—axis. Then, S, crosses the y—axis at Q) transversally.

Proof. Let 0 < ¢y < c <y < 1. Fori = 1,2, let 7; be an orbit of system
(5.2) such that H(v;) = ¢; and such that there exists P, € v, N S,. Let P! =
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Time t=0 Time t=n

r

¥

.
Time t=2n Time t=3n

Figure 5.2: The evolution of the set S, for some values of the time.

(2, r nmod 2w) € 7; N Spx, @ = 1,2. The points P/* and Py are close to @
if ¢; and ¢y are close to c. Since the period function P is strictly decreasing,
P(c1) > P(c) > P(cy). Then, as @ € S,,, we have z7 - x5 < 0. Taking ¢; and ¢y

are as close to ¢ as we want, the proposition follows. |

5.3 On Theorem 1

In this section we prove Theorem 1 and we provide a polynomial differential
system of degree 4 satisfying all its assumptions.

Proof of Theorem 1: Consider the strongly ¢-reversible perturbation (5.6) of
system (5.2) defined in Theorem 1. As h is defined in the bounded domain Ds,
then it is bounded, so for € small enough, §# = 1 4+ eh > 0 in D3. Then, we
can take 0 as the independent variable to obtain from (5.6) the two—dimensional
system
r2(1—7r?) +ef(z? re)

1+ ch(a?,r,¢) ’
r+eg(z? r,e) (5.11)
1+ ¢eh(x?,re)’

¥ =F(z%re) =

' =xzG(z*re) =1

where ' means derivative with respect to 6. This system is reversible with respect
to the linear involution ¢ defined in (5.10), and it is defined in the bounded
domain D, defined in Section 5.2.
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By hypotheses, the point P, = (0, 1) is a singular point of (5.11). The Jaco-
bian matrix of (5.11) at P is

0
—2+5—f(0, Le)
0 87’
1+¢h(0,1,¢) )
1+¢eh(0,1,¢)

and it has eigenvalues

\/2 —e(2£(0,1,2) +29(0,1,€)) +222£(0,1,)g(0, 1, ¢)
+i .
! 1+¢eh(0,1,¢)

So P is either a center or a focus. But, as it belongs to the set Sy, of fixed points
of 9, it cannot be a focus, so it is a center, and by hypotheses it is the only
singular point inside the region K~'([0,1])\ {(0,0)}. So the region K~'((0,1)) is
fulfilled of periodic orbits. Going back to (5.6), as 0 > 0 for ¢ small enough, the
region Dj is fulfilled of invariant tori, and the theorem follows. |

Example 5.3.1. Consider the differential system of R?

i.:P(x7y7Z)7 y‘:Q(mﬁy72)7 Z‘::R<x7y7z)7

where P, Q) and R are polynomials of degree 4. If this system has a singular point
at the origin, is strongly p—reversible with respect to the linear involution (5.4)
and has Hy and Hy invariant, then it becomes, in polar coordinates,

= ayr*(1 — r?) + 2°[2a; + 2a32* — (2a1 + a3)r?,
o= xr2a; 4 as + azz? — a;r?, (5.12)
9 = c + 02x2 + 63T2.
Observe that system (5.2) is a particular example of system (5.12), just take
ay =c¢; =1 and ay = azg = co = ¢3 = 0. So system (5.12) can be written as a
perturbation of (5.2) (we take ay = c¢; =1 for simplicity):

i =131 —r?) +ex?2a1 + 2a32? — (2a1 + a3)r?],
i =xr[l +e(2a1 + azx? — arr?)], (5.13)
0 =1+ e(cox® + cgr?).

For this system, H = 4ex(ay(1—12) +asz®)H, where H is the function defined in
(5.3). For e small enough, system (5.13) can be written as the two—dimensional
system,

o 21 —1?) + ex?[2a;1 + 2a32% — (2a1 + a3)r?]
m pr
1+ e(cox? + c3r?) ’

, 1+ e(2a1 + agz® — arr?)
- 1+ e(cox? + c3r?)
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For e small enough, (0,0) and (0,1) are the only singular points of this system in
the region K=1([0,1]), where K is the function defined in (5.9). Then, Theorem
1 can be applied. So, for system (5.13), the region Ds is fulfilled of invariant tori.

5.4 On Theorem 2

In this section we prove Theorem 2 and we provide a polynomial differential
system of degree 4 satisfying all its assumptions.

Proof of Theorem 2: According to Proposition 5, there exist two symmetric pe-
riodic orbits 71 and v, of period 27n and rotation number m/n of system (5.2)
in the torus H,, ¢ = m?/(2n?). Each one of these symmetric periodic orbits cut
transversally the y—axis twice, see Proposition 6. Then, due to the theorem of
continuous dependence of the solution of an ODE with respect to initial condi-
tions and parameters, there exist €, > 0 such that, for an e—perturbation (5.7) of
system (5.2), with € € (0, &,), two symmetric periodic orbits +5, 75 appear e—close
to 1 and 79, respectively, and ~; e t = 1,2. So, Theorem 2 is proved. |

From the proof of Theorem 2 it follows immediately Corollary 3.
Example 5.4.1. Consider the differential system of R?

j?:P(x7yﬂz)7 y:Q(I’y7z)’ Z:R<x7y7z)7

where P, Q and R are polynomials of degree 4. If this system has a singular point
at the origin, is not strongly p—reversible with respect to the linear involution (5.4)
and has Hy and Hy invariant, then it becomes, in polar coordinates,

T = 2°[2a; + 2a32% — (2a1 + a3)r?| + asx r(22* — r?) sin 0+
(1 = r?)[agr + ag cos 6 + azr cos? § + asx sin 6],

7= xr[2a1 + ay + azz? — a;r?] + azz?r? sin 0+
x[ag cos O + azr cos® 6 + ayx sin 6],

0 = ¢+ con®+ csr® + [ear + 522 + cgr%] cos 0 + crr? cos® O+

cgr3 cos® 0 + coxr sin @ — (ay — ¢o7?)x cos O sin 6,

with § # 0. In this case, H = 4x(ay(1 — r?) + agz® + aszrsin@)H. Observe that
ifay =a5 =ag =a7; =0 and ¢y = -+ = ¢19 = 0, we get system (5.12), and we
get system (5.2) if we take as = ¢; = 1 and the rest of the coefficients zero. So,
we obtain an example of (5.7) taking as = ¢y = 1 and multiplying the rest of the
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coefficients by e:

i = e[2?[2a1 + 2a32? — (2a1 + a3)r?] + asz r(2z* — r?)sin 0+
r(1—r?)[r 4+ agcosf + azr cos® § + ayx sinb]],

Po= xr+e[rr2a; + azx? — a1r?] + azz®r? sin 6+
lag cos 0 + arr cos? 0 + asxsinb]],

0 = 1+¢ [c22? + 57 + [car + 521 + cor®] cos 0 + c7r? cos® O+

csr® cos® 0 + coar sinf — (a7 — cyor?)x cos fsin 6.
Then, Theorem 2 can be applied to this system. So, there exist an arbitrary
number of symmetric periodic orbits for this system in the region Ds.

5.5 The Poincaré map fmg

Let A = I x ¥! be an annulus, where I is a closed interval. We denote its
coordinates by ¢ € I and ¢ (mod 27) € X, A twist map isa Cl-map T: A — A
such that

T(c,t) = (¢,t + 7(c) (mod 2m)) (5.14)

for a certain 7(c) and such that 7/(c) is strictly increasing or decreasing.
_ We extend the notion of twist map as follows. Let A be an annulus and let
T :A— Abea Cl-map such that the diagram

A — A
T

hl LA
i i
T
commutes, where h is a Cl-diffeomorphism. Then, we also say that T is a twist
map.
Let A be the annulus of D3N {6 = 0} having boundaries H., N {0 = 0}, where

2T

) V2¢ € Q,

for i = 1,2, ¢1,¢0 € (0,1) and ¢; < ¢o. Let (x(t),r(t)) be the periodic solution
living on H.N {6 =0} C A. Suppose that r(0) = 1. Then, we define 7,, : A — A
by

T (x(t),r(t)) = (z(t + 2mn),r(t + 27n)).

Proposition 7. The function fn 18 a twist map in A.
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Proof. We define A as the annulus formed by the points (c,t (mod 27r)), with
cp<c<cpandteR. Let T,, : A— A be given by

T.(c,t) = (¢, t+7(c)) = (¢, t + 2mn (mod P(c)).
Since P(c) is strictly decreasing, 7(c) is strictly increasing. Finally, defining
h(c,t (mod P(c)) = (z(t + 2mn),r(t + 27n))

if (z(t),r(t)) is the periodic solution such that H(z(t),r(t)) = ¢, it follows that
the diagram

A — A

Th
h| L h
A — A

Tn

commutes. So, T}, is a twist map. |

Let fn be the twist map (5.14) and let Tma : A — A be defined by
Toclet) = (c+ef(et,e),t+7(c) +2g(e,t, ),

where f and g are C'-functions and ¢ is a small parameter. If Tn,a is area—
preserving, then the Poincaré-Birkhoff Theorem says that TVM has two different
periodic orbits for each rational number between the rotation numbers of fnﬁ
on the boundary components of the annulus A. The theorem was conjectured
by Poincaré (see [8]) and proved by Birkhoff (see [2] and [3]) and Brown and
von Newmann (see [4]). Other more recent proofs have weakened the area-
preservation hypotheses (see [6]).

We say that a periodic orbit is hyperbolic if the jacobian of the Poincaré map
on this orbit has not pure imaginary eigenvalues, and they are different from 1
and —1. If all the eigenvalues are pure imaginary and the matrix diagonalizes,
then the periodic orbit is elliptic.

A version of the Poincaré—Birkhoff Theorem is the following one, using the
notation introduced in Proposition 7.

Theorem 8 (Poincaré-Birkhoff Theorem). Let I' be an invariant curve of T,
n € N, formed by fixed points of (fn)s, where s is the denominator of v/2¢ € Q.
If Tn,e preserves area, then for € > 0 sufficiently small the map (fme)s has 2ks
fized points (k € N) in the neighborhood of the curve I', half of them are elliptic
and the other half are hyperbolic.

Note that if our Tvn,a preserves area, then the two periodic orbits of Theorem
2 correspond to the two periodic orbits of the Poincaré-Birkhoff Theorem. But
we do not know in general that our 7). preserves the area, or that 7,, . satisfies
other assumptions for which the theses of the Poincaré—Birkhoff Theorem hold.
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Chapter 6

Hyperbolic periodic orbits
coming from the bifurca-
tion of a 4—dimensional non—
linear center

In this third article, we study the bifurcation of hyperbolic periodic orbits from
a 4-dimensional non—linear center in a class of differential systems. The tool for
proving these results is the averaging theory. This is a joint work with Jaume
Llibre and Marco Anténio Teixeira, and it has been accepted for publication in
International Journal of Bifurcations and Chaos.

6.1 Introduction

Consider the real differential system

i=—w(p+qr) j=-yp+qr)” (6.1)
where p and ¢ are real parameters. The overdot indicates derivative with respect
to time ¢. This system was studied by Barone-Netto and Cesar in [1], as an
example of a non-trivial stable system of the form & = —x f(z),9J = —y f(z). In
that work, it was proved that, for p > 0, the origin is stable and any trajectory
projected into the (z,y)-plane is a conic.

Let © = u, y = v. Then, system (6.1) can be transformed into the R*
differential system

i=u, u=-z(p+qx)®, y=v, v=—-yp+qr)’. (6.2)

We say that a singular point of system (6.2) is a center if it has a neighborhood
where all the orbits except the singular point are periodic.

By the change of time dt = (p + qx)® ds, we obtain the following polynomial
system of degree 4, defined in the whole R*:

i=u(p+qr), au=-z y=v(p+qz)’, 0=-y. (6.3)

231



232 6. HYPERBOLIC PERIODIC ORBITS

Now, the dot denotes derivative with respect to s. This system is equivalent to
(6.2) outside the hyperplane p + gx = 0. Since we shall work near the origin
and in the case p # 0, system (6.2) has a center if and only if system (6.3) has a
center.

Our first main result is the following theorem, which will be proved in Section
6.2.

Theorem 1. Differential system (6.3) has a center at the origin if and only if
p > 0.

Since in Mechanics the systems of the form

i=-zp(x,y), i=-yaqy)

have some relevance, we want to study perturbations of system (6.1) by systems
of the form

i=—x(p+qr) 1+ gz, &,y,9) +ea(z,2,9,9)), (6.4)
jj = —y (p + q&?)_s(l + g2 hg(.ﬁE, :i:,y, y) + 5h4($, 1‘)>y7 y))? .

where g; and h; are homogeneous polynomials of degree ¢, for ¢« = 2,4. We remark
that the perturbed system we are presenting is the one of minimum degree from
which hyperbolic periodic orbits can be obtained using the first order theory of
averaging of Section 6.3, as we will show in Section 6.4.

The same arguments used for passing from system (6.1) to system (6.3) can
be applied to system (6.4) to transform it into

T=1u (p + qx)?)?
= —x(1+e?gy(z,u,y,v) +¢ega(z,u,y,v)), (6.5)
g=v(p+qz), |

U= _y(l + 52 h2<‘r7u7yav) + 8h4('r7u7yav>>‘

A hyperbolic periodic orbit of system (6.5) is an isolated periodic orbit in
the set of all periodic orbits of (6.5). The Poincaré map (or, equivalently, the
displacement map) is a good tool for studying the hyperbolic periodic orbits of
autonomous systems (for more details, see [4, 5] and also the end part of Section
6.3). We recall that a hyperbolic periodic orbit of a system corresponds to an
isolated zero of its displacement function.

We study how many hyperbolic periodic orbits can bifurcate from the center
of system (6.3) when p > 0. Our main result is the following.

Theorem 2. Suppose that p > 0. Using the first order averaging method applied
to system (6.5) we can obtain at most 16 hyperbolic periodic orbits bifurcating
from the periodic orbits of the center of system (6.3). Moreover, there are systems
(6.5) having exactly 0,1, ...,16 hyperbolic periodic orbits.
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We use the averaging theory for proving Theorem 2, see Section 6.3. For
additional results in the use of the averaging theory for computing periodic orbits,
see [2, 7]. In general, it is not easy to find a change of variables to pass from a
given differential system to its normal form by applying the averaging method
for finding periodic orbits. In particular, it is not easy to apply the averaging
method for studying the hyperbolic periodic orbits bifurcating from the periodic
orbits of a center, mainly if the center is non-linear; for 2-dimensional systems
see [7, 11]; for higher dimensional systems see [6, 3, 8]. The general idea is to
relate this change of variables to the first integrals of the center.

6.2 Characterization of the center

Let U be an open set of R*. A C! function H : U — R is a first integral of system
(6.3) if it is constant on the solutions of (6.3) contained in U. In other words, if

0 0 0 0
_ 30 O 3¢ O
X =ulp+qz) 5 xau+v(p+q:r) 39 5

is the vector field associated to system (6.3), then H is a first integral if and only
it XH=0inU.

System (6.3) has three functionally independent first integrals; one of them
corresponds to the energy of the mechanical system in the (x,u)-plane:

2 2

U T
H(rz,u)=—+ ——7—; 6.6
1@, u) 2 2p(p+qu)? (6.6)
another one corresponds to the angular momentum:
HQ(CC?va?U) =vT —uy,; (67>
and the last one is
Ha(x,u,y,0) = uv(p+qz) — quly + ——— (6.8)
T (p+qw)?

Of course, (6.6), (6.7) and (6.8) are also first integrals of system (6.2).

We note that system (6.3) is invariant under the symmetry
(l’, u,y,v, t) - ($7 —u,—Yy,v, _t)

If ¢ = 0, then system (6.3) is a linear center. If p = 0, then the plane x = y = 0
of R* is full of singular points, and then the origin is not an isolated singular point,
so it cannot be a center. As we are interested in studying non-linear centers in
R*, we take pq # 0. In this case, the system becomes easier.
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Figure 6.1: Phase portrait of system (6.10) with a plus on the Poincaré disc. The
period annulus of the center is the region inside the homoclinic loop of the singular
point at infinity. The vertical straight line corresponds to x = —1.

Lemma 3. If pq # 0, then system (6.3) is topologically equivalent to
t=ulr£1)? d=-2, y=v@xl)? o=—y, (6.9)
where we take the + sign to be + if p > 0, or — if p < 0.

Proof. We scale the variables and the time as follows

p| u | v t
r— —z, u— t

) Yy — —v, v — 3 - .
q q+/ |p| q q+/|p| VIp)?

Then, the lemma follows. O

Next we prove that, in order to have a center at the origin, p must be positive.

Proposition 4. Consider the system
t=ulx+1)? 0= -, (6.10)

which corresponds to system (6.9) restricted to the plane (z,w), which is invariant.
Then, the following statements hold.

(a) If in (6.10) we have a minus, then system (6.9) has no center at the origin.

(b) Ifin (6.10) we have a plus, then (6.10) has a center at the origin (see Figure

1).

Proof. The origin is a singular point of system (6.10) with eigenvalues ++/F1.
If in (6.10) we have a minus, these eigenvalues are real numbers, and then the
origin is a saddle of (6.10). Clearly, in this case, (6.9) cannot have a center. If
in (6.10) we have a plus, then the eigenvalues are pure imaginary numbers, and
then the origin is either a focus or a center for system (6.10). But the function
Hi(z,u) defined in (6.6) with p = ¢ = 1 is a first integral of this system defined
in a neighborhood of the origin. Therefore, the origin cannot be a focus, so it is
a center. [l
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We note that Proposition 4 proves that if system (6.9) has a center at the
origin, then it has the sign plus. That is, using Lemma 3, we have proved the
“if” part of Theorem 1.

In order to prove the “only if” part of Theorem 1 the key point will be to
show that the projection on the (z,y)-plane of any trajectory of system (6.9) is
a conic, and that it is an ellipse if it is sufficiently close to the origin. Before the
proof, we give a lemma which will simplify our computations.

Lemma 5. Let I' be a trajectory of system (6.9) different from the origin for
which Hy is defined. Let ~y be its projection in the (x,u)-plane. Assume that v is
in the period annulus of the origin for system (6.10). Then, there exists a point
(20, ug, Yo, Vo) € I' such that ug = 0.

Proof. Let P, = (x1,u1,y1,v1) be a point of I', and let hy = Hi(x1,u1). Let xg
be a solution of the equation

R AR
2 2(14x)? 2(1 + z)?

Then, (z9,0) € 7 is the projection of a point Py = (0,0, o, v0) € I" in the (x,u)—
plane, where y, and vy can be obtained explicitly from the equations Hy(P;) =
HQ(P()) and Hg(Pl) = Hg(Po) ]

Proof of Theorem 1. The theorem will be proved if we show that the projection
of any trajectory different from the origin and sufficiently close to it in the (z,y)—
plane is an ellipse. That is due to the fact that if z(¢) and wu(t) are periodic
functions with the same minimal period 7" in a neighborhood of the origin (see
Proposition 4), then the ellipse (z(t),y(t)) implies that y(t) is periodic of period
T. Using the last equation of (6.9) it will be proved that v(t) is periodic of period
T.

Let I' be a trajectory of system (6.9) different from the origin such that its
projection into the (x,u)-plane, denoted by 7, is in the period annulus of the
center of system (6.10). Let v be the projection of I' into the (x,y)-plane and
Py = (0,0, 90, v0) a point of I' (see Lemma 5).

If 2y = 0, then the three first integrals vanish on Fy, and then I' is the origin.
So we can assume xy # 0. Moreover, as vy is surrounding the origin for system
(6.10), it cuts the straight line u = 0 at two points, one of them with positive
x—coordinate. Then, we can assume zy > 0.

Since the hyperplane 1 + z = 0, where the first integrals H; and Hj are not
defined, is far enough from the origin, we can choose the curve I' contained in
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x > —1. For the points of I' we have H,(z,u) = Hy(z0,0) and H;(z,u,y,v) =
H;(P), for i = 2, 3; that is,

2 2
2 X Lo
u” + — =0,
(14+2)2 (14 )2
vr —uy — vy =0, (6.11)
ry Zo Yo

uv(l+x) —uly+ — =
U+ =y 0 ™ T
Since zy > 0, it follows that I" cannot be contained in the hyperplane x = 0. For
any point (z,u,y,v) € ', x # 0, we can isolate u? and v in terms of z and y from
the first and the second equations of (6.11), respectively:

s (w0 —2)(x — 20 + 220 7) U_vox0~|—uy
N (14+2)2(1 + )2 N T '

From the third equation of (6.11) we obtain the equation of :
(Yo — 20 y)* +v5(x — 20)(1 + 20)* (7 — 29 + 220 7) = 0. (6.12)

This curve is a conic in the variables x and y. In order to prove that if ~ is close
enough to the origin, then it is an ellipse, we must prove that the determinant

Y+ v3(1 4 20)%(1 + 2x0) —xoyo —viad(1 + x0)?
—ZoYo :U% 0 = —véx%(l + ;1:0)6
—v3x3(1 + x0)? 0 —vdz3(1 + 20)?

is not zero, and that its 2 x 2 minor

2 201 2(1 —
' vl ) O | = BB (1 + w0)2(1 + 210)

—ZoYo xj
is positive.

If vo = 0, then (6.12) is the straight line y = yox/x¢, which is far from
the origin. If vy # 0, then we can take z( sufficiently small such that both
determinants are different from zero and the second one is positive. Then, v is
an ellipse and the theorem follows. O

6.3 First order averaging method for periodic
orbits

We consider the differential system

i(t) = eF(t,x(t)) + *R(t, z(t), ), (6.13)
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with z € D C R", D a bounded domain and ¢ > 0. We assume that F'(¢,z) and
R(t,z,¢e) are T—periodic in t.

The averaged system associated to system (6.13) is defined by

§(t) = £ (y(1)), (6.14)
where
1) =5 | Flois (6.15)

The following theorem shows under which sufficient conditions the singular
points of the averaged system (6.14) provide T—periodic orbits for system (6.13).
For a proof see Theorem 2.6.1 of [10], Theorems 11.5 and 11.6 of [11], and Theorem
4.1.1 of [5].

Theorem 6. We consider system (6.13) and assume that the vector functions
F, R, D,F}, Df:Fl and D, R are continuous and bounded by a constant M (in-
dependent of €) in [0,00) x D with —e¢ < & < g9. Moreover, we suppose that F
and R are T'—periodic in t, with T independent of €.

(a) If a € D is a singular point of the averaged system (6.14) such that the
determinant of D, f(a) is different from zero then, for |e| > 0 sufficiently
small, there exists a T —periodic solution x.(t) of system (6.13) such that

ze(t) — a.
e—0

(b) If the singular point y = a of the averaged system (6.14) is hyperbolic then,
for |e| > 0 sufficiently small, the corresponding periodic solution x.(t) of
system (6.13) is unique, hyperbolic and of the same stability type as a.

For every z € D, we denote by x(-, z, &) the solution of (6.13) with the initial
condition (0, z,¢) = z. We also consider the function ¢ : D x (—ep,e09) — R",
defined by

T
((z,¢) = / [eF(t,x(t, 2,€)) + €°R(t, x(t, z,€),€)] dt. (6.16)
0
From (6.13) it follows that, for every z € D,
((z,e) = (T, z,e) — x(0, 2, ). (6.17)
The function ¢ can be written in the form
((z,¢) =T f(2) +*0(1), (6.18)

where f is given by (6.15) and the symbol O(1) denotes a bounded function
on every compact subset of D x (—&g,&0). Moreover, for || sufficiently small,
z = 2.(0) is an isolated zero of ((-,&). Of course, due to (6.17) the function ( is
a displacement function for system (6.13), and its fixed points are the T—periodic
solutions of (6.13).
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6.4 Proof of Theorem 2

We study in this section hyperbolic periodic orbits bifurcating from the periodic
orbits of the 4—dimensional centerr

t=ulx+1)? u=-z, y=v(@+1)? 0=—y, (6.19)

which corresponds to system (6.3) for p > 0, see Lemma 3. We perturbe system
(6.3) as follows

.TZU(.T+1)3, u:_‘r[l+6292<x7u7y7v)+ 94(%“;3/7“)]

y = ’U(l’ + 1)37 0= _y[]- + €2h2(l’,u, y7v) + €h4(l', u,y, U)], (620)

where g; and h; are homogeneous polynomials of degree 7 in the variables z, u, y, v,
for i = 2,4. The coefficient of z'u/y*v! in g (respectively, h) will be denoted by
a;ji (respectively bjjp).

Let T be a closed trajectory of (6.19). Assume that the three first integrals
of (6.19),

2

hy 2, _ T
(o) =+ e
ho(z,u,y,v) =ve —uy, (6.21)
hs(x,u,y,v )—uv(:c—l—l)—u%ri—ﬁ,

take the values hy > 0, ho # 0 and hg € R on I'. Then, we can write x,u,y,v in
terms of Ay, hs, hs and a new variable 0 as

p(hs3 cos @ — 2hy sin 6)
hao(1 + pcosf)

xr=pcost, u=

_ sing v — (h3(1 — 2hy) + h3)pcosf — 2h (h% + hapsin b))
o 7 2h1ha(1 + pcosb) )

where

vV 2hyhgy
/2 cos?0 + (hs cos @ — 2hy sin0)2 — /2Ry hy cos 6

p:

In the new variables, system (6.20) writes
Ohs
ot’
for a certain function €2; or, equivalently,
o Ohs _ OhgOL _ 1%hs
S00 Ot 00 qgx—ay’

iLs: 821,2,3, é:Q(hl,hg,hg,e,g),
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Number of Number of
singular points | rank(A) | independent solutions
n > 21 58 32
17<n <20 | 2n+17 73 —2n
1<n<16 3n 3(30 — n)

Table 6.1: Relation between the number of singular points of (6.23) and the number of
independent solutions of the linear system Ax = 0.

for s =1,2,3. Taking h, = €k,, this system is transformed into

kll = €4F1<07 kla k27 k?)) + 59/2R1(97 k17 k?? k37 6)7
Ky = e Fy(0, ky, ko, ks) + %2Ry (0, Ky, ko, ks, €), (6.22)
ké = €4F3((97 kla k27 k3) + 59/2R3(97 kl? k?? k37 6)7

for some functions F§, R,, with s = 1,2,3. Applying the averaging theory de-
scribed in Section 6.3, we obtain the system

yr = filyr v, u3), vh = falyr, y2, ys), ys =€ f3(y1, v2, U3), (6.23)

where the functions f; are given in Section 6.5.

Monomials of odd degree in the functions g; and h; would vanish after applying
the averaging theory, so we do not consider them in the perturbed system. If we
consider the perturbed system

i =u(r+1)° u=—2[1+eg(z,u,y,0v)
y=v(r+1)% 0=—y[l +eh(z,u,y,0),

where g and h are homogeneous polynomials of the same degree, then the corre-
sponding fs, for s = 1,2, 3, of the averaged system are also homogeneous poly-
nomials. By the Euler Theorem, we have

3

dfs
Zysa_g = deg (fs) [

j=1 J

for s = 1,2,3. So, if fi(y?,45,49) =0, s = 1,2, 3, there exists a non-—zero linear
combination of the columns of the Jacobian matrix at (39,49, 49) which vanishes.
Then, its determinant is zero and we cannot apply the averaging theory. So, the
easiest perturbation (i.e., with the lower degree) that can be considered is the
one that we are using.

We find the isolated singular points of system (6.23) in the following way.
Let (yi,v%,95), for 7 = 1,...,n, be n singular points of the averaged system
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(6.23). Substituting these points in fs(y1,y9,ys3) for s = 1,2,3, we get a linear
homogeneous system with a matrix A of dimension 3n x 90. Of course, the
90 unknowns are the coefficients a;;i; and bz of g2, ga, he and hy. Using the
algebraic manipulator Mathematica (see [9]), we can compute the rank of the
matrix A as a function of n. The results are given in Table 6.1.

We note that when n > 21, substituting the 58 depending unknowns, determi-
ned as a function of the 32 independent unknowns, in the functions fs(y1, ye, y3),
then the three functions become identically zero. So, we cannot apply the averag-
ing method to determine hyperbolic periodic orbits because the Jacobian matrix
is identically zero at the singular points.

When n € {17,18,19,20}, substituting the 2n + 17 depending unknowns,
determined as a function of the 73 — 2n independent unknowns, in the func-
tion f1(y1, Y2, ys3), then it becomes identically zero. Hence, we cannot apply the
averaging method to determine hyperbolic periodic orbits because the Jacobian
matrix has a row identically zero at the singular points.

An example of system (6.23) having 16 singular points with non—zero Jacobian
is given in Section 6.6. Therefore, system (6.20) for the values of Section 6.6 has 16
hyperbolic periodic orbits, for € > 0 sufficiently small, bifurcating from the center
of system (6.20) with e = 0. In a similar way, we can obtain systems (6.20) with
0,1,...,14 or 15 hyperbolic periodic orbits bifurcating from the periodic orbits
of the center of system (6.20) with ¢ = 0.

In short, Theorem 2 is proved. O

6.5 The functions f;, f; and f3

We give in this section the expression of the functions fi, f, and f3 of system
(6.23):

1
4 4 3 3 3
f1(y1,y2,v3) = —5(16613100111 + 16a1300y7 + 32a1100y7 — 8a3010¥1¥Y2 + 8a2101y7 Y2 —
Y1

8(11210y?y2 + 8a0301yi)’92 + 8a3001y?y3 + 81121101/?1/3 + Salzoly‘;’yz + 8“0310y?y3 -
4a2011y§y§ + 401120yfy§ + 4a1102y§y% — 4a0211y§y§ + 4a2011y§y% + 4a1120y§y% +
401102y§yf + 4a0211y§y% + 16&0101&129% - 16111010@/2yf + 16&0110939% +

16111001?13?1% - 811202011211311% + 8a2002y2y3y% - 8110220?123!311% + Saozozyzysyf -
2a1030y3y1 - 2a1012ygy1 + 21101031/;1/1 + 2a0121ygy1 + 2a1003y§y1 + 2a1021y§’y1 +
2(101301/3111 + 211011211:;’111 - Saoonygyl + Sfloonygyl - 601030y2y§y1 + 2a1012y2y§y1 +
600103y2y§y1 - 2ﬂ0121y2y§y1 + 6a1003y§y3y1 — 2a1021y§y3y1 + 6a0130y§y3y1 -
200112y§y3y1 — 16a0020y2Y3Y1 + 16ap002Y2Y3y1 — a0031y§ - a0013y§ + apo31 y§ +

4 3 3 3 3
@0013Y3 — 4a0040Y2Y3 + 4a0004Y2Y3 — 4a0040Y52Y3 + 420004Y5Y3),
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5 5 5 5 4 4
fa(y1,y2,y3) = (a0031Y5 + a0013¥2 — b0031Y2 — b0013¥5 + 2a1030Y1Ys + 2a1012Y1Y5 —

256v7
200103y1y§ - 21101211/11/;1 - 251030y1y§ - 2b1012y1y§ + 26010331131;1 + 21)012191?/2L +
5¢10040y3y;1 + 110004?/31431 + aoozzysy%1 - 5boo40ysy;L - booo4y3y§1 - boozzygy;L + 32a020095 3 +
4a2011¥1ys — 4a1120¥795 — da110297v5 + 4ao21195y5 — 4b2011v5vs + 4b1120vTys +
4b1102y3 Y5 — 4bo211¥1 Y5 + 2a0031¥5Y5 + 2a0013Y3Y5 — 2b0031Y3Y5 — 2b0013Y3 Y5 +
8a0011¥1¥5 — 8b0011¥1¥5 + 4a1003Y1¥3Y5 + 4a1021¥1¥3Y5 — 8a0130¥1Y3Y5 — 32b0200%5 Y3 —
4b1003y1y3y§’ - 451021y1y3y§’ + 8b0130y1y3yg + 8a30109?yg - Sazloly‘;’yg - 96b20009§y3 +
8a1210¥5y3 — 8a0301¥5 Y5 — 8b3010¥5¥5 + 8b2101%5y5 — 8b1210¥5ys + 8b0301¥5 Y5 +
10410040?;3?;3 + 2a0004y§’y§ + 2a0022y§y§ — 10b0040y§y§ - 2b0004ygy§ - 2b0022y§y§ -
16a0101%5¥3 + 16a1010¥7¥3 + 16b010137y5 — 16b1010¥7y5 + 12a1030y1935y5 +
4a1012v1¥3¥5 — 12b1030¥1¥5¥5 — 4b101251¥3¥5 + 120202095 y3v3 + 120200295 y3ys —
4a1111y%y3y§ + 12a0220y%y3y§ - 4a0202y%y3y§ - 125202011%939% - 12520021/%1/31/3 +
4b11119793Y5 — 12602207 ¥3Y5 + 4b020295 ¥3y3 + 24a002091Y3Y5 + 8a0002Y1Y3Y5 —
24b0020y1y3y§ — 8b0002Y1 y3y§ - 16413100?;%?;2 - 16&1300114111/2 + 16b3100y‘11y2 +

1651300?/411?/2 + a0031y§yz + a0013y§y2 - b0031y§y2 - b0013y§yz - 32&1100y§y2 +
32b1100y§y2 + 4a1oosy1y§’y2 + 4a1021y1y§y2 - 8a0130y1ygy2 - 4b1003yly§y2 -
4b1021y1y§y2 + 8b0130y1y§y2 + 12@20111/%?4%?42 - 12(11120y%y32,y2 + 4a1102y%y§y2 -
400211y3y§y2 - 12b2011y%y§y2 + 1251120y%y§y2 - 4b1102yfy§y2 + 450211yfy§y2 +
8a0011y1y§y2 - 8b0011y1y§y2 + 32u3001yfy3y2 - 16&2110y?y3y2 - 16a0310yi’y3y2 -
32b3001%5 ysy2 + 16b2110y5 y3y2 + 16bo310y5 y3y2 — 32a0110¥; y3¥2 + 320100195 Y3 Y2 +
32b0110¥7¥3Y2 — 32b1001¥7Y3Y2 + 5a0040¥5 + €0004¥5 + 00225 — 5b0040¥5 — boooays —
boozzyg + 10a1030y1y§ + 2a1012y1y§ + 2a0103y1y§ + 2a0121y1y§ - 10b1030y1y§ -
2b1012yly§ - Qb()losylyé1 - 2170121?41?/3L + 20&20209??4% + 4a2002yfy§ + 4a1111y%y§ +
4a02209fy§’ + 4a0202y§y§ - 20520201/%1/::,’ - 4b2002yfy§ — 4b1111y§y§ - 4’302201/?3/::’, -
4b0202yfy:3; + 24a0020Y1 yg + 8ap00291 yg - 24b0020y1y§ — 8b0002Y1 yg + 40&3010y?y§ +
8a2101¥5¥3 + 8a1210¥5y3 + 8a0301¥5¥35 — 40b3010u5y3 — 8b2101y1 Y3 — 8b1210¥5 Y3 —
8b0301¥5 5 + 16a0101¥;¥3 + 48a1010¥7¥5 — 16bo101¥7¥3 — 48b1010¥7¥3 + 80as000¥1ys +

4 4 4 4 4 3
16a2200y71¥3 + 16a0400¥1 ¥3 — 80baoooy1¥3 — 16b2200¥y7¥3 — 16boaooy; y¥3 + 96a2000y1¥3),
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5 2 4 2 4 4
f3(y1,y2,y3) = (32a0400¥y2y7 — 16a0310Y3y1 + 16a0310y3Yy7 + 80as000y2y1+

64y3(2y1 +3)
16&2200y2y§1 - 161)400092?/1L - 16b2200yzy‘11 - 8060400y2y? - 16172000?42?/1L - 48bo200yzyi1 +
16a3100¥3y] + 1f:'-a1300ysyi1 + 16(111001/31/11 + 16531001/31/11 + 16b1300¥3¥] + 16b1100¥3Y] +
32@0301?;2?;3?;411 - Sallllygy:f + 81102202/%?1? + 8a0202y3y? + 8a1102y§y? + 8a0211y§y% -
Saouoygyf + 40&3001?/%1;? - 8112110?15?4:13 + Salzolygy? + 24111001?/311? + 24170110?/%14? -
8b3001¥5Y5 + 8ba110Yay; — 8b1201¥3Y; + 40b0310¥5Y5 — 8b1001¥3Y; + Bao110¥3y5 +
803001y32,y% + 8a21109§y§ + Salzolygy? + Salomygyi3 + Sbouoygy? + szoolygy? +
8b2110y§y? + 8b1201y§y? + 8b0310y§yi)’ + 8b1001y§y? + 8a1111y2y§y? - 8a0220y2y§y? +
24&0202y2y§yi’ — 24b2000Y2Y5 — T2b0200¥2Y5 + 2442000 (2y1 + 3)y2ys +

8ap200(2y1 + 3)y2yi’ + 24&1102?/31/31/? - 8a0211y§y3y? + 241111001/3?4? + 24b1100y3yf +
16at)101?12y3y‘;s + 32a3010y2y3y:{' + 16a2101y2y3y? + 16@1010y2y3y% - 16b0101y2ysyi’ -
1653010y2y3y? - 161712101121/31/? - 3Qbo3o1y2y3yi’ - 16b1010y2939? + 4a1021y§y% -
400130y§yf - 4a0112y§y% + 4a1021y§y? + 400130y§yf + 4a0112y§y? + 4a0020y§y% +
12&0002&13?;? + 4020201/3’4% + 20&20021/3’4% - 12b0020ygy% - 4b0002y%y% - 4b2020y3y§ -
4b2002y%y% + 4b1111y§y% = 2050220?/314% - 4170202?;33/? + 4a0011y§y? + 4a2011y§y% +
4a1120y§’yf + 4b0011y§yf + 4b2011y§yf + 4b1120y§yf + 4b1102y§y% + 4170211?!3?4% +
8a1012y2y§y% + 16a0103y2y§y% - 12@0110y§y% + 36@1001ygy% + 3650110ygy% -
12b1001y§y? + 8a1021y§y§yf + 12@0110y§y% + 12@1001y§y% + 12b0110y§y% +
12b1001y§y§ + 4a0020y2y§yf + 12@0002y2y§y% + 12&2020y2y§y% + 12&2002yzy§yf -
12b0020y2y§y% - 4booo2y2y§y% - 12b2020y2y§y% + 4b2002y2y§y% - 4b1111y2y§y% -
12b022052¥3 57 — 12b0202¥2¥37 + 8a1012¥5¥3y] + 16a0103y5¥3y] + 4ag011¥3¥3y; +
12(120111/31/3?1% - 4a1120y§y3y% + 4500111/%1/31/% - 4b2011y§y3y% + 12b1120y§y3y% -
4b11029§y3y% + 121702111/31/31/% + 24!101011/21/31/% + 24&1010?421/31/% - 2450101y2y3y% -
24171010?;2?;3?;% + 2a0040ygy1 + 1000004ygy1 + 200022742?/1 + 2a0031ygy1 + 2ﬂ0013y§;’y1 +
10@1003?;31!1 - 2b1003y§y1 - 2b1021y§y1 + 10b0130y§y1 + 2170112931/1 + 2ﬂ1003y§y1 +
2b1003¥31 + 2b1021¥5Y1 + 2bo130¥3¥1 + 20011295 Y1 + 2a0040¥2¥5y1 + 10a0004y2y5 Y1 +
2a002292¥351 + 6a0020¥5y1 + 18a000255¥1 — 18b0020¥53y1 — 6bono2ysy1 +

400031y§y§y1 + 4a0013ygy§y1 + Gaoonygyl + ﬁboonyg’yl + 4a1030y2y§y1 -
Sbloaoyzygyl - 4’30103y2y§’y1 - 4b0121y2y§y1 + 4aoo40ygy§y1 + 20&0004ygy§y1 +
400022y3y§y1 + 1201003y§y§y1 + 12b013oy§y§y1 + 4bo112y§y§y1 + 6a0020y2y§y1 +
18&0002y2y§y1 - 18b0020y2y§y1 - 6booozy2y§y1 + 2a0031y3y3y1 + 2a0013y§y3y1 +
4a1030¥5y3y1 — 8b1030¥5y3Y1 — 4bo103¥5y3y1 — 4bo121¥5Y3Y1 + 6a0011¥3¥3Y1 +
6b0011y§y3y1 - 5500401}3 - booo4yg - b0022yg + boo31y§ + b0013yg - 5boo4oy2y§ -
b0004y2y§ — b0022y2y§ + 2b0031y§y§' + 250013y§y§’ - 10b0040ygy§ — 2b0004y§y§ -

3 2 4 4
2b0022Y5 Y3 + b0031Y2¥3 + b0013Y2Y3)-



6.6. An example with 16 hyperbolic periodic orbits

243

6.6 An example with 16 hyperbolic periodic or-
bits

We take the coefficients

a0110
a0020
a0002
a3100
a3001
a2002
a2101
a1030
a1120
ai012
a1l
a0040
a0310
a0130
a0103
0202
ap121
a2000
ai010
bo110
boo11
b3100
b3001
b2110
b0200

and the rest of the coefficients zero. The set of solutions (y1,y2,y3) is

{(41,35, —19), (18, —13,9), (37, —18, —35), (31, —47, 14), (22, 3, —15), (33,5, —16),
(35, —28,2), (37, —31,28), (16,9, 5), (30, —28, 21), (27, —33, 33), (17, —32, —50),

—0.44273799230932176,
—0.00097478324838714,
0.00007081854058168514,
0.000002966367759708,
0.18506308130804394,
—0.0036240063728033025,
—0.17263861380369933,
—0.0018042655006471255,
0.00009368584384093783,
0.005506754204431025,
0.0074713005144913785,
0.00001968558790431901,
0.0012461786194435333,
0.0007943513793541091,
—0.001807654766145478,
0.0009673162067761705,
0.005645104995454165,
0.3346899322743752,
—0.0005686779752235013,
—0.8793311376819993,

= 0.0026112577489967063,
—0.000037200708610095267,
0.44488101166264415,
0.3344329805234952,
1

ap101
apo11
a4000
a3010
a2020
a2110
a2011
a1003
a1021
a1102
0400
ap004
0301
a0031
@0220
ao211
ap112
a1100
a1001
bo1o1
bao00
b3010
b2020
b2101

—0.0016215945505887238,
—0.003918882434202215,
0.5989505745384144,
—0.1687679624360404,
—0.012049647635249473,
—0.18620230772935153,
0.00047403650848489584,
—0.0007465749618595678,
0.0020131588337237534,
—0.00011351408717201784,
—0.004655785701991735,
—0.0000032848225314553,
0.003941103289490351,
0.000052808789509939704,
0.00940846361405681,
—0.0003272826514772228,
—0.002154963920384549,
0.000027779345493788038,
0.44083258814665977,
—0.009884290550174158,
0.5980524777204888,
—0.16878494791125745,
—0.009125904399372506,
—0.16839063503055093,

(22,27, 28), (5,26, —25), (43, —7,29), (7, =31, —20)}.
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