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A vosaltres tres, que sou i sereu



Els agräıments a una tesi poden esdevenir una part molt dif́ıcil
d’escriure. Has d’incloure-hi tota la gent que ha passat per la teva vida durant la
teva particular Odissea, però sense arribar al punt de donar públicament les gràcies al
senyor que te va arreglar la cadena de la bicicleta tres vegades al Brasil. A més, has de
mirar de no ser massa extens, que ja tendran temps d’avorrir-se passada la introducció.
Fins i tot, has de tenir en compte un cert ordre d’importància. Finalment, i això és
primordial, has de fer una gracieta o dues, i sempre, sempre, has d’entendrir els cors
que ho necessitin o t’ho demanin.

Aquest topall de porta en potència que teniu a les mans (eventualment, aquests
kilobytes a la memòria del vostre computador) és el resultat de n ∈ N anys de fruir
de la meva passió. Durant aquest temps, ha estat molta la gent que, en petita o gran
mesura, m’ha envoltat i acompanyat. Qualcuns els he conegut pel camı́, d’altres els he
anat perdent a mesura que caminava, els més pacients romanen. A tots vull agrair-los
les rialles i les llàgrimes. Prenc llicència per fer-ho aix́ı com vull:

Als llaüts de fusta, als olis sobre tela, a les baquetes del 5B i en Manolo, a les orelles
socarrimades, al viatge a la Paŕıs del 76, a l’humit cove de roba bruta, a l’àtic de davant
l’escorxador, a la casa amb els moixos, a en Clovis,

a la piscina del FunCamp i el mussol que s’hi fixa, a les taronges de la Vall i la
somrient marina,

al mirador del Castellet, sa Pastanaga, el metro de Namesti Republiky, as Catedráis,
na Clara, el cel tan i tan i tan obert, els dits sobre l’esquena,

a tots els parcs del món, el mussol de pedra, la sopaipilla i el parlar tan intens dels
ulls, al Nepal, l’antifaç i els taps, al Samoa, la crêperie i l’animat sucre roig, a M. Pons
Justo i l’aigua de València, mal anomenada Espanya, a les magdalenes amb xocolata i
mugró d’avellana, a les estovalles de quadres, al te,

al Pacharán amb metxes vermelles, a les gambes i la confitura de taronja, als
Hostalets, al tercers padrins,

als cosmopolites i els punts de la gelera, a la plaça del guei, als voltors i les ratetes,
a l’edredó individual sobre llit doble, a les Micheladas,

a les persianes que queden per pintar, el Risk, el Truc i els espaguetis,
a Il Groto, Palace, el Lórien, la Iguana, l’Acros, els tres atxems, la e oberta,
al Bayleys borasho, a l’Hole! i el deliciós cargol a la llauna, al xiringuito damunt

l’arena, als 6× 3 i els To my parents, al piti, en Kitty i en Puces, a la bruixa sense ceba
ni formatge, a la paella de Nadal, aan de mooiste glimlach van de wereld, a la terrorista
de les paraules, não pode ser um video!, al carrer de santa Clara, a les girafes que besen
el cel, als päısos tropicals, flors i dones naturals,

a totes les sigles que siguin necessàries...

Al port del Canonge. A la Mar. A la Terra...

La resta és cosmètica.



Qui t’ha parit que t’entengui
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Introduction

Differential equations are mainly used to describe the change of quantities or
the behavior of certain systems in the time, such as those governed by Newton’s
laws in physics. Usually, explicit solutions of the differential equations cannot
be found, so we must look for other methods. One approach is to use numerical
approximations. However, in most applications, for example in physics, some of
the most interesting questions are related to the so-called qualitative properties.
If these questions can be answered without solving the differential equations,
especially when explicit solutions are unavailable, we can still get a very good
understanding of the system.

It is important to learn how to analyze some qualitative properties, such as the
existence and uniqueness of solutions, the phase portraits analysis, the dynamics,
the stability or the bifurcations of their orbits, the existence of periodic orbits,...
of differential equations without solving them explicitly or numerically. Based
on these remarks, we conclude that in order to have a better knowledge of the
differential equations, without solving them explicitly or numerically, we should
use the so called qualitative theory of differential equations.

The first part of the work

First integrals. One of the main aims in the qualitative theory of planar dif-
ferential systems is the existence of a first integral. Given a planar differential
system

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

where P,Q are real analytic functions in the variables x and y, a non–constant
function H defined in an open domain U ⊆ R2 is a first integral of (1) on U if it
is constant on all the solutions of the system contained in U . If H ∈ C1, this is
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6 Introduction

equivalent to satisfy the equation

Ḣ = P
∂H

∂x
+Q

∂H

∂y
= 0 (2)

on U .
A system (1) is Hamiltonian if there exists a first integral H such that P =

−Hy and Q = Hx. If H ∈ C2, then this is equivalent to the equality

div (P,Q) = Px +Qy = −Hyx +Hxy = 0.

The importance of the existence of a first integral is in its level sets. The
existence of such a function H on U determines the phase portrait of system (1)
on U , because the level sets {H(x, y) = h} ⊆ H(U) ⊆ R contain the orbits of
system (1) on U . Consequently, given a system (1), it is important to know if it
has a first integral.

In the study of the polynomial differential systems of degree m ∈ N, that is,
when P and Q are polynomials and the maximum of the degrees of P and Q is m,
one important family of first integrals is the Darboux one. This kind of functions
can be defined using invariant algebraic curves and exponential factors.

The curve f = 0 is an invariant algebraic curve of a polynomial system (1) of
degree m if f is a polynomial of C[x, y] and it is a solution of the equation

P
∂f

∂x
+Q

∂f

∂y
= K f, (3)

whereK is a polynomial of degree lower thanm called the cofactor of the invariant
algebraic curve. An invariant algebraic curve f = 0 is irreducible if f is irreducible
in C[x, y].

Let g, h be complex polynomials. An exponential factor F = exp (g/h) of a
polynomial system (1) of degree m is a solution of the equation

P
∂F

∂x
+Q

∂F

∂y
= LF, (4)

where L is a polynomial of degree lower than m called the cofactor of the expo-
nential factor.

A function H is called Darboux if it can be written into the form

H = fλ1
1 · · · fλr

r eµ1g1/h1 · · · eµsgs/hs , (5)

where fi, gj, hj ∈ C[x, y] and λi, µj ∈ C for i = 1, . . . , r, and j = 1, . . . , s.

A very important result due to Darboux (see [22]) gives a relation between the
number of invariant algebraic curves and exponential factors and the existence of
a Darboux first integral, i.e. a first integral given by a Darboux function. A very
short version is given here, for a more complete version see Subsection 1.2.4.
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Theorem If the number of irreducible invariant algebraic curves and exponen-
tial factors of a polynomial differential system (1) of degree m is greater than(
m+1

2

)
, then there exists a Darboux first integral for (1). Moreover, if this num-

ber is greater than
(
m+1

2

)
+ 1, then system (1) has a rational first integral, and

consequently all orbits are contained into invariant algebraic curves.

In this theorem an explicit expression for H can be given, as a function of the
invariant algebraic curves and the exponential factors. So, in order to obtain a
first integral, it suffices to find enough functions of those types.

Inverse integrating factors. Another important tool in the study of planar
differential systems is the inverse integrating factor. An inverse integrating factor
is a solution V , defined in an open set U ⊆ R2, of the partial differential equation

div

(
P

V
,
Q

V

)
= 0. (6)

If V satisfies this equation, then the system ẋ = P/V , ẏ = Q/V , equivalent to
(1) after a change of time in the domain U \ V −1(0), is Hamiltonian. So when a
first integral H and an inverse integrating factor V of system (1) satisfy

P

V
= −∂H

∂y
,

Q

V
=
∂H

∂x
, (7)

we say that H is associated to V , and vice versa.

Equation (6) is equivalent to the following one:

P
∂V

∂x
+Q

∂V

∂y
=

(
∂P

∂x
+
∂Q

∂y

)
V. (8)

From (8) it follows that V −1(0) is invariant under the flow. Then it is formed
by orbits of system (1). Given an inverse integrating factor V defined in U , we
can compute a first integral H in the set U \ V −1(0). The flow associated to a
Hamiltonian system is area preserving, so we deduce that the set V −1(0) must
contain the orbits of U such that the area of a neighborhood of them is not
preserved by the flow of system (1). In particular, a very important property
of the inverse integrating factors is stated in the following theorem, proved by
Giacomini, Llibre and Viano in [31]:

Theorem Let V be an inverse integrating factor of the polynomial system (1)
defined in an open subset U of R2. If γ ⊂ U is a limit cycle of system (1), then
γ is contained in the set V −1(0) = {(x, y) ∈ U : V (x, y) = 0}.
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From this theorem it follows that the zero set of V contains all the limit cycles
laying in the domain of definition of V . An immediate consequence is that as
larger the domain of definition U of V is, more limit cycles of system (1) we can
determine, if they exist. In particular, if the domain of V is the whole plane R2,
then the zero set of the inverse integrating factor provides all the limit cycles of
the phase portrait. This fact follows immediately when V is a polynomial.

If the factorization of V contains powers of polynomials, then these polyno-
mials satisfy equation (3) for certain cofactors, so they are invariant algebraic
curves. Thus, the knowledge of an inverse integrating factor may imply the
knowledge of invariant algebraic curves. In particular, if the inverse integrating
factor is polynomial, then all its factors define invariant algebraic curves.

In general, the domain of definition of an inverse integrating factor V is larger
than the domain of definition of a first integral H. Moreover, usually the ex-
pression of V is simpler than the expression of H, see for instance [12]. As a
particular case, the domain of definition of a polynomial inverse integrating fac-
tor is the whole R2, but the associated first integrals may have a complicated
expression and a restricted domain of definition.

There are many families of planar polynomial differential systems having a
polynomial inverse integrating factor, some of them very important. A first exam-
ple is given by the homogeneous systems, i.e. the polynomial systems (1) with
P and Q homogeneous of the same degree. A homogeneous system ẋ = P (x, y),
ẏ = Q(x, y) of degree m has a homogeneous polynomial inverse integrating factor
of degree m + 1 given by V = yP − xQ. And as a second example, polyno-
mial differential systems of degree two having a center have a polynomial inverse
integrating factor of degree three or five (see [8] and [40]).

All the facts stated above encourage us to study the inverse integrating factors
in addition to the first integrals. Both tools will lead to a complete study of the
phase portrait of a planar differential system (1).

Once the study of the inverse integrating factors is motivated, the next step is
the computation of such functions V . Equation (8), which defines V , may become
very difficult to solve, even if we look for polynomial functions V , considering the
functions P and Q as polynomials. Then, the partial differential equation (8)
reduces to the computation of a set of conditions on the coefficients of a linear
system of equations. For a given system we may fix the degree of V and compute
a solution V of (8) by solving a linear system. This fact implies that we must
know at least a bound of the degree of V . But the difficulty persists if we do
not know such a bound, because we should study an arbitrary number of linear
systems.
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Polynomial inverse integrating factors of quadratic systems. A real
polynomial differential system of degree two (or simply a quadratic system) is
a system of the form (1) with P and Q polynomials such that the maximum of
their degrees is two. The main aim of the first part of this work is to classify all
the quadratic systems having a polynomial inverse integrating factor.

We have taken two restrictions in our discussion about the inverse integrating
factors. First we have restricted system (1) to be quadratic, and second we have
restricted the inverse integrating factor V to be a polynomial. Then equation (8)
becomes a polynomial equation and we may find conditions on the coefficients of
P and Q in order that the associated linear system has a solution V . Moreover,
we may also find the explicit expression of V if such a solution exists.

Although this may seem an easy method, as we said before it is not a good one
because we must compute polynomial inverse integrating factors of an unknown
degree. So we must look for other methods.

One way to solve (8) is by grouping the monomials of V . Thus we can write
V either as a sum of homogeneous polynomials; or as a polynomial in one of its
variables; or even we can do both and consider each homogeneous polynomial as
a polynomial in one of the variables. This kind of grouping, combined with some
other methods, will make easier the study of the solutions of equation (8).

All the methods we have commented must be applied to a system having
twelve parameters, so it would be better to find a way to reduce the difficulty of
the problem before starting to solve it. For that purpose, we consider a classifi-
cation of the quadratic systems into ten normal forms given by Gasull, Sheng Li
Ren and Llibre. In [29] they proved that the quadratic systems can be divided
into ten (not disjoint) families of quadratic systems. The expression of P (x, y)
has no parameters for each normal form of this classification, so the number of
parameters is reduced from twelve to six.

In our work using the methods above mentioned and widely explained in Sec-
tion 2.3, we classify the quadratic systems having a polynomial inverse integrating
factor, giving an explicit expression of such polynomial for almost the ten normal
forms. In some particular cases of two normal forms it has been not possible
for this moment either to find some of the conditions on the coefficients of the
system in order that a polynomial inverse integrating factor exists, or to compute
an explicit expression of V . In these cases a method for computing the conditions
and the explicit expression of V can be followed for a fixed degree k ∈ N. We call
(⋆) quadratic systems the families of quadratic systems for which we have found
explicitly a polynomial inverse integrating factor.

Once this classification is over we want to study the polynomial inverse inte-
grating factors that we have obtained, and deduce from them as many properties
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as we can. As a first remark, we note that a polynomial inverse integrating factor
V may factorize in polynomials of lower degree. Therefore as in our classification
we will obtain polynomial inverse integrating factors of arbitrary high degree, it
follows that probably we shall obtain invariant algebraic curves of arbitrary high
degree. This will be the case.

Darboux first integrals. From the classification of quadratic systems having
a polynomial inverse integrating factor we compute, using (7), the first integrals
associated to (⋆) quadratic systems.

A proof of the next result can be found in [10].

Proposition If a polynomial differential system has a rational inverse integrating
factor V , then it has a Darboux first integral.

This proposition can be applied to the (⋆) quadratic systems, so the first
integrals that we obtain for such systems are Darboux functions. Then we classify
the (⋆) quadratic systems in three types. The systems which have a polynomial
first integral, the systems which have a rational first integral and do not have
a polynomial first integral, and the systems which have a Darboux first integral
and do not have a rational first integral. The first part of this classification is
related with the work by Chavarriga, Garćıa, Llibre, Pérez del Ŕıo and Rodŕıguez
[9], where the quadratic systems having a polynomial first integral are classified.
This fact is due to the following result proved in Chapter 4.

Theorem If a polynomial differential system (1) has a polynomial first integral,
then it has a polynomial inverse integrating factor.

Critical remarkable values. The cases in which the system has a rational first
integral demand a larger study. Writing a rational first integral H as a quotient
of polynomials, H = f/g, the orbits of the system must be contained into the
algebraic curves f + cg = 0 with c ∈ R∪{∞}. If f + cg factorizes in C[x, y], then
c is a remarkable value. We note that when c = ∞, f + cg means g.

The notion of remarkable values is due to Poincaré (see [42]), and it has not
been used after Poincaré with the exception of these last years. In an article
due to Chavarriga, Giacomini, Giné and Llibre (see [13]) the following result is
proved.

Proposition A rational first integral of a polynomial differential system has fi-
nitely many remarkable values.
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We do not compute all the remarkable values of all the rational first integrals,
but we compute a particular subset of them, which will give important infor-
mation on the qualitative behavior of the system. For a given remarkable value
c ∈ R∪ {∞}, let uα1

1 · · · uαr
r be the factorization of f + cg into irreducible factors

of C[x, y]. If at least one of the values αi, i = 1, . . . , r, is larger than 1, then c is a
critical remarkable value. The corresponding curve ui = 0 is a critical remarkable
invariant algebraic curve of system (1) with exponent αi.

Next proposition, also appearing in [13], shows how many critical remarkable
values there are for a polynomial differential system (1) having a rational first
integral and a polynomial inverse integrating factor.

Proposition Suppose that the polynomial differential system (1) has a rational
first integral H. Then it has a polynomial inverse integrating factor if and only
if H has at most two critical remarkable values.

We compute all critical remarkable values associated to the rational first in-
tegrals of the (⋆) quadratic systems, and also their critical remarkable invariant
algebraic curves. From this classification, we obtain the following result, and we
see that there are (⋆) quadratic systems having a rational first integral with 0, 1
or 2 critical remarkable values.

Theorem Suppose that a (⋆) quadratic system has a polynomial inverse inte-
grating factor V and a rational first integral H. Then, the critical remarkable
invariant algebraic curves associated to H are contained in the zero set of V .

Algebraic limit cycles. As the inverse integrating factors V that we have
classified are polynomial, the set V −1(0) contains all the limit cycles of the system,
if they exist. Moreover, if there are limit cycles they are algebraic, because they
are contained into invariant algebraic curves. The following result, due to Llibre
and Rodŕıguez [39], shows the importance of the algebraic limit cycles.

Theorem Any finite configuration of limit cycles is realizable by algebraic limit
cycles for a convenient polynomial differential system.

As far as we know seven different families of algebraic limit cycles for quadra-
tic systems have been found (see for instance [38]), and from the results of [14] it
follows that the corresponding systems do not have a Darboux first integral, and
then they do not have a polynomial inverse integrating factor. So these algebraic
limit cycles cannot appear in our classification. Moreover, from the expressions
of V obtained, we can prove the following result.

Theorem A (⋆) quadratic system has no algebraic limit cycles.
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Phase portraits. Once the quadratic systems having a polynomial inverse in-
tegrating factor are classified, we do the classification of their phase portraits.

We obtain 121 non–topologically equivalent phase portraits from the (⋆) qua-
dratic systems, and we show them in Section 3.4. In fact in Section 3.4 122
phase portraits appear. The one which for the moment does not appear as a (⋆)
quadratic system is the phase portrait (92). This phase portrait is obtained from
systems (I.13) and (I.15), for which we have not proved the existence of a poly-
nomial inverse integrating factor. But some examples of quadratic systems (I.13)
and (I.15) having a polynomial inverse integrating factor of degree 6 have been
obtained, providing the phase portrait (92). We have numerical evidence that
there are no more phase portraits fot the quadratic systems having a polynomial
inverse integrating factor than those 122.

The main conclusion from these phase portraits is that the zero set of V
provides in the major part of the cases the “skeleton” of the system. That is, it
contains all or part of the finite separatrices of the global phase portrait. This is
another important property of the inverse integrating factors.

Another conclusion from the study of these 122 phase portrait is that all of
them are realizable by a quadratic system having a polynomial inverse integrating
factor of degree k ≤ 6.

Examples. In the classification we find lots of examples of quadratic sys-
tems that appeared previously in the literature. We have all the homogeneous
quadratic systems (see [51]); the Hamiltonian quadratic systems, see [4]; the
quadratic systems having a rational first integral of degree two (see [7]); the
quadratic systems having a center (see [48]); the most interesting quadratic folia-
tion (a quadratic system without finite singular points) having three inseparable
leaves (the maximum number of inseparable leaves that a quadratic system can
exhibit) (see [29]); and the quadratic systems having a polynomial first integral
(see [9]).

As a particular example we have obtained a quadratic system having a poly-
nomial inverse integrating factor in which the set V −1(0) contains a closed orbit
of a center, see the phase portrait (16). We think that a perturbation of this
system might make appear at least one limit cycle from this closed orbit. We will
study this in the next future.

Another interesting case comes from the phase portrait (2), for which V −1(0)
contains an orbit γ going from infinity to infinity. Since for such systems the
infinite line is fulfilled of singular points, the orbit γ plus an arc of infinity forms a
very degenerated graphic. We believe that perturbing such graphic inside the class
of all quadratic systems we will get a limit cycle bifurcating from this graphic.
Again this study will be done in the next future.
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The second part of the work

Three articles. In this second part of the work, we present the following three
articles, in which the author has collaborated:

A. Ferragut, J. Llibre and A. Mahdi, Polynomial inverse integrating
factors for polynomial vector fields, to appear in Discrete and Continuous Dy-
namical Systems.

A. Ferragut, J. Llibre and M.A. Teixeira, Periodic orbits for a class
of C1 three–dimensional systems, submitted.

A. Ferragut, J. Llibre and M.A. Teixeira, Hyperbolic periodic orbits
coming from the bifurcation of a 4–dimensional non–linear center, to appear in
International Journal of Bifurcations and Chaos.

Polynomial inverse integrating factors for polynomial vector fields. In
this article we give some results about the existence and non–existence of polyno-
mial inverse integrating factors for planar polynomial vector fields. The following
result summarizes some relations between the first integrals and the inverse inte-
grating factors for a polynomial vector field in C2.

Theorem Let X be a polynomial vector field in C2.

(a) If X has a Liouvillian first integral, then it has a Darboux inverse integrating
factor.

(b) If X has a Darboux first integral, then it has a rational inverse integrating
factor.

(c) If X has a polynomial first integral, then it has a polynomial inverse inte-
grating factor.

We note that in statements (a) and (b) of this theorem the expression of the
integrating factor is easier than the expression of the first integral. Looking at
the previous theorem a natural question is: if X has a rational first integral, then
does X have a polynomial inverse integrating factor? The next proposition is an
example of a polynomial vector field which has a rational first integral and has
neither a polynomial first integral, nor a polynomial inverse integrating factor.

Proposition The polynomial vector field

X = 2x(5 + 30x+ 40x2 + 8y2)
∂

∂x
+ y(5 + 44x+ 80x2 + 16y2)

∂

∂y
,

has a rational first integral, and has neither a polynomial first integral, nor a
polynomial inverse integrating factor.
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We prove this proposition finding three critical remarkable values for the ra-
tional first integral of the system.

We also give an example of a polynomial vector field having a center and no
polynomial inverse integrating factors. This is a result that all the mathemati-
cians working in the area believed, but as far as we know it has not been proved
before.

Proposition The polynomial vector field

X(x, y) = y3 ∂

∂x
− 1

2
x2(2x− y2)

∂

∂y
,

has a center and has no polynomial inverse integrating factors.

Finally, we present the following question.

Open Question. Assume that X is a polynomial vector field having a center.
How to characterize if X has a polynomial inverse integrating factor?

Periodic orbits for a class of C1 three–dimensional systems. In this
second work, we deal with the polynomial differential system of degree 4 in R3

ẋ = (y2 + z2)(1 − y2 − z2), ẏ = −z + xy, ż = y + xz,

or equivalently (taking y = r cos t and z = r sin t)

ẋ = r2(1 − r2), ṙ = xr, θ̇ = 1,

where x, r ∈ R, r ≥ 0, and θ ∈ S1. The dot means derivative with respect
to the time t ∈ R. We restrict the system to the set D3 = H−1([0, 1]), where
H(x, r, θ) = −2x2 + 2r2 − r4 is a first integral of the system.

We perturb this system inside a class of C1 reversible systems. If the pertur-
bation is strongly reversible (that is, the reversible perturbations do not depend
on the angle), then the angle θ can be treated as the independent variable to
reduce the analysis of the system to a two–dimensional system. Under these as-
sumptions we prove that the dynamics of the perturbed system do not change.
If the perturbation is non–strongly reversible, then we show the existence of an
arbitrary number of symmetric periodic orbits.

Additionally, we provide a perturbation by a polynomial vector field of degree
4 which has infinitely many limit cycles if a generic assumption is satisfied.
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Hyperbolic periodic orbits coming from the bifurcation of a 4–dimen-
sional non–linear center. In this third article, we deal with the polynomial
system in R4

ẋ = u (p+ q x)3, u̇ = −x, ẏ = v (p+ q x)3, v̇ = −y, (9)

where p, q ∈ R. We first prove that the system has a center at the origin if and
only if p > 0. Next we show the following result.

Theorem Suppose that p > 0. Let gn and hn be polynomials of degree n in the
variables x, u, y, v, for n = 2, 4. Then the system

ẋ = u (p+ q x)3,
u̇ = −x(1 + ε2 g2(x, u, y, v) + ε g4(x, u, y, v)),
ẏ = v (p+ q x)3,
v̇ = −y(1 + ε2 h2(x, u, y, v) + ε h4(x, u, y, v)),

can have at most 16 hyperbolic periodic orbits bifurcating from the periodic orbits
of the center of system (9) for ε sufficiently small using the first order averaging
method. Moreover, there are examples of this system having exactly 0, 1, . . . , 16
hyperbolic periodic orbits.

The structure of the work. The first part of the work is presented in the
Chapters 1 to 3. In Chapter 1 we introduce all the definitions and main re-
sults that we will use in the first part, such as first integrals, inverse integrating
factors, Darboux theory of integrability and remarkable values. Chapter 2, the
main chapter of this first part, contains the classification of quadratic systems
into ten normal forms and the classification of quadratic systems having a poly-
nomial inverse integrating factor for each normal form. In Chapter 3 we present
the properties which have the quadratic systems having a polynomial inverse
integrating factor, giving their phase portraits, and we state some conclusions.

The second part of the work presents the three articles mentioned above. It
is formed by Chapters 4, 5 and 6.



Part I

Polynomial inverse integrating
factors of quadratic differential

systems



Chapter 1

Some preliminary results

In this chapter we present the main definitions and some results on the algebraic
theory of planar polynomial differential systems. Although most of them are
applied also to non–polynomial systems and/or to complex systems, we restrict
this short overview to real polynomial systems.

A real planar polynomial differential system of degree m is a system

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where P,Q are real polynomials, m = max{degP, degQ} and the dot denotes the
derivative with respect to the independent variable t. We denote by X = (P,Q)
the vector field associated to system (1.1) and by

X = P
∂

∂x
+Q

∂

∂y
(1.2)

the linear operator associated to (1.1).

1.1 First integrals. Integrating factors

Let U ⊆ R2 be an open set. A Ck function H : U → R, with k = 0, 1, . . . ,∞, ω, is
a first integral of system (1.1) in U if H is constant on each solution of this system
and H is non–constant on any open subset of U . If k ≥ 1, then the definition is
equivalent to the equality XH = 0 on U .

Example 1.1.1. The polynomial system

ẋ = −y − b(x2 + y2), ẏ = x, (1.3)

b ∈ R, has the first integral

H(x, y) = e2by(x2 + y2). (1.4)

19
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We note that, once we have a first integral, any function of this first integral
is also a first integral.

A non–constant, analytic function R : U → R is an integrating factor of
system (1.1) if one of the following three equivalent conditions holds:

1. div (RP,RQ) = 0,

2. ∂(RP )/∂x+ ∂(RQ)/∂y = 0,

3. XR +R div (P,Q) = 0,

or in an equivalent way

P
∂R

∂x
+Q

∂R

∂y
= −

(
∂P

∂x
+
∂Q

∂y

)
R.

If R is an integrating factor of system (1.1), then by the change of the inde-
pendent variable dt = R(x, y) ds we obtain the equivalent system

x′ = R(x, y)P (x, y), y′ = R(x, y)Q(x, y), (1.5)

where the prime means derivative with respect to s. The function

H(x, y) = −
∫
R(x, y)P (x, y) dy

+

∫ (
R(x, y)Q(x, y) +

∂

∂x

∫
R(x, y)P (x, y) dy

)
dx,

which is a solution of the system

RP = −∂H
∂y

, RQ =
∂H

∂x
, (1.6)

is a first integral of system (1.5) (and, consequently of system (1.1)). Indeed,
if Y is the vector field associated to system (1.5) and Y is its associated linear
operator, then

YH = RP
∂H

∂x
+RQ

∂H

∂y
= RXH = 0.

Conversely, and using (1.6), given a first integral H of the vector field X, we
can always find an integrating factor R for which (1.6) holds.

Example 1.1.2. System (1.3) has the integrating factor R(x, y) = e2by. From it
we can obtain the first integral (1.4), and vice versa.
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Proposition 1.1.3. (1) If system (1.1) has two integrating factors R1 and R2

defined in U , then the functions R1/R2, which is defined in U \ {R2 = 0},
and R1R2/(R

2
1 + R2

2), which is defined in U \ ({R1 = 0} ∩ {R2 = 0}), are
first integrals of (1.1).

(2) If system (1.1) has an integrating factor R and a first integral H, both defined
in U , then the function RH is another integrating factor defined in U .

Proof: It follows easily from straightforward computations.

1.2 Darboux theory of integrability

In this section we study the existence of first integrals of planar polynomial vec-
tor fields through the Darboux theory of integrability. The algebraic theory of
integrability is a classical one, which is related with the first part of the Hilbert
16th problem, see [36]. This kind of integrability is usually called Darboux in-
tegrability, and it provides a link between the integrability of polynomial vector
fields and the number of invariant algebraic curves that they have (see [22] and
[43]).

Darboux [22] showed how first integrals of planar vector fields having enough
invariant algebraic curves can be constructed. In particular, in his work it is
proved that if a planar polynomial vector field of degreem has at least m(m+1)/2
invariant algebraic curves, then it has a first integral, which can be computed
using these invariant algebraic curves. Jouanolou [37] showed that if the number
of invariant algebraic curves of a planar polynomial vector field of degree m is
at least m(m + 1)/2 + 2, then the vector field has a rational first integral, and
consequently all its solutions are invariant algebraic curves.

1.2.1 Invariant algebraic curves

Let f(x, y) = 0, f ∈ C[x, y], be an algebraic curve of system (1.1). We say that
f = 0, or simply f , is invariant if Xf/f = K ∈ C[x, y]. In this case, K is called
the cofactor of f and it has degree at most m− 1. The expression which defines
K is often written as

∂f

∂x
P +

∂f

∂y
Q = K f.

We remark that in the definition of invariant algebraic curve we allow the
curve f = 0 to be complex. This is due to the fact that sometimes for real vector
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fields the existence of a real first integral can be forced by the existence of complex
invariant algebraic curves.

An irreducible invariant algebraic curve f = 0 is an invariant algebraic curve
such that f is an irreducible polynomial in C[x, y].

Since the gradient of the polynomial f at the points (x, y) such that f(x, y) = 0
is orthogonal to the vector field X, this vector field is tangent to the curve f = 0.
Hence, the curve f = 0 is formed by trajectories of X. A solution of (1.1) either
has empty intersection with the zero set of f or is contained in it.

Example 1.2.1. System (1.3) has the complex irreducible invariant algebraic
curves f1 = x + iy = 0 and f2 = x − iy = 0; or, equivalently, the real invariant
algebraic curve x2 + y2 = 0.

We state some properties of invariant algebraic curves.

Proposition 1.2.2. (1) If f is a complex polynomial, then f̄ denotes the com-
plex polynomial obtained from f by conjugating all its coefficients. The
curve f = 0 is an invariant algebraic curve of system (1.1) with cofactor
K if and only if f̄ = 0 is an invariant algebraic curve of system (1.1) with
cofactor K̄.

(2) Let n1, . . . , nr ∈ N and f1, . . . , fr ∈ C[x, y]. Set f = fn1
1 · · · fnr

r . Then, f = 0
is an invariant algebraic curve with cofactor Kf if and only if fi = 0 is an
invariant algebraic curve with cofactor Kfi

for all i ∈ {1, . . . , r}. Moreover,
the equality Kf = n1Kf1 + · · · + nrKfr holds.

(3) If system (1.1) has an integrating factor R = fn1
1 · · · fnp

p , with fi ∈ C[x, y]
and ni ∈ C \ {0} for all i, (fi, fj) = 1 if i 6= j, then fi = 0 is an invariant
algebraic curve of (1.1) for all i.

1.2.2 Exponential factors

In this section we introduce the notion of exponential factors, due to Christopher
[18]. An exponential factor appears when an invariant algebraic curve has geo-
metric multiplicity greater than one. The exponential factors play the same role
than invariant algebraic curves in order to obtain a first integral for the polyno-
mial system. For more details on exponential factors than the ones given in this
section, see [20].

Let g, h ∈ C[x, y] be relatively prime polynomials. The function F = eg/h is
an exponential factor of system (1.1) if XF/F = L ∈ C[x, y]. In this case, L
is called the cofactor of F . It has degree at most m − 1. The expression which
defines L is often written as

P
∂eg/h

∂x
+Q

∂eg/h

∂y
= Leg/h. (1.7)
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Proposition 1.2.3. (1) The function eg/h is a complex exponential factor of
(1.1) with cofactor L if and only if eḡ/h̄ = 0 is an exponential factor of
system (1.1) with complex cofactor L̄.

(2) Let F = eg/h be an exponential factor of system (1.1) with cofactor L. Then,
h = 0 is an invariant algebraic curve with cofactor K. Moreover,

Xg = gK + hL.

We remark that the exponential factors of the form eg/h with h constant
appear when the straight line at infinity is a solution with multiplicity higher
than one for the projectivized version of the vector field.

1.2.3 Independent singular points

We identify the linear vector space Cm−1[x, y] of all complex polynomials in the
variables x and y of degree at mostm−1 with Cm(m+1)/2 through the isomorphism

m−1∑

i+j=0

aijx
iyj ↔ (a00, a10, a01, . . . , am−1,0, am−2,1, . . . , a0,m−1).

We say that r points (xk, yk) ∈ C2, k = 1, . . . , r, are independent with respect to
Cm−1[x, y] if the intersection of the r hyperplanes

{
(aij) ∈ Cm(m+1)/2 :

m−1∑

i+j=0

aijx
i
ky

j
k = 0, k = 1, . . . , r

}
,

is a linear subspace of Cm(m+1)/2 of dimension m(m+ 1)/2 − r > 0.

We note that the maximum number of isolated singular points of the poly-
nomial system (1.1) is m2, and also that the maximum number of independent
isolated singular points of the system can be m(m + 1)/2 − 1. We remark that
m(m+ 1)/2 < m2 for m ≥ 2.

A singular point (x0, y0) of system (1.1) is weak if div (P,Q)(x0, y0) = 0.

1.2.4 The Darboux Theorem

The following theorem improves Darboux’s theorem (see [22]), essentially because
here exponential factors (see [18]) and independent singular points (see [17]) are
taken into account, in addition to invariant algebraic curves (see [5], [6]).
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Theorem 1.2.4. Suppose that a polynomial system (1.1) of degree m admits

(a) p irreducible invariant algebraic curves fi = 0 with respective cofactor Ki,
i = 1, . . . , p;

(b) q exponential factors Fj = egj/hj with respective cofactor Lj, j = 1, . . . , q;

(c) r independent singular points (xk, yk) ∈ C2 such that fi(xk, yk) 6= 0, for
i = 1, . . . , p and k = 1, . . . , r.

Then:

(1) There exist λi, µj ∈ C, not all zero, such that
p∑
i=1

λiKi+
q∑
j=1

µjLj = −div (P,Q)

if and only if the (multi–valued) function

fλ1
1 · · · fλp

p F µ1

1 · · ·F µq
q (1.8)

is an integrating factor of system (1.1). If the system is real, then (1.8) is
real.

(2) If p+q+r = m(m+1)
2

and the r independent singular points are weak, then the
function (1.8), for convenient λi, µj ∈ C not all zero, is a first integral of

(1.1) if
p∑
i=1

λiKi+
q∑
j=1

µjLj = 0 or an integrating factor of (1.1) if
p∑
i=1

λiKi+

q∑
j=1

µjLj = −div (P,Q).

(3) There exist λi, µi ∈ C, not all zero, such that
p∑
i=1

λiKi +
q∑
j=1

µjLj = 0 if and

only if the function (1.8) is a first integral of system (1.1). If the system is
real, then (1.8) is real.

(4) If p+ q + r = m(m+1)
2

+ 1, then there exist λi, µj ∈ C, not all zero, such that
p∑
i=1

λiKi +
q∑
j=1

µjLj = 0.

(5) If p+ q+ r ≥ m(m+1)
2

+ 2, then system (1.1) has a rational first integral, and
consequently all orbits are contained into invariant algebraic curves.

A (multi–valued) function of the form (1.8) is called a Darboux function. If a
polynomial system (1.1) has a first integral given by a function (1.8), we say that
system (1.1) has a Darboux first integral, and if a polynomial system (1.1) has
an integrating factor given by a function (1.8), we say that system (1.1) has a
Liouvillian first integral. Roughly speaking, Liouvillian functions are those that
can be expressed as composition of elementary functions, for more details see [45].
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If among the invariant algebraic curves of system (1.1) a complex conjugate
pair f = 0 and f̄ = 0 occurs, then the first integral (1.8) has a factor of the form
fλf̄ λ̄, λ ∈ C \ {0}, which is the real multi–valued function

fλf̄ λ̄ =
[
(Re f)2 + (Im f)2

]Reλ

exp

{
−2 Imλ arctan

Im f

Re f

}
. (1.9)

If among the exponential factors of system (1.1) a complex conjugate pair eg/h

and eḡ/h̄ occurs, then the first integral (1.8) has a factor of the form
(
eg/h

)µ(
eḡ/h̄

)µ̄
,

µ ∈ C \ {0}, which is the real function e2Re (µg/h).

1.3 Limit cycles

A closed or periodic solution of system (1.1) is a solution (x(t), y(t)) of system (1.1)
for which there exists 0 < T <∞ such that x(t) = x(t+ T ) and y(t) = y(t+ T ),
for all t ∈ R. A closed orbit having a neighborhood in which there are no other
closed orbits is called a limit cycle. The behavior of the orbits in the neighborhood
of a limit cycle is described in the following theorem (see [1] for a proof).

Theorem 1.3.1. Let L0 be a limit cycle of a planar differential system. Then,
all orbits through points outside L0 and sufficiently close to L0 tend to L0 either
as t → +∞ or as t → −∞. The same happens to the orbits inside L0 and
sufficiently close to L0.

1.4 Inverse integrating factors

The inverse integrating factors are the most important tool in this first part of
the work, so we define them for general planar differential systems. Consider the
planar differential system

ẋ = P (x, y), ẏ = Q(x, y), (1.10)

where P and Q are C2–functions in the variables x and y. Let X be its associated
vector field and let

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

be its associated linear operator. Let U be the domain of definition of system
(1.10), and let W be an open subset of U . A non–zero C1 function V : W → R is
an inverse integrating factor of system (1.10) on W if it is a solution of the linear
partial differential equation

P
∂V

∂x
+Q

∂V

∂y
=

(
∂P

∂x
+
∂Q

∂y

)
V, (1.11)
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also written XV = V divX. As we deduce from this equation, the gradient
(∂V/∂x, ∂V/∂y) of the set of curves V −1(0) is orthogonal to the vector field X.
So X is tangent to {V = 0}, and then this curve is formed by trajectories of X.
Moreover, V −1(0) is an invariant algebraic curve of (1.10) with cofactor divX.

Proposition 1.4.1. Let V be an inverse integrating factor of system (1.10) de-
fined in the open subset W ⊆ R2. Then,

(1) The function 1/V , defined in W \{V = 0}, is an integrating factor of system
(1.10). Moreover, the function

H(x, y) = −
∫

P (x, y)

V (x, y)
dy+

∫ (
Q(x, y)

V (x, y)
+

∂

∂x

∫
P (x, y)

V (x, y)
dy

)
dx (1.12)

is a first integral of (1.10).

(2) If system (1.10) has a first integral H, then the function

VH(x, y) =
P

−∂H
∂y

=
Q

∂H

∂x

is an inverse integrating factor of (1.10). Moreover, the system

ẋ =
P

VH
= −∂H

∂y
, ẏ =

Q

VH
=
∂H

∂x
, (1.13)

is Hamiltonian in W \ {V = 0}.

Proof: The first part of the proposition follows from the computation

X
1

V
= P

(
1

V

)

x

+Q

(
1

V

)

y

= −XV

V 2
= − 1

V
divX.

The expression of H can be obtained as in Section 1.1.
To prove the second part, we note that 1/VH is an integrating factor of (1.10),

so system (1.13) is Hamiltonian in W \ {V = 0}.

Remark 1.4.2. Proposition 1.1.3 can be applied also to inverse integrating fac-
tors. 2

The following lemma (see [11]) gives a linear property of the inverse integrating
factors.
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Lemma 1.4.3. Let V1, . . . , Vp be inverse integrating factors of system (1.10) and

a1, . . . , ap ∈ R. Then, the function V =
p∑
i=1

aiVi is an inverse integrating factor

of system (1.10).

Example 1.4.4. 1. A linear differential system x′ = ax+by, y′ = cx+dy has
always an easy inverse integrating factor V (x, y) = cx2 + (d − a)xy − by2

(a quadratic homogeneous polynomial), but the first integrals of this system
are more complicated functions than this quadratic homogeneous form.

2. If P and Q are homogeneous polynomials of the same degree, then the poly-
nomial V (x, y) = xQ−y P satisfies equation (1.11). This follows using the
Euler Theorem for homogeneous functions.

3. If P and Q are quadratic polynomials and the origin is a center, then there
always exists a polynomial V : R2 → R of degree 3 or 5 satisfying equation
(1.11), see [8] and [40].

4. If P (x, y) = −y + P3(x, y) and Q(x, y) = x + Q3(x, y), with P3 and Q3

homogeneous polynomials of degree 3, and the origin is a center, then there
always exists a function V : R2 → R of degree at most 10 satisfying equation
(1.11), see [8].

In all these previous examples, the inverse integrating factor V is a polynomial
of small degree, but the first integrals associated are, in general, more complicated
functions. Usually the inverse integrating factor have an easy expression than
their associated first integral.

Next theorem, proved in [31], gives an important relation between limit cycles
and inverse integrating factors.

Theorem 1.4.5. Consider system (1.10) defined in an open set U ⊆ R2 and let
V (x, y) be a C1 solution of equation (1.11) defined in an open subset W of U . If
γ is a limit cycle of system (1.10) contained in W , then γ is contained in the set
{(x, y) ∈ W : V (x, y) = 0}.

The set V −1(0) contains all the limit cycles of system (1.10) which are in W .
This fact allows to study the limit cycles which bifurcate from periodic orbits of a
center (Hamiltonian or not) and compute their shape. To do this, we develop the
function V in power series of the small perturbation parameter. A remarkable
fact is that the first term in this expansion coincides with the first non–identically
zero Melnikov function, see [32], [33] and [34].

In short, an inverse integrating factor V is a very important function, and
perhaps it is the best way to understand the integrability of a two–dimensional
differential system, because
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1. V allows to compute a first integral.

2. V −1(0) contains all limit cycles lying in the domain of definition of V .

3. In general, the expression of V is simpler than the expression of the integrat-
ing factors and the first integrals associated, and its domain of definition is
usually larger.

For more information about existence and uniqueness of analytic inverse in-
tegrating factors, see [12].

Theorem 1.4.6 (see [13]). Suppose that the polynomial differential system (1.10)
of degree m, with P and Q relatively prime, has a Darboux first integral H given by
(1.8), with the polynomials fi and hj irreducible, the polynomials gj and hj rela-
tively prime in C[x, y] and λi, µj ∈ C \ {0}, i = 1, . . . , p, j = 1, . . . , q. Then, the
function VlogH , which is an inverse integrating factor of system (1.10) associated
to the first integral logH, is a rational function. It can be written in the form
uk11 · · ·ukr

r , with ui ∈ C[x, y], ki ∈ Z, where each ui is an irreducible invariant
algebraic curve of system (1.10). Moreover, if system (1.10) has no rational first
integrals, then VlogH is the unique rational inverse integrating factor of system
(1.10).

The following theorem can be found in [27]. Its third part is proved in there.

Theorem 1.4.7. Let X be a polynomial vector field in C2.

(a) If X has a Liouvillian first integral, then it has a Darboux inverse integrating
factor.

(b) If X has a Darboux first integral, then it has a rational inverse integrating
factor.

(c) If X has a polynomial first integral, then it has a polynomial inverse inte-
grating factor.

Proof: We prove statement (c) (see [27] again). Let H be a polynomial first
integral of X. We note that a polynomial function is a particular case of a
Darboux function. Therefore, by statement Theorem 1.4.6, X has a rational
inverse integrating factor V = f/g, where f and g are coprime polynomials. It is
known that the curves f = 0 and g = 0 are invariant algebraic curves of X, see
for instance [13].

Let gn1
1 · · · gnr

r , with n1, . . . , nr ∈ N, be the factorization of g in irreducible
factors in C[x, y]. Then, gj = 0 is an invariant algebraic curve of X for j =
1, . . . , r. Let hj be the value of the first integral H on the points of the irreducible
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invariant algebraic curve gj = 0. Since gj is irreducible, gj divides H − hj.
Therefore, there exists a polynomial sj such that H − hj = sjgj.

Since H is a polynomial first integral of X, it follows that the function K =
(H − h1)

n1 · · · (H − hr)
nr is another polynomial first integral of X. Then, K V =

f
∏r

i=1 s
ni
i is a polynomial inverse integrating factor of X. Hence, the statement

is proved.

1.5 Rational first integrals. Remarkable values

We introduce in this section some properties of the polynomial differential systems
having a rational first integral. The results of this section can be found in [13].

Let H be a polynomial first integral of degree n. We say that the degree of H
is minimal in the set of the degrees of all the polynomial first integrals of system
(1.1) if any other polynomial first integral of system (1.1) has degree at least n.

Let H = f/g be a rational first integral. We say that H has degree n =
max{deg f, deg g}. The degree of H is minimal in the set of the degrees of all the
rational first integrals of system (1.1) if any other rational first integral of (1.1)
has degree at least n.

Lemma 1.5.1. If a polynomial system (1.1) has a minimal rational first integral
H = f/g which is not a polynomial, then it is not restrictive to assume that f
and g are polynomial functions of the same degree and that they are irreducibles.

Proof: Suppose that deg (f) 6= deg (g). Without losing generality, we can assume
that deg (f) < deg (g). Then, the rational function f̃/g = (f + c1g)/g, for a
convenient c1 ∈ C, is another rational first integral of system (1.1) and deg (f̃) =
deg (g).

Now suppose that deg (f) = deg (g) and (f, g) = 1. If f is not irreducible, then
we take the first integral (f + cg)/g, for a certain c such that f + cg is irreducible.
Now if g is not irreducible, then we take the first integral (g+d(f+cg))/(f+cg),
for a certain d such that g + d(f + cg) is irreducible.

Let H = f/g be a minimal rational first integral of a polynomial system (1.1).
According to Poincaré [43] we say that c ∈ C∪{∞} is a remarkable value of H if
f + cg is a reducible polynomial in C[x, y] for c ∈ C or if g is reducible in C[x, y]
for c = ∞.

Proposition 1.5.2. Assume that a polynomial differential system (1.1) has a
first integral H given by expression (1.8) which is rational and minimal. Then,
H has finitely many remarkable values.
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Suppose that c ∈ C is a remarkable value of a rational first integralH and that
uα1

1 . . . uαr
r is the factorization of the polynomial f + cg into irreducible factors in

C[x, y]. If some of the αi, for i = 1, . . . , r, is larger than one, then c is a critical
remarkable value of H, and ui = 0 having αi > 1 is a critical remarkable invariant
algebraic curve of system (1.1) with exponent αi.

Proposition 1.5.3. Let H = f/g be a minimal rational first integral of system
(1.1). Assume that f = fα1

1 · · · fαr
r and g = gβ1

1 · · · gβs
s , for some irreducible

polynomials fi, gj, i = 1, . . . , r, j = 1, . . . , s, and r, s ∈ N. Let δi = deg fi,
γj = deg gj. Assume that deg f = deg g and (f, g) = 1 and define the rational
first integral

H̃ =
f̃

g̃
=
c2f + (c1c2 + 1)g

f + c1g
.

We take c1, c2 ∈ C such that f̃ and g̃ are irreducible. Then,

(1) If f (resp. g) is reducible, then c = −c2 − c−1
1 (resp. c = −c2) is a remar-

kable value of H̃.

(2) If αi > 1 for some i ∈ {1, . . . , r} (resp. βj > 1 for some j ∈ {1, . . . , s}),
then c = −c2 − c−1

1 (resp. c = −c2) is critical, and fi = 0 (resp. gj) is a
critical remarkable invariant algebraic curve with exponent αi (resp. βj).

Proof: The equation f̃ +cg̃ = 0 can be written as (c+c2)f +(c1(c+c2)+1)g = 0.
Then, the proposition follows.

If f is a polynomial, let f̃ be the homogeneous part of f of highest degree. If
H is the function given by the expression (1.8), we define

H̃ = f̃λ1
1 · · · f̃λp

p

(
eg̃1/h̃

n1
1

)µ1

· · ·
(
eg̃q/h̃

nq
q

)µq

.

Theorem 1.5.4. Suppose that the polynomial differential system (1.1) of degree
m, with P and Q relatively prime, has a Darboux first integral H given by (1.8),
where the polynomials fi and hj are irreducible, the polynomials gj and hj are
relatively prime in C[x, y] and λi, µj ∈ C \ {0}, i = 1, . . . , p, j = 1, . . . , q. Then,
the following statements hold.

(1) Suppose that H is a minimal rational first integral, H = f/g, and that
system (1.1) has no polynomial first integrals. It is not restrictive to assume
that f and g are irreducible. Then:
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(a) The rational function

VH =
g2

∏
i

uαi−1
i

,

where the product runs over all the critical remarkable invariant alge-
braic curves ui = 0 having exponent αi > 1, is an inverse integrating
factor.

(b) System (1.1) has a polynomial inverse integrating factor if and only if
H has, at most, two critical remarkable values.

(2) Furthermore, if we assume that fi and hj are different for i = 1, . . . , p and
j = 1, . . . , q, then the following statements hold.

If system (1.1) has no rational first integrals, then

VlogH = f1 · · · fp hn1+1
1 · · ·hnq+1

q ∈ R[x, y].

Moreover, if H̃ is a multi–valued function and egj/hj are exponential factors
for j = 1, . . . , q, then VlogH = f1 · · · fp hn1+1

1 · · ·hnq+1
q is a polynomial of

degree m+ 1.



Chapter 2

Polynomial inverse integra-
ting factors of quadratic sys-
tems

In this first part of the work the quadratic systems are the polynomial real dif-
ferential systems of type (1.1) of degree m = 2. Our main objective is to classify
all the quadratic systems having a polynomial inverse integrating factor V (x, y).

In Section 2.1 we classify the quadratic systems into ten normal forms (see
[29]). Once this classification is done, in Section 2.2 we present the methods we
use to find quadratic systems having a polynomial inverse integrating factor. The
rest of the chapter is dedicated to find the quadratic systems having a polynomial
inverse integrating factor, using the classification of Section 2.1 and the methods
described in Section 2.2.

2.1 Normal forms of the quadratic systems

We classify the quadratic systems in ten normal forms, passing from a quadratic
system with the usual 12 parameters to a quadratic system with 6 parameters. We
use these normal forms to find the quadratic systems having an inverse integrating
factor. To do this classification we must transform the quadratic systems by using
affine changes and scaling time, but we must be sure that with these changes a
polynomial inverse integrating factor becomes a polynomial inverse integrating
factor.

If v(x, y) is an inverse integrating factor of a polynomial system and we apply
a change of time T = γt, then clearly v(x, y) is an inverse integrating factor of
the new system. The next proposition solves the question of the affine change.

Proposition 2.1.1. Any inverse integrating factor associated to a polynomial
system is transformed into an inverse integrating factor if the system is changed
by an affine transformation.

Proof: Consider the polynomial system

ẋ = p(x, y), ẏ = q(x, y). (2.1)

33
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Let x1 = ax+ by + α, y1 = cx+ dy + β, with ad− bc 6= 0. Then,

x =
d(x1 − α) − b(y1 − β)

ad− bc
, y =

a(y1 − β) − c(x1 − α)

ad− bc

and

ẋ1 = p1(x1, y1) = ap(x, y)+bq(x, y), ẏ1 = q1(x1, y1) = cp(x, y)+dq(x, y). (2.2)

Let V (x1, y1) be an inverse integrating factor of (2.2) and let v(x, y) = V (x1, y1).
It is clear that v(x, y) is a polynomial if V (x1, y1) is a polynomial. We want to
prove that v(x, y) is an inverse integrating factor of (2.1).

As V is an inverse integrating factor of system (2.2), it satisfies the equation

p1
∂V

∂x1

+ q1
∂V

∂y1

=

(
∂p1

∂x1

+
∂q1
∂y1

)
V. (2.3)

We next write this equation in terms of p, q and x, y. First of all, the functions
∂p1/∂x1 and ∂q1/∂y1 are written as

∂p1

∂x1
= a

(
∂p

∂x

d

a d − b c
− ∂p

∂y

c

a d − b c

)
+ b

(
∂q

∂x

d

a d − b c
− ∂q

∂y

c

a d − b c

)

=
1

a d − b c

(
a d

∂p

∂x
− a c

∂p

∂y
+ b d

∂q

∂x
− b c

∂q

∂y

)

and

∂q1

∂y1
= c

(
−∂p

∂x

b

a d − b c
+

∂p

∂y

a

a d − b c

)
+ d

(
−∂q

∂x

b

a d − b c
+

∂q

∂y

a

a d − b c

)

=
1

a d − b c

(
−b c

∂p

∂x
+ a c

∂p

∂y
− b d

∂q

∂x
+ a d

∂q

∂y

)
.

Adding these two expressions, we obtain

∂p1

∂x1

+
∂q1
∂y1

=
∂p

∂x
+
∂q

∂y
. (2.4)

On the other hand, the expressions of ∂V/∂x1 and ∂V/∂y1 are, respectively,

∂V

∂x1

=
1

a d− b c

(
d
∂v

∂x
− c

∂v

∂y

)

and

∂V

∂y1

=
1

a d− b c

(
−b ∂v

∂x
+ a

∂v

∂y

)
.

Then, the expression p1 ∂V/∂x1 + q1 ∂V/∂y1 becomes

a p + b q

a d − b c

(
d

∂v

∂x
− c

∂v

∂y

)
+

c p + d q

a d − b c

(
−b

∂v

∂x
+ a

∂v

∂y

)
= p

∂v

∂x
+ q

∂v

∂y
. (2.5)

So by equations (2.4) and (2.5), v is an inverse integrating factor of (2.1).
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Next proposition can be found in [29]. Since it plays a main role in our study,
we give its proof.

Proposition 2.1.2. Any real quadratic system is affine–equivalent, rescaling the
time variable if necessary, to system ẋ = P (x, y), ẏ = Q(x, y), where Q(x, y) =
d+ ax+ by+ lx2 +mxy+ny2 and ẋ = P (x, y) is one of the following ten normal
forms:

(I) ẋ = 1 + xy, (V I) ẋ = 1 + x2,

(II) ẋ = xy, (V II) ẋ = x2,

(III) ẋ = y + x2, (V III) ẋ = x,

(IV ) ẋ = y, (IX) ẋ = 1,

(V ) ẋ = −1 + x2, (X) ẋ = 0.

Proof: We can write a real polynomial quadratic differential system as

ẋ = d1 + a1x+ b1y + l1x
2 +m1xy + n1y

2,
ẏ = d2 + a2x+ b2y + l2x

2 +m2xy + n2y
2,

(2.6)

where all the parameters are assumed to be real. We claim that we can take
n1 = 0. Indeed, if n1l2 6= 0 then system (2.6) becomes a quadratic system
without term y2 in ẋ by the change of variables x1 = y− rx, y1 = y, where r 6= 0
satisfies

l2 + (m2 − l1)r + (n2 −m1)r
2 − n1r

3 = 0. (2.7)

If l2 = 0, that is, if the x2 term does not appear in ẏ, then it is sufficient to
interchange x and y. In short, we can assume that

ẋ = d1 + a1x+ b1y + l1x
2 +m1xy (2.8)

and that ẏ = Q(x, y) is an arbitrary quadratic polynomial. If m1 6= 0, then we
introduce the translation x+ b1m

−1
1 → x, and then (2.8) becomes ẋ = d′ + a′x+

l′x2 +m1xy. Now, the change a′ + l′x+m1y → y converts this new system into
ẋ = d′ + xy, ẏ = Q(x, y). If d′ 6= 0, then we make the change (d′)−1x→ x to get
(I). If d′ = 0, then we have (II).

If m1 = 0 and b1 6= 0, then the change d1 + a1x+ b1y → y converts (2.8) into
ẋ = y + l1x

2.
Now if l1 6= 0, then we make the change l−1

1 y → y, l1t → t to get (III). If
l1 = 0, then we have (IV).

If m1 = b1 = 0 and l1 6= 0, then we define k = a2
1 − 4d1l1. If k 6= 0, then

by the change 2l1|k|−1/2(x + a1(2l1)
−1) → x, 2−1|k|1/2t → t we get (V) or (VI)
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according to whether k is positive or negative. If k = 0, then by the change
x+ a1(2l1)

−1x→ x, l1t→ t we get (VII).
If m1 = b1 = l1 = 0 and a1 6= 0, then by the change x+d1(a1)

−1 → x, a1t→ t
we get (VIII).

Lastly, suppose that m1 = b1 = l1 = a1 = 0. If d1 6= 0, then we get (IX) by
change d1t→ t; if d1 = 0, then we have (X).

Remark 2.1.3. 1. The ten cases obtained in Proposition 2.1.2 do not need
to have empty intersection.

2. By Proposition 2.1.1, if a quadratic system has a polynomial inverse inte-
grating factor, then its normal form given in Proposition 2.1.2 has a poly-
nomial inverse integrating factor. So in order to find all the families of
quadratic systems having a polynomial inverse integrating factor we need
to compute the polynomial inverse integrating factors for the normal forms
obtained.

2

2.2 Methods for computing polynomial inverse

integrating factors

We consider the real planar quadratic system

ẋ = P (x, y) = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2,
ẏ = Q(x, y) = d+ ax+ by + lx2 +mxy + ny2.

(2.9)

We assume that P and Q have no common factors, otherwise the system can be
transformed into a linear one. In order to find a polynomial inverse integrating
factor of this system, we use the classification of quadratic systems given in
Proposition 2.1.2. We will find polynomial inverse integrating factors of degree
k ∈ N by using some different methods of solving the equation

P
∂V

∂x
+Q

∂V

∂y
=

(
∂P

∂x
+
∂Q

∂y

)
V.

We denote this equation by (⋆). As the term in y2 of P (x, y) is zero in all the
normal forms, we take a02 = 0 in (2.9).

Remark 2.2.1. 1. In case (X), equation (⋆) has always the polynomial so-
lution V = Q. The cases where P ≡ 0 or Q ≡ 0 are not interesting for us,
so from now and on we exclude them from our classification.



2.2. Methods for computing polynomial inverse integrating factors 37

2. The equation div (P,Q) = ∂P/∂x + ∂Q/∂y = 0 is equivalent to b = −a10,
m = −2a20, n = −a11/2. In this case, the system is Hamiltonian, so V = 1
is always a polynomial solution of (⋆). Moreover,

H(x, y) = dx− a00y +
a

2
x2 − a10xy −

a01

2
y2 +

l

3
x3 − a20x

2y − a11

2
xy2

is a polynomial first integral of system (2.9), and also a polynomial inverse
integrating factor of the system.

This case appears for every normal form in our classification.

2

Next we describe the methods we use to find polynomial inverse integrating
factors of degree k > 0.

Method 1 Since we are looking for real polynomial inverse integrating factors
of degree k ∈ N, we write V as

V (x, y) =
k∑

i+j=0

vi,jx
iyj,

where vi,j ∈ R. Equation (⋆) is a polynomial equation since P , Q and
V are polynomial functions, and it can be written as a linear system with
unknowns vi,j, i+ j = 0, . . . , k.

If k > 1, we define in a recursive way the matrix Ak,

Ak =




0
Ak−1 C1,k

C2,k

0 C3,k


 , (2.10)

where

C1,k =




ka00 d
(k − 1)a00 2d

. . .
. . .

a00 kd


 , (2.11)

C2,k =




(k − 1)a10 − b a
ka01 (k − 2)a10 2a

(k − 1)a01

. . .
. . .

. . .
. . . ka
a01 −a10 + (k − 1)b




, (2.12)
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C3,k =




(k − 2)a20 − m l
(k − 1)a11 − 2n (k − 3)a20 2l

(k − 2)a11 − n
. . .

. . .

. . .
. . . kl
. . . −2a20 + (k − 1)m

−a11 + (k − 2)n




(2.13)

and

A1 =




−a10 − b a00 d
−2a20 − m −b a
−a11 − 2n a01 −a10

0 −a20 − m l
0 −2n −2a20

0 0 −a11 − n




. (2.14)

Let 0 be the zero vector, of convenient dimension wherever it may appear.
We state the following result.

Proposition 2.2.2. Let V (x, y) be a polynomial inverse integrating fac-
tor of degree k of system (2.9). Then, equation (⋆) is equivalent to the
homogeneous linear system

AkV
k = 0, (2.15)

where Ak is the matrix defined in (2.10) and

V k = (v0,0, v1,0, v0,1, v2,0, v1,1, v0,2, . . . , vk,0, vk−1,1, . . . , v1,k−1, v0,k)
T

is the vector of the coefficients of V (x, y).

Proof: Equation (⋆) is a polynomial equation of degree k+ 1 in two varia-
bles. Then it can be written as

k+1∑

i+j=0

[(
a11(i− 1) + n(j − 3)

)
vi,j−1 +

(
a20(i− 3) +m(j − 1)

)
vi−1,j

+l(j + 1)vi−2,j+1 + a00(i+ 1)vi+1,j +
(
a10(i− 1) + b(j − 1)

)
vi,j

+a01(i+ 1)vi+1,j−1 + d(j + 1)vi,j+1 + a(j + 1)vi−1,j+1

]
xiyj = 0,

(2.16)

where vr,s = 0 if r, s, r + s 6∈ {0, . . . , k}. As all the coefficients of this
polynomial must be zero, we must take

(
a11(i− 1) + n(j − 3)

)
vi,j−1 +

(
a20(i− 3) +m(j − 1)

)
vi−1,j

+l(j + 1)vi−2,j+1 + a00(i+ 1)vi+1,j +
(
a10(i− 1) + b(j − 1)

)
vi,j

+a01(i+ 1)vi+1,j−1 + d(j + 1)vi,j+1 + a(j + 1)vi−1,j+1 = 0,
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for 0 ≤ i + j ≤ k + 1. In order to obtain equation (2.15), we just have to
write these equalities as a linear system with unknowns vi,j.

Remark 2.2.3. 1. We note that, for a given k ∈ N, the matrix Ak has
(k+2)(k+3)/2 rows and (k+1)(k+2)/2 columns. Then, the (homoge-
neous) linear system is over–determined and for each case we have to
eliminate some equations in order to get a non–trivial solution. Then,
we must take some conditions on the coefficients d, a, b, l,m, n (the co-
efficients of the polynomial Q, see Proposition 2.1.2), in order to obtain
a polynomial inverse integrating factor of the corresponding system.

2. We look for conditions on the coefficients of Q(x, y) so that the null–
space of the matrix Ak has dimension one.

3. This first Method is very tedious for k large, so we use it to compute
solutions of (⋆) of small degree, usually degree k ≤ 6.

4. This Method, adapted and improved, is used in [46] for finding invari-
ant algebraic curves of a given degree for planar polynomial systems.

2

Method 2 We compute a first integral H(x, y) of system (2.9) and then we
obtain an inverse integrating factor V (x, y) from the equations P/V = −Hy,
Q/V = Hx (see Section 1.4). This Method is used in some cases when we
cannot bound the degree of V . The difficulty in this Method is to find
the convenient first integral such that the inverse integrating factor V is
polynomial.

Method 3 We write V as a polynomial in the variable y (resp. x): V (x, y) =∑s
i=0Wi(x) y

i (resp. V (x, y) =
∑r

i=0 W̃i(y)x
i), 0 ≤ r, s ≤ k. Then, (⋆)

can be written as a polynomial equation in y (resp. in x), and we can solve
it starting by the terms of highest or lowest degree in y (resp. in x). This
Method is useful if we need to compute the degree of V in y (resp. x).

Method 4 We write V as

V (x, y) = V0 + V1(x, y) + · · · + Vk−1(x, y) + Vk(x, y), (2.17)

where Vi(x, y) is a homogeneous polynomial of degree i, for i = 1, . . . , k, and
V0 ∈ R. Then, (⋆) becomes a system of homogeneous differential equations
of degree from 0 to k + 1, which are solved recursively. Moreover, from the
Euler Theorem for homogeneous functions, we have

xVx + yVy =
k∑

j=0

jVj.
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Then, equation (⋆) is transformed, after multiplying by x (resp. y), into
a system of k + 2 ordinary differential equations, where there only appear
the polynomials Vj and their derivative with respect to y (resp. x). This
Method is the one we more use to solve (⋆). In Section 2.3.8 we combine
it with the decomposition of each Vj in powers of linear polynomials, as
explained in Proposition 2.3.2, Corollary 2.3.3 and Lemma 2.3.4.

Method 5 We write V as in (2.17) and then we write each homogeneous poly-
nomial Vi(x, y) as a polynomial in y (resp. x): Vi(x, y) =

∑i
j=0 vi−j,jx

i−jyj

(resp. Vi(x, y) =
∑i

j=0 vj,i−jy
i−jxj).

Remark 2.2.4. There are solutions of (⋆) of arbitrary degree k. In some of
these cases, it is very difficult for us to find an explicit expression for V . But in
these cases, this expression can be computed for fixed k using Method 4. 2

2.3 Finding polynomial inverse integrating fac-

tors

In this section we find the quadratic systems which have a polynomial inverse
integrating factor for each one of the nine normal forms (I)–(IX). For the normal
forms where P contains the monomial x2, we will use the following lemma.

Lemma 2.3.1. Consider the quadratic system

ẋ = a00 + a01 y + x2, ẏ = d+ ax+ by + lx2 +mxy + ny2. (2.18)

The following statements hold.

(1) Assume that a00 ∈ {0, 1,−1}, a01 ∈ {0, 1}, and n 6= 0. Let V (x, y) be a
polynomial inverse integrating factor of (2.18). Then, the degree of V (x, y)
with respect to y is two.

(2) Assume a00 = 0, a01 ∈ {0, 1}, and n = 0. Let V (x, y) be a polynomial
inverse integrating factor of degree k > 4 of (2.18). Then,

m = 1 − k − 3

p
6= 1,

where p ∈ {−1, 1, 2, 3, . . . , k − 1}.

Proof: First we prove statement 1. We write V (x, y) =
∑s

i=0Wi(x)y
i. Then

equation (⋆) is a polynomial equation in y. The equation corresponding to ys+1

is

n(s− 2)Ws(x) + a01W
′
s(x) = 0.
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If a01 = 1 then Ws(x) = e−n(s−2). As Ws(x) is a polynomial and n 6= 0, we take
s = 2, and then Ws(x) = W2(x) ≡ 1. If a01 = 0, as n 6= 0 and Ws(x) 6≡ 0, again
we must take s = 2.

Next we prove statement 2. We write V (x, y) as in (2.17). The homogeneous
equation of degree k + 1 of equation (⋆) is

−(m+ 2)xVk + x(lx+my)
∂Vk
∂y

+ x2∂Vk
∂x

= 0.

If m = 1, then Vk(x, y) = x3F (y/x − l log x), so deg (Vk) = 3, in contradiction
with the assumption k > 4. If m 6= 1, then

Vk(x, y) = xm+2F

(
l

m− 1
x1−m + x−my

)
,

where F is an arbitrary function. As Vk(x, y) is a homogeneous polynomial of
degree k, the function F must be of the form F (z) = zp+1, with p ∈ N ∪ {−1}.
We discard p = 0 because, in this case, we would get k = 3. So

Vk(x, y) = x2−pm
(

l

m− 1
x+ y

)p+1

.

Then k = 3 − p(m − 1), and from this equality we get m = 1 − (k − 3)/p,
p ∈ N∪ {−1}. We must also take p < k, because Vk(x, y) contains the monomial
xk−p−1yp+1.

Next results can be found in [9]. The computations in the cases where P
contains the monomial xy are based in those results, so we also give their proofs.

Proposition 2.3.2. We consider the ordinary differential equation

NH + UHy = M sL, (2.19)

where N , U, M and L are polynomials. Assume that M is a polynomial of
degree τ such that M divides U , and that M has neither common factors with
N+jMyU/M for j = 0, 1, . . . , s−1, nor with L. If equation (2.19) has a solution
H given by a polynomial of degree m, then H = M sW where W is a polynomial
of degree m− sτ such that

[
N + sMy

U

M

]
W + UWy = L.

Furthermore, if M and H are homogeneous then W is also homogeneous.
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Proof: Since M divides U but it does not divide N , from (2.19) it follows that
there exists j ∈ N such that H = M jA, where A is a polynomial of degree
m− τj. Going back to (2.19) with this expression of H, we obtain that M j

(
[N +

jMyU/M ]A + UAy
)

= M sL. We have that j ≤ s, otherwise M divides L in
contradiction with the assumptions. On the other hand, if j < s, then M must
divide [N + jMyU/M ]A+UAy. Then, since M divides U and does not divide A
we get that M divides N+jMyU/M , again in contradiction with the hypotheses.
Hence j = s, and furthermore A satisfies the equation [N + sMyU/M ]A+UAy =
L. If M and H are homogeneous, then from H = M sW we deduce that W is
homogeneous and the proof of the proposition is completed.

Corollary 2.3.3. We consider the differential equation

KH + THy = F qGsE, (2.20)

where K and E are homogeneous polynomials of degree 1, F = m(p− 1)x+ (k−
3 + 2(p− 1)(n− 1))y and G = αx+ βy, T = FG.

(a) Suppose that q > 0 and G does not divide K+jGyF for j = 0, 1, . . . , s−1,
and that F does not divide K+sGyF + iFyG for i = 0, 1, . . . , q−1. If there exists
a solution of (2.20) given by a homogeneous polynomial H of degree m, then
H = F qGsVm−s−q, where Vm−s−q satisfies

DVm−s−q + TVm−s−q,y = E, (2.21)

with

D = K + sGyF + qFyG. (2.22)

(b) Suppose that q = 0 and G ∤ (K+jGyF ) for j = 0, 1, . . . , s−1. If there exists
a solution H of (2.20) given by one homogeneous polynomial of degree m, then
H = GsVm−s, where Vm−s satisfies DVm−s + TVm−s,y = E, with D = K + sGyF .

Proof: (a) Applying Proposition 2.3.2 with N = K, U = T , L = F qE and
M = G (and hence t = 1), we have that H = GsWm−s, where Wm−s is the
solution of [K + sGyF ]Wm−s + TWm−s,y = F qE. Applying again Proposition
2.3.2 to this equation with N = K + sGyF , U = T , L = E and M = F we get
Wm−s = F qVm−s−q, with Vm−s−q a solution of (2.21).

(b) This statement is the consequence of applying Proposition 2.3.2 with N =
K, U = T , L = E and M = G.
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Lemma 2.3.4. Let V =
m∑
i=0

αix
m−iyi be a homogeneous polynomial of degree m

solution of DV + TVy = E, where T = dx2 + exy + (f − 1)y2, D = ẽx+ f̃y and

E =
m+1∑
r=0

qrx
m+1−ryr. Let M(l + 2, l + 1) be the (l + 2) × (l + 1) matrix




f̃ + l(f − 1)

ẽ + le f̃ + (l − 1)(f − 1)

ld ẽ + (l − 1)e f̃ + (l − 2)(f − 1)
· · · · · · · · · · · ·

2d ẽ + e f̃
d ẽ




.

Then the coefficients αi of V are the solution Z = (αm, αm−1, . . . , α0)
t of the

system M(m+ 2,m+ 1)Z = b with m+ 2 equations and m+ 1 unknowns, where
b = (qm+1, qm, . . . , q0)

t. Furthermore, if there exists s ∈ {0, 1, . . . ,m} such that

f̃+j(f−1) 6= 0 and qj+1 = 0 for all j ≥ s, then the existence of V is equivalent to

the compatibility of system M(s+1, s)Z̃ = b̃, where Z̃ = (αs−1, αs−2, . . . , α0)
t and

b̃ = (qs, qs−1, . . . , q0)
t. Moreover, the coefficients of V are (0, . . . , 0, αs−1, . . . , α0).

Proof: Taking into account the expressions of D, T and V , we can write

DV + TVy

=

m∑

t=0

ẽαtx
m−t+1yt +

m∑

t=0

f̃αtx
m−tyt+1 +

m∑

t=1

tdαtx
m−t+2yt−1 +

m∑

t=1

teαtx
m−t+1yt +

m∑

t=0

t(f − 1)αtx
m−tyt+1

=
m∑

t=0

(f̃ + t(f − 1))αtx
m−tyt+1 +

m∑

t=0

(ẽ + te)αtx
m−t+1yt +

m∑

t=1

tdαtx
m−t+2yt−1

= (dα1 + ẽα0)x
m+1 +

m−2∑

j=0

((j + 2)dαj+2 + (ẽ + (j + 1)e)αj+1 +

(f̃ + j(f − 1))αj)x
m−jyj+1 + ((ẽ + m)e)αm +

(f̃ + (m − 1)(f − 1))αm−1)xym + (f̃ + m(f − 1))αm−1y
m+1.

Then equation DV +TVy = E is equivalent to the linear system M(m+2,m+
1)Z = b.

Now, we suppose that there exists s ǫ {0, 1, ..,m} such that f̃ + j(f − 1) 6= 0
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and qj+1 = 0 for all j ≥ s. If we define X as the matrix



f̃+m(f-1)

ẽ+me f̃+(m-1)(f-1)

md ẽ+(m-1)e f̃+(m-2)(f-1)

· · · · · · · · · · · ·
ẽ+(s+2)e f̃+(s+1)(f-1)

(s+2)d ẽ+(s+1)e f̃+s(f-1)




,

we can write M(m+ 2,m+ 1) as

M(m+ 2,m+ 1) =

(
X 0
Y M(s+ 1, s)

)
.

On the other hand, we have Z = (αm, αm−1, ., αs, |αs−1, .., α0)
t = (Ωt|Z̃t)t

and b = (0|qs, qs−1, ..q0)
t = (0|̃bt)t. Now, the system that corresponds to the first

m − s + 1 unknowns is XΩ = 0 and since det (X) =
m∏
j=s

(f̃ + j(f − 1)) 6= 0 we

deduce that Ω = 0, that is, αj = 0 for all j ≥ s. Finally, the remainder equations

becomes Y Ω +M(s+ 1, s)Z̃ = b̃. As Ω = 0, the proof is finished.

From now on in this chapter, we find the quadratic systems having a poly-
nomial inverse integrating factor, taking into account the normal forms given in
Proposition 2.1.2.

2.3.1 The case P (x, y) ≡ 1

We consider the quadratic system

ẋ = 1, ẏ = d+ ax+ by + lx2 +mxy + ny2, (2.23)

where d, a, b, l,m, n ∈ R. If n 6= 0 then this system is transformed into

ẋ = 1, ẏ =
b00
4

− b10
2
x+

b20
4
x2 + y2, (2.24)

by the affine change mx/2 + ny + b/2 → y, where b00 = 4dn − b2 + 2m, b10 =
bm− 2an and b20 = 4ln−m2.

The set of conditions on the coefficients of system (2.23) with n = 0 and
system (2.24) in order to have a polynomial inverse integrating factor are stated
in the following two propositions.

Proposition 2.3.5. A system of type (2.23) with n = 0 and having a polynomial
inverse integrating factor V (x, y) can be written, after an affine change of varia-
bles and a rescaling of the time if it is necessary, as ẋ = 1, ẏ = Q(x, y), where Q
is one of the polynomials below.



2.3. Finding polynomial inverse integrating factors 45

(IX.1) Q(x, y) = x(δ + x), where δ = 0, 1. The system is Hamiltonian, so we
have V (x, y) = 1.

(IX.2) Q(x, y) = y + x2, and we get V (x, y) = 1 + y + (1 + x)2.

(IX.3) Q(x, y) = (b01+δx)y, where δ = ±1 and b01 ∈ R, and we get V (x, y) = y.

Proof: If b = m = 0, then the system is Hamiltonian. We also have l 6= 0,
otherwise the system is linear. If a 6= 0, then by the change lx/a→ x, −dl2x/a3+
l2y/a3 → y, lt/a → t we have ẏ = x(1 + x). If a = 0, then by the change
−dx/l + y/l → y we get ẏ = x2. We obtain statement (IX.1).

Assume b2 +m2 6= 0. Next we find the maximum degree in y of a solution V
of degree k. For that purpose, we write V as a polynomial of degree s ≥ 0 in y:

V (x, y) =
s∑

i=0

Wi(x)y
i.

We can write equation (⋆) as a polynomial equation in y. Then, all the coeffi-
cients of the new equation (which depend on x) must vanish. The coefficient of
ys+1 is zero and the coefficient of ys is given by

(b+mx)(s− 1)Ws(x) +W ′
s(x) = 0.

Solving this equation, we obtain Ws(x) = e−(s−1)(b+mx/2)x. As Ws(x) is a poly-
nomial and we are assuming b2 + m2 6= 0, we take s = 1. So we get V (x, y) =
W0(x) + y. Now the whole equation (⋆) becomes

d+ ax+ lx2 − (b+mx)W0(x) +W ′
0(x) = 0. (2.25)

We distinguish two cases. If m = 0 (and so bl 6= 0), then equation (2.25) becomes

d+ ax+ lx2 − bW0(x) +W ′
0(x) = 0,

from which we obtain

W0(x) =
1

b3
(2l + ab+ b2d+ (ab+ 2l)bx+ b2lx2) + C0e

bx,

where C0 ∈ R. As b 6= 0, we take C0 = 0. Then, we get the polynomial

V (x, y) = 2l + ab+ b2d+ (ab+ 2l)bx+ b2lx2 + b3y.

After the change (bx, abx/l+ b3y/l+(a+db2)/l, bt) → (x, y, t), we get the system
and the solution stated in (IX.2).
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If m 6= 0, then from (2.25) we get

W0(x) =
am− bl + lmx

m2
+ C0e

bx+mx2/2

−
√
π

2

(b2 +m)l −m(ab− dm)

m5/2
ebx+mx

2/2Φ

(
b+mx√

2m

)
,

where Φ(x) is the error function Φ(x) = 2√
π

∫ x
0
e−t

2
dt and C0 ∈ R. As W0(x) is

a polynomial, we take C0 = 0 and (b2 + m)l −m(ab − dm) = 0. We obtain the
polynomial

V (x, y) = am− bl + lmx+m2y.

After the change (
√

|m|x, lx+my + (am− bl)/m,
√

|m|t) → (x, y, t), we obtain
the system and the solution stated in (IX.3), where δ is the sign of m and b01 =
b/
√
|m|.

Proposition 2.3.6. A system of type (2.24) having a polynomial inverse inte-
grating factor V (x, y) can be written, after an affine change of variables and a
rescaling of the time if it is necessary, as ẋ = 1, ẏ = Q(x, y), where

(IX.4) Q(x, y) = δ + y2, with δ = −1, 0, 1. The expression of a polynomial
inverse integrating factor is V (x, y) = δ + y2.

Proof: First we write V as a polynomial of degree s in y:

V (x, y) =
s∑

i=0

Wi(x)y
i,

with Ws(x) 6≡ 0. The equation corresponding to the coefficient of ys+1 in (⋆) is
(s− 2)Ws(x) = 0. Then, s = 2, which means k ≥ 2. Next we write V (x, y) as in
(2.17). So equation (⋆) can be transformed into a system of k+ 2 homogeneous
equations. The homogeneous equation of degree k + 1 is

−8yVk + (b20x
2 + 4y2)

∂Vk
∂y

= 0.

Solving this equation we obtain Vk(x, y) = (b20x
2 + 4y2)fk(x), where fk(x) is an

arbitrary non–zero function of x. As Vk is an homogeneous polynomial of degree
k, we take fk(x) = xk−2, and then

Vk(x, y) = (b20x
2 + 4y2)xk−2.
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The homogeneous equation of degree k is

−16b10x
k−1y − 8yVk−1 + (b20x

2 + 4y2)
∂Vk−1

∂y
= 0,

from which we get

Vk−1(x, y) = −2b10x
k−1 + Ck−1(b20x

2 + 4y2)xk−3,

with Ck−1 ∈ R. From the homogeneous equation of degree k − 1,

4xk−3(b20kx
2−2(2b10Ck−1−b00)xy−4(k−2)y2)−8yVk−2+(b20x

2+4y2)
∂Vk−2

∂y
= 0,

we get

Vk−2(x, y) = Ck−2x
k−4(b20x

2 + 4y2) + xk−3((b00 − 2b10Ck−1)x− 4y)+

2(k − 1)xk−4(b20x
2 + 4y2)√

−b20
arctanh

(
2y√
−b20x

)

if b20 < 0,

Vk−2(x, y) = Ck−2x
k−4(b20x

2 + 4y2) + xk−3((b00 − 2b10Ck−1)x− 4y)−
2(k − 1)xk−4(b20x

2 + 4y2)√
b20

arctan

(
2y√
b20x

)

if b20 > 0, and

Vk−2(x, y) = Ck−2x
k−4y2 − (2b10Ck−1 − b00)x

k−2 + 4(k − 2)xk−3y

if b20 = 0. In all cases, Ck−2 ∈ R. As k ≥ 2, we must take b20 = 0. From the
homogeneous equation of degree k − 2, we obtain

Vk−3(x, y) = 4(k − 3)Ck−1x
k−4y − 2b00Ck−1 − b10Ck−2

2
xk−3 + Ck−3x

k−5y2−
2b10(2k − 3)

3y
xk−2,

with Ck−3 ∈ R. In order to obtain a polynomial, we must take b10 = 0. Then,
ẏ = b00/4 + y2. In this case we have a solution of degree 2, which is, after either
the change (

√
|b00|x/2, 2y/

√
|b00|,

√
|b00|t/2) → (x, y, t) if b00 6= 0, or the change

(x/2, 2y, t/2) → (x, y, t) if b00 = 0, the solution stated in (IX.4). The parameter
δ corresponds to the sign of b00.
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2.3.2 The case P (x, y) = x

We consider the quadratic system

ẋ = x, ẏ = d+ ax+ by + lx2 +mxy + ny2, (2.26)

where d, a, b, l,m, n ∈ R. If n = 0 and m 6= 0, then this system is transformed
into

ẋ = x, ẏ = b00 + by + xy, (2.27)

where b00 = (bl(b− 1)−m(ab− dm))/m2, by the affine change mx→ x, lx/m+
y + a/m− (b− 1)l/m2 → y. If n 6= 0 then system (2.26) becomes

ẋ = x, ẏ =
b00
4

− b10
2
x+

b20
4
x2 + y2, (2.28)

where b00 = 4dn − b2, b10 = (b − 1)m − 2an and b20 = 4ln − m2, by the affine
change mx/2 + ny + b/2 → y.

The set of conditions on the coefficients of system (2.26) with n = m = 0,
system (2.27) and system (2.28) in order to have a polynomial inverse integrating
factor are stated in the following three propositions.

Proposition 2.3.7. A system of type (2.26) with n = m = 0 and l 6= 0 has
always a polynomial inverse integrating factor V (x, y) (the case b = d = 0 is
excluded because the system would be equivalent to a linear one). In order to get
its expression, we distinguish four cases, depending on the value of the parameter
b. The system can be written, after an affine change of variables and a rescaling
of the time if it is necessary, as ẋ = x, ẏ = Q(x, y), where Q is one of the
polynomials below.

(VIII.1) Q(x, y) = −y+x2. The system is Hamiltonian, so we have V (x, y) = 1.

(VIII.2) Q(x, y) = δ + x2 where δ = ±1, and we get V (x, y) = x.

(VIII.3) Q(x, y) = δx+ y + x2 where δ = 0, 1, and we get V (x, y) = x2.

(VIII.4) Q(x, y) = by + x2 with b 6= −1, 0, 1, and V (x, y) = x((b− 2)y + x2).

Proof: If b = −1, then the system is Hamiltonian. By the change −ax/(2l) +
y/l − d/l → y, we get (VIII.1). From system A1V

1 = 0,




−1 − b 0 d
−b a

−1
l







v0,0

v1,0

v0,1


 = 0,
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we get V (x, y) = x and b = 0. So statement (VIII.2) follows after the change
(lx,−alx+ ly) → (x, y), where δ is the sign of dl 6= 0. From system A2V

2 = 0,




−1 − b 0 d
−b a 0 d

−1 0 0 2d
l 1 − b a 0

0 2a
0 b− 1
l 0

2l







v0,0

v1,0

v0,1

v2,0

v1,1

v0,2




= 0,

we get V (x, y) = x2 and the condition b = 1. So statement (VIII.3) follows after
applying either the change (lx/a, ly/a2 + dl/a2) → (x, y) if a 6= 0, or the change
(lx, ly + dl) → (x, y) if a = 0. Finally, assuming b 6= −1, 0, 1, we consider system
A3V

3 = 0,




−1 − b 0 d
−b a 0 d

−1 0 0 2d
l 1 − b a 0 0 d

0 2a 0 0 2d
0 b − 1 0 0 0 3d
l 0 2 − b a 0 0

2l 0 1 2a 0
0 b 3a
0 0 2b − 1
l 0 0

2l 0
3l







v0,0

v1,0

v0,1

v2,0

v1,1

v0,2

v3,0

v2,1

v1,2

v0,3




= 0.

We get the solution shown in statement (VIII.4) after the change of variables
(lx, alx/(b− 1) + ly + dl/b) → (x, y).

Proposition 2.3.8. A system of type (2.27) having a polynomial inverse inte-
grating factor V (x, y) can be written, after an affine change of variables and a
rescaling of the time if it is necessary, as ẋ = x, ẏ = Q(x, y), where Q is one of
the polynomials below.

(VIII.5) Q(x, y) = δx + (x − 1)y where δ = 0, 1, and we get V (x, y) = δ(1 +
x) + xy.

(VIII.6) Q(x, y) = (b+ x)y, and we have V (x, y) = xy.
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Proof: We write V (x, y) as in (2.17). The homogeneous equation of degree k + 1
of equation (⋆) is

−xVk + xy
∂Vk
∂y

= 0.

We get Vk(x, y) = xk−1y. The homogeneous equation of degree k is

(k − 2)xk−1y − xVk−1 + xy
∂Vk−1

∂y
= 0.

From this equation,

Vk−1(x, y) = (Ck−1 − (k − 2) log y)xk−2y,

Ck−1 ∈ R. Then, a polynomial solution V must have degree k = 2. Now system
A2V

2 = 0 is



−(b+ 1) 0 b00
−1 −b 0 0 b00

0 −1 0 0 2b00
−1 0 1 − b 0 0

0 0 b− 1
−1 0 0







v0,0

v1,0

v0,1

v2,0

v1,1

v0,2




= 0.

From this system we get the polynomial V (x, y) = b00 + xy and the condition
(b+ 1)b00v1,1 = 0. If b = −1 then we obtain statement (VIII.5) using the change
y/b00 − 1 → y if b00 6= 0. If b = b00 = 0 then the system has a common factor. If
b 6= −1, 0 and b00 = 0, then statement (VIII.6) follows.

Proposition 2.3.9. A system of type (2.28) having a polynomial inverse inte-
grating factor V (x, y) can be written, after an affine change of variables and a
rescaling of the time if it is necessary, as ẋ = x, ẏ = Q(x, y), where Q is one of
the polynomials below. The expression of a polynomial inverse integrating factor
is given in all the cases.

(VIII.7) Q(x, y) = −1/4 + δx2 + y2, where δ = −1, 0, 1. We get V (x, y) =
4δx2 + (2y − 1)2.

(VIII.8) Q(x, y) = b00/4 + y2, where b00 ∈ R. We have V (x, y) = x(b00 + 4y2).

Proof: We write V (x, y) as in (2.17). Equation (⋆) can be written as a system of
k + 2 homogeneous equations. From the homogeneous equation of degree k + 1,

−8yVk + (b20x
2 + 4y2)

∂Vk
∂y

= 0,
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we get Vk(x, y) = (b20x
2 + 4y2)xk−2. The homogeneous equation of degree k is

4xk−2
(
(k − 1)b20x

2 + 4b10xy − 4(k − 3) − 8yVk−1 + (b20x
2 + 4y2)

∂Vk−1

∂y
= 0,

from which we obtain

Vk−1(x, y) = Ck−1x
k−3(b20x

2 + 4y2) − 2xk−2(b10x+ 2y)−
2(k − 2)xk−3(b20x

2 + 4y2)√
b20

arctan

(
2y√
b20x

)

if b20 > 0,

Vk−1(x, y) = Ck−1x
k−3(b20x

2 + 4y2) − 2xk−2(b10x+ 2y)+

2(k − 2)xk−3(b20x
2 + 4y2)√

−b20
arctanh

(
2y√
−b20x

)

if b20 < 0, and

Vk−1(x, y) = Ck−1x
k−3y2 − 2b10x

k−1 + 4(k − 3)xk−2y

if b20 = 0. In all cases, Ck−1 ∈ R. If k = 2 then system A2V
2 = 0,




−1 0 b00/4
0 0 −b10/2 0 b00/4
−2 0 −1 0 0 b00/2

0 b20/4 1 −b10/2 0
−2 0 0 0 −b10

−1 0 0 −1
0 b20/4 0
−2 0 b20/2

−1 0







v0,0

v1,0

v0,1

v2,0

v1,1

v0,2




= 0,

gives us the conditions and the solution of statement (VIII.7), using the change√
|b20|x/2 → x if b20 6= 0. The parameter δ is the sign of b20.
If k 6= 2, then we must take b20 = 0. From the homogeneous equation of

degree k − 1 we obtain the expression of Vk−2(x, y),

Vk−2(x, y) = Ck−2x
k−4y2 + Ck−1(k − 4)xk−3y+

2b00 − Ck−1b10 + 4(k − 3)2

2
xk−2 − 2b10(2k − 5)

3y
xk−1,

Ck−2 ∈ R. In order to obtain a polynomial, we must take b10 = 0, so ẏ = b00/4+y2.
In this case, the polynomial of degree 3 stated in (VIII.8) is a solution of (⋆).
We note that this case includes (VIII.7) with δ = 0.
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2.3.3 The case P (x, y) = y

We consider the quadratic system

ẋ = y, ẏ = d+ ax+ by + lx2 +mxy + ny2, (2.29)

where d, a, b, l,m, n ∈ R. If n = 0 and m 6= 0, then this system is transformed
into

ẋ = a00 + a10x+ y, ẏ = b00 + b01y + xy, (2.30)

by the affine changem2x→ x, (Ax+y+B)m3 → y, t/m→ t, where a00 = −Bm3,
a10 = −l, b00 = (d− (A + b)B)m4, b01 = l + bm and A = l/m, B = (am2 − l2 −
blm)/m3. If n 6= 0 then system (2.29) becomes

ẋ = a00 + a10x+ y, ẏ = b00 + b10x+ b20x
2 + y2, (2.31)

where

a00 = −(m + 2bn)/2, a10 = −m, b00 = 4dn3 − (m + 2bn)2/4,
b10 = −m2 − 2n(bm − 2an), b20 = 4ln − m2,

by the affine change nx→ x, mnx+ 2n2y + (m+ 2bn)/2 → y, 2nt→ t.
The set of conditions on the coefficients of system (2.29) with n = m = 0,

system (2.30) and system (2.31) in order to have a polynomial inverse integrating
factor are stated in the following three propositions.

Proposition 2.3.10. A system of type (2.29) with n = m = 0 and l 6= 0 having a
polynomial inverse integrating factor V (x, y) can be written, after an affine change
of variables and a rescaling of the time if it is necessary, as ẋ = y, ẏ = Q(x, y),
where

(IV.1) Q(x, y) = −b00 + x2 where b00 ∈ R. The system is Hamiltonian, so we
have V (x, y) = 1.

Proof: Under the hypotheses of the proposition, if b = 0 then we get (IV.1) after
the change (2lx+ a, 2

√
2ly, t/

√
2) → (x, y, t), where b00 = a2 − 4dl.

We shall prove that (⋆) has no polynomial solution under the hypotheses of
the proposition and assuming b 6= 0. If k ≤ 3, straightforward computations show
that there is no solution, so we assume k > 3. Now we transform our system into

ẋ = y, ẏ = D + Ax+ y + x2,

by the change lx/b2 → x, ly/b3 → y, bt → t, where D = dl/b4 and A = a/b2.
Next we write a solution V (x, y) of degree k as in (2.17). From the homogeneous
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equation of degree k+1 of equation (⋆), that is x2∂Vk/∂y = 0, we get Vk(x, y) =
xk. From the homogeneous equation of degree k, which is

kxk−1y − xk + x2∂Vk−1

∂y
= 0,

we obtain Vk−1(x, y) = xk−3
(
Ck−1x

2+xy−ky2/2
)
, Ck−1 ∈ R. If j ∈ {1, . . . , k−1},

then the homogeneous equation of degree k − j is

D
∂Vk−j+1

∂y
− Vk−j + y

∂Vk−j
∂x

+ (Ax+ y)
∂Vk−j
∂y

+ x2∂Vk−j−1

∂y
= 0. (2.32)

An easy induction argument shows that the degree in y of Vk−j is 2j, for all j. Let
vk−3j,2j and vk−3j+1,2j−1 be the respective coefficients of the monomials xk−3jy2j

and xk−3j+1y2j−1 of Vk−j. Now we take, from equation (2.32), the two equations
associated to the coefficients of the monomials of maximum degree in y which
are, respectively, of degree 2j + 1 and 2j:

2(j + 1)vk−3(j+1),2(j+1) + (k − 3j)vk−3j,2j = 0, (2.33)

(2j + 1)vk−3j−2,2j+1 + (k − 3j + 1)vk−3j+1,2j−1 + (2j − 1)vk−3j,2j = 0. (2.34)

We remark that vk,0 = 1. From (2.33), we get for j = 1, . . . , [k/3]

vk−3j,2j =
1

j!(−2)j

j−1∏

i=0

(k − 3i) 6= 0. (2.35)

If k = 3p + l, p ∈ N, l ∈ {1, 2}, then we consider equation (2.33) with j =
(k − l)/3 = p ∈ N:

2(p+ 1)vl−3,2(p+1) + l vk−3p,2p = 0.

Since 0 < l < 3, we have vl−3,2(p+1) = 0, and then vk−3p,2p = 0 in contradiction
with (2.35). So we must take k = 3p, p ∈ N \ {1}. If 1 ≤ j ≤ p then we can
isolate v3(p−j),2j and v3(p−j)+1,2j−1 from equations (2.33) and (2.34), respectively:

v3(p−j),2j =
3j

j!(−2)j

j−1∏

i=0

(p − i) 6= 0,

v3(p−j)+1,2j−1 = −3(p − j) + 4

2j − 1
v3(p−j)+4,2j−3 −

(−3

2

)j−1 (2j − 3)
∏j−2
i=0 (p − i)

(2j − 1)(j − 1)!
.

Equation (2.34) with j = p, which is

v1,2p−1 + (2p− 1)v0,2p = 0, (2.36)

can be rewritten as

(−1)p
p∑

j=0

(
p
j

)(
3

2

)p−j
(2p− 2j − 1)

∏j−1
i=0 (3i+ 1)

∏j
i=1(2p− 2i+ 1)

= 0,
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which is equivalent to

(−3
2

)p
(6p− 5)Γ(1/6)Γ(1/2 − p)

5
√
π Γ(1/6 − p)

= 0,

where Γ is the Euler gamma function. This equation does not hold for p ∈ N, so
we are again in contradiction. Then we do not obtain any polynomial solution
from equation (⋆).

Proposition 2.3.11. A system of type (2.30) having a polynomial inverse inte-
grating factor V (x, y) can be written, after an affine change of variables and a
rescaling of the time if it is necessary, as ẋ = y, ẏ = Q(x, y), where

(IV.2) Q(x, y) = x(δ + y) with δ = ±1, and we get V (x, y) = δ + y.

Proof: First we compute the solutions of degree k ≤ 2. System A1V
1 = 0 is




−(a10 + b01) a00 b00
−1 −b01 0

1 −a10

−1 0







v0,0

v1,0

v0,1


 = 0.

From this system, we take a10 = b00 = 0 and a00 6= 0 (otherwise, the system has
a common factor). After the change ((x+ b01)/

√
|a00|, (y + a00)/|a00|,

√
|a00|) →

(x, y, t), we get statement (IV.2), where δ is the sign of a00.
System A2V

2 = 0, which is




−(a10 + b01) a00 b00
−1 −b01 0 2a00 b00

1 −a10 0 a00 2b00
−1 0 a10 − b01 0 0

2 0 0
0 1 b01 − a10

−1 0 0
1







v0,0

v1,0

v0,1

v2,0

v1,1

v0,2




= 0,

has no non–trivial solution.
In order to prove that there is no solution of degree k > 2, we write V (x, y)

as in (2.17). From the homogeneous equation of degree k + 1 of equation (⋆),

−xVk + xy
∂Vk
∂y

= 0,
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we get Vk(x, y) = xk−1y. The homogeneous equation of degree k is

xk−2y
(
(k − 2)a10x+ (k − 1)y

)
− xVk−1 + xy

∂Vk−1

∂y
= 0,

from which

Vk−1(x, y) = xk−3y(Ck−1 − (k − 1)y) − a10(k − 2)xk−2 log y,

Ck−1 ∈ R. As we are assuming k > 2, we take a10 = 0. Solving the homogeneous
equation of degree k − 1, we get

Vk−2(x, y) = Ck−2x
k−3y + (b01(k − 1) − Ck−1(k − 2))xk−4y2+

(k − 1)(k − 3)

2
xk−5y3 − a00(k − 1)xk−3y log y,

Ck−2 ∈ R. Again, as we are assuming k > 2, we take a00 = 0. Now from the
homogeneous equation of degree k − 2 we get

Vk−3(x, y) = b00(Ck−1 − b01)x
k−3 + Ck−3x

k−4y+

(b01Ck−1(k − 2) − Ck−2(k − 3) − b201(k − 1))xk−5y2 +

(Ck−1(k − 2)(k − 4) − b01(k − 1)(2k − 7))
xk−6y3

2
−

(k − 1)(k − 3)(k − 5)
xk−7y4

6
+ b00kx

k−4y log y,

Ck−3 ∈ R. As k > 0, we take b00 = 0 and then the system has a common factor.

Proposition 2.3.12. A system of type (2.31) having a polynomial inverse inte-
grating factor V (x, y) must satisfy the conditions

a10b10 − 2a00b20 = 0, a3
10 + (4b00 + b20)a10 − 2a00b10 = 0. (2.37)

Then, the expression of V (x, y) is

V (x, y) = a2
10 + 2b00 + b10 + b20 + 2(b10 + b20)x− 2a10y + 2b20x

2 + 2y2.

More precisely, by applying the conditions (2.37) on Q and V , five families of
systems arise:

(IV.3a) Q(x, y) = δ + y2 where δ2 = 1, and we get V = δ + y2.

(IV.3b) Q(x, y) = δx+ y2 where δ2 = 1, and we get V = δ(2x+ 1) + 2y2.

(IV.3c) Q(x, y) = D + δx2 + y2 where D = (4b00b20 − b210)/(4b20|b20|), δ2 = 1,
and we have V = 2D + δ + 2δx(1 + x) + 2y2.
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(IV.3d) Q(x, y) = D + 1/4 + y + y2 where D = b00/(4a
2
00) 6= −1/4, and we get

V = 4D + (2y + 1)2.

(IV.3e) Q(x, y) = −(D + 1/16) − y/2 + 4(D + 1/16)x2 + xy + y2, where D =
b20/(16a2

10) 6= −1/16, and we get V = 16D(2x+ 1)2 + (1 + 2x+ 4y)2.

Proof: We first prove that a polynomial solution V (x, y) must have degree k = 2.
We write V (x, y) as in (2.17). Equation (⋆) is a polynomial equation of degree
k+1, so we can transform it into a system of k+2 homogeneous equations. From
the homogeneous equation of degree k + 1,

−2yVk + (b20x
2 + y2)

∂Vk
∂y

= 0,

we get Vk(x, y) = xk−2(b20x
2 + y2). The homogeneous equation of degree k is

xk−3
(
a10b20(k − 1)x3 + (2b10 + b20k)x

2y + a10(k − 3)xy2 + (k − 2)y3
)
−

2yVk−1 + (b20x
2 + y2)

∂Vk−1

∂y
= 0,

so we get

Vk−1(x, y) = Ck−1x
k−3(b20x

2 + y2) + xk−2((b10 + b20)x− a10y)−
k − 2

2
xk−3(b20x

2 + y2) log(b20x
2 + y2) −

a10(k − 2)(b20x
2 + y2)√

b20
xk−3 arctan

(
y√
b20x

)

if b20 > 0,

Vk−1(x, y) = Ck−1x
k−3(b20x

2 + y2) + xk−2((b10 + b20)x− a10y)−
k − 2

2
xk−3(b20x

2 + y2) log(b20x
2 + y2) −

a10(k − 2)(b20x
2 + y2)√

−b20
xk−3 arctan

(
y√

−b20x

)

if b20 < 0, and

Vk−1(x, y) = Ck−1x
k−3y2 + xk−2(b10x+ a10(k − 3)y) − (k − 2)xk−3y2 log y

if b20 = 0. In all cases, Ck−1 ∈ R. As Vk−1 is a polynomial, we take k = 2. Now
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from system A2V
2 = 0, which is




−a10 a00 b00
0 0 b10 2a00 b00
−2 1 −a10 0 a00 2b00

0 b20 a10 b10 0
−2 0 2 0 2b10

−1 0 1 −a10

0 b20 0
−2 0 2b20

−1 0







v0,0

v1,0

v0,1

v2,0

v1,1

v0,2




= 0,

we get the solution

V (x, y) = a2
10 + 2b00 + b10 + b20 + 2(b10 + b20)x− 2a10y + 2b20x

2 + 2y2

and the conditions a10b10 − 2a00b20 = 0, a3
10 + (4b00 + b20)a10 − 2a00b10 = 0. Next

we distinguish five cases, depending on the values of the parameters:

1. If a10 = a00 = b20 = b10 = 0 and b00 6= 0, then we get (IV.3a) by the change
(y/
√

|b00|,
√

|b00|t) → (y, t).

2. If a10 = a00 = b20 = 0 and b10 6= 0, then we get (IV.3b) by the change
(x+ b00/b10, y/

√
|b10|,

√
|b10|t) → (x, y, t).

3. If a10 = a00 = 0 and b20 6= 0, then we get (IV.3c) by using the change
(x+ b10/(2b20), y/

√
|b20|,

√
|b20|t) → (x, y, t).

4. If a10 = b20 = b10 = 0 and a00 6= 0, then we get (IV.3d) by the change
(−y/2a00 − 1/2,−2a00t) → (y, t).

5. If a10 6= 0, b10 = 2a00b20/a10 and b00 = −(a2
10 + b20)/4 + a2

00b20/a
2
10, then by

the change (x + a00/a10,−x/2 − y/(2a10) − a00/a10,−2a10t) → (x, y, t) we
get (IV.3e).

2.3.4 The case P (x, y) = y + x2

We consider the quadratic system

ẋ = y + x2, ẏ = d+ ax+ by + lx2 +mxy + ny2, (2.38)

where d, a, b, l,m, n ∈ R. If n 6= 0 then this system becomes

ẋ = a00 + a10x+ y + x2, ẏ =
b00
4

− b10
2
x− b20

4
x2 + y2, (2.39)
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by the affine change nx → x, mnx/2 + n2y + (m + 2bn)/4 → y, t/n → t,
where a00 = −(m + 2bn)/4, a10 = −m/2, b00 = (4dn − b2)n2 − m(m + 4bn)/4,
b10 = m2/2 + n(bm− 2an) and b20 = m(m− 2) − 4ln.

The set of conditions on the coefficients of system (2.38) with n = 0 and
system (2.39) in order to have a polynomial inverse integrating factor are stated
in the following two propositions.

Proposition 2.3.13. A system of type (2.38) with n = 0 having a polynomial
inverse integrating factor V (x, y) can be written, after an affine change of varia-
bles and a rescaling of the time if it is necessary, as ẋ = y + x2, ẏ = Q(x, y),
where Q is one of the polynomials below.

(III.1) Q(x, y) = b00 + b10x − 2xy where b00 = (54d − 9al + l3)/2 and b10 =
3(6a− l2)/2. The system is Hamiltonian.

(III.2) Assume 2b(m− 1) + l(m+ 2) = 0, l3m+ 2al(m− 1)2 + 4d(m− 1)3 = 0
and m 6= −2. We distinguish four cases depending on the value of m.

(III.2a) If m = 0 and a 6= 0, then Q(x, y) = δx where δ2 = 1, and we get
V (x, y) = δ + 2(y + x2).

(III.2b) If m = 1, then Q(x, y) = b00 +b10x+xy where b00 = −27d−9ab+
2b3, b10 = 9a+ 3b2, and we get

V (x, y) = b200 + b00x(2b10 + 3y + x2) + (b10 + y)(b10x
2 − y2).

(III.2c) If m = 2, then Q(x, y) = x(b10 + 2y) where b10 = 4a+ 6l2, and we
get V (x, y) = (b10 + 2y)2.

(III.2d) If m 6= −2, 0, 1, 2, then Q(x, y) = x(b10 +my) where b10 = 4a(m−
1)2 + 3l2m, and we have V (x, y) = (b10 +my)(b10 + 2y − (m− 2)x2).

(III.3) Q(x, y) = 1 + xy/2, and we get V (x, y) = (2x− y2)(2 + 3xy − y3).

(III.4) Q(x, y) = 1+b10x+4xy where b10 = 22/33(3a+l2)/(54d+9al+2l3)2/3 ∈ R,
and we have

V (x, y) = 1 + 2x(b10 + 3y − x2) + (b10 + 2y − 2x2)(b10x
2 − (y − x2)2).

(III.5) Q(x, y) = 1 + 8xy, and we get

V (x, y) =
[
(3x2 − y)2 − 2x

][
1 − 2(3x2 − y)(3x− (3x2 − y)2)

]
.

Proof: The systems with n = 0 having a polynomial inverse integrating factor of
degree k ≤ 4 are obtained solving the linear systems AiV

i = 0, i = 1, . . . , 4. The
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results are stated in (III.1) and (III.2), where an affine change of variables has
been applied in each case.

Assume k > 4. We write V (x, y) as in (2.17). By Lemma 2.3.1, we get

Vk(x, y) = x2−mp
(

l

m− 1
x+ y

)p+1

(2.40)

and m = 1 − (k − 3)/p 6= 1, where p ∈ {−1, 1, 2, . . . , k − 1}.
If m = 0 then as k > 4 we get a = d = 0 and b = l after straightforward

computations and the system has a common factor. Then, from now on we
assume m 6= 0, 1.

The homogeneous equation of degree k − j of (⋆), j = −1, . . . , k, is

(lx+my)x
∂Vk−j−1

∂y
− (m+ 2)xVk−j−1 + y

∂Vk−j
∂x

+ (ax+ by)
∂Vk−j
∂y

−

bVk−j + d
∂Vk−j+1

∂y
= 0, (2.41)

taking Vi ≡ 0 if i 6∈ {0, . . . , k}. From (2.40), we can write Vk(x, y) = xk−p−1yp+1+
· · · , where the dots mean lower order terms in y. If Vk−1(x, y) = vsx

k−s−1ys+ · · · ,
then equation (2.41) for j = 0 is

(m(s− 1) − 2)vsx
k−sys + (k − p− 1)xk−p−2yp+2 + bp xk−p−1yp+1 + · · · = 0.

If k = p+ 1 and b 6= 0, then s = p+ 1. If p = 4, then we obtain (III.3) after the
change ((x + l)/γ, (−2lx + y − l2)/γ2, γt) → (x, y, t), where γ = −|d + l3/2|1/3.
If p 6= 4, then after some computations we are under the conditions of (III.2). If
k = p+1 and b = 0, then from straightforward computations we obtain d = l = 0,
so we are in (III.2) again. So from now on we assume k 6= p+ 1.

We claim that the degree of Vk−j in y is p + j + 1 if k − p− 1 − 2j ≥ 0. We
prove this claim using the induction principle. From the computations above, the
degree of Vk in y is p + 1 and the degree of Vk−1 in y is p + 2. Next we write
Vk−j+2(x, y) = v2x

k−p+3−2jyp+j−1 + · · · , Vk−j+1(x, y) = v1x
k−p+1−2jyp+j + · · · and

Vk−j(x, y) = v0x
k−s−jys+· · · , s ∈ Z. From the equality (2.41), as k−p+1−2j > 0

we get

(m(s− 1) − 2)v0x
k−s−j+1ys + (k − p+ 1 − 2j)v1x

k−p−2jyp+j+1 + · · · = 0,

so s = p+ j + 1 as we wanted. Then we can write

Vk−j(x, y) = vk−p−1−2j
p+j+1 xk−p−1−2jyp+j+1 + vk−p−2j

p+j xk−p−2jyp+j + · · · (2.42)

We note that vk−p−1
p+1 6= 0. From equation (2.41), the equations associated to the

terms of degree p+ j + 2, p+ j + 1, p+ j and p+ j − 1 in y are, respectively,

(k − p − 1 − 2j)vk−p−1−2j
p+j+1 − (q + 1)(j + 1)vk−p−3−2j

p+j+2 = 0, (2.43)
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(k − p − 2j)vk−p−2j
p+j − ((q + 1)j + 1)vk−p−2−2j

p+j+1 + b(p + j)vk−p−1−2j
p+j+1 +

l(p + j + 2)vk−p−3−2j
p+j+2 = 0, (2.44)

(k − p + 1 − 2j)vk−p+1−2j
p+j−1 −((q + 1)j − q + 1)vk−p−1−2j

p+j + b(p + j − 1)vk−p−2j
p+j +

l(p + j + 1)vk−p−2−2j
p+j+1 + a(p + j + 1)vk−p−1−2j

p+j+1 = 0 (2.45)

and

(k − p + 2 − 2j)vk−p+2−2j
p+j−2 −((q + 1)j − 2q + 1)vk−p−2j

p+j−1 +b(p + j − 2)vk−p+1−2j
p+j−1 +

l(p + j)vk−p−1−2j
p+j + a(p + j)vk−p−2j

p+j + d(p + j)vk−p−1−2j
p+j+1 = 0. (2.46)

If k− p is even, then from equation (2.43) we obtain vk−p−1
p+1 = 0, a contradic-

tion. So in what follows we assume that k− p is odd. Let C = (k− p− 1)/2 ∈ N.
From equations (2.43)–(2.46) we obtain

vk−p−1−2j
p+j+1 =

(
2

q + 1

)j (
C

j

)
, (2.47)

for 0 ≤ j ≤ C;

vk−p−2j
p+j =

j∑

i=1

b(p+ j − i)
∏i−1

s=1(k − p− 2(j − s))
∏i

s=1((q + 1)(j − s) + 1)
v
k−p+1−2(j+1−i)
p+j+1−i +

j∑

i=0

l(p+ j + 1 − i)
∏i

s=1(k − p− 2(j − s))
∏i+1

s=1((q + 1)(j − s) + 1)
v
k−p+1−2(j+1−i)
p+j+1−i , (2.48)

for 0 ≤ j ≤ C;

vk−p+1−2j
p+j−1 =

j−1∑

i=0

a(p+ j − i)
∏i

s=1(k − p+ 1 − 2(j − s))
∏i+1

s=1((q + 1)(j − s) − (q − 1))
v
k−p+1−2(j−i)
p+j−i +

j∑

i=0

l(p+ j − i)
∏i

s=1(k − p+ 1 − 2(j − s))
∏i+1

s=1((q + 1)(j − s) − (q − 1))
v
k−p−2(j−i)
p+j−i +

j∑

i=1

b(p+ j − i− 1)
∏i−1

s=1(k − p+ 1 − 2(j − s))
∏i

s=1((q + 1)(j − s) − (q − 1))
v
k−p−2(j−i)
p+j−i , (2.49)
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for 0 ≤ j ≤ C + 1; and

vk−p+2−2j
p+j−2 =

j−2∑

i=0

d(p+ j − i− 1)
∏i

s=1(k − p+ 2 − 2(j − s))
∏i+1

s=1((q + 1)(j − s) − (2q − 1))
v
k−p+1−2(j−1−i)
p+j−1−i +

j−1∑

i=0

a(p+ j − i− 1)
∏i

s=1(k − p+ 2 − 2(j − s))
∏i+1

s=1((q + 1)(j − s) − (2q − 1))
v
k−p−2(j−1−i)
p+j−1−i +

j∑

i=0

l(p+ j − i− 1)
∏i

s=1(k − p+ 2 − 2(j − s))
∏i+1

s=1((q + 1)(j − s) − (2q − 1))
v
k−p−1−2(j−1−i)
p+j−1−i +

j∑

i=1

b(p+ j − i− 2)
∏i−1

s=1(k − p+ 2 − 2(j − s))
∏i

s=1((q + 1)(j − s) − (2q − 1))
v
k−p−1−2(j−1−i)
p+j−1−i , (2.50)

for 0 ≤ j ≤ C+1. We note that, as m 6= 0, 1, the only value of m for which some
denominators in the above expressions could vanish is m = −1. In this case,
straightforward computations show that we are under the conditions of (III.2).

Equation (2.44) with j = C and equation (2.46) with j = C + 1 are, respec-
tively,

v1
C+p + b(C + p)v0

C+p+1 = 0 (2.51)

and

v1
C+p−1 + b(C + p− 1)v0

C+p + d(C + p+ 1)v0
C+p+1 = 0. (2.52)

From these two equations we will obtain either the conditions of (III.2) or two
new families of quadratic systems having a polynomial inverse integrating factor.
Equation (2.51) becomes, after some computations,

C∑

i=0

[(
(p+ C − i)((q + 1)(C − 1 − i) + 1)b+ (p+ C + 1 − i)(2i+ 1)l

)

(
2

q + 1

)C−i(
C

i

) i∏

s=1

(2s− 1)
C∏

s=i+1

((q + 1)(C − 1 − s) + 1)
]

= 0,

where we have dropped the coefficient vk−p−1
p+1 6= 0. Factorizing this expression

with the help of Mathematica software (see [49]) we obtain

(k + p − 2)C!
[
2bq + l(q − 3)

] C∏

i=2

(2i(q + 1) − (q − 1)) = 0.

The factor 2bq+ l(q− 3) = 2b(m− 1)+ l(m+2) is the only one which can vanish
in this expression, so we must take 2b(m− 1) + l(m+ 2) = 0. We note that this
is the first condition of (III.2).
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Equation (2.52) becomes

0 =
C−1∑

i=0

d(C + p − i)
∏i
s=1(2s + 1)

∏i+1
s=1((q + 1)(C + 1 − s) − (2q − 1))

v
2(i+1)
C+p−i+

C∑

i=0

a(C + p − i)
∏i
s=1(2s + 1)

∏i+1
s=1((q + 1)(C + 1 − s) − (2q − 1))

v2i+1
C+p−i +

C+1∑

i=0

l(C + p − i)
∏i
s=1(2s + 1)

∏i+1
s=1((q + 1)(C + 1 − s) − (2q − 1))

v2i
C+p−i +

C+1∑

i=1

b(C + p − 1 − i)
∏i−1
s=1(2s + 1)

∏i
s=1((q + 1)(C + 1 − s) − (2q − 1))

v2i
C+p−i +

C∑

i=0

a b(C + p − 1)(C + p + 1 − i)2ii!
∏i+1
s=1((q + 1)(C + 1 − s) − (q − 1))

v2i
C+p+1−i +

C+1∑

i=0

b l(C + p − 1)(C + p + 1 − i)2ii!
∏i+1
s=1((q + 1)(C + 1 − s) − (q − 1))

v2i−1
C+p+1−i +

C+1∑

i=1

b2(C + p − 1)(C + p − i)2i−1(i − 1)!
∏i
s=1((q + 1)(C + 1 − s) − (q − 1))

v2i−1
C+p+1−i +

d(C + p + 1)

(
2

q + 1

)C
, (2.53)

where the condition b = −l(q − 3)/(2q) is to be applied. Using equations (2.47),
(2.48) and (2.49) in (2.53), we obtain an equation which is a linear combina-
tion of d, al and l3 equaled to zero. Factorizing this equation with the help of
Mathematica software we obtain, after removing the trivially non–zero terms,

(q − 3)
C∏
i=2

(2i(q + 1) − 3(q − 1))

C∏
i=1

(i(q + 1) − (2q − 1))

(
4d(k−3)3−2alp(k−3)2+ l3p2(k−3−p)

)
= 0.

If q = 3 then m = −2 and b = 0, so the system is Hamiltonian. The product
in the numerator vanishes if and only if p = −1 and either k = 6 or k = 10. The
product in the denominator vanishes if and only if m = −1, but this case has been
discarded before. Otherwise, we get 4d(k−3)3−2alp(k−3)2 + l3p2(k−3−p) = 0,
which is 4d(m− 1)3 + 2al(m− 1)2 + l3m = 0, and then we are in (III.2).

If k = 6 and p = −1, then m = 4 and b = −l. If 54d + (9a + 2l2)l = 0,
then we are in (III.2). Otherwise, we get a new solution, which is shown in
(III.4), after the change ((x− 6l)/γ, (lx/3 + y − l2/36)/γ2, γt) → (x, y, t), where
γ3 = d+ al/6 + l3/27 6= 0.
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If k = 10 and p = −1, then m = 8 and b = −5l/7. If d = 0, then we are
in (III.2), so we take d 6= 0. In order to have a new solution, we must take
a = l = 0 (and then b = 0). We obtain statement (III.5) after the change
(x/d1/3, y/d2/3, d1/3t) → (x, y, t).

Proposition 2.3.14. A system of type (2.39) having a polynomial inverse inte-
grating factor V (x, y) can be written, after an affine change of variables and a
rescaling of the time if it is necessary, as ẋ = y + x2, ẏ = Q(x, y), where Q(x, y)
is one of the polynomials below.

(III.6) Q(x, y) = −b10/4−b10x+y+2xy−y2/b10 where b10 = 2/(3+4a00−a2
10) ∈

R \ {0}, and we get V (x, y) = (b10 − 2y)2.

(III.7) Q(x, y) = y(2x+ y), and we get V (x, y) = y2.

Proof: We can write V (x, y) = V0(x) + V1(x)y + y2 using Lemma 2.3.1. Then
equation (⋆) is a polynomial equation of degree 2 in y. It can be transformed
into the system

−4(a10 + 2)V0(x) + 4p2(x)V
′
0(x) + q2(x)V1(x) = 0,

q2(x) − 4V0(x) + 2V ′
0(x) − 2(a10 + 2)V1(x) + 2p2(x)V

′
1(x) = 0,

a10 + 2x+ V1(x) − V ′
1(x) = 0,

where p2(x) = a00 +a10x+x2 and q2(x) = b00 − 2b10x− b20x
2. Solving the second

and third equations we obtain V0(x) and V1(x). From the first equation we get the
solutions stated in (III.6) and (III.7), depending on the value of 3+4a00−a2

10 and
after the change (−b10(x+(a10 +1)/2), b210(−x+ y+a00 − (a10 +1)2/4),−b10t) →
(x, y, t) for (III.6) and the same change taking b10 = −1 for (III.7).

2.3.5 The case P (x, y) = x2

We consider the quadratic system

ẋ = x2, ẏ = d+ ax+ by + lx2 +mxy + ny2, (2.54)

where d, a, b, l,m, n ∈ R.
If b = d = n = 0, then system (2.54) has a common factor. If b = n = 0 and

d 6= 0, then system (2.54) is transformed into one of the following three systems,
depending on the value of m.

If m = 0 then

ẋ = x2, ẏ = 1 + δx, (2.55)
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where δ = 0, 1, by the affine change (ax/d, (−lx+ y)/a, dt/a) → (x, y, t) if a 6= 0,
or the affine change (y − lx)/d→ y if a = 0.

If m = 1 then

ẋ = x2, ẏ = 1 + δx2 + xy, (2.56)

where δ = −1, 0, 1, by the affine change (y + a)/d → y if l = 0, or the affine
change (

√
|dl|x/d, (y + a)/

√
|dl|, dt/

√
|dl|) → (x, y, t) if l 6= 0.

If m 6= 0, 1 then

ẋ = x2, ẏ = 1 +mxy, (2.57)

by the affine change (x/d, lx/(m− 1) + y + a/m, dt) → (x, y, t).

If n = 0 and b 6= 0, then system (2.54) is transformed into one of the following
two systems, depending on the value of the expression b2l − (m− 1)(ab− dm).

If b2l − (m− 1)(ab− dm) = 0 then

ẋ = x2, ẏ = (1 +mx)y, (2.58)

by the affine change (x/b, (ab− dm)x/b2 + y + d/b, bt) → (x, y, t).
If b2l − (m− 1)(ab− dm) 6= 0 then

ẋ = x2, ẏ = y + x2 +mxy, (2.59)

by the affine change (x/b,B((ab − dm)x/b2 + y + d/b), bt) → (x, y, t), where
B = b/(b2l − (m− 1)(ab− dm)).

If n 6= 0, then system (2.54) becomes

ẋ = x2, ẏ = −b00
4

− b10
2
x− b20

4
x2 + y2, (2.60)

by the affine change mx/2 +ny+ b/2 → y, where b00 = b2 − 4dn, b10 = bm− 2an
and b20 = m(m− 2) − 4ln.

The set of conditions on the coefficients of the systems (2.55)–(2.60) above
to have a polynomial inverse integrating factor are stated in the following three
propositions.

Proposition 2.3.15. The following statements hold.

(VII.1) System (2.57) with m = −2 is Hamiltonian.

(VII.2) System (2.57) with m = −1 has the polynomial inverse integrating factor
V (x, y) = x.

(VII.3) System (2.57) with m 6= −2,−1, 0, 1 has the polynomial inverse inte-
grating factor V (x, y) = x(1 + (m+ 1)xy).
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(VII.4) System (2.55) has the polynomial inverse integrating factor V (x, y)=x2.

(VII.5) System (2.56) has the polynomial inverse integrating factor V (x, y)=x3.

Proof: The solutions follow from straightforward computations of the linear sys-
tems AiV

i = 0, for i = 1, 2, 3.

Proposition 2.3.16. The following two statements hold.

(VII.6) System (2.58) has the polynomial inverse integrating factor V (x, y) =
x2y.

(VII.7) System (2.59) has a polynomial inverse integrating factor (of degree k >
3) if and only if m = k − 2. Its expression is given by

V (x, y) = x2y + (k − 4)!
k−4∑

i=0

(−x)k−i
i!

.

Moreover, system (2.59) has no polynomial inverse integrating factors of
degree k ≤ 3.

Proof: Statement (VII.6) follows easily from the computation of A3V
3 = 0 for

system (2.58). Moreover, straightforward computations show that there is no
solution of degree k ≤ 3 for system (2.59).

We write a polynomial inverse integrating factor V (x, y) of (2.59) as in (2.17).
The homogeneous equation of degree k + 1 of equation (⋆) is

(k −m− 2)xVk + x(x+ (m− 1)y)
∂Vk
∂y

= 0.

We get Vk(x, y) = xk−1+ k−3
m−1 (x + (m − 1)y)1− k−3

m−1 . Let p + 1 be the degree of Vk
in y. Then, m = 1 − k−3

p
∈ Q, where p ∈ {−1, 1, 2, . . . , k − 1}. Next we find

the maximum degree in y of V . For that purpose, we write it as a polynomial of
degree s ≥ 0 in y:

V (x, y) =
s∑

i=0

Wi(x)y
i.

We can write equation (⋆) as a polynomial equation in y. Then, all the coeffi-
cients of (⋆) (which depend on x) must vanish. The coefficient of ys+1 is zero
and the coefficient of ys is

((1 +mx)(s− 1) − 2x)Ws(x) + x2W ′
s(x) = 0.
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Solving this equation we get Ws(x) = e(s−1)/xx3−s+(k−3)(s−1)/p. As Ws(x) is a
polynomial, we take s = 1. Then, V (x, y) = x2y + W0(x), and W0(x) is a
polynomial of degree k > 3. As Vk(x, y) does not have any term in y, we have
p = −1, and then m = k − 2. Now we can solve the whole equation (⋆), which
is

x4 − (1 + kx)W0(x) + x2W ′
0(x) = 0,

to get the solution in (VII.7).

Proposition 2.3.17. System (2.60) has a polynomial inverse integrating factor
V (x, y) if and only if one of the following statements hold.

(VII.8) b00 = b10 = b20 = 0. Then V (x, y) = (x− y)2.

(VII.9) b00 = b10 = 0 and b20 6= 0. Then V (x, y) = x(b20x
2 + 4xy − 4y2).

(VII.10) b00 6= 0 and b10 = b20 = 0. Then V (x, y) = x2(b00 − 4y2).

(VII.11) b20 = (k−2)(k−4) > 0, b00 > 0 and b10 = (k−2p)
√
b00 ∈ R, with k > 4

and p ∈ {2, . . . , k− 2}. Then V (x, y) = x2
[
p1

1(x)y+ p1
2(x)

][
p2

1(x)y+ p2
2(x)

]
,

where p1
1(x) and p2

1(x) are Laguerre polynomials of respective degree p − 2
and k − p − 2 and the expressions of the polynomials p1

2(x) and p2
2(x) are

obtained from p1
1(x) and p2

1(x).

We remark that under these conditions the system is simplified to

ẋ = x2, ẏ = −1 − (k − 2p)x− (k − 4)xy + y2

applying the change (2x/
√
b00, ((k − 4)x+ 2y)/

√
b00,

√
b00t/2) → (x, y, t).

(VII.12) b20 = (k − 2)(k − 4) > 0, b00 < 0 and b10 = 0, with k > 4 even.
Then V (x, y) = x2

(
f0(x) + f1(x)y + f2(x)y

2
)
, where f2(x) is a polynomial

of degree k − 4 and the expressions of the polynomials f0(x) and f1(x) can
be obtained from f2(x).

We remark that under these conditions the system is simplified to

ẋ = x2, ẏ = 1 − (k − 4)xy + y2

by the change (2x/
√
−b00, ((k − 4)x+ 2y)/

√
−b00,

√
−b00t/2) → (x, y, t).

Proof: Let V (x, y) be a polynomial inverse integrating factor of (2.60) of degree
k. If k ≤ 4, then straightforward computations show that there is no solution of
degree 1; there is a solution of degree 2 if and only if b00 = b10 = b20 = 0; there
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is a solution of degree 3 if and only if b00 = b10 = 0 and b20 6= 0; and there is
a solution of degree 4 if and only if b00 6= 0 and b10 = b20 = 0. The respective
expressions of V (x, y) are shown in the proposition. From now on, we assume
k > 4 and b200 + b210 > 0.

By Lemma 2.3.1, we can write V as a polynomial of degree 2 in y:

V (x, y) = W0(x) +W1(x)y +W2(x)y
2,

where Wi(x) is a polynomial of degree k− i, i = 0, 1, 2. We rewrite equation (⋆)
as the differential system (depending on x)

−8W0(x) + 4x2W ′
0(x) − (b00 + 2b10x+ b20x

2)W1(x) = 0,
4W0(x) + 4xW1(x) − 2x2W ′

1(x) + (b00 + 2b10x+ b20x
2)W2(x) = 0,

W1(x) + 2xW2(x) − x2W ′
2(x) = 0.

(2.61)

From the second and the third equations, we obtain the expressions of W0(x) and
W1(x) in terms of W2(x) and its derivatives:

W1(x) = −2xW2(x) + x2W ′
2(x),

W0(x) = −1

4

(
(b00 + 2b10x+ (b20 + 4)x2)W2(x) − 4x3W ′

2(x) + 2x4W ′′
2 (x)

)
.

Observe that if W2(x) is a polynomial of degree k − 2, then W1(x) and W0(x)
are polynomials of degrees k − 1 and k, respectively. From the first equation of
(2.61) we get

(2b00 +3b10x+ b20x
2)W2(x)−x(b00 +2b10x+ b20x

2)W ′
2(x)+x5W ′′′

2 (x) = 0. (2.62)

As W2(x) is a polynomial of degree k− 2, we write W2(x) =
∑k−2

i=0 aix
i. Then

equation (2.62) becomes

k−2∑

i=0

(
(i− 2)b00 + (2i− 3)b10x+ (i− 1)(b20 − i(i− 2))x2

)
aix

i = 0. (2.63)

The equation corresponding to xk is (k − 3)(b20 − (k − 4)(k − 2)) = 0. As k > 4,
we take b20 = (k − 4)(k − 2) > 0. From the equations corresponding to x0, x1

and x2,

2b00a0 = 0,
b00a1 + 3b10a0 = 0,
b10a1 + b20a0 = 0,

we get a0 = a1 = 0. So, we have

V (x, y) = x2
(
W̃0(x) + W̃1(x)y + W̃2(x)y

2
)
,
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for some polynomials W̃i(x) of degree k − 2 − i, i = 0, 1, 2.

After all these simplifications, equation (2.63) can be written as a (k − 3) ×
(k−3) homogeneous linear system with unknowns a2, . . . , ak−2. In order to obtain
a non–trivial solution, the determinant of the matrix Mk:0BBBBBBB� b10 b00

(k − 4)(k − 2) 3b10 2b00
2(k − 1)(k − 5) 5b10 3b00

3k(k − 5) 7b10 4b00
· · · · · · · · ·

4(k − 5)(k − 4) (2k − 9)b10 (k − 4)b00
(k − 4)(2k − 7) (2k − 7)b10

1CCCCCCCA,
which is the matrix of the linear system, must vanish. If b00 = 0 then the
determinant vanishes if and only if b10 = 0, but this is a contradiction with the
hypotheses. So for the rest of the proof we take b00 6= 0.

As x = 0 is an invariant algebraic curve of system (2.60) with cofactor x and
the divergence of the system is 2x+2y, we will find conditions on the coefficients
of system (2.60) for W̃0(x)+W̃1(x)y+W̃2(x)y

2 to be an invariant algebraic curve
of cofactor 2y.

The following lemma gives the expression of det (Mk). We define Q(x) the
integer quotient of x and 2 and M(k) = mod (k, 2).

Lemma 2.3.18. The expression of the determinant of Mk is

det (Mk) = b
M(k−3)
10

Q(k−3)∑

i=0

cki b
2i
10(−b00)Q(k−3)−i, (2.64)

where cki ∈ N for all i.

Proof: We prove the lemma by using the induction principle. If k = 5 then
det (M5) = 3(b210 − b00). If k = 6 then det (M6) = 15b10(b

2
10 − 4b00). If k > 6, then

solving the determinant of Mk by the last row and the last column, we get the
recursive expression

det (Mk) = (2k − 7) b10 det (Mk−1) + (k − 4)2(2k − 7)(−b00) det (Mk−2).

Observe that the constants appearing in the above expression are natural num-
bers. Applying the induction principle, we obtain

det (Mk) = (2k − 7)b
M(k)+1
10

Q(k−4)∑

i=0

ck−1
i b2i10(−b00)Q(k−4)−i

+(k − 4)2(2k − 7)b
M(k−1)
10

Q(k−5)∑

i=0

ck−2
i b2i10(−b00)Q(k−3)−i,

for some positive integers ck−2
i , ck−1

i . After some computations, this expression
is rewritten as in (2.64). The coefficients cki come from sums and products of
natural numbers, so they are also natural numbers.
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If b10 6= 0 and b00 < 0, then the sum in the expression of det (Mk) is a polyno-
mial in b210 with positive coefficients and then there is no solution of det (Mk) = 0
for b10. So, for b00 < 0 the only solution of det (Mk) = 0 is b10 = 0 when k is even.
By Lemma 2.3.19 we prove that there is a polynomial solution V in this case.

If b00 > 0 then det (Mk) = 0 is a polynomial equation of degree k − 3 in
b10. By Lemma 2.3.20, we find k − 3 values of b10 for which there exist two
invariant algebraic curves f1(x, y) = 0 and f2(x, y) = 0, both linear in y and with
cofactors k1(x, y) and k2(x, y), respectively, such that deg (f1) + deg (f2) = k − 2
and k1(x, y) + k2(x, y) = 2y.

Lemma 2.3.19. System (2.60) with b00 < 0, b10 = 0, b20 = 4(p − 1)(p− 2) and
p = k/2 ∈ N \ {1, 2}, has an invariant algebraic curve f(x, y) = 0 of degree k− 2
and cofactor 2y.

Proof: Under the hypotheses of the lemma, system (2.60) writes as

ẋ = x2, ẏ = −b00
4

− (p− 1)(p− 2)x2 + y2. (2.65)

If f(x, y) = f0(x)+ f1(x)y+ f2(x)y
2 = 0 is an invariant algebraic curve of system

(2.65) of degree k − 2 and cofactor 2y, then

x2∂f

∂x
+

(
−b00

4
− (p− 1)(p− 2)x2 + y2

)
∂f

∂y
= 2yf,

so we obtain

f1(x) = x2f ′
2(x), f0(x) = −

(
b00
4

+ (p− 1)(p− 2)x2

)
f2(x) +

x2

2
f ′

1(x)

and

x2f ′
0(x) −

(
b00
4

+ (p− 1)(p− 2)x2

)
f1(x) = 0.

This last equation gives us an expression for f2(x),

f2(x) =

p−2∑

i=0

(2 − p)i b
i
00 x

2(p−2−i)

4i i! (4 − 2p)i (5/2 − p)i
,

where (a)i = a(a + 1) · · · (a + i − 1). From the other equations, we obtain the
expressions of f0(x) and f1(x), and then we have the expression of the function
f(x, y).
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Under the conditions of Lemma 2.3.19, the cofactor of the polynomial f is 2y,
so V (x, y) = x2f(x, y) is a polynomial inverse integrating factor of system (2.60).
The following lemma, which is based in Theorem 2 of [15], finishes the proof of
the proposition.

Lemma 2.3.20. System (2.60) with b20 = (k− 2)(k− 4), k ∈ N, k > 4, b00 > 0,
b10 = (k − 2p)

√
b00 and p ∈ {2, . . . , k − 2}, has two invariant algebraic curves,

of degrees p − 1 and k − p − 1, respectively. These invariant algebraic curves
are of the form p1(x)y + p2(x), with (p1, p2) = 1, and the sum of their respective
cofactors is 2y. Moreover, p1(x) is a generalized Laguerre polynomial of degree
p− 2 for the curve of degree p− 1 and of degree k− p− 2 for the curve of degree
k − p− 1.

Proof: Assume that h(x, y) = p1(x)y + p2(x) is an invariant algebraic curve of
system (2.60) and let T (x) + a2y = a0 + a1x + a2y ∈ C[x, y] be its cofactor. Let
η ≥ 0 be the degree of p1(x). Then the following equation must hold:

ẋ
∂h

∂x
+ ẏ

∂h

∂y
− (T (x) + a2y)h = 0.

Writing this differential equation as a system of equations we get

(a2 − 1)p1(x) = 0,
x2p′1(x) − T (x)p1(x) − p2(x) = 0,

x2p′2(x) +N(x)p1(x) − T (x)p2(x) = 0,

where N(x) = −b00/4 − b10x/2 − (k − 2)(k − 4)x2/4. It follows that a2 = 1.
Observe that the expression of p2(x) can be obtained from the second equation.
From the second and the third equations we get T (x)2 + N(x) = λx2, λ =
(2η + 1)a1 − η(η + 1) (see Lemma 4 in [15]) and

(λ− T ′(x))p1(x) + 2(x− T (x))p′1(x) + x2p′′1(x) = 0 (2.66)

(see Proposition 3 in [15]). Moreover, 4a2
0 − b00 = 0, 4a2

1 − 4λ− (k− 2)(k− 4) = 0
and 4a0a1 − b10 = 0. Then, a0 = ±

√
b00/2, a1 =

(
2η + 1 ± (k − 3)

)
/2 and

b10 = ±(2η + 1 ± (k − 3))
√
b00.

Both symbols ± in this expression are independent each other. Now we consider
equation (2.66) with η = p − 2, a0 = −

√
b00/2 and a1 = −(k − 2p)/2 and the

same equation (2.66) with η = k − p − 2, a0 =
√
b00/2 and a1 = (k − 2p)/2.

According to Proposition 3 in [15], we get two invariant algebraic curves f1 = 0
(of degree p−1) and f2 = 0 (of degree k−p−1), both linear in y. The respective
cofactors are −

√
b00/2 − (k − 2p)x/2 + y and

√
b00/2 + (k − 2p)x/2 + y. Its sum

is 2y. Furthermore, in both cases b10 = (k − 2p)
√
b00.
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If b00 > 0 then there are k− 3 values of b10 for which there exist two invariant
algebraic curves f1 = 0 and f2 = 0, with respective cofactors k1 and k2, such that
k1 + k2 = 2y. So, under the conditions of the lemma, V = x2f1f2 is a polynomial
inverse integrating factor of system (2.60), and there are no more polynomial
solutions than the ones we have found.

2.3.6 The case P (x, y) = 1 + x2

We consider the quadratic system

ẋ = 1 + x2, ẏ = d+ ax+ by + lx2 +mxy + ny2, (2.67)

where d, a, b, l,m, n ∈ R.
If n = 0, then system (2.67) is transformed into one of the following systems,

depending on the values of the parameters b and m.
If m = b = 0 then

ẋ = 1 + x2, ẏ = b00 + ax, (2.68)

where b00 = d− l, by the affine change y − lx→ y.
If m = 0 and b 6= 0, then

ẋ = 1 + x2, ẏ = b10x+ by, (2.69)

where b10 = a+ bl, by the affine change y − lx+ (d− l)/b→ y.
If m = 1 then

ẋ = 1 + x2, ẏ = |b|y + δx2 + xy, (2.70)

where δ = 0, 1, by the change (b/|b|x, b/|b|((ab − d)(x − b)/((b2 + 1)l) + (y +
a)/l), b/|b|t) → (x, y, t) if l 6= 0 and the change (b/|b|x, b/|b|((ab− d)(x− b)/(b2 +
1) + y + a), b/|b|t) → (x, y, t) if l = 0.

If m 6= 0, 1 and (b2 +m)l − (m− 1)(ab− dm) = 0, then

ẋ = 1 + x2, ẏ = (b+mx)y, (2.71)

by the affine change Ax+ y + (a− Ab)/m→ y, where A = l/(m− 1).
If m 6= 0, 1 and (b2 +m)l − (m− 1)(ab− dm) 6= 0, then

ẋ = 1 + x2, ẏ = 1 + by +mxy, (2.72)

by the affine change B(Ax + y + (a − Ab)/m) → y, where A = l/(m − 1) and
B = m(m− 1)/((b2 +m)l − (m− 1)(ab− dm)).
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If n 6= 0 then system (2.67) becomes

ẋ = 1 + x2, ẏ = −b00
4

− b10
2
x− b20

4
x2 + y2, (2.73)

where b00 = b2 − 2m − 4dn, b10 = bm − 2an and b20 = m(m − 2) − 4ln, by the
affine change mx/2 + ny + b/2 → y.

The case n = b = 0, m = −2, for which system (2.67) is Hamiltonian, is not
to be considered in the above subcases. The set of conditions on the coefficients
of systems (2.68)–(2.73) in order to have a polynomial inverse integrating factor
are stated in the following two propositions.

Proposition 2.3.21. The following statements hold.

(VI.1) System (2.67) with n = b = 0 and m = −2 is Hamiltonian. Moreover, it
can be written as

ẋ = 1 + x2, ẏ = δ − 2xy,

where δ = 0, 1, by either the change (2lx − 6y + 3a)/(2(l − 3d)) → y if
l 6= 3d, or by the change 2lx− 6y + 3a→ y if l = 3d.

(VI.2) System (2.68) has the polynomial inverse integrating factor V (x, y) =
1 + x2.

(VI.3) System (2.69) has a polynomial inverse integrating factor if and only if
b10 = 0 and b 6= 0. Its expression is V (x, y) = (1 + x2)y.

(VI.4) System (2.70) has a polynomial inverse integrating factor if and only if
δ = 0. Its expression is V (x, y) = (1 + x2)y.

(VI.5) System (2.71) has the polynomial inverse integrating factor V (x, y) =
(1 + x2)y.

System (2.72) has a polynomial inverse integrating factor (of degree k > 3)
if and only if one of the following two statements hold.

(VI.6) b = 0 and m = −2p, p ∈ N \ {1}. Then,

V (x, y) =

(
H(x, y)

1 + x2

)p−1(
2F1(1/2, 1 − p, 3/2, 1)2 +H(x, y)2

)
.

We note that k = 2p2 + p + 3 ≥ 13. The function H is a polynomial first
integral of the system. Its expression is

H(x, y) = (1 + x2)py −
p−1∑

i=0

(
p− 1

i

)
x2i+1

2i+ 1
.
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(VI.7) m = k − 2 and b 6= 0. Then

V (x, y) = (1 + x2)

(
y − i

(2i)k−2

k−2∑

j=0

(
k − 2

j

)
(i− x)j(i+ x)k−2−j

k − 2(j + 1) − ib

)
,

where i =
√
−1. Moreover, V (x, y) is a polynomial function. We note that

system (2.72) has no polynomial inverse integrating factors of degree k ≤ 3.

Proof: The cases (VI.2) to (VI.5) are obtained solving the respective linear sys-
tems AiV

i = 0, i = 1, 2, 3. We just have to consider system (2.72). If k ≤ 3 then
straightforward computations show that there is no polynomial solution V , so we
assume k > 3. We write V (x, y) as a polynomial in the variable y:

V (x, y) =
s∑

i=0

Wi(x)y
i,

s ∈ N ∪ {0}. We can now write equation (⋆) as a polynomial equation in y.
Then, all the coefficients of the new equation, which depend on x, must vanish.
The coefficient of ys is

(
b(s− 1) + (m(s− 1) − 2)x

)
Ws(x) + (1 + x2)W ′

s(x) = 0.

From this equation we get

Ws(x) = eb(s−1) arctan x(1 + x2)(2+m−ms)/2.

As Ws(x) is a polynomial in x, we take b(s − 1) = 0. Let us assume first that
b = 0. In this case, we get the solution

V (x, y) = (1 + x2)m/2+1F
(
(1 + x2)−m/2y − x 2F1(1/2,m/2 + 1, 3/2,−x2)

)
,

where F is an arbitrary function. The hypergeometric function 2F1(a, b, c, z) is
defined as

2F1(a1, a2, a3, z) =
∑

i≥0

(a1)i(a2)iz
i

(a3)ii!
, (2.74)

where (a)i = Γ(a+ i)/Γ(a) is the Pochhammer symbol. Since the degree of V in
y is s, F must be a polynomial of degree s. Then we must take m = −2p, p ∈ N.
It follows that

2F1(1/2, 1 − p, 3/2,−x2) =

p−1∑

i=0

(
p− 1

i

)
x2i

2i+ 1
.



74 2. Polynomial inverse integrating factors

We also take p 6= 1, otherwise we have n = b = 0, m = −2 and the system is
Hamiltonian. We take the polynomial function F of degree p+ 1 in y

F (H(x, y)) = H(x, y)p−1
(

2F1(1/2, 1 − p, 3/2, 1)2 +H(x, y)2
)
,

where 2F1(1/2, 1 − p, 3/2, 1)2 6= 0 and H(x, y) = (1 + x2)py − x 2F1(1/2, 1 −
p, 3/2,−x2) is a polynomial first integral of the system. We claim that

V (x, y) =

(
H(x, y)

1 + x2

)p−1 (
2F1(1/2, 1 − p, 3/2, 1)2 +H(x, y)2

)

is a polynomial function.
Let f(p, t) = 2F1(1/2, 1 − p, 3/2,−t). To prove the claim, we have to prove

that

g0(p, t) = f(p, t)p−1
(
f(p,−1)2 + tf(p, t)2

)

has a zero of multiplicity at least p at t = −1. That is,

∂qg0

∂tq
(p,−1) = 0, q = 0, . . . , p− 1.

Observe that g0(p,−1) = 0. We derive g0(p, t) with respect to t. Using the
equality f(p, t) + 2tft(p, t) = (1 + t)p−1, we have

∂g0

∂t
(p, t) = f(p, t)p−2

(
(p−1)ft(p, t)

[
f(p,−1)2 + tf(p, t)2

]
+f(p, t)2(1+ t)p−1

)
,

and then ∂g0
∂t

(p,−1) = 0. We define now

g1(p, t) = f(p, t)p−2
(
f(p,−1)2 + tf(p, t)2

)
.

Observe that g1(p,−1) = 0, which implies that g0(p, t) has a zero of multiplicity
at least 2. Also if ∂g1

∂t
(p,−1) = 0 then the g0(p, t) has a zero of multiplicity at

least 3 at t = −1. But

∂g1

∂t
(p, t) = f(p, t)p−3

(
(p−2)ft(p, t)

(
f(p,−1)2 + tf(p, t)2

)
+f(p, t)2(1+ t)p−1

)
,

and then ∂g1
∂t

(p,−1) = 0. In order to prove that g0(p, t) has a zero of multiplicity
at least p at t = −1, it is sufficient to prove that g1(p, t) has a zero of multiplicity
at least p− 1 at t = −1. We can iterate this method and define the functions

gq(p, t) = f(p, t)p−1−q(p, t)
(
f(p,−1)2 + tf(p, t)2

)
, q = 0, . . . , p− 1.

For q = 0, 1 the functions have been defined above. As gq(p,−1) = 0 for all q,
the claim is proved, and so the function V (x, y) defined above is a polynomial



2.3. Finding polynomial inverse integrating factors 75

inverse integrating factor of our system. Also, it has 1 + x2 as a common factor.
It is easy to see that the degree of V (x, y) is 2p2 + p+ 3 and that its degree in y
is p+ 1.

Assume now b 6= 0 and s = 1. Then, V (x, y) can be written as

V (x, y) = W0(x) +W1(x)y.

We write equation (⋆) as a polynomial equation in y. The coefficient of y is

−2xW1(x) + (1 + x2)W ′
1(x) = 0.

Then, W1(x) = 1 + x2 and (⋆) becomes

1 + x2 − (b+ (m+ 2)x)W0(x) + (1 + x2)W ′
0(x) = 0. (2.75)

As W0(x) is a polynomial of degree k, we can write W0(x) = vkx
k + · · · , with

vk 6= 0. Then, (2.75) is (k − m − 2)vkx
k+1 + · · · = 0. As vk 6= 0, we take

m = k − 2. With all these restrictions, we solve equation (⋆) to obtain the
expression of W0(x):

W0(x) = −eb arctanx(1 + x2)k/2
∫
e−b arctanx(1 + x2)−k/2 dx.

After some computations, we obtain

W0(x) =
1 + x2

2k−2

k−2∑

j=0

(
k − 2

j

)
(i− x)j(i+ x)k−2−j

ik−1(k − bi− 2(j + 1))
, (2.76)

where i =
√
−1. Observe that the degree of W0(x) is k. It only remains to prove

that it is a real polynomial.
If k is even, then the term of the sum for j = (k − 2)/2 in the expression

(2.76) is

(
k − 2

(k − 2)/2

)
(−1 − x2)(k−2)/2

−bik ,

and it is a real polynomial. For any k > 3, the terms of the sum for j = l and
j = k − 2 − l in the expression (2.76) are, respectively:

(
k − 2

l

)
(i− x)l(i+ x)k−2−l

ik−1(k − 2l − 2 − ib)

=

(
k − 2

l

)
/(ik−1(k − 2l − 2 − ib))

l∑

p=0

k−2−l∑

q=0

(−1)l−p ip+qxk−2−p−q
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and

−
(

k − 2

k − 2 − l

)
(i− x)k−2−l(i+ x)l

ik−1(k − 2l − 2 + ib)

= −
(
k − 2

l

)
/(ik−1(k − 2l − 2 + ib))

l∑

p=0

k−2−l∑

q=0

(−1)k−2−l−q ip+qxk−2−p−q.

By adding these two expressions to get

(−1)l
(
k − 2

l

) l∑

p=0

k−2−l∑

q=0

xk−2−p−q

ik−1−p−q

(
(−1)p

k − 2l − 2 − bi
− (−1)k−2−q

k − 2l − 2 + bi

)

= (−1)l
(
k − 2

l

) l∑

p=0

k−2−l∑

q=0

xk−2−p−q

ik−1−p−q

(
(k − 2l − 2)((−1)p − (−1)k−2−q)

(k − 2l − 2)2 + b2
+

bi((−1)p + (−1)k−2−q)

(k − 2l − 2)2 + b2

)
. (2.77)

If (k − 2 − q) + p is even, then (−1)p − (−1)k−2−q = 0, so the expression (2.77)
becomes

(−1)l
(
k − 2

l

) l∑

p=0

k−2−l∑

q=0

xk−2−p−q

ik−2−p−q
±2b

(k − 2l − 2)2 + b2
,

which is a real expression provided that i is powered to an even number. If
(k − 2 − q) + p is odd then (−1)p + (−1)k−2−q = 0 and the expression (2.77)
becomes

(−1)l
(
k − 2

l

) l∑

p=0

k−2−l∑

q=0

xk−2−p−q

ik−1−p−q
±(k − 2l − 2)

(k − 2l − 2)2 + b2
,

which is a real expression provided that i is again powered to an even number.
Summarizing, W0(x) is a real polynomial and the proof of the proposition is
finished.

Proposition 2.3.22. System (2.73) has a polynomial inverse integrating factor
if and only if one of the following statements hold.

(VI.8) b00 = −4, b10 = b20 = 0. Then V (x, y) = (x− y)2.

(VI.9) b00 + 4 6= 0, b10 = b20 = 0. Then V (x, y) = (1 + x2)(b00 − 4y2).
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(VI.10) b20 = (k − 2)(k − 4), b10 = (k − 2p)
√
b00 + (k − 2p)2 − (k − 2)(k − 4),

b00 + (k − 2p)2 − (k − 2)(k − 4) ≥ 0 with k > 4 and p ∈ {2, . . . , k − 2}.
Then V (x, y) = (1 + x2)

(
p1

1(x)y + p1
2(x)

)(
p2

1(x)y + p2
2(x)

)
, where p1

1(x) and
p2

1(x) are Jacobi polynomials of respective degree p − 2 and k − p − 2 and
the expression of p1

2 and p2
2 can be obtained from p1

1 and p2
1, respectively.

Proof: Let V (x, y) be a polynomial inverse integrating factor of (2.73) of degree
k. If k ≤ 4, straightforward computations show that there is no solution of
degree 1 or 3; there is a solution of degree 2 if and only if b10 = b20 = 0 and
b00 + 4 = 0; and there is a solution of degree 4 if and only if b10 = b20 = 0
and b00 + 4 6= 0. The respective expressions of V (x, y) are shown in Proposition
2.3.22. From now on, we assume k > 4. By Lemma 2.3.1, we can write V as
V (x, y) = W0(x) +W1(x)y +W2(x)y

2. Equation (⋆) can be written as a system
of equations:

−8W0(x) + 4(1 + x2)W ′
0(x) − (b00 + 2b10x+ b20x

2)W1(x) = 0,
4W0(x) + 4xW1(x) − 2(1 + x2)W ′

1(x) + (b00 + 2b10x+ b20x
2)W2(x) = 0,

W1(x) + 2xW2(x) − (1 + x2)W ′
2(x) = 0.

(2.78)

We obtain expressions for W0(x) and W1(x) in terms of W2(x) and its derivatives:

W1(x) = −2xW2(x) + (1 + x2)W ′
2(x),

W0(x) = −1

4

(
(b00 + 4 + 2b10x+ (b20 − 4)x2)W2(x) + 4x(1 + x2)W ′

2(x)−
2(1 + x2)2W ′′

2 (x)
)
.

Observe that if W2(x) is a polynomial of degree k− 2, then W1(x) and W0(x)
are polynomials of degrees k − 1 and k, respectively. We substitute W1(x) and
W0(x) in the remaining equation of system (2.78) to get the differential equation

(−b10 + (2b00 + 8 − b20)x+ 3b10x
2 + b20x

3)W2(x)−
(1 + x2)(b00 + 4 + 2b10x+ b20x

2)W ′
2(x) + (1 + x2)3W ′′′

2 (x) = 0. (2.79)

This is a differential equation with unknown W2(x). We want to obtain from this
equation a polynomial solution of degree k − 2, so we write W2(x) =

∑k−2
i=0 aix

i.
Equation (2.79) can be written as a polynomial equation of degree k+1 in x, and
then we can transform it into a (k+2)× (k−1) homogeneous linear system. The
equation corresponding to xk+1 is (k− 3)(b20 − (k− 2)(k− 4)) = 0. As k > 4, we
take b20 = (k − 2)(k − 4) > 0.

We have a homogeneous linear system with k − 1 unknowns a0, . . . , ak−2 and
k+1 equations if we exclude the equation corresponding to xk+1. In order to have
a non–trivial solution, all the (k−1)–minors of the matrix of the system Mk, that
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is, the determinants of the matrices obtained by taking all the (k− 1)× (k− 1)–
submatrices of Mk, must be zero. The matrix of the system is

Mk =




ξk−1 ρk−2 0 χk−1

ϑk−2 ξk−2 2ρk−3 0 χk−2

ξk+1 ϑk−3 ξk−3 3ρk−4 0 χk−3

κk−4 ξk ϑk−4 ξk−4 4ρk−5 0 χk−4

· · · · · · · · · · · · · · · · · ·
κ4 ξ8 ϑ4 ξ4 (k − 4)ρ3 0 χ4

κ3 ξ7 ϑ3 ξ3 (k − 3)ρ2 0
κ2 ξ6 ϑ2 ξ2 (k − 2)ρ1

κ1 ξ5 ϑ1 ξ1

κ0 ξ4 ϑ0

κ−1 ξ3




,

where

κk−i = (i− 5)b20 + χk−i+6, ϑk−i = (i− 1)b20 + (i− 4)ρk−i,
χk−i = −i(i+ 1)(i+ 2), ρk−i = b00 − νk−i,
ξk−i = (2i− 1)b10, νk−i = 3i2 − 15i+ 14.

The following lemma is related to the roots of the (k − 1)–minors of Mk.

Lemma 2.3.23. There are at most k− 2 values of b10 for which all the (k− 1)–
minors of Mk vanish. Moreover, if all (k−1)–minors vanish for a non–zero value
b10, then they also vanish for −b10.

Proof: We first prove by induction that the (k − 1)–minors of Mk have degree
k − 2 or k − 1 in b10. If k = 5, then it is easy to check that the degree in b10
is 3 or 4 for all the 4–minors. If k > 5, then we compute the degree of every
(k − 1)–minor of Mk distinguishing three cases:

1. If the minor contains the last row of Mk, then we solve it through this row.
The degree in b10 of the minor is, using the induction principle, k − 2 or
k − 1.

2. If the minor does not contain the last row of Mk but the kth–row, then we
solve it through this row. Once, again, applying the induction principle,
the degree in b10 of the minor is k − 2 or k − 1.

3. The minor which does not contain the last two rows of Mk has degree k− 2
in b10.

Then the (k− 1)–minors of Mk have degree k− 2 or k− 1, and as a consequence
the first part of the lemma is proved.
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Suppose that all the (k − 1)–minors vanish for a certain value b10 6= 0. We
change the sign of all the components of the even rows (2nd, 4th, . . .) and the odd
columns (1st, 3rd, . . .) of Mk. This fact does not change the values for which the
(k − 1)–minors vanish. Now we change b10 by −b10 in this new matrix to obtain
Mk again. So all the (k − 1)–minors vanish also for −b10.

System (2.73) has the invariant algebraic curves x± i = 0. The sum of their
cofactors is 2x, and the divergence of (2.73) is 2x+2y. We shall find a polynomial
inverse integrating factor of the form

V (x, y) = (1 + x2)
(
W̃0(x) + W̃1(x)y + W̃2(x)y

2
)
,

where W̃i(x) are polynomials of degree k − 2 − i, i = 0, 1, 2, such that W̃0(x) +
W̃1(x)y + W̃2(x)y

2 is an invariant algebraic curve with cofactor 2y.

Let p ∈ {2, . . . , k − 2} and b
(p)
10 = (k − 2p)

√
b00 + (k − 2p)2 − (k − 2)(k − 4).

We note that b
(p)
10 = −b(k−p)10 for p = 2, . . . , [k/2]. The following lemma is based

on Theorem 2 in [15].

Lemma 2.3.24. If b10 = b
(p)
10 for a certain p ∈ {2, . . . , k− 2}, then system (2.73)

has two invariant algebraic curves, of respective degrees p− 1 and k− p− 1, and
of the form h(x, y) = p1(x)y + p2(x), (p1, p2) = 1. Moreover, p1(x) is a Jacobi
polynomial, of degree p− 2 for the curve of degree p− 1 and of degree k − p− 2
for the curve of degree k − p − 1, and the expression of p2(x) can be obtained
from p1(x) and the cofactor of h(x, y). The product of both curves is an invariant
algebraic curve of degree k − 2 and cofactor 2y.

Proof: We assume that h(x, y) = p1(x)y+ p2(x) is an invariant algebraic curve of
(2.73). Let T (x) + a2y = a0 + a1x+ a2y ∈ C[x, y] be its cofactor. Then,

ẋ
∂h

∂x
+ ẏ

∂h

∂y
− (T (x) + a2y)h = 0.

Writing this differential equation as a system of equations, we get

(a2 − 1)p1(x) = 0,
(1 + x2)p′1(x) − T (x)p1(x) − p2(x) = 0,

(1 + x2)p′2(x) +N(x)p1(x) − T (x)p2(x) = 0,

where N(x) = −b00/4 − b10x/2 − (k − 2)(k − 4)x2/4. From the first equation, it
follows that a2 = 1. The expression of p2(x) can be obtained explicitly from the
second equation. From the second and the third equations we get T (x)2+N(x) =
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λ(1 +x2), where λ = (2η+ 1)a1 − η(η+ 1), η = deg p1 ≥ 0 (see Lemma 4 of [15]),
and

(λ− T ′(x))p1(x) + 2(x− T (x))p′1(x) + (1 + x2)p′′1(x) = 0 (2.80)

(see Proposition 3 of [15]). Moreover, 4a2
0−b00 = 4λ, 4a2

1−(k−2)(k−4)−4λ = 0
and 4a0a1 − b10 = 0. So, a0 = ±

√
b00 + 2[2η2 + (2η + 1)(1 ± (k − 3))]/2, a1 =

(2η + 1 ± (k − 3))/2 and

b10 = ±(2η + 1 ± (k − 3))
√
b00 + 2[2η2 + (2η + 1)(1 ± (k − 3))].

By the change z = ix, i =
√
−1, equation (2.80) can be transformed into

(a1 − λ)p1(z) − 2((1 − a1)z − a0i)p
′
1(z) + (1 − z2)p′′1(z) = 0.

Taking α = −a1 − a0i, β = −a1 + a0i, the solution of this equation is the
Jacobi polynomial P

(α,β)
η (z). We solve this equation for a1 = 2η − k + 4 and

η = p − 2, k − p − 2, p ∈ {2, . . . , k − 2}. For the first value of η, we take
a0 = −

√
b00 + (k − 2p)2 − (k − 2)(k − 4)/2; for the second one, we take a0 =√

b00 + (k − 2p)2 − (k − 2)(k − 4)/2. In both cases, b10 = b
(p)
10 . So we obtain two

invariant algebraic curves, of degrees p − 1 and k − p − 1, respectively. Their
product is f(x, y) = 0, of degree k − 2 and cofactor 2y.

Remark 2.3.25. From the properties of the Jacobi polynomials, the curve f = 0
may have i =

√
−1 as a factor when we change z by ix. In this case, we change f

by i · f , which is a real polynomial of degree k− 2. So, the polynomial V (x, y) =
(1 + x2)f(x, y) is a real polynomial inverse integrating factor of degree k for our
system. 2

We have obtained k − 3 values of b10 for which all the (k − 1)–minors of Mk

vanish. We claim that there are no more of such values. To prove the claim, we
distinguish two cases. If k is even, then b10 = b

(k/2)
10 = 0 is one of these k − 3

values. If there exists another value b
(∗)
10 6= b

(i)
10 , i = 2, . . . , k−2, b

(∗)
10 6= 0, for which

all the (k − 1)–minors vanish, then, by Lemma 2.3.23, −b(∗)10 is another one. So
there are k − 1 of such values, in contradiction with this lemma.

If k is odd and there exists another value b
(∗)
10 6= b

(i)
10 , i = 2, . . . , k− 2, b

(∗)
10 6= 0,

for which all the k − 1–minors vanish, then, by Lemma 2.3.23, −b(∗)10 is another
one. So there are k−1 of such values, again in contradiction with the lemma, and
then the only value of b10 which is not in contradiction with the Lemma 2.3.23 is
b
(∗)
10 = 0. We next prove that not all minors vanish for b10 = 0.

If k = 5, then b
(2)
10 =

√
b00 − 2 and b

(3)
10 = −

√
b00 − 2. The 4–minor corre-

sponding to the 4 first rows of M5 is 3(b210− b00 +2)(35b210 +12(b00 +2)(b00 +7/4))
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and the one corresponding to the last 4 rows is 9(b210−b00 +2)2. They both vanish

only for b10 = b
(2)
10 , b

(3)
10 .

Assume that k > 5 is odd. Let M1 be the (k− 1)–minor corresponding to the
first k − 1 rows of Mk, and M2 be the (k − 1)–minor corresponding to the last
k − 1 rows of Mk:

M1 =

�����������������
0 ρk−2 0 χk−1

ϑk−2 0 2ρk−3 0 χk−2

0 ϑk−3 0 3ρk−4 0 χk−3

κk−4 0 ϑk−4 0 4ρk−5 0 χk−4

· · · · · · · · ·
κ4 0 ϑ4 0 (k − 4)ρ3 0 χ4

κ3 0 ϑ3 0 (k − 3)ρ2 0
κ2 0 ϑ2 0 (k − 2)ρ1

κ1 0 ϑ1 0

����������������� ,
M2 =

���������������������
0 ϑk−3 0 3ρk−4 0 χk−3

κk−4 0 ϑk−4 0 4ρk−5 0 χk−4

κk−5 0 ϑk−5 0 5ρk−6 0 χk−5

κk−6 0 ϑk−6 0 6ρk−7 0 χk−6

· · · · · · · · · · · · · · ·
κ4 0 ϑ4 0 (k − 4)ρ3 0 χ4

κ3 0 ϑ3 0 (k − 3)ρ2 0
κ2 0 ϑ2 0 (k − 2)ρ1

κ1 0 ϑ1 0
κ0 0 ϑ0

κ−1 0

��������������������� .
The degree of M1 and M2 in b10 is k − 1. We note that the k − 3 values
b
(2)
10 , . . . , b

(k−2)
10 vanish for both M1 and M2. From the second column of M2,

as κk−5 = 0 we get that M2 = 0 for Cb210 + (b00 − B0) = 0, where C ∈ R \ {0}
and B0 = 2(k2 − 6k + 6). Observe that B0 6= (k − 2)(k − 4) − (k − 2p)2 because
k > 5. Now we consider the equation

(−1)[
i
2
+1]
[
i

2
+ 2

]
ξi+3 + (−1)[

i
2 ]
[
i

2
+ 1

]
(k − i− 1)ρi+

(−1)[
i
2
−1]
[
i

2

]
ϑi−1 + (−1)[

i
2
−2]
[
i

2
− 1

]
κi−3 = 0,

where [x] is the greatest integer less than or equal to x. This equation corresponds
to a linear combination of the even or odd rows of M1 (for respective i even or
odd) equaled to zero, taking b10 = 0. We obtain, from this equation,

b00 = k2 − 6k + 4 +
(k − 2)(k − 4)

1 − k + i− 2[ i
2
]
.

If i is even, then b00 = B1 = k2 − 7k + 9− 3/(k − 1); if i is odd, then b00 = B2 =
k2 − 7k + 8. These values of b00 vanish M1 for b10 = 0, and they are different
from B0 because k > 5. So the expressions of M1 and M2 are, up to a non–zero
constant,

(
C1b

2
10−(b00−B1)(b00−B2)

) k−3∏

i=1

(
b210−(k−2p)2(b00−(k−2)(k−4)+(k−2p)2)

)
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and

(
C2b

2
10 − (b00 −B0)

) k−3∏

i=1

(
b210 − (k − 2p)2(b00 − (k − 2)(k − 4) + (k − 2p)2)

)
,

where C1, C2 6= 0. Then, there are no more than k − 3 values of b10 for which all
the (k − 1)–minors of Mk vanish.

2.3.7 The case P (x, y) = −1 + x2

We consider the quadratic system

ẋ = −1 + x2, ẏ = d+ ax+ by + lx2 +mxy + ny2, (2.81)

where d, a, b, l,m, n ∈ R.
If n = 0 then system (2.81) is transformed into one of the following systems,

depending on the values of the parameters b and m.
If m = b = 0 then

ẋ = −1 + x2, ẏ = Q(x), (2.82)

where either Q(x) = b00 + x and b00 = (d + l)/a 6= ±1 if a 6= 0 by the affine
change (y − lx)/a→ y, or Q(x) = 1, if a = 0 and d+ l 6= 0, by the affine change
(y− lx)/(d+ l) → y. In the case a = d+ l = 0, the system has a common factor.

If m = 0 and b 6= 0, then

ẋ = −1 + x2, ẏ = b10x+ by, (2.83)

where b10 = a+ bl, by the affine change y − lx+ (d+ l)/b→ y.
If m = 1 and b2 6= 1, then

ẋ = −1 + x2, ẏ = |b|y + δx2 + xy, (2.84)

δ = 0, 1, either by the affine change (b/|b|x, b/|b|((x− b)(ab−d)/((b2 −1)l)+ (y−
a)/l), b/|b|t) → (x, y, t) if l 6= 0, or the change (b/|b|x, b/|b|((x− b)(ab− d)/(b2 −
1) + y − a), b/|b|t) → (x, y, t) if l = 0.

If m = 1 and b = ±1, then

ẋ = −1 + x2, ẏ = b00 + y + δx2 + xy, (2.85)

where δ = 0, 1 and b00 = (d∓ a)/l (if l 6= 0) or b00 = d∓ a (if l = 0), by the affine
change (±x, (a ± y)/l,±t) → (x, y, t) if l 6= 0 or the change (±x, a ± y,±t) →
(x, y, t) if l = 0.
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If m 6= 0, 1 and (b2 −m)l − (m− 1)(ab− dm) = 0, then

ẋ = −1 + x2, ẏ = (b+mx)y, (2.86)

by the affine change Ax+ y + (a− Ab)/m→ y, where A = l/(m− 1).
If m 6= 0, 1 and (b2 −m)l − (m− 1)(ab− dm) 6= 0, then

ẋ = −1 + x2, ẏ = 1 + by +mxy, (2.87)

by the affine change B(Ax + y + (a − Ab)/m) → y, where A = l/(m − 1) and
B = m(m− 1)/((b2 −m)l − (m− 1)(ab− dm)). Moreover, b can be assumed to
be positive; otherwise, we change de sign of x, y and t.

If n 6= 0 then system (2.81) becomes

ẋ = −1 + x2, ẏ = −b00
4

− b10
2
x− b20

4
x2 + y2, (2.88)

by the affine change mx/2 + ny + b/2 → y, where b00 = b2 + 2m − 4dn, b10 =
bm− 2an and b20 = m(m− 2) − 4ln.

The case n = b = 0, m = −2, for which system (2.81) is Hamiltonian, is
not considered in the subcases above. The set of conditions on the coefficients of
systems (2.82)–(2.88) to have a polynomial inverse integrating factor are stated
in the following two propositions.

Proposition 2.3.26. The following statements hold.

(V.1) System (2.81) with n = b = 0 and m = −2 is Hamiltonian. Moreover, it
can be written as

ẋ = −1 + x2, ẏ = δ − 2xy,

where δ = 0, 1, either by the change −(2lx − 6y + 3a)/(2(l + 3d)) → y if
l 6= −3d, or by the change 2lx− 6y + 3a→ y if l = −3d.

(V.2) System (2.82) has the polynomial inverse integrating factor V (x, y) = −1+
x2.

System (2.83) has a polynomial inverse integrating factor if and only if one of
the following two statements hold.

(V.3) b10 = 0. Then V (x, y) = (−1 + x2)y.

(V.4) b10 6= 0 and b = ±2. Then V (x, y) = (x∓ 1)2.

System (2.84) has a polynomial inverse integrating factor if and only if one of
the two following statements hold.
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(V.5) |b| 6= 1, 3 and δ = 0. Then V (x, y) = (−1 + x2)y.

(V.6) |b| = 3. Then V (x, y) = (x− 1)3.

(V.7) System (2.85) has the polynomial inverse integrating factor V (x, y) =
(−1 + x2)(x− 1).

(V.8) System (2.86) has the polynomial inverse integrating factor V (x, y) =
(−1 + x2)y. We note that if m = −1 and b = ±1, then we also have
the polynomial inverse integrating factor V (x, y) = x∓ 1 of degree 1.

(V.9) If b = (m + 2) 6= 0,±1, then system (2.87) has the polynomial inverse
integrating factor V (x, y) = (x− 1)(1 + (m+ 1)(1 + x)y).

System (2.87) has a polynomial inverse integrating factor of degree k > 3 if and
only if one of the following four statements hold.

(V.10) m = k − 2 and b 6= k − 2j, j = 1, . . . , [(k − 1)/2]. Then,

V (x, y) = (−1 + x2)

(
y −

k−2∑

i=0

∏i−1
j=0(k − 2 − j)

∏i+1
j=1(k − 2j − b)

(1 + x)i

)
.

In the following three cases, the solution V (x, y) is given by

V (x, y) = (1 + x)2−q+r(1 − x)1−rF
[
−(

√
−1)q+1(1 + x)q−r−1

(
(1 − x)ry−

2r−1p 2F1 (1 − r, q − 1 − r, q − r, (1 + x)/2)
)]

,

for certain p, q, r and where F a complex polynomial of degree p + 1 without
independent term and V is real. The expression of the hypergeometric function

2F1 is given below for each family.

(V.11) m = 1−q, b = q−1−2r, q ∈ Q\N, p > 1 and r = 2, . . . , (k−p−2)/p ∈ N.
In this case

2F1(1 − r, q − r − 1, q − r, (1 + x)/2) =

q − r − 1

2r−1

r−1∑

i=0

(
(1 + x)i(1 − x)r−i−1

q − r + i− 1

i∏

j=1

r − j

q − r + j − 2

)
.

(V.12) m = 1 − q, b = q − 1 − 2r, q ∈ Q \ N, p > 1 and q − r − 1 = 2, . . . , (k −
p− 2)/p ∈ N. In this case

2F1(1 − r, q − r − 1, q − r, (1 + x)/2) =

−(q − r − 1)

[
(−2)q−r−1

(1 + x)q−r−1(q − 2)

q−r−2∏

j=1

q − r − 1 − j

r + j − 1
+

q−r−2∑

i=0

(
(1 − x)r+i

(1 + x)i+1

21−r

r + i

i∏

j=1

q − r − 1 − j

r + j − 1

)]
.
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(V.13) m = 4 − k, b = k − 2i− 2, with p = 1, k > 7 and i ∈ {3, . . . , k − 5}. In
this case

2F1(2−i, k−3−i, k−2−i, (1+x)/2) =
i−2∑

j=0

(
(k − 3 − i)(1 + x)j

2jj!(k − 3 − i + j)

j∏

s=1

(s − i + 1)

)
.

Proof: The solutions stated in (V.1) to (V.9) follow from straightforward com-
putations. No more solutions of degree k ≤ 3 are obtained, so we assume k > 3
and we consider system (2.87). Let V (x, y) =

∑k
i=0 Vi(x, y) be a polynomial in-

verse integrating factor of degree k > 3, where Vi is a homogeneous polynomial
of degree i in x and y. From equation (⋆) we obtain the system

(k − m − 2)Vk + (m − 1)y
∂Vk
∂y

= 0, (2.89)

(k − m − 3)xVk−1 + (m − 1)xy
∂Vk−1

∂y
= bVk − by

∂Vk
∂y

, (2.90)

(j−m−2)x2Vj +(m−1)x2y
∂Vj

∂y
= bxVj+1−bxy

∂Vj+1

∂y
+(j +2)Vj+2−(x+y)

∂Vj+2

∂y
, (2.91)

bV0 +
∂V1

∂x
− ∂V1

∂y
= 0, (2.92)

where j = k − 2, . . . , 0 in (2.91). From equation (2.89) we get

Vk(x, y) = xk−1+ k−3
m−1y1− k−3

m−1 .

Then we take 1 − k−3
m−1

= p + 1 ∈ N ∪ {0}. Set q = (k − 3)/p ∈ Q. Then, we

get m = 1 − k−3
p

= 1 − q, for p ∈ {−1, 1, 2, 3, . . . , k − 1}, q ∈ Q \ {0, 1}, and

Vk(x, y) = xk−p−1yp+1.
Assume p = −1. Then, m = k− 2. We claim that Vj does not depend on y if

j > 3 and that the degree in y of V is 1. We prove the claim by using the induction
principle. Easily we can check that Vk(x, y) = xk and Vk−1(x, y) = −bxk−1. Now
assume that Vj+2 and Vj+1 depend only on x, for 3 ≤ j ≤ k − 2. Then equation
(2.91) is

−(k − j)x2Vj + (k − 3)x2y
∂Vj
∂y

= bxVj+1 + (j + 2)Vj+2.

From this equation, we obtain

Vj(x, y) = −bxVj+1(x) + (j + 2)Vj+2(x)

(k − j)x2
+ fj(x)y

k−j
k−3 ,

where fj(x) is an arbitrary function. If j > 3, then k−j
k−3

< 1, so we must take
fj ≡ 0, and then Vj does not depend on y. The degree of V3 in y is, at most, 1.
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In a similar way we obtain that V2 does not depend on y and that the degree in
y of V1 is 1. So V can be written as

V (x, y) = W (x) + (−1 + x2)y,

where W (x) is a polynomial of degree k in x. It remains to find the expression
of this polynomial. From (⋆) we write

(−1 + x2) + (b+ kx)W (x) + (−1 + x2)W ′(x) = 0.

Then, after some computations, we obtain

W (x) = (−1 + x2)
k−2∑

i=0

(−1)i
∏i−1

j=0(k − 2 − j)
∏i+1

j=1(b− k + 2j)
(1 + x)i,

assuming b 6= k − 2j, j = 1, . . . , k − 1. Otherwise, no solution is obtained. The
polynomial V is

V (x, y) = (−1 + x2)

(
y −

k−2∑

i=0

∏i−1
j=0(k − 2 − j)

∏i+1
j=1(k − 2j − b)

(1 + x)i

)
.

So we get (V.10). We note that we can restrict j to the interval {1, . . . , [(k −
1)/2]}.

Next we assume p > 0. We first prove by induction that the degree in y of V is
p+1. The degrees of Vk and Vk−1 in y are not bigger than p+1. Let Vj+2(x, y) =
c0(x)y

p+1 + · · · ; Vj+1(x, y) = b0(x)y
p+1 + · · · ; and Vj(x, y) = a0(x)y

p+s + · · · ,
where a0 6≡ 0, b0, c0 are polynomials and s ∈ Z. Equation (2.91) can be written
as

((q + j − 3) − q(p+ s))a0(x)x
2yp+s + (bpb0x+ (p− j − 1)c0)y

p+1 + · · · = 0.

If p + s > p + 1 then we obtain p + s = p + 1 − k−j
k−3

p < p + 1 because as 6≡ 0,
and we have a contradiction. As the degree of Vk is p+ 1, the degree of V in y is
p+ 1.

Next we write V as a polynomial in y: V (x, y) =
∑p+1

i=0 Wi(x)y
i. Then, we

have

Wp+1(x) = (1 − x)(k−p−1−bp)/2(1 + x)(k−p−1+bp)/2.

This is a polynomial, so we (k − p− 1 − bp)/2 = i ∈ {0, . . . , k − p− 1}, and the
expression of b can be rewritten as

b = q − 2r − 1,

where i = 0, . . . , k − p − 1 and r = (i − 1)/p. We classify the existence of a
solution V and its degree depending on the parameters:
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1. q = 1. Then m = 0, but we are assuming m 6= 0, 1.

2. q = 2. Then m = −1. In this case, because p > 0, the expression of Vk−2

contains a logarithm, and then the solution is not polynomial.

3. q = 3. Then i = p + 1, so m = −2 and b = 0, and then the system is
Hamiltonian.

4. q = 4. Then m = −3 and b = ±1, so b2 = (m+ 2)2 and there is a solution
of degree 3.

5. If p > 1, q ∈ N \ {1, 2, 3, 4} and then there exists a solution of degree k
with parameters (k, p, i), then k − 3 = pq ∈ N and there exists a solution
of degree p + 3 < k with parameters (p + 3, 1, i′), for i′ − 1 = (i − 1)/p. If
p|(i− 1), then i′ ∈ N. If p|(k− 2− i), then (k− 3− (i− 1))/p = q− i′ ∈ N.
In both cases, i′ ∈ N. So the case (k, p, i) can be considered as the case
(p+ 3, 1, i′).

Assume that p > 1 and q 6∈ N. In this case, there is a solution of degree k if
and only if either r or q−r−1 belong to the set {2, . . . , (k−p−2)/p} ⊂ N.

6. p = 1, k > 7 and i ∈ {3, . . . , k − 5}. Then, there is a solution of degree k.

The general solution V , when it does exist, is

V (x, y) = (1 + x)2−q+r(1 − x)1−rF
[
−(

√
−1)q+1(1 + x)q−r−1

(
(1 − x)ry−

2r−1p 2F1 (1 − r, q − 1 − r, q − r, (1 + x)/2)
)]

,

where F is an arbitrary function and 2F1 is the hypergeometric function defined
in (2.74). The function F must be a polynomial of degree p + 1, because V has
degree p+ 1 in y: F (Y ) = a0 + a1Y + · · · + ap+1Y

p+1.

We next prove cases 5 and 6.

Case 5 If i ∈ {2p + 1, . . . , k − p − 1}, p|(i − 1) and r ∈ N \ {1}, then the
hypergeometric function in V becomes

2F1(1 − r, q − r − 1, q − r, (1 + x)/2) =

q − r − 1

2r−1

r−1∑

i=0

(
(1 + x)i(1 − x)r−i−1

q − r + i− 1

i∏

j=1

r − j

q − r + j − 2

)
.



88 2. Polynomial inverse integrating factors

If i ∈ {0, . . . , k − 3p − 2}, p|(k − 2 − i) and r ∈ N, r < q − 2, then the
hypergeometric function in V becomes

2F1(1 − r, q − r − 1, q − r, (1 + x)/2) =

−(q − r − 1)

[
(−2)q−r−1

(1 + x)q−r−1(q − 2)

q−r−2∏

j=1

q − r − 1 − j

r + j − 1
+

q−r−2∑

i=0

(
(1 − x)r+i

(1 + x)i+1

21−r

r + i

i∏

j=1

q − r − 1 − j

r + j − 1

)]
.

In both cases, solving an under–determined linear system we find a set of
values ai, i = 0, . . . , p + 1, for which V is a polynomial. Moreover, a0 = 0 and
the rest of the unknowns can be written as a linear combination of ap+1.

Case 6 The existence of solutions is related to the value of i ∈ {0, . . . , k − 2}.
If i = 0 or i = 1, then the hypergeometric function becomes 2F1(2, k − 3, k −
2, (1 + x)/2) or 2F1(1, k− 4, k− 3, (1 + x)/2) (respectively). Then no polynomial
solution is obtained. If i = 2 or i = k − 4, then there exists a solution of
degree 3. If i = k − 3, then b = m. We have the hypergeometric function

2F1(5− k, 5− k, 6− k, 2/(1+x)), so there is no polynomial solution. If i = k− 2,
then the hypergeometric function becomes 2F1(−1, 4 − k, 0, (1 + x)/2), so there
is no solution. If 3 ≤ i ≤ k − 5, then the hypergeometric function becomes

2F1(2− i, k−3− i, k−2− i, (1+x)/2) =

i−2∑

j=0

(
(k − 3 − i)(1 + x)j

2jj!(k − 3 − i + j)

j∏

r=1

(r − i + 1)

)
.

Solving an under–determined linear system we find a set of values ai, for i =
0, . . . , p + 1, for which V is a polynomial. Moreover, a0 = 0 and the rest of the
unknowns can be written as a linear combination of ap+1.

Proposition 2.3.27. System (2.88) has a polynomial inverse integrating factor
if and only if one of the following statements hold.

(V.14) b00 = 4, b10 = b20 = 0. Then V (x, y) = (x− y)2.

(V.15) b00 = b20 +4, b10 = −b20 6= 0. Then V (x, y) = (x±1)(b20(x−1)2 +4(x−
y)(y − 1)).

(V.16) b00 − 4 6= 0, b10 = b20 = 0. Then V (x, y) = (−1 + x2)(b00 − 4y2).

(V.17) b20 = (k−2)(k−4) and b10 = (k−2p)
√
b00 − (k − 2p)2 + (k − 2)(k − 4),

b00 − (k − 2p)2 + (k − 2)(k − 4) ≥ 0, with k > 4, p ∈ {2, . . . , k − 2}. Then
V (x, y) = (−1+x2)

(
p1

1(x)y+p1
2(x)

)(
p2

1(x)y+p2
2(x)

)
, where p1

1(x) and p2
1(x)

are the Jacobi polynomials of degree p− 2 and k − p− 2, respectively, and
the expressions of p1

2 and p2
2 can be obtained from p1

1 and p2
1, respectively.
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Proof: If k ≤ 4 then straightforward computations show that there is a solution
of degree 2 if and only if b10 = b20 = 0, b00 − 4 = 0; there is a solution of degree
3 if and only if b00 = b20 + 4, b10 = ∓b20 6= 0, and we can assume b10 = −b20
(otherwise we change the sign of x, y and t); and there is a solution of degree 4
if and only if b10 = b20 = 0, b00 − 4 6= 0. The respective expressions of V (x, y) are
shown in Proposition 2.3.27.

The proof of this proposition follows the same steps as the proof of Proposition
2.3.22. From now on, we assume k > 4. Let V (x, y) be a polynomial inverse
integrating factor of system (2.88) of degree k > 4. By Lemma 2.3.1, we can
write V as a polynomial of degree 2 in y:

V (x, y) = V0(x) + V1(x)y + V2(x)y
2.

Equation (⋆) can be rewritten as the system

−8V0(x) + 4(−1 + x2)V ′
0(x) − (b00 + 2b10x+ b20x

2)V1(x) = 0,
4V0(x) + 4xV1(x) − 2(−1 + x2)V ′

1(x) + (b00 + 2b10x+ b20x
2)V2(x) = 0,

V1(x) + 2xV2(x) − (−1 + x2)V ′
2(x) = 0.

(2.93)

We obtain expressions for V0(x) and V1(x) in terms of V2(x) and its derivatives:

V1(x) = −2xV2(x) + (−1 + x2)V ′
2(x),

V0(x) = −1

4

(
(b00 − 4 + 2b10x+ (b20 − 4)x2)V2(x) + 4x(−1 + x2)V ′

2(x)−
2(−1 + x2)2V ′′

2 (x)
)
.

Observe that if V2(x) is a polynomial of degree k − 2, then V1(x) and V0(x) are
polynomials of degrees k − 1 and k, respectively. We substitute V1(x) and V0(x)
in (2.93) to get

(b10 + (2b00 − 8 + b20)x+ 3b10x
2 + b20x

3)V2(x)−
(−1 + x2)(b00 − 4 + 2b10x+ b20x

2)V ′
2(x) + (−1 + x2)3V ′′′

2 (x) = 0. (2.94)

This is a differential equation with unknown V2(x), which must be a polynomial
solution of degree k − 2, so we write V2(x) =

∑k−2
i=0 aix

i.

Equation (2.94) can be written as a polynomial equation of degree k+ 1 in x,
and then we can transform it into a (k+2)× (k− 1) homogeneous linear system.
The equation corresponding to xk+1 is (k−3)(b20− (k−2)(k−4)) = 0. As k > 4,
we take b20 = (k − 2)(k − 4) > 0.

We have a homogeneous linear system with k − 1 unknowns a0, . . . , ak−2 and
k + 1 equations if we exclude the equation corresponding to xk+1. In order to
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have a non–trivial solution, all the (k−1)–minors of the matrix Mk of the system,
given by

Mk =




−ξk−1 ρk−2 0 χk−1

ϑk−2 −ξk−2 2ρk−3 0 χk−2

ξk+1 ϑk−3 −ξk−3 3ρk−4 0 χk−3

κk−4 ξk ϑk−4 −ξk−4 4ρk−5 0 χk−4

· · · · · · · · · · · · · · · · · ·
κ4 ξ8 ϑ4 −ξ4 (k − 4)ρ3 0 χ4

κ3 ξ7 ϑ3 −ξ3 (k − 3)ρ2 0
κ2 ξ6 ϑ2 −ξ2 (k − 2)ρ1

κ1 ξ5 ϑ1 −ξ1

κ0 ξ4 ϑ0

κ−1 ξ3




,

where

κk−i = (i− 5)b20 − χk−i+6, ϑk−i = −(i− 1)b20 − (i− 4)ρk−i,
χk−i = i(i+ 1)(i+ 2), ρk−i = −b00 − νk−i,
ξk−i = (2i− 1)b10, νk−i = 3i2 − 15i+ 14.

must be zero. The following lemma is related to the roots of the (k − 1)–minors
of Mk. Its proof follows the same steps than the proof of Lemma 2.3.23.

Lemma 2.3.28. There are at most k− 2 values of b10 for which all the (k− 1)–
minors of Mk vanish. Moreover, if all the (k − 1)–minors vanish for a non–zero
value b10, then they also vanish for −b10.

System (2.88) has the invariant algebraic curves x± 1 = 0. The sum of their
cofactors is 2x and the divergence of (2.88) is 2x+ 2y. We will find a polynomial
inverse integrating factor of the form

V (x, y) = (−1 + x2)
(
Ṽ0(x) + Ṽ1(x)y + Ṽ2(x)y

2
)
,

where Ṽi(x) are polynomials of degree k − 2 − i, i = 0, 1, 2, such that Ṽ0(x) +
Ṽ1(x)y + Ṽ2(x)y

2 is formed by invariant algebraic curves and the sum of their
corresponding cofactors is 2y.

Let p ∈ {2, . . . , k − 2} and b
(p)
10 = (k − 2p)

√
b00 − (k − 2p)2 + (k − 2)(k − 4).

We note that b
(p)
10 = −b(k−p)10 for p = 2, . . . , [k/2]. The following lemma is based

on Theorem 2 of [15].

Lemma 2.3.29. If b10 = b
(p)
10 where p ∈ {2, . . . , k − 2}, then system (2.88) has

two invariant algebraic curves of respective degrees p − 1 and k − p − 1, and of
the form h(x, y) = p1(x)y + p2(x), (p1, p2) = 1. For each curve h(x, y), p1(x) is
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a Jacobi polynomial, of degree p − 2 for the curve of degree p − 1 and of degree
k−p−2 for the curve of degree k−p−1. The expression of p2(x) can be obtained
from p1(x) and the cofactor of h(x, y). The product of both curves is an invariant
algebraic curve of degree k − 2 and cofactor 2y.

Proof: We assume that h(x, y) = p1(x)y+ p2(x) is an invariant algebraic curve of
(2.88). Let T (x) + a2y = a0 + a1x+ a2y ∈ C[x, y] be its cofactor. Then

ẋ
∂h

∂x
+ ẏ

∂h

∂y
− (T (x) + a2y)h = 0.

Writing this differential equation as a system of equations, we get

(a2 − 1)p1(x) = 0,
(−1 + x2)p′1(x) − T (x)p1(x) − p2(x) = 0,

(−1 + x2)p′2(x) +N(x)p1(x) − T (x)p2(x) = 0,

where N(x) = −b00/4 − b10x/2 − (k − 2)(k − 4)x2/4. From the first equation
it follows easily that a2 = 1. The expression of p2(x) can be obtained explicitly
from the second equation. From the second and the third equations we get
T (x)2 + N(x) = λ(−1 + x2), where λ = (2η + 1)m − η(η + 1), η = deg p1 ∈
{0, . . . , k − 4} (see Lemma 4 of [15] for a proof), and

(T ′(x) − λ)p1(x) − 2(T (x) − x)p′1(x) + (1 − x2)p′′1(x) = 0

(see Proposition 3 of [15]). Moreover, 4a2
0−b00 = −4λ, 4a2

1−(k−2)(k−4)−4λ = 0
and 4a0a1 − b10 = 0. So, a0 = ±

√
b00 − 2[2η2 + (2η + 1)(1 ± (k − 3))]/2, a1 =

(2η + 1 ± (k − 3))/2 and

b10 = ±(2η + 1 ± (k − 3))
√
b00 − 2[2η2 + (2η + 1)(1 ± (k − 3))].

We note that here the first ± corresponds to a0, and the others correspond to a1;
they are independent each other. Taking α = −a1−a0, β = −a1+a0, the solution
of this equation is the Jacobi polynomial P

(α,β)
η (x). We solve this equation for

a1 = 2η − k + 4 and for η = p − 2, k − p − 2, p ∈ {2, . . . , k − 2}. For the first
value of η, we take a0 = −

√
b00 − (k − 2p)2 + (k − 2)(k − 4)/2; for the second

one, we take a0 =
√
b00 − (k − 2p)2 + (k − 2)(k − 4)/2. In both cases, we obtain

b10 = b
(p)
10 . Then we obtain two invariant algebraic curves, one of degree p−1 and

one of degree k − p− 1; their product is an invariant algebraic curve f(x, y) = 0
of degree k − 2 and cofactor 2y.
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The curve f(x, y) = 0 has degree k−2 and cofactor 2y. Then, the polynomial
V (x, y) = (−1 + x2)f(x, y) is a polynomial inverse integrating factor of degree k
for our system.

We have obtained k − 3 values of b10 for which all the (k − 1)–minors of Mk

vanish. By Lemma 2.3.28, there are at most k−2 values of b10 for which all these
(k−1)–minors vanish. The arguments used in Proposition 2.3.22 show that there
are no more families for which we have a polynomial inverse integrating factor.

We note that if p ∈ {2, k − 2} and b00 = b20 + 4, then b10 = ±b20 6= 0. In this
case we already have a polynomial inverse integrating factor of degree 2 or 3.

There are exactly k−3 values of b10 which vanish all the (k−1)–minors of Mk,
and then there are k− 3 families of system (2.88) for which there is a polynomial
inverse integrating factor of degree k. The proof is finished.

2.3.8 The cases P (x, y) = r + xy

We deal in this section with systems (I) and (II). These two families of systems
correspond to the quadratic systems

ẋ = P (x, y) = r+ xy, ẏ = Q(x, y) = d+ ax+ by+ lx2 +mxy+ny2, (2.95)

where r ∈ {0, 1} and d, a, b, l,m, n ∈ R. First we study the subfamilies of systems
(2.95) which have a polynomial inverse integrating factor of degree k ≤ 5. We
split the results into two propositions depending on the value of r. The proofs
follow from straightforward computations of the linear systems AiV

i = 0, for
i = 1, . . . , 5, followed by affine changes and possibly rescaling time.

Proposition 2.3.30. A system of type (2.95) with r = 0 having a polynomial
inverse integrating factor V (x, y) of degree k ≤ 5 can be written, after an affine
change of variables and a rescaling of the time if it is necessary, as ẋ = xy,
ẏ = Q(x, y), where Q is one of the polynomials below.

(II.1) Q(x, y) = d+ax+ lx2−y2/2 with d2 +a2 + l2 6= 0. In this case the system
is Hamiltonian. We distinguish four subcases in order to give a simpler
expression of Q(x, y).

(II.1a) If al 6= 0, then Q(x, y) = b00 + x + δx2 − y2/2 where δ = ±1
and b00 = d|l|/a2 ∈ R. This expression is obtained by the change
(|l|x/a,

√
|l|y/a, at/

√
|l|) → (x, y, t).

(II.1b) If a = 0 and l 6= 0, then Q(x, y) = σ+δx2−y2/2 where δ = ±1 and
σ = −1, 0, 1. We have used the change (

√
|l/d|x, y/

√
|d|,
√

|d|t) →
(x, y, t) if d 6= 0, or the change

√
|l|x→ x if d = 0.
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(II.1c) If a 6= 0 and l = 0, then Q(x, y) = σ+x− y2/2 where σ = −1, 0, 1.
We have used the change (ax/|d|, y/

√
|d|,
√

|d|t) → (x, y, t) if d 6= 0,
or the change ax→ x if d = 0.

(II.1d) If a = l = 0 and d 6= 0, then Q(x, y) = δ − y2/2 where δ = −1, 1.
This expression is obtained by the change (y/

√
|d|,
√

|d|t) → (y, t).

(II.2) Q(x, y) = d + ax + lx2, with d 6= 0. Then, V (x, y) = x. We distinguish
two subcases in order to give a simpler expression of Q(x, y).

(II.2a) If a 6= 0 then Q(x, y) = δ + x + b20x
2 where δ = ±1 and b20 =

d|l|/a2 ∈ R, by the change (ax/|d|, y/
√

|d|,
√

|d|t) → (x, y, t).

(II.2b) If a = 0 then Q(x, y) = δ + σx2 where δ = ±1 and σ = −1, 0, 1,
after the change (

√
|l/d|x, y/

√
|d|,
√

|d|t) → (x, y, t) if l 6= 0, or after

the change (y/
√

|d|,
√

|d|t) → (y, t) if l = 0.

(II.3) Q(x, y) = d+ax+ lx2+y2/2 with d2+a2+ l2 6= 0. Then V (x, y) = x2. We
distinguish four subcases in order to give a simpler expression of Q(x, y).

(II.3a) If da 6= 0 then Q(x, y) = δ + x + b20x
2 + y2/2 where δ = ±1

and b20 = d|l|/a2 ∈ R. This expression is obtained by the change
(ax/|d|, y/

√
|d|,
√

|d|t) → (x, y, t).

(II.3b) If d = 0 and a 6= 0, then Q(x, y) = x + σx2 + y2/2 where σ =
−1, 0, 1, after the change (|l|x/a,

√
|l|y/a, at/

√
|l|) → (x, y, t) if l 6= 0,

or after the change (x/a, y/a, at) → (x, y, t) if l = 0.

(II.3c) If d 6= 0 and a = 0, then Q(x, y) = δ+σx2+y2/2 where δ = ±1 and
σ = −1, 0, 1, after the change (

√
|l/d|x, y/

√
|d|,
√

|d|t) → (x, y, t) if

l 6= 0, or after the change (x/
√
|d|, y/

√
|d|,
√

|d|t) → (x, y, t) if l = 0.

(II.3d) If d = a = 0 and l 6= 0, then Q(x, y) = δx2 +y2/2 where δ = −1, 1.
This expression is obtained by the change

√
|l|x→ x.

(II.4) Q(x, y) = (1+δx)(b00+y) where δ = 0, 1, b00 6= 0 and we obtain V (x, y) =
x(b00 + y).

(II.5) Q(x, y) = d+ax+ lx2 +y2, with d2 +a2 + l2 6= 0. Then, V (x, y) = x3. We
distinguish four subcases in order to give a simpler expression of Q(x, y).

(II.5a) If da 6= 0, then Q(x, y) = δ + x + b20x
2 + y2 where δ = ±1 and

b20 = d|l|/a2 ∈ R.

(II.5b) If d = 0 and a 6= 0, then Q(x, y) = x+σx2 +y2 where σ = −1, 0, 1.

(II.5c) If d 6= 0 and a = 0, then Q(x, y) = δ + σx2 + y2 where δ = ±1 and
σ = −1, 0, 1.

(II.5d) If d = a = 0 and l 6= 0, then Q(x, y) = δx2 +y2/2 where δ = −1, 1.
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All these expressions are obtained using the same changes as in system
(II.3).

(II.6) Q(x, y) = (b20x+ y)(δ/b20 + x) + y2 where δ = 0, 1, b20 ∈ R \ {0} and we
get V (x, y) = x2(b20x+ y).

(II.7) Q(x, y) = x+ y + y2 and V (x, y) = x2(x+ y).

(II.8) Q(x, y) = b00 + δx+ y + y2 where δ = 0, 1, b00 ∈ R \ {0} and we get

V (x, y) = x((b00 + δx)2 + (b00 + δx)y + b00y
2).

(II.9) Q(x, y) = σ + δx + b20x
2 + ny2 where σ = −1, 0, 1, δ = 0, 1, b20 ∈ R,

n 6= −1/2, 0, 1/2, 1 and we have

V (x, y) = x

(
σ +

2δn

2n− 1
x+

b20n

n− 1
x2 + y2

)
.

(II.10) Q(x, y) = d + by + ny2 where d 6= 0 and n 6= 0, 1. We get V (x, y) =
x(d+ by + ny2).

(II.11) Q(x, y) = b20δ(n− 1)/n+ b20δ(2n− 1)x/n+ δy+ b20x
2 + xy+ny2 where

δ = 0, 1, b20 ∈ R \ {0}, n 6= 0, 1, and we get

V (x, y) = x
(
δ(b20(n−1)2+2b20n(n−1)x+n(n−1)y)+n2(b20x

2+xy+(n−1)y2)
)
.

(II.12) Q(x, y) = x− 6x2/25 + xy + y2/3 and

V (x, y) =
(
36x2 − 30x(2y + 5) + 25y2

)(
216x3 − 125y3−

270x2(2y + 5) + 75x(25 + 3y(2y + 5))
)
.

(II.13) Q(x, y) = −2/3 + x− y/3 − 6x2/25 + xy + y2/3 and

V (x, y) =
(
6x− 5y − 5

)(
36x2 − 30x(2y + 5) + 25(y − 2)2

)
(
36x2 − 15x(4y + 7) + 25(y + 1)(y − 2)

)
.

(II.14) Q(x, y) = b00δ+σ(1−δ)−δx+δy−x2 +3xy−y2 where b00 ∈ R, σ = ±1,
δ = 0, 1, and we get

V (x, y) = x
(
b00δσ(1−δ)−x(δ+x−y)

)(
b00δσ(1−δ)−(x−y)(δ+x−y)

)
.

(II.15) Q(x, y) = b00 + y + δx2 + 2y2 where b00 ∈ R, δ = ±1, and we get

V (x, y) = x
(
(b00 + δx2)2 + (b00 + δx2)y + 2b00y

2
)
.
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Proposition 2.3.31. A system of type (2.27) with r = 1 having a polynomial
inverse integrating factor V (x, y) of degree k ≤ 5 can be written, after an affine
change of variables and a rescaling of the time if it is necessary, as ẋ = 1 + xy,
ẏ = Q(x, y), where Q is one of the polynomials below.

(I.1) Q(x, y) = d+ax+ lx2 − y2/2. The system is Hamiltonian. We split it into
two systems:

(I.1a) ẋ = 1+a20x
2+2xy, ẏ = x+b20x

2−2a20xy−y2 where a20 = (2/a)2/3d,
b20 = (2l − 3d2)/(2a2)2/3 and a 6= 0.

(I.1b) ẋ = 1 + σx2 + 2xy, ẏ = b20x
2 − σxy − y2 where σ = −1, 0, 1 and

b20 = l/(2|d|) − 3/4 if d 6= 0, or b20 = sign(l) if d = 0.

(I.2) Q(x, y) = y(δ + b11x− y) where δ = 0, 1, b11 ∈ R, and we get V (x, y) = y.

(I.3) Q(x, y) = 1 + b11 + b11x + y + b11xy where b11 ∈ R, and we get V (x, y) =
1 + x+ xy.

(I.4) Q(x, y) = b00 + b10x+ δy + y2 where b00, b10 ∈ R, δ = 0, 1, and we have

V (x, y) = −b10 − b00δ + (b200 − b10δ)x− (b00 + δ)y + 2b00b10x
2+

(b00δ − 3b10)xy − 2δy2 + b210x
3 + b10δx

2y + b10xy
2 − y3.

(I.5) Q(x, y) = d+ax+δy+ lx2 +b11xy+ny2 where b11 ∈ R, n 6= −1,−1/2, 0, 1,

d =
δ(n+ 1)

(2n+ 1)2
− b11(n+ 1)

(n− 1)(2n+ 1)
, a =

b11δ(n+ 1)(2n− 1)

(n− 1)(2n+ 1)2
,

l =
b211n(n+ 1)

(n− 1)(2n+ 1)2

δ = 0, 1. We get

V (x, y) =
(
(n2 − 1)δ + b11n(n + 1)x + n(n − 1)(2n + 1)y

)
(
(n − 1)(2n + 1) + (n2 − 1)δx + b11n(n + 1)x2 + (n2 − 1)(2n + 1)xy

)
.

(I.6) Q(x, y) = b00 + y + y2/2 where b00 ∈ R \ {3/8}, and we get

V (x, y) =
(
2b00 + 2y + y2

)(
2b00(2x− 1) − (y + 2)2

)
.

(I.7) Q(x, y) = b00 + δx2 + y2/2 where δ = ±1, b00 ∈ R, and we get

V (x, y) = 8δ(1 + xy)2 − (2b00 + 2δx2 + y2)2.
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(I.8) Q(x, y) = δ + y2/3 where δ = ±1, and we get

V (x, y) =
(
3δ + y2

)(
9x− 9δy − 2y3

)
.

(I.9) Q(x, y) = b00 + y + y2/3 where b00 6= 12/25, and we get

V (x, y) =
(
3b00 + 3y + y2

)(
9b200x+ 9b00(6x− y − 5) − 2(y + 3)3

)
.

(I.10) Q(x, y) = 3b201/25 + x+ b01y − b01x
2/5 + 2y2 where b01 ∈ R, and we get

V (x, y) =
(
3b01 + 10y − 5x2

)(
5 + 3b01x+ 15xy − 5x3

)
.

In the rest of this subsection we assume k > 5. We consider the quadratic
differential system

ẋ = P (x, y) = r+ xy, ẏ = Q(x, y) = d+ ax+ by+ lx2 +mxy+ny2, (2.96)

with r ∈ {0, 1} and d, a, b, l,m, n ∈ R. Assume l2 +m2 6= 0, otherwise interchan-
ging x and y we are in cases (III) to (X), which have already been studied. Assume
that V (x, y) =

∑k
j=0 Vj(x, y) is a polynomial inverse integrating factor of system

(2.96) of degree k > 5, with V0 ∈ R and Vj(x, y) a homogeneous polynomial of
degree j, for j = 1, . . . , k. By using the equation of definition (⋆) of the inverse
integrating factor (multiplied by x) and the Euler’s formula

x
∂V

∂x
+ y

∂V

∂y
=

k∑

j=1

jVj,

we obtain the equation

P

(
k∑

j=1

jVj − y
∂V

∂y

)
+ xQ

∂V

∂y
− div (P,Q)xV = 0,

where div (P,Q) = ∂P/∂x+ ∂Q/∂y = b+mx+ (2n− 1)y; or equivalently,

k∑

j=1

(jr − bx+ xNj)Vj +
k∑

j=1

(
R + xS + xT

)∂Vj
∂y

= div (P,Q)xV0, (2.97)

where Nj = −mx+(j−2n−1)y, R = dx−ry, S = ax+ by and T = lx2 +mxy+
(n − 1)y2. Equation (2.97) can be written as a system of differential equations,
one equation for each degree in x and y. Next we write the equations of degree
k + 2, k + 1, j + 2 (for j = k − 2, . . . , 0) and 1:

xNkVk + xT
∂Vk
∂y

= 0, (2.98)
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xNk−1Vk−1 + xT
∂Vk−1

∂y
= bxVk − xS

∂Vk
∂y

, (2.99)

xNjVj + xT
∂Vj
∂y

= bxVj+1 − xS
∂Vj+1

∂y
− r(j + 2)Vj+2 − R

∂Vj+2

∂y
, (2.100)

rV1 + R
∂V1

∂y
= bV0x. (2.101)

We denote by Ej the equation (2.100), for j = k− 2, . . . , 0. We solve this sys-
tem of differential equations recursively, starting by equation (2.98) and finishing
by equation (2.101). We main follow the results 2.3.2, 2.3.3 and 2.3.4 given in
Section 2.3. These results can be found in [9].

First we study equation (2.98).

Proposition 2.3.32. Equation (2.98) has a polynomial solution Vk if and only
if one of the following statements hold.

(a) l 6= 0, m = 0 and n = 1− (k−3)/(2(p−1)) with p ∈ N∪{0}, 2p ≤ k, p 6= 1.
Then Vk(x, y) = xk−2pT p. Under these conditions system (2.96) is

ẋ = r + xy, ẏ = d+ ax+ by + lx2 +

(
1 − k − 3

2(p− 1)

)
y2. (2.102)

(b) m 6= 0, l = (p − 1)(p + q − 1)(2p + q − 2)m2/(q2(k − 3)) and n = 1 − (k −
3)/(2p + q − 2) where p ∈ N ∪ {0}, q ∈ N, 2p + q ≤ k, 2p + q 6= 2. Then
Vk(x, y) = xk−2p−qF pGp+q. Under these conditions system (2.96) is

ẋ = r + xy, ẏ = d + ax + by +
(p − 1)(p + q − 1)(2p + q − 2)

q2(k − 3)
x2+

mxy +

(
1 − k − 3

2p + q − 2

)
y2. (2.103)

Proof: We write Vk = T pW , where p ∈ N∪ {0}, 2p ≤ k and W is a homogeneous
polynomial of degree k − 2p such that T ∤ W . Equation (2.98) becomes

FW + T
∂W

∂y
= 0, (2.104)

where F = m(p − 1)x + n̄y, n̄ = k − 3 + 2(p − 1)(n − 1). Observe that if p = 0
then W ≡ Vk, F ≡ Nk and (2.104) is just (2.98). If F ≡ 0 and p = 1, then we get
k = 3, but we are assuming k > 5. If F ≡ 0 and p 6= 1, then m = 0, l 6= 0 and

n = 1 − k − 3

2(p− 1)
.
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As T 6≡ 0, by (2.104) we have Wy ≡ 0, and then W = xk−2p. The expression of
Vk is given by Vk(x, y) = xk−2pT p and case (a) follows.

If F 6≡ 0, then as T ∤ W we have T = FG, where G = αx + βy, α, β ∈ R.
Moreover, G|W . From T = FG we compute α, β and l:

α =
k − 3 + (p− 1)(n− 1)

n̄2
m, β =

n− 1

n̄
, l = αm(p− 1).

The expressions of α and β above are well defined because if n̄ = 0, then n = 1
and k = 3, which is not possible. Equation (2.104) becomes

W +G
∂W

∂y
= 0.

As G|W , we have W = GqW̄ , where q ∈ N, 2p + q ≤ k and W̄ is a certain
homogeneous polynomial of degree k − 2p − q such that G ∤ W̄ . We obtain the
equation

(1 + qβ)W̄ +G
∂W̄

∂y
= 0.

As G ∤ W̄ , we must take 1 + qβ = 0. If 2p + q − 2 = 0, that is p = 0 and q = 2,
then k = 3. So 2p+ q − 2 6= 0, and then

n = 1 − k − 3

2p+ q − 2
.

The expressions of α, β and l can be rewritten as

α =
(p+ q − 1)(2p+ q − 2)

q2(k − 3)
m, β = −1

q
,

l =
(p− 1)(p+ q − 1)(2p+ q − 2)

q2(k − 3)
m2.

We also take m 6= 0. Finally, as G 6≡ 0, we have W̄y ≡ 0, so W̄ = xk−2p−q. The
expression of Vk is given by Vk(x, y) = xk−2p−qF pGp+q and case (b) follows.

We study cases (a) and (b) of Proposition 2.3.32 separately. Case (a) is the
easiest one, and from it we just obtain a solution V of degree k = 7, as the
following proposition shows.

Proposition 2.3.33. A system of type (2.102) having a polynomial inverse in-
tegrating factor V (x, y) can be written, after an affine change of variables and a
rescaling of the time if it is necessary, as ẋ = 1 + xy, ẏ = Q(x, y), where
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(I.11) Q(x, y) = δx2 + 3y2 with δ = ±1, and we get

V (x, y) =
(
3y − δx3

)(
1 + 4xy − δx4

)
.

Proof: Equation (2.99) can be written as

Nk−1Vk−1 + TVk−1,y = T p−1L, (2.105)

where

L = xk−2p(bT − pSTy) =

xk−2p

(
blx2 +

ap(k − 3)

p− 1
xy +

b(2p− 1)(k − 3)

2(p− 1)
y2

)
.

If p = 0, then L = bxkT . We apply Lemma 2.3.4 to (2.105) to get b = 0 and
Vk−1 ≡ 0. Under these conditions, there already exists a quadratic system having
a polynomial inverse integrating factor of degree k ≤ 3 for r = 0, as it follows
from cases (II.1), (II.2), (II.3), (II.5) and (II.9) of Proposition 2.3.30, so we take
r = 1. Equation Ek−2 is

−2yVk−2 + TVk−2,y = −kxk−1.

By Lemma 2.3.4, we must take k = 7. We get Vk−2 = V5 = −7x4y/l. Equation
E4 is

−3yV4 + TV4,y =
7a

l
x5.

We get a = 0 and V4 ≡ 0. Solving equation E3, we get V3 = l2v1,2−14

2l
x3 + v1,2xy

2,
v1,2 ∈ R. We must also take d = 0. From equation E2, we get V2 ≡ 0. From
equation E1, we get V1 = 3y/l2 and v1,2 = 12/l2. Solving equation E0 we obtain
V0 = 0, and equation (2.101) gives the identity 0 = 0. So we obtain (I.11) after
the change (|l|1/4x, y/|l|1/4, |l|1/4t) → (x, y, t).

Assume p > 1. From (2.105), as l 6= 0 we have T |Vk−1, so there exist j ∈ N
and a homogeneous polynomial W such that T ∤ W and Vk−1 = T jW . Equation
(2.105) is then equivalent to

T j((Nk−1 + jTy)W + TWy) = T p−1L.

We must take j = p− 1. The equation becomes, after simplifying,

(
k − 3

p− 1
− 1

)
yW + TWy = L.
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Applying Lemma 2.3.4, we get b = 0 and

Vk−1 =
ap(k − 3)

k − p− 2
xk−2p−1T p−1,

where k − p− 2 6= 0 because k > 5. Equation Ek−2 is

Nk−2Vk−2 + TVk−2,y = T p−2L,

where L = xk−2p−1(a0x
4 + a1x

3y + a2x
2y2 + a3xy

3 + a4y
4),

a0 = −kl2r, a1 =
p(k − 3)(dl(k − p − 2) + a2(k − 3)(p − 1))

(k − p − 2)(p − 1)
,

a2 =
lr(k − 3)(k − p)

p − 1
, a3 = −dp(k − 3)2

2(p − 1)2
, a4 = −r(k − 2p)(k − 3)2

4(p − 1)2
.

We have Vk−2 = T p−2W , where W is a homogeneous polynomial such that T ∤ W .
Then, we must solve the equation

2y
k − p− 2

p− 1
W + TWy = L.

Applying Lemma 2.3.4, we obtain k = 3p. Then, n = −1/2 and b = m = 0, so
the system is Hamiltonian and we are in (II.1).

The rest of this section is dedicated to the proof of the following proposition.

Proposition 2.3.34. Under the hypotheses of Proposition 2.3.32(b), a system of
type (2.103) having a polynomial inverse integrating factor V (x, y) can be written,
after an affine change of variables and a rescaling of the time if it is necessary,
as ẋ = r + xy, ẏ = Q(x, y), where r ∈ {0, 1} and Q(x, y) are stated below.

(I.12) r = 1 and Q(x, y) = −5δ/7 − 15x2/98 + δxy + y2/5 where δ = ±1 and

V (x, y) =
(
26250x + 3375δx3 + 36750δy − 9450x2y + 8820δxy2−

2744y3
)(

1531250 + 525000δx2 + 50625x4 + 245000xy −
189000δx3y − 686000δy2 + 264600x2y2 − 164640δxy3 + 38416y4

)
.

(I.13) r = 1 and Q(x, y) = b00δ − (s − 1)x2/(2s2) + δxy − y2/(2(s − 1)) where
δ = ±1, b00 ∈ R and s ∈ N.

(I.14) r = 1 and Q(x, y) = d−b11(q−2)x/q+y−(q−2)b211x
2/q2+b11xy−y2/(q−2)

where δ = ±1, b11 6= 0 and q ∈ N, q > 3. Moreover, d satisfies

qj2(q − 2)(q − 2 − j)2 − jq(q − 2 − j)(q − 2 − 2j)2d−
(q − 2)(q − 2 − 2j)2(j2 − (q − 2)(j + 1))b11 = 0,

for j ∈ {1, 2, 3, . . . , [q − 3]/2}.
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(I.15) r = 1 and Q(x, y) = b00δ+ (q+ 2)x2/q2 + δxy+ y2/(q+ 2) where δ = ±1,
b00 ∈ R and q ∈ N \ {1}.

(I.16) r = 1 and Q(x, y) = d−b11(q+2)x/q+y+(q+2)b211x
2/q2+b11xy+y

2/(q+2)
where b11 6= 0. Moreover, d satisfies

q j2(q + 2)(q + 2 − j)2 + q j(q + 2 − j)(q + 2 − 2j)2d+

(q + 2)(q + 2 − 2j)2(j2 − (q + 2)(j − 1))b11 = 0,

for j ∈ {1, 2, 3, . . . , [(q + 1)/2]}.

(I.17) r = 1 and Q(x, y) = 10(b11+2)/9+70b11x/27+y+10b211x
2/27+b11xy−y2/5

where b11 6= 0 and

V (x, y) =
(
60 + 10b11x − 9y

)(
45 + 60x + 10b11x

2 + 36xy
)(

236196xy5−
98415(10x(6 + b11x) − 3)y4 + 145800(6 + b11x)(10x(6 + b11x) − 9)y3 −
81000(6 + b11x)2(10x(6 + b11x) − 27)y2 − 1620000(6 + b11x)3y +

50000x(2b5
11x

5 + 60b4
11x

4 + 9b3
11(80 + b11)x

3 + 216b2
11(20 + b11)x

2 +

648b11(20 + 3b11)x + 7776(2 + b11))
)
.

(I.18) r = 1 and Q(x, y) = −(2p − 1)δ/2 + p(2p − 1)x2/2 + δxy + y2/(2p − 1)
where δ = ±1 and p ∈ N, p > 2.

(I.19) r = 1 and Q(x, y) = (2p + q − 2)δ/(2q) + (p − 1)(2p + q − 2)x2/(2q2) +
δxy − qy2/(2p + q − 2), where δ = ±1 and p ∈ N ∪ {0}, q ∈ N, p + q > 2,
p 6= 1.

(I.20) r = 1 and Q(x, y) = δ/6 − x2/18 + δxy − 3y2 where δ = ±1 and

V (x, y) =
(
δx− 6y

)(
3 + x(δx− 6y)

)(
54 + 3δx2(3 − 2xy) + x4

)
.

(II.16) r = 0 and Q(x, y) = δ+(p−1)(p+q−1)x2/(2q2)+xy−y2 where δ = ±1
and p ∈ N ∪ {0}, p 6= 1, q ∈ N, 2p + q > 3. We have an expression for
V (x, y) in the case p = 0:

V (x, y) =
1

x

(
4δ2−qq2(2−q)[2δq2 − x((q − 1)x− 2qy)]q−

2q[2δq2 − (q − 1)x(x− 2qy)][2δq2 − x((q − 1)x− 2qy)]
)
.

(II.17) r = 0 and Q(x, y) = d = −bm(q− 2)x/q+ by− (q− 2)m2x2/q2 +mxy−
y2/(q − 2), where m 6= 0 and q ∈ N, q > 3. In order to give a simpler
expression of Q, we distinguish two cases, depending on the value of b.
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(II.17a) If b 6= 0 then Q(x, y) = −b00 − (q − 2)x/q + y − (q − 2)x2/q2 +
xy − y2/(q − 2) where b00 = −d/b2. Here we have used the change
(mx/b, y/b, bt) → (x, y, t).

(II.17b) If b = 0 then Q(x, y) = δ−(q−2)x2/q2+xy−y2/(q−2) where δ =
±1. This is due to the change (mx/

√
|d|, y/

√
|d|,
√

|d|t) → (x, y, t).

(II.18) r = 0 and Q(x, y) = δ + (q + 1)(q + 2)x2/(q2(q − 1)) + xy + 3y2/(q + 2)
where δ = ±1 and q ∈ N \ {1}.

(II.19) r = 0 and Q(x, y) = d+ax+y+ lx2 +xy+3y2/(q+2) where q ∈ N\{1}
and

d = −j(q + 2)(q + 2 − j)

(q + 2 − 2j)2
, a = −(q + 1)(q + 2)(q − 4)

3q2(q − 1)
, l =

(q + 1)(q + 2)

q2(q − 1)
,

for j ∈ {1, 2, 3, . . . , [(q + 1)/2]}.

Remark 2.3.35. 1. In systems (I.13) and (I.15) we assume that b = 0, but
this condition is not proved. In systems (I.14), (I.16) and (II.19) the condi-
tion on d is not proved. In all these cases, there is numerical evidence that
the conditions hold.

2. Systems (II.17) and (II.18) are not proved to have a polynomial inverse
integrating factor, as we will show in the proof.

3. We do not have an expression of V (x, y) in cases (I.13)–(I.16), (I.18), (I.19)
and (II.16)–(II.19). In case (I.19), using Theorem 1.4.7 it is possible to find
an expression for V , as we explain in the proof.

2

Equation (2.99) can be written as

Nk−1Vk−1 + FGVk−1,y = F p−1Gp+q−1L,

where L = xk−2p−q(a0x
2 + a1xy + a2y

2),

a0 =
bm(p− 1)(p+ q − 1)(2p+ q − 2) − aq2(k − 3)

q2(k − 3)
m,

a1 =
a(2p+ q)(k − 3)

2p+ q − 2
, a2 =

b(2p+ q − 1)(k − 3)

2p+ q − 2
.

As (G,Nk−1) = (F,Nk−1) = 1, there exist i, j ∈ N ∪ {0} and a homogeneous
polynomial W such that Vk−1 = F iGjW . Equation (2.99) is

F iGj((Nk−1 + iGFy + jFGy)W + FGWy) = F p−1Gp+q−1L.
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We must take j = p+ q − 1. If p = 0, then i = 0 and the equation becomes

(
−m
q
x+

(
k − 3

q − 2
− 1

)
y

)
W + FGWy = F−1L.

If p > 0, then i = p− 1 and the equation becomes

(
−mx+

(
2(k − 3)

2p+ q − 2
− 1

)
y

)
W + FGWy = L.

In both subcases, two cases must be considered:

(b.1) If k = 2p+ q + 1 then b = 0 from Lemma 2.3.4.

(b.2) If k 6= 2p+ q + 1 then a = bl(2n− 1)/(mn) from Lemma 2.3.4. Moreover,

Vk−1(x, y) =

(k − 3)

(
a(2p + q)

2k − 2p − q − 4
x +

b(2p + q − 1)

k − 2p − q − 1
y

)
xk−2p−qF p−1Gp+q−1,

where k 6= (2p+ q + 4)/2 because k > 5.

The case (b.1) is studied in the following proposition.

Proposition 2.3.36. Under the conditions of case (b.1), system (2.103) has no
polynomial inverse integrating factor.

Proof: Assume p = 1. Then we must take q > 2, a = 0 and Vk−1(x, y) = v1xyG
q,

where v1 ∈ R. Equation Ek−2 is

Nk−2Vk−2 + FGVk−2,y = GqL,

where L = (−dmx2 +(q+2)(d−mr)xy+ ry2). As q > 2, we have (G,Nk−2) = 1,
and then Vk−2 = GjW , where W is a homogeneous polynomial. We must solve
the equation

Gj((Nk−2 + jFGy)W + FGWy) = GqL.

We take j = q − 1, so the equation becomes −q(W − yWy) = L, from which we
get d = mr, and the system has a common factor.

Assume p 6= 1. Then

Vk−1(x, y) = a

(
(2p+ q)x+

q2(2p+ q − 1)

m(p− 1)(p+ q − 1)
y

)
xF p−1Gp+q−1.
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Equation Ek−2 writes as

Nk−2Vk−2 + FGVk−2,y = F p−2Gp+q−2L,

where L is a certain homogeneous polynomial of degree 4. We have Vk−2 =
F iGjW , where W is a homogeneous polynomial. We obtain

F iGj((Nk−2 + iGFy + jFGy)W + FGWy) = F p−2Gp+q−2L.

We must take i = p− 2 and j = p+ q− 2. Then the equation becomes (−2mx+
2y)W + FGWy = L. Applying Lemma 2.3.4 we get d = mr and

Vk−2(x, y) =
(
v0x

3 + v1x
2y + v2xy

2 + y3
)
F p−2Gp+q−2,

for certain coefficients vi, i = 0, 1, 2. If r = 0 then the system has a common
factor, so we take r = 1, and then d = m. Equation Ek−3 is

Nk−3Vk−3 + FGVk−3,y = F p−3Gp+q−3L,

where L is a certain homogeneous polynomial of degree 5. We have Vk−3 =
F iGjW , where W is a homogeneous polynomial. We must solve the equation

F iGj((Nk−3 + iGFy + jFGy)W + FGWy) = F p−3Gp+q−3L.

Now we apply Lemma 2.3.4 again. If p = 0 and q = 5, then j = 1. If q = p−1 > 0
then j = p + q − 2. Otherwise, i = p− 3 and j = p + q − 3. In all cases, we get
a = 0 and L ≡ 0, so Vk−3 ≡ 0. Equation Ek−4 is

Nk−4Vk−4 + FGVk−4,y = F p−2Gp+q−2L,

where L is a certain homogeneous polynomial of degree 2. We have Vk−4 =
F iGjW , where W is a homogeneous polynomial. We must solve the equation

F iGj((Nk−4 + iGFy + jFGy)W + FGWy) = F p−2Gp+q−2L.

If p = 0 and q = 6, then j = 1. In this case, we must solve the equation
−6W + FWy = F−2G2L, from which we obtain m = 0, a contradiction. If
q = 2(p− 1) > 0 then j = 3p− 5. In this case we obtain m(3p− 2) = 0, another
contradiction. So we must take i = p − 2 and also j = p + q − 2 (if p > 1) or
j = q − 2 (if p = 0). If p > 1 then the equation becomes −2mxW + FGWy = L.
Applying Lemma 2.3.4, we get m2(p− 1)(p+ q− 1)(2p+ q+ 2) = 0, which is not
possible. If p = 0 then the degree of W is zero and the equation becomes

(
−2m

q
x− 2y

)
W = −m(q − 1)

q3
,

from which W = 0, and then m(q − 1) = 0, which is a contradiction because
m 6= 0 and k = q + 1 > 5.
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From now on we assume case (b.2). Equation Ek−2 is

Nk−2Vk−2 + FGVk−2,y = F p−2Gp+q−2L,

where L is a certain homogeneous polynomial of degree k − 2p− q + 3. We have
Vk−2 = F iGjW , where W is a homogeneous polynomial. We must solve the
equation

F iGj((Nk−2 + iGFy + jFGy)W + FGWy) = F p−2Gp+q−2L. (2.106)

If p = 0 and k = q = 7, then j = 4. In this case, we get the solution (I.12).

Assume p = 1. From Ek−2 we obtain r = 1 and d = m, and from Ek−3 we get
b = 0. Finally, from Ek−4 we have (k + 1)(k − q − 3)m2 = 0. Then the only case
from which we could obtain a solution is k = q + 3, but in this case we would be
in case (b.1), so there is no solution. From now on we assume p 6= 1.

We take i = p− 2 and j = p+ q − 2 in (2.106). Then the equation becomes

(
−2mx+ 2

(
2(k − 3)

2p+ q − 2
− 1

)
y

)
W + FGWy = L.

Applying Lemma 2.3.4, we get three subcases:

(b.2.1) If k = 4p+ 2q − 1 then r = 0.

(b.2.2) If k = p+ q + 2 then p = 0, 2.

(b.2.3) If k 6= 4p+ 2q − 1, p+ q + 2, then r = 1 and

d =
(p− 1)(p+ q − 1)(2p+ q − 2)

q2(k − 2p− q − 1)
b2 +

�
2(k − 3p)((k − 2p− 1)(p− 1) − q2)+

q(k2 − 3 + k(4 − 10p) + 6p(3p− 1))
� (2p+ q − 2)m

(k − 3)(k − 4p− 2q + 1)q2
·

In all cases,

Vk−2(x, y) = p3(x, y)x
k−2p−q−1F p−2Gp+q−2,

where p3(x, y) is a homogeneous polynomial of degree 3.
In the following three propositions we deal separately with cases (b.2.1),

(b.2.2) and (b.2.3). These propositions will finish our proof.

Proposition 2.3.37. Under the conditions of (b.2.1) the only case for which
system (2.103) has a polynomial inverse integrating factor is (II.16).
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Proof: Equation Ek−3 writes as

Nk−3Vk−3 + FGVk−3 = F p−3Gp+q−3L,

where L = x2p+q−2p5(x, y), for a certain homogeneous polynomial p5 of degree 5.
We take Vk−3 = F iGjW , with i, j ∈ N ∪ {0} and W a homogeneous polynomial.
If p = 0 and q = 5, then we take j = 3, but we obtain b = d = 0 and the system is
homogeneous, so there is a solution of degree 3. Taking j = p+q−3 and i = p−3,
we get (−3mx+ 9y)W + FGWy = L. If b 6= 0, then d = b2(p− 1)(p+ q − 1)/q2

and we obtain a solution of degree at most 3. If b = 0 (and d 6= 0), then Vk−3 ≡ 0.
We note that all the computations hold also for p = 0.

The polynomials Vk−2i−1 are identically zero for all i. We obtain the poly-
nomials Vk−2i, i = 1, . . . , 2p + q − 1, solving equations Ek−2i in a recursive way.
The integration constant must be taken as zero in every step, except for V3. The
integration constant appeared in the computation of V3, denoted by C1, can be
obtained from equation (2.101), which is V1,y = 0 because this equation is linear
in C1 and its coefficient is sign(d)q(p− 1)/2(p+ q − 1) 6= 0. The system is

ẋ = xy, ẏ = d+
(p− 1)(p+ q − 1)

2q2
m2x2 +mxy − y2, (2.107)

with d 6= 0. The polynomials Vk−2i have the factor x2p+q−1−i, for i = 0, . . . , 2p +
q − 2. As V1,y = 0, the polynomial V (x, y) vanishes at x = 0. Applying the

change (mx/
√

|d|, y/
√

|d|,
√

|d|t) → (x, y, t), we obtain (II.16).

We can compute an expression of V (x, y) for system (2.107) in the case p = 0.
First we compute the expression of Vk−2i, for i = 1, . . . , q− 1. By a linear change
of variables, we transform our system into

ẋ = x(x− y), ẏ = s+ y((2q − 3)x+ y),

where s2 = 1. Equation Ek−2i, for 0 < i < q − 2, is given by

isi

2i−1

(
q

i

)
xq−i((q − 2)x+ y)q−i − 2(ix+ (q − i)y)Vk−2i +

2y((q − 2)x+ y)Vk−2i,y = 0.

From this equation, we get

Vk−2i(x, y) =
si

2i

(
q

i

)
xq−i−1((q − 2)x+ y)q−i +

cix
q−i−1yi/(q−2)((q − 2)x+ y)q−i−i/(q−2).

As i < q − 2, we take ci = 0. Equation E3 is

sV5,y − 2((q − 2)x+ y)V3 + 2y((q − 2)x+ y)V3,y = 0,
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from which we get

V3(x, y) = x((q − 2)x+ y)(k1x+ C1y),

where k1 = q(q− 1)(q− 2)sq−2/2q−1 and C1 ∈ R. In order to compute V1(x, y) =
v0x+ v1y, we must solve the linear system

v0 + v1 = C1s, 2v0(q − 1) = k1s+ C1s(q − 2),

which is obtained from E0. We get

V1(x, y) = s
C1(q − 2) + k1

2(q − 1)
x+ s

C1q − k1

2(q − 1)
y.

Finally, from (2.101) we have C1 = k1/q. So we obtain the polynomial inverse
integrating factor

V (x, y) =
k1

q
x
(
s + (q x + y)((q − 2)x + y)

)
+

q−3∑

i=0

si

2i

(
q

i

)
xq−i−1((q − 2)x + y)q−i,

with s2 = 1. Back to the initial system, which is

ẋ = xy, ẏ = d− m2(q − 1)

2q2
x2 +mxy − y2,

the polynomial inverse integrating factor can be written as

V (x, y) =
1

x

(
4d2−qq2(2−q)[2dq2 −mx(m(q − 1)x− 2qy)]q−

2q[2dq2 −m(q − 1)x(mx− 2qy)][2dq2 −mx(m(q − 1)x− 2qy)]
)
.

Proposition 2.3.38. Under the conditions of (b.2.2) the cases for which system
(2.103) has a polynomial inverse integrating factor are (I.13)–(I.16) and (II.17)–
(II.19).

Proof: Assume p = 0. If i 6= 3, then from Ei we get an expression for Vi in
a recursive way, and without new conditions. If i = 3, then we must solve the
equation

(K1x
2 +K2xy +K3y

2)(x+ y)2 − (x+ 2y)V3(x, y) + y(x+ y)V3,y(x, y) = 0,

for certain expressions K1, K2, K3. This equation has the solution

V3(x, y) = −K2xy(x+ y) ln y + Ṽ3(x, y),
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where Ṽ3(x, y) is a homogeneous polynomial of degree 3; so we must take K2 = 0,
which means that either r = 0, or r = 1 and b = 0 (only if q is even), or r = 1
and

qj2(q − 2)(q − 2 − j)2b2 − jq(q − 2 − j)(q − 2 − 2j)2d−
(q − 2)(q − 2 − 2j)2(j2 − (q − 2)(j + 1))m = 0,

(2.108)

j ∈ {1, 2, 3, . . . , [q − 3]/2}. From equation (2.101) we get the expression of C1.
The system is

ẋ = r + xy, ẏ = d − bm(q − 2)

q
x + by − (q − 2)

q2
m2x2 + mxy − y2

q − 2
,

taking into account the conditions given above. We note that we do not have a
proof from which we get the conditions derived from K2 = 0 and the expression
of V (x, y).

If r = 0, then by the change (mx/b, y/b, bt) → (x, y, t) we get (II.17). If r = 1
and b = 0, then by the change (

√
|m|x, y/

√
|m|,

√
|m|t) → (x, y, t) we get (I.13).

If r = 1 and equation (2.108) holds, then by the change (bx, y/b, bt) → (x, y, t)
we get (I.14).

Assume p = 2. If i 6= 3, then we get an expression for Vi in a recursive way.
If i = 3, then from equation Ei we must solve the equation

(K1x
2 +K2xy +K3y

2)y2−
(x+ 2(q + 1)y)V3(x, y) − y(x+ (q + 1)y)V3,y(x, y) = 0,

for certain expressions K1, K2, K3. This equation has the solution

V3(x, y) =
(q + 1)K2 − 2K3

(q + 1)3
xy(x+ (q + 1)y) ln(x+ (q + 1)y) + Ṽ3(x, y),

where Ṽ3(x, y) is a homogeneous polynomial of degree 3; so we must take (q +
1)K2 − 2K3 = 0, which means that either b = 0, or b 6= 0 and

q j2(q + 2)(q + 2 − j)2b2 + q j(q + 2 − j)(q + 2 − 2j)2d+
(q + 2)(q + 2 − 2j)2(j2 − (q + 2)(j − 1))mr = 0,

(2.109)

j ∈ {1, 2, 3, . . . , [(q + 1)/2]}. The system is

ẋ = r + xy,

ẏ = d − bm(q + 2)

q
x + by +

q + 2

q2
m2x2 + mxy +

3y2

q + 2
,

taking into account the conditions given above. Again, we do not have a proof
from which we get the conditions from (q + 1)K2 − 2K3 = 0 and the expression
of V (x, y).
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If r = 0 and b = 0, then by the change (mx/
√

|d|, y/
√

|d|,
√

|d|t) → (x, y, t)
we get (II.18). If r = 0 and equation (2.109) holds, then by (mx/b, y/b, bt) →
(x, y, t) we get (II.19). If r = 1 and b = 0, then by (

√
|m|x, y/

√
|m|,

√
|m|t) →

(x, y, t) we get (I.15). If r = 1 and equation (2.109) holds, then by the change
(bx, y/b, bt) → (x, y, t) we get (I.16).

Proposition 2.3.39. Under the conditions of (b.2.3) the cases for which system
(2.103) has a polynomial inverse integrating factor are (I.17)–(I.20).

Proof: Equation Ek−3 writes as

Nk−3Vk−3 + FGVk−3 = F p−3Gp+q−3L,

where L = xk−2p−q−1p5(x, y), for a certain homogeneous polynomial p5 of degree
5. We take Vk−3 = F iGjW , with i, j ∈ N∪{0} andW a homogeneous polynomial.
Taking j = p+ q − 3 and i = p− 3, we get the equation

(
−3mx−

(
3 − 6

k − 3

2p+ q − 2

)
y

)
W + FGWy = L.

By applying Lemma 2.3.4, some values of k and b must be distinguished. If k =
3p+q or k = 3p+2q, then there exists a solution of degree 3. If k = 3(2p+q−1),
then no solution is obtained. If k = 3(p+ q + 1)/2, then there is a solution only
in the case p = 2, q = 3, which is (I.17) after the change (bx, y/b, bt) → (x, y, t).
If k = 3(2p+ q+ 2)/4, then in order to obtain a solution we must take p = 0 and
q = 6. But then we must take b = 0, otherwise there is a solution of degree 3.
If k = 3(2p + q)/2, then we obtain b = 0. The last case is b = 0, which includes
these two cases above, and from which we obtain Vk−3(x, y) ≡ 0. So from now
and on we assume b = 0. Equation Ek−4 is given by

Nk−4Vk−4 + FGVk−4 = F p−2Gp+q−2L,

where L = xk−2p−q−2p3(x, y), for a certain homogeneous polynomial p3 of degree
3. We take Vk−4 = F iGjW , with i, j ∈ N∪{0} andW a homogeneous polynomial.
We distinguish two cases.

If k = (4p+ 4q + 5)/3, then we can take j = p+ q − 3 and i = p− 2. But in
this case later computations show that we must take p = 2 and either q = 5 or
q = 8. In the first case, there is a solution of degree 3. In the second one there is
no solution.

Assume that k 6= (4p + 4q + 5)/3. Then, we must take j = p + q − 2 and
i = p− 2. We obtain the equation

(
−2mx−

(
4 − 4

k − 3

2p+ q − 2

)
y

)
W + FGWy = L.
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By applying Lemma 2.3.4, four subcases must be distinguished, depending on k,
p and q.

Assume k = 2p + 1, q = 1. The polynomials Vi, i > 3, can be obtained
recursively for all i, without new conditions. The expression of V3(x, y) is

V3(x, y) = (2C1(2p− 1)x+ C2y)FG,

where C1 ∈ R is to be determined and C2 ∈ R depends on V5(x, y). From equation
E1 we obtain an expression for V1, and from (2.101) we obtain

C1 = −C2(p− 2)

4(p− 1)
m,

so we get (I.18) after the change (
√
|m|x, y/

√
|m|,

√
|m|t) → (x, y, t). We note

that we cannot find the expression of V (x, y).

Assume k = 2p+2q+1 and p 6= q+1. Once again, the polynomials Vi, i > 3,
can be obtained recursively for all i, without new conditions. The expression of
V3(x, y) is

V3(x, y) = (a0C1xF + p2(x, y))G,

where a0 ∈ R is known, C1 ∈ R is to be determined and p2(x, y) is a known
homogeneous polynomial of degree 2. From equation E1 we obtain an expression
for V1, and from (2.101) we obtain the expression of C1. So we get (I.19) after the
change (

√
|m|x, y/

√
|m|,

√
|m|t) → (x, y, t). Again, we cannot give the expres-

sion of V (x, y). If p > 1, then we have a polynomial first integral (see Proposition
3.1.3) given by H(x, y) = f1(x, y)

qf2(x, y)
p−1, where

f1(x, y) = (2p+ q − 2)(q − δ(p− 1)x2) + 2q(p− 1)xy,

f2(x, y) = δ(2p+ q − 2)2(2p+ q − 2 + δ(p− 1)x2)+

2q2(2p+ q − 2)δxy − 4q2(p+ q − 1)y2.

Then, applying Theorem 1.4.7 we can obtain a polynomial inverse integrating
factor of the form V (x, y) = f1(x, y)f2(x, y)s(x, y), where s(x, y) is the solution
of the equation

H(x, y) − h = s(x, y)g(x, y).

In this equation, g(x, y) = (2p + q − 2)δx − 2qy is contained in the level set
H(x, y) = h, and it is the denominator of the rational inverse integrating factor
P/(logH)y (see Proposition (1.4.1)).

Assume k = 8p + 4q − 5. Then there exists a solution only in the case
p = 0, q = 3, which is (I.20) after the change (

√
|m|x, y/

√
|m|,

√
|m|t) → (x, y, t).

Finally, assume k = 4q + 3 and p = q + 1. Then there exists a solution of
degree 3.
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2.4 Algebraic limit cycles

This section is related to (⋆) quadratic systems, which are the quadratic systems
from which we have obtained a polynomial inverse integrating factor in Section
2.3. We remark that the systems from which we do not have a polynomial inverse
integrating factor are subfamilies of systems (I) and (II). For systems (III)–(X)
we always have an explicit polynomial V .

As we stated in Theorem 1.4.5, the limit cycles of a planar system having an
inverse integrating factor V (x, y) are contained in the set V −1(0) if they belong
to the domain of definition of V . For (⋆) quadratic systems, the polynomial in-
verse integrating factors contain all the limit cycles of the corresponding systems.
Moreover, these limit cycles must be algebraic. The following theorem provides
more information about limit cycles of quadratic systems.

Theorem 2.4.1 (see [51]). If a quadratic system possesses a limit cycle, then
there exists a unique singular point inside the bounded region limited by this limit
cycle, and it is a focus.

The only systems from which we can find limit cycles are (I), (II), (III) and
(IV). Systems (V)–(X) do not have limit cycles, because of the expression of ẋ.
From this fact, following Theorem 2.4.1 and from the study of the expressions of
V of normal forms (I) to (IV) we state the following theorem.

Theorem 2.4.2. A (⋆) quadratic system has no algebraic limit cycles.



Chapter 3

Quadratic systems having a
polynomial inverse integrat-
ing factor

In this chapter we study some of the properties of the quadratic systems having a
polynomial inverse integrating factor V (x, y). We compute a first integral H(x, y)
for each one of the (⋆) quadratic systems, and we study the critical remarkable
values when the first integral is rational.

3.1 Classification of the first integrals

Consider the planar polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y), (3.1)

where P and Q are polynomials in the variables x and y. As we know, from a
polynomial inverse integrating factor V of system (3.1), we can find a first integral
H defined on R2 \ V −1(0). The following proposition sets the type of this first
integral.

Proposition 3.1.1 (see [10, 44]). If system (3.1) has a rational inverse integrat-
ing factor then it has a Darboux first integral.

The polynomial functions are included in the rational ones, so the quadratic
systems we found in Chapter 2 having a polynomial inverse integrating factor
have a Darboux first integral.

We distinguish in our classification three types of systems, depending on the
type of their first integrals: systems having a polynomial first integral; systems
having a rational first integral and not having a polynomial first integral; and
systems having a Darboux first integral and not having neither polynomial nor
rational first integrals. They are listed in the three propositions below.

Remark 3.1.2. 1. The system

ẋ = a00+a10x+a01y+a20x
2+a11xy, ẏ = d+ax−a10y+lx

2−2a20xy−a11y
2/2,

113
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with max{deg (ẋ), deg (ẏ)} = 2, is Hamiltonian and has the polynomial first
integral of degree 3

H(x, y) = dx− a00y +
a

2
x2 − a10xy −

a01

2
y2 +

l

3
x3 − a20x

2y − a11

2
xy2.

This system appears in all cases of the classification of Chapter 2.

2. We have not been able to compute first integrals for some of the systems
of the classification. This is either due to the expression of V , or because
there is no expression for V , or because it is very difficult for us to solve
the equation XH = 0.

2

Proposition 3.1.3. The (⋆) quadratic systems having a polynomial inverse inte-
grating factor and a polynomial first integral are:

(VIII.4) with b = −p/q ∈ Q− \ {−1}. Writing V (x, y) = xf(x, y), where

f(x, y) = (b− 2)y + x2,

we have

H(x, y) = xpf(x, y)q.

(III.2d) with m = −p/q ∈ Q− \ {−2}. Writing V (x, y) = f1(x, y)f2(x, y),
where

f1(x, y) = b10q + 2qy + (p + 2q)x2,

f2(x, y) = b10q − py,

then

H(x, y) = f1(x, y)
pf2(x, y)

2q.

(VII.3) with m+ 1 = −p/q ∈ Q− \ {−1, 0}. We have

H(x, y) = xp(q − pxy)q.

(VI.5) with b = 0 and m = −p/q ∈ Q−. We have

H(x, y) = (1 + x2)py2q.

(VI.6). We have

H(x, y) = (1 + x2)py −
p−1∑

i=0

(
p− 1

i

)
x2i+1

2i+ 1
.
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(V.8) with m = −p/q ∈ Q−, b = r/s ∈ Q, q, s > 0 and m ≤ b ≤ −m. We
have

H(x, y) = (1 − x)ps−qr(1 + x)ps+qry2qs.

(V.9) with m+ 1 = −p/q ∈ Q− \ {−1}. We have

H(x, y) = (x∓ 1)p(q − (x± 1)py)q.

(V.11) with m ∈ Q−, b ∈ (m,−m) ∩ Q and r ∈ N. We have

H(x, y) = (x + 1)k−p−2−i


(x − 1)ry −

r−1∑

j=0

(−2)r−1−j

(
r − 1

j

)
(1 + x)j

q − r − 1 + j




p

.

(V.12) with m ∈ Q−, b ∈ (m,−m) ∩ Q and q − r − 1 ∈ N. We have

H(x, y) = (x − 1)i−1


(x + 1)q−r−1y −

q−r−1∑

j=0

(−2)q−r−2−j

(
q − r − 2

j

)
(x − 1)j

r + j




p

.

(II.9) with 2n = −p/q ∈ Q−. Writing V (x, y) = xf(x, y), where f(x, y) =
σ + 2δn

2n−1
x+ b20n

n−1
x2 + y2, we have

H(x, y) = xpf(x, y)q.

(II.10) with b/
√
b2 − 4dn = p/q ∈ Q ∩ (−1, 1) \ {0}, n = −r/s ∈ Q−, q, r, s ∈

N. We have

H(x, y) = x2qr
(
bs(p− q) − 2pry

)(q−p)s(
bs(p+ q) − 2pry

)(q+p)s
.

(II.10) with b = 0, n = −r/s ∈ Q−. We have

H(x, y) = x2r(ds− ry2)s.

(II.11) with m/
√
m2 − 4l(n− 1) = p/q ∈ Q ∩ (−1, 1) \ {0} and n = −r/s ∈

Q−, q, r, s ∈ N. Writing V (x, y) = xf1(x, y)f2(x, y), where

f1(x, y) = (p− q)s(δ(r + s) + rx) − 2pr(r + s)y,

f2(x, y) = (p+ q)s(δ(r + s) + rx) − 2pr(r + s)y,

we have

H(x, y) = x2qrf1(x, y)
(q−p)sf2(x, y)

(q+p)s.

(II.16) with p > 1, then

H(x, y) =
(
2δq2 + (p− 1)x((p+ q − 1)x− 2qy)

)p+q−1

(
2δq2 + (p+ q − 1)x((p− 1)x+ 2qy)

)p−1
.
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(I.5) with n = −p/q ∈ Q−∩ (−1, 0). Writing V (x, y) = f1(x, y)f2(x, y), where

f1(x, y) = δ(n2 − 1) + b11n(n+ 1)x+ n(n− 1)(2n+ 1)y,

f2(x, y) = (n− 1)(2n+ 1)(1 + (n+ 1)xy) + (δ(n− 1) + b11nx)(n+ 1)x,

we have

H(x, y) = f1(x, y)
q−pf2(x, y)

p.

(I.17). Writing V (x, y) = f1(x, y)f2(x, y)f3(x, y), where

f1(x, y) = 60 + 10b11x − 9y,

f2(x, y) = 45 + 60x + 10b11x
2 + 36xy,

f3(x, y) = 236196xy5 − 98415(10x(6 + b11x) − 3)y4+

145800(6 + b11x)(10x(6 + b11x) − 9)y3 −
81000(6 + b11x)2(10x(6 + b11x) − 27)y2 − 1620000(6 + b11x)3y +

50000x(2b5
11x

5 + 60b4
11x

4 + 9b3
11(802 + b11)x

3 + 216b2
11(202 + b11)x

2 +

6482b11(202 + 3b11)x + 77763(22 + b11)),

we have

H(x, y) = f1(x, y)
4f2(x, y).

(I.19). Let

f1(x, y) = (2p+ q − 2)(q − δ(p− 1)x2) + 2q(p− 1)xy,

f2(x, y) = δ(2p+ q − 2)2(2p+ q − 2 + δ(p− 1)x2)+

2q2(2p+ q − 2)δxy − 4q2(p+ q − 1)y2.

If p > 1, then

H(x, y) = f1(x, y)
qf2(x, y)

p−1.

In the following proposition we give the (⋆) quadratic systems having a rational
first integral, and also the expression of such functions. We also give, when they
exist, the critical remarkable values associated to these first integrals. In order
to compute the critical values, we must write the rational first integral H = f/g
as H̃ = f̃/g̃ = (c2f + (c1 + 1)g)/(f + c1g), where c1 and c2 are taken such that f̃
and g̃ are irreducible and (f̃ , g̃) = 1. See Lemma 1.5.1 for more information.

Proposition 3.1.4. The rational first integrals which rise from polynomial in-
verse integrating factors of (⋆) quadratic systems are:

(IX.4) with δ = 0. We have

H(x, y) =
1 + xy

y
.
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H has no critical remarkable values.

(VIII.3) with δ = 0. We have

H(x, y) =
y − x2

x
.

H has no critical remarkable values.

(VIII.4) with b = p/q ∈ Q+ \ {1, 2}. Writing V (x, y) = xf(x, y), where

f(x, y) = (b− 2)y + x2,

we have

H(x, y) = x−pf(x, y)q.

If p > 1, then c = −c2 − c−1
1 is a critical remarkable value of H. The associated

curve is x = 0, and it has exponent p.
If q > 1, then c = −c2 is a critical remarkable value of H. The associated curve
is f(x, y) = 0, and it has exponent q.

(VIII.8) with b00 = −p2/q2 ∈ Q−, q ∈ N. We have

H(x, y) = xp(p+ 2qy)q(p− 2qy)−q.

If p > 1 or q > 1, then c = −c2 is a critical remarkable value of H. The associated
curves are x = 0 with exponent p and p+ 2qy = 0 with exponent q.
If p < −1 or q > 1, then c = −c2 − c−1

1 is a critical remarkable value of H. The
associated curves are x = 0 with exponent −p and p− 2qy = 0 with exponent q.

(III.2d) with m = p/q ∈ Q+\{1, 2}. Writing V (x, y) = f1(x, y)f2(x, y), where

f1(x, y) = b10 + 2y − (m − 2)x2,

f2(x, y) = b10 + my,

then

H(x, y) = f1(x, y)
pf2(x, y)

−2q.

If p > 1, then c = −c2 − c−1
1 is a critical remarkable value of H. The associated

curve is f1(x, y) = 0 with exponent p.
Moreover, c = −c2 is another critical remarkable value of H. The associated
curve is f2(x, y) = 0, and it has exponent 2q.

(III.3). Writing V (x, y) = f1(x, y)f2(x, y), where

f1(x, y) = 2x− y2,

f2(x, y) = 2 + 3xy − y3,
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we have

H(x, y) =
f1(x, y)

3

f2(x, y)2
.

The value c = −c2 is a critical remarkable value of H. The associated curve is
f1(x, y) = 0, and it has exponent 3.
The value c = −c2−c−1

1 is another critical remarkable value of H. The associated
curve is f2(x, y) = 0, and it has exponent 2.

(III.5). Writing V (x, y) = f1(x, y)f2(x, y), where

f1(x, y) = 1 − 2(3x2 − y)(3x− (3x2 − y)2),

f2(x, y) = (3x2 − y)2 − 2x,

we have

H(x, y) =
f1(x, y)

2

f2(x, y)3
.

The value c = −c2 is a critical remarkable value of H. The associated curve is
f1(x, y) = 0, and it has exponent 2.
The value c = −c2−c−1

1 is another critical remarkable value of H. The associated
curve is f2(x, y) = 0, and it has exponent 3.

(VII.3) with m+ 1 = p/q ∈ Q+ \ {1}. We have

H(x, y) = x−p(q + pxy)q.

If p > 1, then c = −c2 is a critical remarkable value of H. The associated curve
is x = 0 with exponent p.
If q > 1, then c = −c2 − c−1

1 is a critical remarkable value of H. The associated
curve is q + pxy = 0, and it has exponent q.

(VII.4) with δ = 0. We have

H(x, y) =
1 + xy

x
.

We note that this first integral is also associated to the system ẋ = x2, ẏ = 1,
which is equivalent to (IX.4) with b00 = 0. H has no critical remarkable values.

(VII.5) with δ = 0. We have

H(x, y) =
1 + 2xy

x2
.

The value c = −c2−c−1
1 is a critical remarkable value of H. The associated curve

is x = 0, and it has exponent 2.
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(VII.8). We have

H(x, y) =
xy

x− y
.

H has no critical remarkable values.

(VII.9) with
√
b20 + 1 = p/q ∈ Q+. We have

H(x, y) = xp
(

(q − p)x− 2qy

(q + p)x− 2qy

)q
.

If p > 1 or q > 1, then c = −c2 is a critical remarkable value of H. The associated
curves are x = 0 with exponent p and (q − p)x− 2qy = 0 with exponent q.
If q > 1, then c = −c2 − c−1

1 is a critical remarkable value of H. The associated
curve is (q + p)x− 2qy = 0, and it has exponent q.

(VI.4) with b = 0. We have

H(x, y) =
y2

1 + x2
.

The value c = −c2−c−1
1 is a critical remarkable value of H. The associated curve

is y = 0, and it has exponent 2.

(VI.5) with b = 0 and m = p/q ∈ Q+ \ {1}. We have

H(x, y) = (1 + x2)py−2q.

If p > 1, then c = −c2 − c−1
1 is a critical remarkable value of H. The associated

curve is 1 + x2 = 0, with exponent p.
Moreover, c = −c2 is another critical remarkable value of H. The associated
curve is y = 0, and it has exponent 2q.

(VI.8). We have

H(x, y) =
1 + xy

x− y
.

H has no critical remarkable values.

(V.3) with b = p/q ∈ Q \ {0}. We have

H(x, y) =

(
1 + x

1 − x

)p
y2q.

If p2 > 1, then c = −c2 − c−1
1 is a critical remarkable value of H. The associated

curve is either 1 − x = 0 or 1 + x = 0, with respective exponent either p or −p.
Moreover, c = −c2 is another critical remarkable value of H. The associated
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curves are y = 0, with exponent 2q and, in the case p2 > 1, the curve 1 + x = 0
with exponent p or the curve 1 − x = 0 with exponent −p.

(V.5) with b = p/q ∈ Q \ {0}. We have

H(x, y) = (1 + x)p−q(1 − x)−p−qy2q.

We distinguish three cases in order to compute the critical remarkable values:

(p > q) The value c = −c2 is a critical remarkable value of H. The associated
curves are y = 0, with exponent 2q and, in the case p − q > 1, the curve
1 + x = 0 with exponent p− q.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curve is 1 − x = 0, with exponent p+ q.

(p < −q) The value c = −c2 is a critical remarkable value of H. The associated
curves are y = 0, with exponent 2q and, in the case −(p+ q) > 1, the curve
1 − x = 0 with exponent −(p+ q).
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curve is 1 + x = 0, with exponent q − p.

(p2 < q2) The value c = −c2 − c−1
1 is a critical remarkable value of H. The

associated curves are 1 − x = 0, with exponent p + q and, in the case
q − p > 1, the curve 1 − x = 0 with exponent q − p.
The value c = −c2 is another critical remarkable value of H. The associated
curve is y = 0, with exponent 2q.

(V.5) with b = 0. We have

H(x, y) =
y2

1 − x2
.

The value c = −c2 is a critical remarkable value of H. The associated curve is
y = 0, and it has exponent 2.

(V.6) with δ = 0. We have

H(x, y) =
x± 1

(x∓ 1)2
y.

The value c = −c2−c−1
1 is a critical remarkable value of H. The associated curve

is x∓ 1 = 0, and it has exponent 2.

(V.8) with b = r/s,m = p/q ∈ Q, q, s > 0, r 6= 0 and not m ≤ b ≤ −m. We
have

H(x, y) = (1 − x)−qr−ps(1 + x)qr−psy2qs.
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If qr + ps > 1 or ps − qr > 1, then c = −c2 − c−1
1 is a critical remarkable value

of H. The associated curves are 1− x = 0, with exponent qr+ ps, and 1 + x = 0
with exponent ps− qr.
If −(qr + ps) > 1 or qr − ps > 1, then c = −c2 is another critical remarkable
value of H. The associated curves are y = 0, with exponent 2qs, 1 − x = 0 with
exponent −(qr + ps), and 1 + x = 0 with exponent qr − ps.

(V.8) with b = 0 and m = p/q ∈ Q+. We have

H(x, y) = (1 − x2)−py2q.

If p > 1, then c = −c2 − c−1
1 is a critical remarkable value of H. The associated

curve is 1 − x2 = 0, with exponent p.
The value c = −c2 is another critical remarkable value of H. The associated
curve is y = 0, with exponent 2q.

(V.9) with m+ 1 = p/q ∈ Q+. We have

H(x, y) =
(x∓ 1)p

(q + (x± 1)py)q
.

If q > 1, then c = −c2 is a critical remarkable value of H. The associated curve
is q + p(x± 1)y = 0 with exponent q.
If p > 1, then c = −c2 − c−1

1 is a critical remarkable value of H. The associated
curve is x∓ 1 = 0, and it has exponent p.

(V.14) with b00 = 4 and b10 = b20 = 0. We have

H(x, y) =
1 − xy

x− y
.

H has no critical remarkable values.

(V.15) with b20 + 1 = p/q ∈ Q+. We have

H(x, y) = (x± 1)p
(
p(x∓ 1) − q(x± 1 − 2y)

p(x∓ 1) + q(x± 1 − 2y)

)q
.

If p > 1 or q > 1, then c = −c2 is a critical remarkable value of H. The associated
curves are x = 0 with exponent p and (q − p)x− 2qy = 0 with exponent q.
If q > 1, then c = −c2 − c−1

1 is a critical remarkable value of H. The associated
curve is (q + p)x− 2qy = 0, and it has exponent q.

(V.16) with
√
b00 = p/q ∈ Q+. We have

H(x, y) =

(
1 + x

1 − x

)p(
p− 2qy

p+ 2qy

)2q

.
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The value c = −c2 is a critical remarkable value of H. The associated curves are
p− 2qy = 0, with exponent 2q and, if p > 1, the curve 1 +x = 0 with exponent p.
The value c = −c2−c−1

1 is another critical remarkable value of H. The associated
curves are p+ 2qy = 0, with exponent 2q and, if p > 1, the curve 1 − x = 0 with
exponent p.

(II.3c). We have

H(x, y) =
−2δ + 2σx2 + y2

x
.

H has no critical remarkable values.

(II.3d). We have

H(x, y) =
2δx2 − y2

x
.

H has no critical remarkable values.

(II.5) with l = 0. We have

H(x, y) =
d+ 2ax+ y2

x2
,

where the conditions of the subcases are to be applied.
The value c = −c2 − c−1

1 is a critical remarkable value of H. The associated
curve is x = 0, and it has exponent 2.

(II.8) with B = 1/
√

1 − 4b00 = p/q ∈ Q. We have

H(x, y) = x2q
(
(p− q)(b00 + δx) + 2b00py

)p−q(
(p+ q)(b00 + δx) + 2b00py

)−p−q
.

We distinguish three cases in order to compute the critical remarkable values:

(p > q) The value c = −c2 is a critical remarkable value of H. The associated
curves are x = 0, with exponent 2q and, in the case p − q > 1, the curve
(p− q)(b00 + δx) + 2b00py = 0 with exponent p− q.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curve is (p+ q)(b00 + δx) + 2b00py = 0, with exponent q + p.

(p < −q) The value c = −c2 is a critical remarkable value of H. The associated
curves are x = 0, with exponent 2q and, in the case −(q+ p) > 1, the curve
(p+ q)(b00 + δx) + 2b00py = 0 with exponent −(q + p).
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curve is (p− q)(b00 + δx) + 2b00py = 0, with exponent q − p.
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(p2 < q2) If q + p > 1 or q − p > 1, then c = −c2 − c−1
1 is a critical remarkable

value of H. The associated curves are (p + q)(b00 + δx) + 2b00py = 0, with
exponent q + p, and (p− q)(b00 + δx) + 2b00py = 0 with exponent q − p.
The value c = −c2 is another critical remarkable value of H. The associated
curve is x = 0, with exponent 2q.

(II.9) with 2n = p/q ∈ Q+. Writing V (x, y) = xf(x, y), where f(x, y) =
σ + 2δnx/(2n− 1) + b20nx

2/(n− 1) + y2, we have

H(x, y) = xpf(x, y)−q.

If p > 1, then c = −c2 − c−1
1 is a critical remarkable value of H. The associated

curve is x = 0, with exponent p.
If q > 1, then c = −c2 is another critical remarkable value of H. The associated
curve is f(x, y) = 0, with exponent q.

(II.10) with b = 0, n = r/s ∈ Q+. We have

H(x, y) = x−2r(ds+ ry2)s.

The value c = −c2−c−1
1 is a critical remarkable value of H. The associated curve

is x = 0, and it has exponent 2r.
If s > 1, then c = −c2 is a critical remarkable value of H. The associated curve
is ds+ ry2 = 0, and it has exponent s.

(II.10) with b/
√
b2 − 4dn = p/q ∈ Q \ {0} and n = −r/s ∈ Q, q, s ∈ N, such

that either p2 > q2 or r < 0 and p2 < q2. We have

H(x, y) = x2qr
(
bs(p− q) − 2pry

)(q−p)s(
bs(p+ q) − 2pry

)(q+p)s
.

We distinguish five cases in order to compute the critical remarkable values:

(r > 0, p > q) The value c = −c2 is a critical remarkable value of H. The asso-
ciated curves are x = 0, with exponent 2qr and, in the case (q + p)s > 1,
the curve f1(x, y) = 0 with exponent (q + p)s.
If (p − q)s > 1, then c = −c2 − c−1

1 is another critical remarkable value of
H. The associated curve is f2(x, y) = 0, with exponent (p− q)s.

(r > 0, p < −q) The value c = −c2 is a critical remarkable value of H. The
associated curves are x = 0, with exponent 2qr and, in the case (q−p)s > 1,
the curve f2(x, y) = 0 with exponent (q − p)s.
If −(q+ p)s > 1, then c = −c2 − c−1

1 is another critical remarkable value of
H. The associated curve is f1(x, y) = 0, with exponent −(q + p)s.
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(r < 0, p > q) The value c = −c2 − c−1
1 is a critical remarkable value of H. The

associated curves are x = 0, with exponent −2qr and, in the case (p−q)s >
1, the curve f2(x, y) = 0 with exponent (p− q)s.
If (q+p)s > 1, then c = −c2 is another critical remarkable value of H. The
associated curve is f1(x, y) = 0, with exponent (q + p)s.

(r < 0, p < −q) The value c = −c2 − c−1
1 is a critical remarkable value of H.

The associated curves are x = 0, with exponent −2qr and, in the case
−(q + p)s > 1, the curve f1(x, y) = 0 with exponent −(q + p)s.
If (q−p)s > 1, then c = −c2 is another critical remarkable value of H. The
associated curve is f2(x, y) = 0, with exponent (q − p)s.

(r < 0, p2 < q2) The value c = −c2−c−1
1 is a critical remarkable value of H. The

associated curve is x = 0, with exponent −2qr.
If (q + p)s > 1 or (q − p)s > 1, then c = −c2 is another critical remarkable
value of H. The associated curves are f1(x, y) = 0, with exponent (q + p)s
and f2(x, y) = 0 with exponent (q − p)s.

(II.11) with 1/
√

1 − 4b20(n− 1) = p/q ∈ Q\{0} and n = −r/s ∈ Q, q, s ∈ N,
such that p2 > q2. Writing V (x, y) = xf1(x, y)f2(x, y), where

f1(x, y) = (p+ q)s(δ(r + s) + rx) − 2pr(r + s)y,

f2(x, y) = (p− q)s(δ(r + s) + rx) − 2pr(r + s)y,

we have

H(x, y) = x2qrf1(x, y)
(q+p)sf2(x, y)

(q−p)s.

The computations of the critical remarkable values are exactly the same as in case
(II.10) above.

(II.12). Writing V (x, y) = f1(x, y)f2(x, y), where

f1(x, y) = 150x− 36x2 + 60xy − 25y2,

f2(x, y) = 1875x− 1350x2 + 216x3 + 1125xy − 540x2y + 450xy2 − 125y3,

we have

H(x, y) =
f1(x, y)

3

f2(x, y)2
.

The value c = −c2 is a critical remarkable value of H. The associated curve is
f1(x, y) = 0, and it has exponent 3.
The value c = −c2−c−1

1 is another critical remarkable value of H. The associated
curve is f2(x, y) = 0, and it has exponent 2.
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(II.13). Writing V (x, y) = f1(x, y)f2(x, y)f3(x, y), where

f1(x, y) = 6x− 5y − 5,

f2(x, y) = 36x2 − 15x(4y + 7) + 25(y + 1)(y − 2),

f3(x, y) = 36x2 − 30x(2y + 5) + 25(y − 2)2,

we have

H(x, y) =
f2(x, y)

2

f1(x, y)2f3(x, y)
.

The value c = −c2 is a critical remarkable value of H. The associated curve is
f2(x, y) = 0, and it has exponent 2.
The value c = −c2−c−1

1 is another critical remarkable value of H. The associated
curve is f1(x, y) = 0, and it has exponent 2.

(II.14) with δ = 1, 1 + 4b00 > 0, b00 6= 0. Writing V (x, y) = xf1(x, y)f2(x, y),
where

f1(x, y) = b00 − x(1 + x− y),

f2(x, y) = b00 − (x− y)(1 + x− y),

we have

H(x, y) =
x2f2(x, y)

f1(x, y)2
.

The value c = −c2−c−1
1 is a critical remarkable value of H. The associated curve

is x = 0, with exponent 2.
The value c = −c2 is another critical remarkable value of H. The associated
curve is f1(x, y), with exponent 2.

(II.14) with δ = 0. Writing V (x, y) = xf1(x, y)f2(x, y), where

f1(x, y) = ±1 − x(x− y),

f2(x, y) = ±1 − (x− y)2,

we have

H(x, y) =
x2f2(x, y)

f1(x, y)2
.

The value c = −c2−c−1
1 is a critical remarkable value of H. The associated curve

is x = 0, with exponent 2.
The value c = −c2 is another critical remarkable value of H. The associated
curve is f1(x, y), with exponent 2.
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(II.15) with 1 − 8b00 > 0 and 1/
√

1 − 8b00 = p/q ∈ Q \ {0, 1}, q > 0. Writing
V (x, y) = xf1(x, y)f2(x, y), where

f1(x, y) = (p+ q)(b00 + δx2) + 4b00py,

f2(x, y) = (p− q)(b00 + δx2) + 4b00py,

we have

H(x, y) = x−4qf1(x, y)
q+pf2(x, y)

q−p.

We distinguish three cases in order to compute the critical remarkable values:

(p > q) The value c = −c2 is a critical remarkable value of H. The associated
curve is f1(x, y) = 0 with exponent q + p > 1.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curves are x = 0, with exponent 4q and, if p − q > 1, the curve
f2(x, y) = 0, with exponent p− q.

(p < −q) The value c = −c2 is a critical remarkable value of H. The associated
curve is f2(x, y) = 0, with exponent q − p > 1.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curves are x = 0, with exponent 4q and, if −(q + p) > 1, the
curve f1(x, y) = 0, with exponent −(q + p).

(p2 < q2) If q + p > 1 or q − p > 1, then c = −c2 is a critical remarkable value
of H. The associated curves are f1(x, y) = 0, with exponent q + p and
f2(x, y) = 0 with exponent q − p.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curve is x = 0, with exponent 4q.

(II.16) with p = 0 and q > 3. We have

H(x, y) =
(2δq2 − x((q − 1)x− 2qy))q−1

2δq2 − (q − 1)x(x− 2qy)
.

The value c = −c2 is a critical remarkable value of H. The associated curve is
2δq2 − x((q − 1)x− 2qy) = 0, with exponent q > 3.

(I.5) with n = p/q ∈ Q \ [−1, 0]. Writing V (x, y) = f1(x, y)f2(x, y), where

f1(x, y) = (n2 − 1) + b11n(n+ 1)x+ n(n− 1)(2n+ 1)y,

f2(x, y) = (n− 1)(2n+ 1)(1 + (n+ 1)xy) + ((n− 1) + b11nx)(n+ 1)x,

we have

H(x, y) = f1(x, y)
p+qf2(x, y)

−p.

We distinguish two cases in order to compute the critical remarkable values:
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(p > 0) The value c = −c2 is a critical remarkable value of H. The associated
curve is f1(x, y) = 0, with exponent p+ q.
If p > 1, then c = −c2 − c−1

1 is a critical remarkable value of H. The
associated curve is f2(x, y) = 0, with exponent p.

(p < −q) If −(p + q) > 1, then c = −c2 − c−1
1 is a critical remarkable value of

H. The associated curve is f1(x, y) = 0, with exponent −(p+ q).
The value c = −c2 is a critical remarkable value of H. The associated curve
is f2(x, y) = 0, with exponent −p.

(I.6) with b00 < 1/2 and 1/
√

1 − 2b00 = p/q ∈ Q. Writing V (x, y) =
f1(x, y)f2(x, y)f3(x, y), where

f1(x, y) = 2b00(1 − 2x) + (y + 2)2,

f2(x, y) =
√

1 − 2b00 + (y + 1),

f3(x, y) =
√

1 − 2b00 − (y + 1),

we have

H(x, y) = f1(x, y)
−qf2(x, y)

q+pf3(x, y)
q−p.

We distinguish three cases in order to compute the critical remarkable values:

(p > q) The value c = −c2 is a critical remarkable value of H. The associated
curve is f2(x, y) = 0 with exponent q + p > 1.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curves are f1(x, y) = 0, with exponent q and, if p − q > 1, the
curve f3(x, y) = 0, with exponent p− q.

(p < −q) The value c = −c2 is a critical remarkable value of H. The associated
curve is f3(x, y) = 0, with exponent q − p > 1.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curves are f1(x, y) = 0, with exponent q and, if −(q+p) > 1, the
curve f2(x, y) = 0, with exponent −(q + p).

(p2 < q2) If q + p > 1 or q − p > 1, then c = −c2 is a critical remarkable value
of H. The associated curves are f2(x, y) = 0, with exponent q + p and
f3(x, y) = 0 with exponent q − p.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curve is f1(x, y) = 0, with exponent q.

(I.7) with δ = 1, b00 < −
√

2,
√
−b00 −

√
2/
√

−b00 +
√

2 = p/q ∈ Q∩(−1, 1)\
{0}. Writing V (x, y) = f1(x, y)f2(x, y)f3(x, y)f4(x, y), where

f1,2(x, y) = 25/4q ±
√
q2 − p2(

√
2x− y),

f3,4(x, y) = 25/4p±
√
q2 − p2(

√
2x+ y),
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we have

H(x, y) =

(
f1(x, y)

f2(x, y)

)p(
f3(x, y)

f4(x, y)

)q
.

We distinguish two cases in order to compute the critical remarkable values:

(p > 0) The value c = −c2 is a critical remarkable value of H. The associated
curves are f3(x, y) = 0, with exponent q and, if p > 1, the curve f1(x, y) = 0
with exponent p.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curves are f4(x, y) = 0, with exponent q and, if p > 1, the curve
f2(x, y) = 0 with exponent p.

(p < 0) The value c = −c2 is a critical remarkable value of H. The associated
curves are f3(x, y) = 0, with exponent q and, if −p > 1, the curve f2(x, y) =
0 with exponent −p.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curves are f4(x, y) = 0, with exponent q and, if −p > 1, the
curve f1(x, y) = 0 with exponent −p.

(I.8). Writing V (x, y) = f1(x, y)f2(x, y), where

f1(x, y) = 3δ + y2,

f2(x, y) = 9δx− 9δy − 2y3,

we have

H(x, y) =
f1(x, y)

3

f2(x, y)2
.

The value c = −c2 is a critical remarkable value of H. The associated curve is
f1(x, y) = 0, with exponent 3.
The value c = −c2−c−1

1 is another critical remarkable value of H. The associated
curve is f2(x, y) = 0, with exponent 2.

(I.9) with b00 > 3/4 and 9/
√

9 − 12b00 = p/q ∈ Q. Writing V (x, y) =
f1(x, y)f2(x, y)f3(x, y), where

f1(x, y) = 3(p+ 3q) + 2py,

f2(x, y) = 3(p− 3q) + 2py,

f3(x, y) = 108(13p2 − 45q2)p2−
243(p2 − q2)(3(p2 − 9q2)x− 4p2y) + 32p4(9 + y)y2,

we have

H(x, y) = f1(x, y)
3q+pf2(x, y)

3q−pf3(x, y)
−2q.

We distinguish three cases in order to compute the critical remarkable values:
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(p > 3q) The value c = −c2 is a critical remarkable value of H. The associated
curve is f1(x, y) = 0 with exponent 3q + p > 1.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curves are f3(x, y) = 0, with exponent 2q and, if p− 3q > 1, the
curve f2(x, y) = 0, with exponent p− 3q.

(p < −3q) The value c = −c2 is a critical remarkable value of H. The associated
curve is f2(x, y) = 0, with exponent 3q − p > 1.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curves are f3(x, y) = 0, with exponent 2q and, if −(3q + p) > 1,
the curve f1(x, y) = 0, with exponent −(3q + p).

(p2 < 9q2) If 3q − p > 1 or 3q + p > 1, then c = −c2 is a critical remarkable
value of H. The associated curves are f1(x, y) = 0, with exponent 3q + p
and f2(x, y) = 0 with exponent 3q − p.
The value c = −c2 − c−1

1 is another critical remarkable value of H. The
associated curve is f3(x, y) = 0, with exponent 2q.

(I.10). Writing V (x, y) = f1(x, y)f2(x, y), where

f1(x, y) = 3b01 − 5x2 + 10y,

f2(x, y) = 5 + 3b01x− 5x3 + 15xy,

we have

H(x, y) =
f1(x, y)

3

f2(x, y)2
.

The value c = −c2 is a critical remarkable value of H. The associated curve is
f1(x, y) = 0, with exponent 3.
The value c = −c2−c−1

1 is another critical remarkable value of H. The associated
curve is f2(x, y) = 0, with exponent 2.

(I.11). Writing V (x, y) = f1(x, y)f2(x, y), where

f1(x, y) = 1 − δx4 + 4xy,

f2(x, y) = δx3 − 3y,

we have

H(x, y) =
f1(x, y)

3

f2(x, y)4
.

The value c = −c2 is a critical remarkable value of H. The associated curve is
f1(x, y) = 0, with exponent 3.
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The value c = −c2−c−1
1 is another critical remarkable value of H. The associated

curve is f2(x, y) = 0, with exponent 4.

(I.12). Writing V (x, y) = f1(x, y)f2(x, y), where

f1(x, y) = 1531250 + 525000δx2 + 50625x4 + 245000xy−
189000δx3y − 686000δy2 + 264600x2y2 − 164640δxy3 + 38416y4,

f2(x, y) = 26250x + 3375δx3 + 36750δy − 9450x2y + 8820δxy2 − 2744y3,

we have

H(x, y) =
f1(x, y)

3

f2(x, y)4
.

The computations of the critical remarkable values are exactly the same as in case
(I.11) above.

(I.18). Let

f1(x, y) = δ(p(δx2 + 2) − 1)(1 − 2p)2 + 2δ(2p− 1)xy − 4(p− 1)y2,

f2(x, y) = (2p− 1)(δpx2 + 1) + 2pxy.

Then, we have

H(x, y) =
f1(x, y)

p

f2(x, y)
.

The value c = −c2 is a critical remarkable value of H. The associated curve is
f1(x, y) = 0, with exponent p > 2.

(I.19) with p = 0. Let

f1(x, y) = (q − 2)(q + δx2) − 2qxy,

f2(x, y) = δ(q − 2)2(q − 2 − δx2) + 2q2(q − 2)δxy − 4q2(q − 1)y2.

We have

H(x, y) =
f1(x, y)

q

f2(x, y)
.

The value c = −c2 is a critical remarkable value of H. The associated curve is
f1(x, y) = 0, with exponent q > 2.

(I.20). Writing V (x, y) = f1(x, y)f2(x, y)f3(x, y), where

f1(x, y) = δx− 6y,

f2(x, y) = 54 + 3δx2(3 − 2xy) + δ2x4,

f3(x, y) = 3 + δx2 − 6xy,
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we have

H(x, y) =
f1(x, y)

2f2(x, y)

f3(x, y)3
.

The value c = −c2 is a critical remarkable value of H. The associated curve is
f1(x, y) = 0, with exponent 2.
The value c = −c2−c−1

1 is another critical remarkable value of H. The associated
curve is f3(x, y) = 0, with exponent 3.

Proposition 3.1.5. The Darboux first integrals which rise from polynomial in-
verse integrating factors of (⋆) quadratic systems are:

(IX.2). We have

H(x, y) = V (x, y) e−x.

(IX.3). We have

H(x, y) = V (x, y) e−x−δx
2/2.

(IX.4) with δ = 1. We have

H(x, y) =

(
1 + 2yi

1 − 2yi

)i
ex.

(IX.4) with δ = −1. We have

H(x, y) =
1 + 2y

1 − 2y
ex.

(VIII.2). We have

H(x, y) = x2δ e−y+x
2

.

(VIII.3) with δ = 1. We have

H(x, y) = x e−
y−x2

x .

(VIII.4) with b 6∈ Q. Writing V (x, y) = xf(x, y), where

f(x, y) = (b− 2)y + x2,

we have

H(x, y) = x−bf(x, y).
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(VIII.4) with b = 2. We have

H(x, y) = x e−
y

x2 .

(VIII.5). We have

H(x, y) = V (x, y) e−x.

(VIII.6). We have

H(x, y) = x−by e−x.

(VIII.7) with δ = 1. We have

H(x, y) =

(
x+ (1 − 2y)i

x− (1 − 2y)i

)i
e−x.

(VIII.7) with δ = −1. We have

H(x, y) =
x+ (1 − 2y)

x− (1 − 2y)
e−x.

(VIII.8) with b00 > 0. We have

H(x, y) =

(√
b00x+ 2yi√
b00x− 2yi

)i
x
√
b00 .

(VIII.8) with b00 < 0 and b00 6= −p2/q2 ∈ Q−. We have

H(x, y) =

√
−b00x+ 2y√
−b00x− 2y

x
√
−b00 .

(VIII.8) with b00 = 0. We have

H(x, y) = x e1/y.

(IV.2). We have

H(x, y) = V (x, y) e−
δ(x2

−2y)
2 .

(IV.3a), (IV.3b), (IV.3c). We have

H(x, y) = V (x, y) e−2x.

(IV.3d) with D > 0. We have

H(x, y) = e−2xe
−

arctan
2y+1

2
√

D
√

D

(
(2y + 1)2 + 4D

)
.
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(IV.3d) with D < 0, D 6= −1/4. We have

H(x, y) = e−4
√
−Dx

(
1 + 2

√
−D + 2y

)2
√
−D+1 (

1 − 2
√
−D + 2y

)2
√
−D−1

.

(IV.3d) with D = 0. We have

H(x, y) = e−xe
1

2y+1 (2y + 1).

(IV.3e) with D > 0. We have

H(x, y) = e−2xe
−

arctan

�
2x+4y+1

4
√

D(2x+1)

�
2
√

D

(
16D(2x+ 1)2 + (2x+ 4y + 1)2

)
.

(IV.3e) with D < 0, D 6= −1/16. We have

H(x, y) = e−8
√
−Dx

((4
√
−D + 1)(2x+ 1) + 4y)4

√
−D+1((4

√
−D − 1)(2x+ 1) − 4y)4

√
−D−1.

(IV.3e) with D = 0. We have

H(x, y) = e
−4x2

−8yx+2x+2
2x+4y+1 (2x+ 4y + 1)2.

(III.2a). We have

H(x, y) = V (x, y) e−2δy.

(III.2c). We have

H(x, y) = V (x, y) e
2

b10−2x2

b10+2y .

(III.2d) with m 6∈ Q. Writing V (x, y) = f1(x, y)f2(x, y), where

f1(x, y) = b10 + 2y − (m − 2)x2,

f2(x, y) = b10 + my,

we have

H(x, y) = f1(x, y)
−mf2(x, y)

2.

(III.6). We have

H(x, y) = V (x, y) e
2

2+2a00+a10+a10x+2xy
2+a10+2x−2y .

(III.7). We have

H(x, y) = y e−x(x+y)/y.
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(VII.2). We have

H(x, y) = V (x, y) e−xy.

(VII.3) with m+ 1 6∈ Q. We have

H(x, y) = V (x, y)x−m−2.

(VII.4) with δ = 1. We have

H(x, y) = V (x, y) e−2(1+xy)/x.

(VII.5) with δ = ±1. We have

H(x, y) = V (x, y) e−3 1+2xy

2δx2 .

(VII.6). We have

H(x, y) = x−my e1/x.

(VII.7). We have

H(x, y) = V (x, y)x−k e1/x.

(VII.9) with b20 = −1. We have

H(x, y) = x e−2x/(x−2y).

(VII.9) with
√
b20 + 1 6∈ Q. We have

H(x, y) = x
√
b20+1 (1 −

√
b20 + 1)x− 2y

(1 +
√
b20 + 1)x− 2y

.

(VII.10) with b00 > 0. We have

H(x, y) =

√
b00 + 2y√
b00 − 2y

e−
√
b00/x.

(VII.10) with b00 < 0. We have

H(x, y) =

(√
−b00 + 2yi√
−b00 − 2yi

)i
e−

√
−b00/x.

(VI.2). We have

H(x, y) = (1 + x2)a
(

1 + ix

1 − ix

)−b00i
e−2y.
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(VI.3). We have

H(x, y) = y2

(
1 + ix

1 − ix

)bi
.

(VI.4) with b 6= 0. We have

H(x, y) =
y2

1 + x2

(
1 + ix

1 − ix

)bi
.

(VI.5) with b 6= 0. We have

H(x, y) = y2(1 + x2)−m
(

1 + ix

1 − ix

)bi
.

(VI.5) with b = 0 and m 6∈ Q. We have

H(x, y) = y2(1 + x2)−m.

(VI.7). We have

H(x, y) = V (x, y)
(1 + ix)(−k+ib)/2

(1 − ix)(k+ib)/2
.

(VI.9) with b00 > 0. We have

H(x, y) =

√
b00 − 2y√
b00 + 2y

(
1 + ix

1 − ix

)√
b00i/2

.

(VI.9) with b00 < 0, b00 6= −4. We have

H(x, y) =

√
−b00 − 2yi√
−b00 + 2yi

(
1 + ix

1 − ix

)√
−b00/2

.

(VI.9) with b00 = 0. We have

H(x, y) =

(
1 + ix

1 − ix

)i
e−2/y.

(V.2). We have

H(x, y) = (1 − x)1+σ(1 + x)1−σe−2y,

where σ = b00 if a 6= 0 and σ = 0 if a = 0.
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(V.3) with b 6∈ Q. We have

H(x, y) =

(
1 + x

1 − x

)b
y2.

(V.4). We have

H(x, y) = (1 ± x)b10e−(±b10+(x±1)y)/(x∓1).

(V.5) with b 6∈ Q. We have

H(x, y) = (1 − x)−b−1(1 + x)b−1y2.

(V.6) with δ = 1. We have

H(x, y) = (x− 1)δe(3δ−2xy−2(2δx+y))/(2(x−1)2).

(V.7). We have

H(x, y) = (x+ 1)b00+δ−1(x− 1)1−b00+3δe2(1−b00−δ−2y)/(x−1).

(V.8) with b 6∈ Q or m 6∈ Q. We have

H(x, y) = (1 − x)−b−m(1 + x)b−my2.

(V.9) with m 6∈ Q. We have

H(x, y) = (x∓ 1)−m−1(1 + (m+ 1)(x± 1)y).

(V.10)–(V.13). Let λ = −(b+m)/2 and µ = (b−m)/2. We have

H(x, y) = (1 − x)λ(1 + x)µy − 2λ+µ−1β((1 − x)/2, λ, µ),

where

β(z, λ, µ) =

∫ z

0

tλ−1(1 − t)µ−1 dt.

We note that, in some cases, a rational first integral can be obtained.
(V.15) with b20 + 1 > 0 and b20 6∈ Q. We have

H(x, y) = (x± 1)
√
b20+1

√
b20 + 1(x∓ 1) − (x± 1 − 2y)√
b20 + 1(x∓ 1) + x± 1 − 2y

.

(V.15) with b20 + 1 < 0. We have

H(x, y) = (x± 1)
√
−b20−1

(√
−b20 − 1(x∓ 1) − i(x± 1 − 2y)√
−b20 − 1(x∓ 1) + i(x± 1 − 2y)

)i
.
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(V.15) with b20 = −1. We have

H(x, y) = (x± 1)e−2(x∓1)/(x±1−2y).

(V.16) with b00 > 0,
√
b00 6∈ Q+. We have

H(x, y) =

√
b00 − 2y√
b00 + 2y

(
1 + x

1 − x

)√
b00/2

.

(V.16) with b00 < 0. We have

H(x, y) =

(
1 − x

1 + x

)√
−b00/2(√

−b00 + 2iy√
−b00 − 2iy

)i
.

(V.16) with b00 = 0. We have

H(x, y) = e−2/y 1 + x

1 − x
.

(II.2a). We have

H(x, y) = x2δe2x+b20x
2−y2 .

(II.2b). We have

H(x, y) = x2δeσx
2−y2 .

(II.3a). We have

H(x, y) = xe(−2δ+2b20x2−y2)/(2x).

(II.3b). We have

H(x, y) = xe(2σx2−y2)/(2x).

(II.4) with δ = 1. We have

H(x, y) = x(b00 + y)b00ex−y.

(II.5a) with b20 6= 0. We have

H(x, y) = xb20e
−(δ+2x+y2)/(2x2).

(II.5b) with σ 6= 0. We have

H(x, y) = xσe−(2x+y2)/(2x2).
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(II.5c) with σ 6= 0. We have

H(x, y) = xσe−(δ+y2)/(2x2).

(II.5d). We have

H(x, y) = xδe−y
2/(2x2).

(II.6). We have

H(x, y) = xδ−b20(b20x+ δy)b20e
−(1+δy)/x.

(II.7). We have

H(x, y) =
x+ y

x
e−(1+y)/x.

(II.8) with B = 1/
√

1 − 4b00 ∈ R \ Q. We have

H(x, y) =
V (x, y)

x3

( √
1 − 4b00(d+ δx) + (b00 + δx+ 2b00y)√

1 − 4b00(b00 + δx) − (b00 + δx+ 2b00y)

)B
.

(II.8) with 1 − 4b00 < 0. We have

H(x, y) =
V (x, y)

x3

(√
−(1 − 4b00)(b00 + δx) + i(b00 + δx+ 2b00y)√
−(1 − 4b00)(b00 + δx) − (b00 + δx+ 2b00y)

)Bi

,

where B = 1/
√

4b00 − 1.
(II.8) with b00 = 1/4. Writing V (x, y) = xf(x, y)2, where f(x, y) = 1 + 4δx+

2y, we have

H(x, y) =
f(x, y)

x
e(1+4δx)/f(x,y).

(II.9) with 2n 6∈ Q. Writing V (x, y) = xf(x, y), where f(x, y) = σ/n +
2δx/(2n− 1) + b20x

2/(n− 1) + y2, we have

H(x, y) = x−2nf(x, y).

(II.10) with 4dn− b2 > 0. We have

H(x, y) = x−2n(d+ by + ny2)

(√
4dn− b2 + i(b+ 2ny)√
4dn− b2 − i(b+ 2ny)

)bi/√4dn−b2

.

(II.10) with 4dn− b2 < 0 and n 6∈ Q or b/
√
b2 − 4dn 6∈ Q. We have

H(x, y) = x−2n(d+ by + ny2)

(√
b2 − 4dn+ (b+ 2ny)√
b2 − 4dn− (b+ 2ny)

)b/√b2−4dn

.
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(II.10) with d = b2/(4n) 6= 0. We have

H(x, y) = x−n(b+ 2ny)eb/(b+2ny).

(II.11) with L = 4b20(n−1)−1 > 0. Writing V (x, y) = xf(x, y)f̄(x, y), where

f(x, y) =
√
L(δ(n− 1) + nx) + i(δ(n− 1) + nx+ 2n(n− 1)y),

we have

H(x, y) = x−2nf(x, y)1+i/
√
Lf̄(x, y)1−i/

√
L.

(II.11) with L = 1 − 4b20(n − 1) > 0. Writing V (x, y) = xf1(x, y)f2(x, y),
where

f1(x, y) =
√
L(δ(n− 1) + nx) + (δ(n− 1) + nx+ 2n(n− 1)y),

f2(x, y) =
√
L(δ(n− 1) + nx) − (δ(n− 1) + nx+ 2n(n− 1)y),

we have

H(x, y) = x−2nf1(x, y)
1+1/

√
Lf2(x, y)

1−1/
√
L.

(II.11) with b20 = 1/(4(n− 1)). Writing V (x, y) = xf(x, y)2, where

f(x, y) = δ(n− 1) + nx+ 2n(n− 1)y,

we have

H(x, y) = x−nf(x, y) e(δ(n−1)+nx)/f(x,y).

(II.14) with δ = 1, 1 + 4b00 < 0. We have

H(x, y) =
x2(−b00 + x− y + x2 − 2xy + y2)

(b00 − x− x2 + xy)2
e

2 arctan
−2x+2y−1√

−4b00−1√
−4b00−1 .

(II.14) with δ = 1, b00 = 0. We have

H(x, y) =
(x− y)

x− y + 1
e

x+1
x2

−yx+x .

(II.14) with δ = 1, b00 = −1/4. We have

H(x, y) =
(4x2 − 4yx+ 4x+ 1)

x(2x− 2y + 1)
e−

1
2x−2y+1 .



140 3. Quadratic systems

(II.15) with 1 − 8b00 > 0 and 1/
√

1 − 8b00 ∈ R \ Q. Writing V (x, y) =
xf1(x, y)f2(x, y), where

f1(x, y) = (1 +
√

1 − 8b00)(b00 + δx2) + 4b00y,

f2(x, y) = (1 −
√

1 − 8b00)(b00 + δx2) + 4b00y,

we have

H(x, y) = x−4f1(x, y)
1+1/

√
1−8b00f2(x, y)

1−1/
√

1−8b00 .

(II.15) with 1 − 8b00 < 0. Writing V (x, y) = xf1(x, y)f2(x, y), where

f1(x, y) =
√

8b00 − 1(b00 + δx2) + i(b00 + δx2 + 4b00y),

f2(x, y) =
√

8b00 − 1(b00 + δx2) − i(b00 + δx2 + 4b00y),

we have

H(x, y) = x−4f1(x, y)
1+i/

√
8b00−1f2(x, y)

1−i/
√

8b00−1.

(II.15) with b00 = 1/8. Writing V (x, y) = xf(x, y)2, where

f(x, y) = 1 + 8δx2 + 4y,

we have

H(x, y) =
x2

f(x, y)
e−(1+8δx2)/f(x,y).

(I.2). We have

H(x, y) = y2 e−x(2δ+b11x−2y).

(I.3). We have

H(x, y) = V (x, y) eb11x−y.

(I.5) with n 6∈ Q. Writing V (x, y) = f1(x, y)f2(x, y), where

f1(x, y) = n2 − 1 + b11n(n+ 1)x+ n(n− 1)(2n+ 1)y,

f2(x, y) = (n− 1)(2n+ 1)(1 + (n+ 1)xy) + (n− 1 + b11nx)(n+ 1)x,

we have

H(x, y) = f1(x, y)
−n−1f2(x, y)

n.

(I.6) with b00 > 1/2. Writing V (x, y) = f1(x, y)f2(x, y)f̄2(x, y), where

f1(x, y) = 2b00(1 − 2x) + (2 + y)2,

f2(x, y) =
√

2b00 − 1 + i(1 + y),
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we have

H(x, y) =
f2(x, y)

1+i/
√

2b00−1f3(x, y)
1−i/

√
2b00−1

f1(x, y)
.

(I.6) with b00 < 1/2, b00 6= 0 and 1/
√

1 − 2b00 ∈ R \ Q. Writing V (x, y) =
f1(x, y)f2(x, y)f3(x, y), where

f1(x, y) = 2b00(1 − 2x) + (2 + y)2,

f2(x, y) =
√

1 − 2b00 + (1 + y),

f3(x, y) =
√

1 − 2b00 − (1 + y),

we have

H(x, y) =
f2(x, y)

1+1/
√

1−2b00f3(x, y)
1−1/

√
1−2b00

f1(x, y)
.

(I.6) with b00 = 1/2. Writing V (x, y) = f1(x, y)
2f2(x, y), where

f1(x, y) = 5 − 2x+ 4y + y2,

f2(x, y) = 1 + y,

we have

H(x, y) =
f1(x, y)

f2(x, y)2
e−2/f2(x,y).

(I.6) with b00 = 0. We have

H(x, y) =
y

2 + y
e2(3−2x+y)/(2+y).

(I.7) with neither δ = 1, b00 < −
√

2 and
√
−b00 −

√
2/
√

−b00 +
√

2 ∈ Q, nor
δ = 1 and b200 = 2. Writing V (x, y) = f1(x, y)f2(x, y)f3(x, y)f4(x, y), where

f1,2(x, y) =
√

2

√
−b00 −

√
2δ ± (

√
2δx+ y),

f3,4(x, y) =
√

2

√
−b00 +

√
2δ ± (

√
2δx− y),

we have

H(x, y) =

(
f1(x, y)

f2(x, y)

)√−b00+
√

2δ (
f3(x, y)

f4(x, y)

)√−b00−
√

2δ

.
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(I.7) with δ = 1 and b00 =
√

2. Writing V (x, y) = f1(x, y)
2f2(x, y)f̄2(x, y),

where

f1(x, y) =
√

2x− y,

f2(x, y) = 25/4 + i(
√

2x+ y),

we have

H(x, y) =

(
f2(x, y)

f̄2(x, y)

)i
e2

9/4/f1(x,y).

(I.7) with δ = 1 and b00 = −
√

2. Writing V (x, y) = f1(x, y)
2f2(x, y)f3(x, y),

where

f1(x, y) =
√

2x+ y,

f2(x, y) = 25/4 + (
√

2x− y),

f3(x, y) = 25/4 − (
√

2x− y),

we have

H(x, y) =
f2(x, y)

f3(x, y)
e2

9/4/f1(x,y).

(I.9) with b00 < 3/4 and 1/
√

9 − 12b00 ∈ R \ Q. Writing

V (x, y) = f1(x, y)f2(x, y)f3(x, y),

where

f1(x, y) = 3 + 2y +
√

9 − 12b00,

f2(x, y) = 3 + 2y −
√

9 − 12b00,

f3(x, y) = 9(6 + 5b00) − 9(6 + b00)(b00x− y) + 2(9 + y)y2,

we have

H(x, y) =
f1(x, y)

3+9/
√

9−12b00f2(x, y)
3−9/

√
9−12b00

f3(x, y)2
.

(I.9) with b00 = 0. Writing V (x, y) = yf(x, y), where f(x, y) = (3 + y)4, we
have

H(x, y) =
f(x, y)

y
e−3(3(11−6x)+15y+2y2)/(2f(x,y)3).

(I.9) with > 3/4. Writing V (x, y) = f1(x, y)f2(x, y)f3(x, y), where

f1(x, y) = 3 + 2y + i
√

12b00 − 9,

f2(x, y) = 3 + 2y − i
√

12b00 − 9,

f3(x, y) = 9(6 + 5b00) − 9(6 + b00)(b00x− y) + 2(9 + y)y2,
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we have

H(x, y) =
f1(x, y)

3−9i/
√

12b00−9f2(x, y)
3+9i/

√
12b00−9

f3(x, y)2
.

(I.9) with b00 = 3/4. Writing V (x, y) = f1(x, y)
2f2(x, y), where

f1(x, y) = 3 + 2y,

f2(x, y) = 1404 − 729x+ 972y + 288y2 + 32y3,

we have

H(x, y) =
f2(x, y)

f1(x, y)3
e−9/f1(x,y).

We remark that all the first integral provided in the proposition above are
real, due to equality (1.9).

3.2 Phase portraits

In this section we give the phase portraits of the quadratic systems having a
polynomial inverse integrating factor. As in Chapter 2, we follow the classification
into the normal forms of Proposition 2.1.2.

First we introduce the basic definitions, notations and results that we need for
the analysis of the local phase portraits of the finite and infinite singular points
of the quadratic systems and then we define the Poincaré compactification. The
results of Sections 3.2.1 and 3.2.3 can be found in [1]. The results of Section 3.2.2
can be found in [12].

3.2.1 Singular points

Consider an analytic planar system ẋ = P (x, y), ẏ = Q(x, y) and its associated
vector field X = (P,Q). A point p ∈ R2 is a singular point of X if P (p) = Q(p) =
0. We define, for a singular point p ∈ R2, ∆ = Px(p)Qy(p)−Py(p)Qx(p) ∈ R and
T = Px(p) + Qy(p) ∈ R. They correspond, respectively, to the determinant and
the trace of the Jacobian matrix DX(p).

The singular point p is non–degenerated if ∆ 6= 0 and it is degenerated other-
wise. Then, p is an isolated singular point. Moreover, p is a saddle if ∆ < 0, a node
if T 2 ≥ 4∆ > 0 (stable if T < 0, unstable if T > 0), a focus if 4∆ > T 2 > 0 (stable
if T < 0, unstable if T > 0), and either a weak focus or a center if T = 0 < ∆ (for
more details, see [1]).

The singular point p is called hyperbolic if the two eigenvalues of the Jacobian
matrix DX(p) have nonzero real part. So, the hyperbolic singular points are the
non–degenerate ones except the weak foci and the centers.
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A degenerate singular point p such that T 6= 0 is called semi–hyperbolic, and
p is isolated in the set of all singular points. Next we summarize the results on
semi–hyperbolic singular points, see Theorem 65 of [1].

Proposition 3.2.1. Let (0, 0) be an isolated point of the vector field (F (x, y),
y+G(x, y)), where F and G are analytic functions in a neighborhood of the origin
starting at least with quadratic terms in the variables x and y. Let y = g(x) be the
solution of the equation y +G(x, y) = 0 in a neighborhood of (0, 0). Assume that
the development of the function f(x) = F (x, g(x)) is of the form f(x) = µxm+· · · ,
where m ≥ 2 and µ 6= 0. When m is odd, then (0, 0) is either an unstable node,
or a saddle depending if µ > 0 or µ < 0, respectively. If m is even, then (0, 0)
is a saddle–node, i.e. the singular point is formed by the union of two hyperbolic
sectors with one parabolic sector.

The singular points which are non–degenerate or semi–hyperbolic are called
elementary.

When ∆ = T = 0 but the Jacobian matrix at p is not the zero matrix and
p is isolated in the set of all singular points, we say that p is nilpotent. Next we
summarize some results on nilpotent singular points (see Theorems 66 and 67
and the simplified scheme of Section 22.3 of [1]).

Proposition 3.2.2. Let (0, 0) be an isolated singular point of the vector field
(y + F (x, y), G(x, y)), where F and G are analytic functions in a neighborhood
of the origin starting at least with quadratic terms in the variables x and y. Let
y = f(x) be the solution of the equation y + F (x, y) = 0 in a neighborhood of
(0, 0). Assume that the development of the function G(x, f(x)) is of the form
Kxκ + · · · and Φ(x) ≡ (∂F/∂x + ∂G/∂y)(x, f(x)) = Lxλ + · · · , with K 6= 0,
κ ≥ 2 and λ ≥ 1. Then the following statements hold.

(1) If κ is even and

(a) κ > 2λ+ 1, then the origin is a saddle–node.

(b) κ < 2λ + 1 or Φ ≡ 0,, then the origin is a cusp, i.e. a singular point
formed by the union of two hyperbolic sectors.

(2) If κ is odd and K > 0, then the origin is a saddle.

(3) If κ is odd, K < 0 and

(a) λ even, κ = 2λ+1 and L2 +4K(λ+1) ≥ 0, or λ even and κ > 2λ+1,,
then the origin is a stable (unstable) node if L < 0 (L > 0).

(b) λ odd, κ = 2λ+ 1 and L2 + 4K(λ+ 1) ≥ 0, or λ odd and κ > 2λ+ 1,
then the origin is an elliptic–saddle, i.e. a singular point formed by
the union of one hyperbolic sector and one elliptic sector.
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(c) κ = 2λ+ 1 and L2 + 4K(λ+ 1) < 0, or κ < 2λ+ 1, then the origin is
a focus or a center, and if Φ(x) ≡ 0 then the origin is a center.

Finally, if the Jacobian matrix at the singular point p is identically zero, and
p is isolated inside the set of all singular points, then we say that p is linearly
zero. The study of its local phase portrait needs a special treatment using the
directional blow–ups technique, see for more details [3]. But if a quadratic vector
field has a finite linearly zero singular point, then it is equivalent to a homogeneous
quadratic vector field doing if necessary a translation of the linearly zero singular
point to the origin, and the global phase portraits of the quadratic homogeneous
vector fields are well known, see for more details [51].

The definitions of hyperbolic, parabolic and elliptic sectors near a singular
point can be found in [1]. Roughly speaking, in a hyperbolic sector there are two
orbits one starting and the other ending at the singular point and all the other
orbits between them and in a neighborhood of the singular point approach to the
singular point and after this they go away. A sector such that all curves in a
sufficiently small neighborhood of the singular point tend to it as either t→ +∞
or t → −∞ is known as a parabolic sector. Finally, a sector containing loops to
the singular point, and moreover only nested loops, is known as an elliptic sector.

The number of elliptic sectors and the number of hyperbolic sectors in a
neighborhood of a singular point are denoted by e and h, respectively. The rest
of the sectors are parabolic. The (topological) index of a singular point p is
defined as

i(p) =
e − h

2
+ 1. (3.2)

For a proof of the formula (3.2), see [1].

3.2.2 Separatrices and canonical regions

Consider the planar differential system

ẋ = P (x, y), ẏ = Q(x, y), (3.3)

where P and Q are Cr maps, r ≥ 1 from an open subset U ⊆ R2 to R. For
a differential system (3.3) the following three properties are well–known, see for
more details [47].

1. For all p ∈ U there exists an open interval Ip ⊆ R where the unique maximal
solution ϕp : Ip → U of (3.3) such that ϕp(0) = p is defined.

2. If q = ϕp(t) and t ∈ Ip, then Iq = Ip − t = {r − t : r ∈ Ip} and ϕq(s) =
ϕp(t+ s) for all s ∈ Iq.
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3. The set D = {(t, p) : p ∈ U, t ∈ Ip} is open in R3 and the map ϕ : D → U
defined by ϕ(t, p) = ϕp(t) is Cr.

The map ϕ : D → U is a local flow of class Cr on U associated to system
(3.3). It verifies:

1. ϕ(0, p) = p for all p ∈ U .

2. ϕ(t, ϕ(s, p)) = ϕ(t+s, p) for all p ∈ U and for all s and t such that s, t+s ∈
Ip.

3. ϕp(−t) = ϕ−1
p (t) for all p ∈ U such that t,−t ∈ Ip.

We consider Cr–local flows with r ≥ 0 on R2. Of course, when r = 0 the flow
is only continuous. Two such flows, ϕ and ϕ′, are Ck–equivalent, with k ≥ 0,
if there exists a Ck diffeomorphism which takes orbits of ϕ onto orbits of ϕ′

preserving sense (but not necessarily the parametrization).
Let ϕ be a Cr–local flow with r ≥ 0 on R2. We say that ϕ is Ck–parallel if it

is Ck–equivalent to one of the following flows:

1. R2 with the flow defined by x′ = 1, y′ = 0.

2. R2 \ {0} with the flow defined (in polar coordinates) by r′ = 0, θ′ = 1.

3. R2 \ {0} with the flow defined by r′ = r, θ = 0.

We call these flows as strip, annular and spiral, respectively.

Let p ∈ R2. We denote by γ(p) the orbit of the flow ϕ through p, more
precisely γ(p) = {ϕp(t) : t ∈ Ip}. The positive semiorbit of p is γ+(p) = {ϕp(t) :
t ∈ Ip, t ≥ 0}. In a similar way we define the negative semiorbit γ−(p) of p.

We define the α–limit and the ω–limit of p as (γ±(p)) and let

α(p) = cl (γ−(p)) − γ−(p), ω(p) = cl (γ+(p)) − γ+(p),

respectively, where cl denotes the closure of the set.
Let γ(p) be an orbit of the flow ϕ. A parallel neighborhood of the orbit γ(p) is

an open neighborhood N of γ(p) such that ϕ is Ck–equivalent in N to a parallel
flow for some k ≥ 0.

We say that γ(p) is a separatrix of ϕ if it is not contained in a parallel neigh-
borhood N satisfying the following two assumptions:

1. For any q ∈ N , α(q) = α(p) and ω(q) = ω(p).

2. cl (N)\N consists of α(p), ω(p) and exactly two orbits γ(a), γ(b) of ϕ, with
α(a) = α(p) = α(b) and ω(a) = ω(p) = ω(b).
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We denote by Σ the union of all separatrices of ϕ. Σ is a closed invariant
subset of R2. A component of the complement of Σ in R2, with the restricted
flow, is a canonical region of ϕ.

The following lemma can be found in [41].

Lemma 3.2.3. Every canonical region of a local flow ϕ on R2 is C0–parallel.

3.2.3 The Poincaré compactification

Let X be a real planar polynomial vector field of degree n. The Poincaré compac-
tified vector field p(X) corresponding to X is an analytic vector field induced on Σ2

as follows (see, for instance [35]). Let Σ2 = {y = (y1, y2, y3) ∈ R3 : y2
1 + y2

2 + y2
3 =

1} (the Poincaré sphere) and TyΣ
2 be the tangent plane to Σ2 at point y. Identify

R2 with T(0,0,1)Σ
2. Consider the central projection f : T(0,0,1)Σ

2 → Σ2. This map
defines two copies of X on Σ2, one in the northern hemisphere and the other in
the southern hemisphere. Denote by X ′ the vector field Df ◦ X defined on Σ2

except on its equator Σ1 = {y ∈ Σ2 : y3 = 0}. Clearly Σ1 is identified to the
infinity of R2. Usually, when we talk about the circle of the infinity of X we
simply talk about the infinity.

In order to extend X ′ to a vector field on Σ2 (including Σ1) it is necessary that
X satisfies suitable conditions. If X is a real polynomial vector field of degree n,
then p(X) is the only analytic extension of yn−1

3 X ′ to Σ2. On Σ2\Σ1 there are two
symmetric copies ofX, and knowing the behavior of p(X) around Σ1, we know the
behavior of X in a neighborhood of the infinity. The Poincaré compactification
has the property that Σ1 is invariant under the flow of p(X). The projection of
the closed northern hemisphere of Σ2 on y3 = 0 under (y1, y2, y3) 7−→ (y1, y2) is
called the Poincaré disc, and it is denoted by D2.

Two polynomial vector fields X and Y on R2 are topologically equivalent if
there exists a homeomorphism on Σ2 preserving the infinity Σ1 carrying orbits of
the flow induced by p(X) into orbits of the flow induced by p(Y ).

As Σ2 is a differentiable manifold, for computing the expression for p(X), we
can consider the six local charts Ui = {y ∈ Σ2 : yi > 0}, and Vi = {y ∈ Σ2 :
yi < 0}, i = 1, 2, 3. The diffeomorphisms Fi : Ui → R2 and Gi : Vi → R2 for
i = 1, 2, 3 are the inverses of the central projections from the planes tangent at the
points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1), respectively. If
z = (u, v) is the value of Fi(y) or Gi(y) for any i = 1, 2, 3 (so z represents different
things according to the local charts under consideration), then we obtain the
following expressions for p(X):

vn∆(z)

(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

)
,−vP

(
1

v
,
u

v

))
in U1, (3.4)
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vn∆(z)

(
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)
,−vQ

(
u

v
,
1

v

))
in U2, (3.5)

∆(z) (P (u, v), Q(u, v)) in U3,

where ∆(z) = (u2 + v2 + 1)−
1
2
(n−1). The expression for Vi is the same as that for

Ui except for a multiplicative factor (−1)n−1. In these coordinates for i = 1, 2,
v = 0 always denotes the points of Σ1. We can omit the factor ∆(z) by scaling
the vector field p(X). Thus, the expression of p(X) becomes a polynomial vector
field in each local chart.

3.2.4 Construction of the phase portraits

In our study of the phase portraits of quadratic systems having a polynomial
inverse integrating factor, we follow some steps. First we compute and classify
all the singular points (finite and infinite) of the system to obtain the local phase
portrait at them, using the results of Subsections 3.2.1, 3.2.2 and 3.2.3 and blow-
ups if necessary. Once this classification is finished, we look for the separatrices
of the system. As (⋆) quadratic systems have no limit cycles, we just have to look
for the separatrices of the hyperbolic sectors. Using the first integral associated
to the system we determine the global behavior of these separatrices, and then
the global phase portrait is completed and we can draw it. The pictures of the
phase portraits of this work have been done using the program P4 (see [23]). The
program has also been used to verify the study of the phase portraits.

We deal with systems of the form

ẋ = a00 + a10x+ a01y+ a20x
2 + a11xy, ẏ = d+ ax+ by+ lx2 +mxy+ ny2,

where all the parameters are real.

The finite singular points We solve the system of equations ẋ = ẏ = 0. The
solutions (x0, y0) of this system are the singular points of the phase portrait. In
cases (IV) and (VI)–(IX), the maximum number of finite singular points is two.
The other four systems have at most four finite singular points. The number of
finite singular points and their multiplicity for systems (I) and (III) depend on a
discriminant ∆. In case (I),

∆ = −27a4n2 + 2a3b(2b2 − 9n(d − m)) + (a2b2((d − m)2 − 6ln)+
4n(d − m)(36ln − (d − m)2)) + 2abl(8n(5(d − m)2 + 12ln)−
9b2(d − m)) − l(27b4l + 4b2(d − m)((d − m)2 − 36ln)−
16n((d − m)2 − 4ln)2).

(3.6)

In case (III),

∆ = 256d3n3 − n2(27a4 + 144a2d(b − l) − 192ad2m + 128d2(b − l)2)+
2n(2(b − l)3(a2 + 4d(b − l)) + am(b − l)(9a2 + 40d(b − l))−
3dm2(a2 + 24d(b − l))) + m2(4a3m + a2(b − l)2 + 18adm(b − l)+
d(4(b − l)3 − 27dm2)).

(3.7)
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For the rest of the systems we deal with the discriminant of a polynomial
equation of degree 2, so it gets an easier expression.

Once all the finite singular points are found, we want to know their behavior.
For that purpose, we use the results given in Section 3.2.1. Different behaviors
will lead to different phase portraits.

The infinite singular points In order to compute the singular points on the
line of the infinity, we use the Poincaré compactification, see Subsection 3.2.3.
We note that the singular points at the infinity appear by pairs, one of them on
the chart Ui and the other one on Vi. Each pair is formed by two diametrally
opposed infinite singular points.

In order to compute the singular points at infinity on U1 and V1, we must
compute the singular points of type (u, 0) of the system

u̇ = v2

[
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

)]
, v̇ = −v2P

(
1

v
,
u

v

)
.

This is equivalent to solve the quadratic equation

(n− a11)u
2 + (m− a20)u+ l = 0, (3.8)

with unknown u.
To compute the singular points at infinity on U2 and V2, we must find the

singular points of type (u, 0) of the system

u̇ = v2

[
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)]
, v̇ = −v3Q

(
u

v
,
1

v

)
,

which is equivalent to solve the cubic equation

u(lu2 + (m− a20)u+ (n− a11)) = 0, (3.9)

with unknown u. Observe that the point A = (0, 0) on the chart U2 is always an
infinite singular point, and also A′ = (0, 0) on V2.

Remark 3.2.4. 1. If l = 0, m = a20 and n = a11, then all the points at
infinity are singular. In this case, we say that the infinity is degenerated.

2. A non–zero solution (u, 0) of equation (3.8) corresponds to the non–zero
solution (1/u, 0) of equation (3.9). So, if the infinity is not degenerated,
then there are at most three pairs of infinite singular points for each phase
portrait.

3. If the infinity is degenerated, the infinite singular points of the system that
is obtained by dropping the factor v (scaling time), give all the information
of the phase portrait at infinity.
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4. In general, when we refer to an infinite singular point in the study of the
phase portraits we mean the corresponding pair of singular points.

2

The phase portraits are grouped by topological equivalence, and shown de-
pending on the numbers of pairs of singular points at infinity. Figures (1)–(11)
correspond to phase portraits of systems with degenerated infinity. Figures (12)–
(41) correspond to phase portraits of systems with one pair of singular points
at infinity. Figures (42)–(82) correspond to phase portraits of systems with two
pairs of infinite singular points. Figures (83)–(122) correspond to phase por-
traits of systems with three pairs of singular points at infinity. The pictures are
shown in Section 3.4.

Remark 3.2.5. In the most of the cases, the systems depend on several para-
meters, so the phase portrait may vary with these parameters. In these cases we
compute a bifurcation diagram, from which we know the behavior of the system
for all the possible values of the parameters. 2

In the following subsections, we compute the phase portrait of the (⋆) quadra-
tic systems. We also show the who the set V −1(0) is in the phase portrait.

3.2.5 Systems (IX)

These systems were studied in Subsection 2.3.1. We use the notation given in
that subsection. As ẋ = 1, the systems of this section have no finite singular
points, so the study of the local phase portraits is reduced to the behavior of the
singular points at infinity.

(IX.1) The only singular point is the point A at infinity, and it is a non–
elementary singular point of index i(A) = 1, without elliptic and hyperbolic
sectors. The phase portrait is shown in (12).

(IX.2) Again, the only singular point at infinity is the point A, which is a
non–elementary singular point, with e = h = 1, so i(A) = 1. The phase portrait
is shown in (33). The set V −1(0) is the parabola separating the two canonical
regions.

(IX.3) There are two singular points at the infinity: A (non–elementary) and
the semi–hyperbolic singular point p1 = (0, 0) on chart U1. For δ = 1, we have
i(A) = 2, with (e,h) = (2, 0), and p1 is a saddle. If δ = −1, then i(A) = 0, with
(e,h) = (0, 2), and p1 is a node.
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The phase portraits are shown in (44) and (42), there is one phase portrait
for each respective value of δ = −1, 1. The set V −1(0) is, for δ = 1, the straight
line y = 0 separating the two elliptic sectors.

(IX.4) Two singular points appear at the infinity: A which is a node, and
a non–elementary singular point p1 on chart U1. In all cases, i(p1) = 0, with
(e,h) = (0, 2).

If δ = 1, then there is only one canonical region. The set V −1(0) is, for δ = 0,
the straight line y = 0 separating two canonical regions. The other separatrices
correspond to the set H−1(0). If δ = −1, then the set V −1(0) is formed by the
straight lines y = ±1, which divide the phase portrait in three canonical regions.
The phase portraits are shown in (47), (46) and (44), one phase portrait for
each respective value of δ = −1, 0, 1.

3.2.6 Systems (VIII)

These systems were studied in Subsection 2.3.2. We use the notation given in
that subsection.

(VIII.1) The origin is the only finite singular point, and it is a saddle. The
only singular point at infinity is the point A, and it is a non–elementary singular
point of index i(A) = 2, with (e,h) = (2, 0). The phase portrait is shown in
(36). The separatrices correspond to the set H−1(0).

(VIII.2) There are no finite singular points. The only singular point at infinity
is the point A, which is a non–elementary singular point, with i(A) = 1. If
δ = −1, then we have (e,h) = (2, 2). If δ = 1, then we have e = h = 0.

The phase portraits are shown in (34) and (12), there is one phase portrait
for each respective value of δ = −1, 1. The set V −1(0) is, for δ = −1, the straight
line x = 0 separating the two elliptic sectors.

(VIII.3) The origin is the only finite singular point, and it is an unstable node.
The only singular point at infinity is A, which is a saddle–node. The phase
portrait is shown in (37), it is the same for both values of δ. The set V −1(0) is
the straight line x = 0 which is, for y ≤ 0, the finite separatrix of A.

(VIII.4) The origin is the only finite singular point. It is a saddle if b < 0 and
it is an unstable node if b > 0. The only singular point at infinity is A, and it is
a non–elementary singular point. If b < 0, then i(A) = 2, with (e,h) = (2, 0). If
b > 0, then i(A) = 0, with (e,h) = (0, 2). Moreover, if 0 < b ≤ 2, then A is a
saddle–node.
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The phase portraits are shown in (36) (for b < 0), (37) (for 0 < b ≤ 2) and
(38) (for b > 2). If b < 0, then the set V −1(0) forms the separatrices of the
saddle at the origin, separating the four canonical regions, two of them elliptic
sectors. If 0 < b ≤ 2, then V −1(0) contains the separatrix x = 0, y ≤ 0 of A. If
b > 2, then V −1(0) divides the open disc in two canonical regions.

(VIII.5) The origin is the only finite singular point, and it is a saddle. There
are two singular points at infinity: A, which is non–elementary with i(A) = 2,
(e,h) = (2, 0); and a saddle–node p1 in U1.

The phase portraits are shown in (59) if δ = 0 and in (58) if δ = 1. If δ = 0,
then V −1(0) contains the separatrices of the origin, defining two elliptic sectors
in x > 0. If δ = 1, then the set V −1(0) contains the separatrices of the origin.

(VIII.6) The origin is the only finite singular point. It is a saddle if b < 0 and
an unstable node if b > 0. There are two singular points at infinity: A, which is
non–elementary; and a saddle–node p1 in U1. The point A has index i(A) = 2
for b < 0, with (e,h) = (2, 0), and the phase portrait of the system is equivalent
to the phase portrait (59) of (VIII.5) for δ = 0. If b > 0, then i(A) = 0, with
(e,h) = (0, 2). Its phase portrait is shown in (60). The set V −1(0) contains the
separatrix y = 0, x ≥ 0 of the saddle–node and the straight line x = 0 which is
the separatrix of A, so it divides the phase space into three canonical regions.

(VIII.7) We have two finite singular points, a saddle and an unstable node.
The number of infinite singular points depends on δ. In addition to A, which
is a node, we have a non–elementary singular point p1 on U1 if δ = 0. It has
index i(p1) = 0 (with (e,h) = (0, 2)). If δ = −1, the point p1 splits into two
saddle–nodes on U1. No infinite singular points except A appear if δ = 1.

The phase portraits are shown in (101), (71) and (20) if δ = −1, 0, 1, respec-
tively. The set V −1(0) contains the separatrices of the saddle–nodes for δ = −1
and the straight line y = 1/2 (which is the separatrix of p1) for δ = 0. The
separatrices of the finite saddle are not contained in V −1(0).

(VIII.8) The number of finite singular points depends on the value of b00.
There are no finite singular points if b00 > 0, and there is a saddle–node at the
origin for b00 = 0 which splits into a saddle and an unstable node for b00 < 0.

At infinity, and in addition to A which is a node, we have a non–elementary
singular point p1 on U1. It has index i(p1) = 0, with (e,h) = (0, 2).

The phase portraits are shown in (71) if b00 < 0, in (56) if b00 = 0 and in (44)
if b00 > 0. If b00 = 0, then V −1(0) contains the separatrices of the saddle–node
and of p1, so it divides the phase space into three canonical regions. If b00 < 0,
then V −1(0) divides the phase space into six canonical regions, and it contains
the separatrices of the saddle and of p1.
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3.2.7 Systems (IV)

These systems were studied in Subsection 2.3.3. We use the notation given in
that subsection.

(IV.1) There are no finite singular points if b00 < 0. If b00 = 0, then a non–
elementary singular point of index 0 appears, splitting into a saddle and a center
for b00 > 0. At infinity, A is a non–elementary singular point (a triple solution
of equation (3.9)). The phase portraits correspond to (12) if b00 < 0, to (13) if
b00 = 0 and to (16) if b00 > 0.

(IV.2) There is only one finite singular point, which is a saddle if δ = 1 and a
center if δ = −1. At infinity, A is non–elementary with i(A) = 1 and there is a
semi–hyperbolic singular point p1 on U1, which is a node if δ = 1 and a saddle if
δ = −1.

The phase portraits are shown in (62) and (52), for the respective values
δ = −1, 1. The set V −1(0) is, for δ = −1, the straight line y = 1 separating the
two canonical regions.

(IV.3a) There are no finite singular points and there is an infinite singular
point p1 on chart U1 which is non–elementary of index 0. If δ = −1, then V −1(0)
is formed by two horizontal straight lines which contain an elliptic sector. The
phase portraits are shown in (49) and (44), for δ = −1, 1, respectively.

(IV.3b) There is only one finite singular point, which is a saddle if δ = 1 and a
center if δ = −1. At infinity, A is a node and there is a non–elementary singular
point p1 on U1, with (e,h) = (1, 1) if δ = 1, and (e,h) = (0, 4) if δ = −1.

The phase portraits are shown in (63) (for δ = −1) and (52) (for δ = 1). In
the first case, the set V −1(0) is the parabola separating the two canonical regions.

(IV.3c) Six possible phase portrait appear in this case, three of them for δ = 1
and other three for δ = −1. For δ = 1, the behavior of the system depends on
the parameter D. It is the same as in case (IV.1).

If δ = −1, there are no finite singular points if D < 0, and a non–elementary
finite singular point appears when D = 0, splitting into a saddle and a center if
D > 0. There are two infinite saddle–nodes p1 and p2 on U1. The corresponding
separatrices are contained in V −1(0) in all cases. A is always a node.

The phase portraits for δ = −1 are shown in (83) if D < 0, in (89) if D = 0)
and in (104) if D > 0. In this last case, V −1(0) is the curve separating the period
annulus of the center from the other canonical regions. If D ≤ 0, then if divides
the phase space into three canonical regions.
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(IV.3d) There are no finite singular points, and there is a non–elementary
singular point p1 on U1. If D > 0, then the phase portrait is (44), which has
been studied above. If D = 0, then the point p1 is a saddle–node, and V −1(0)
is its separatrix, the straight line y = −1/2. This straight line splits into two
straight lines for D < 0, and an elliptic sector appears between the two lines.

The phase portraits for D ≤ 0 are shown in (49) if D < 0 and in (46) if
D = 0.

(IV.3e) The bifurcation values of D are, in this case, D = −1/16 and D = 0.
There are two finite singular points for all possible values of D. One of them is
always a saddle. The behavior of the other one depends on D: if D < −1/16,
it is a center; if −1/16 < D ≤ 0, it is a stable node; and it is a stable focus if
D > 0.

If D < 0, then there are two singular points on U1, say p1 and p2. They
collapse into a point p3 for D = 0, and disappear for D > 0. All these points are
saddle–nodes. The point A is a node in all cases.

The phase portraits are shown in (100) if D < −1/16, in (101) if −1/16 <
D < 0, in (71) if D = 0 and in (19) if D > 0. In the first case, V −1(0) is
formed by the separatrices of the saddle (two of them are also separatrices of
the saddle–nodes at infinity), and it divides the phase space in four canonical
regions. In the second and third cases, V −1(0) contains the separatrices of the
infinite saddle–nodes. If D > 0, then V −1(0) is the focus.

3.2.8 Systems (III)

These systems were studied in Subsection 2.3.4. We use the notation given in
that subsection.

(III.1) We start studying the infinity. The point A is a non–elementary singular
point, with (e,h) = (1, 1). Moreover, there is a node p1 on U1.

In order to study the finite region, we must consider the sign of ∆ = −2(2b310+
27b200), which is the discriminant (3.7) up to a positive constant. If ∆ < 0, then
the system has one finite singular point, a saddle. If ∆ = 0, then in addition
to the saddle a non–elementary singular point appears in the finite region. We
must also study the particular case b00 = b10 = 0, for which there is only a finite
singular point, which is non–elementary and defines four hyperbolic sectors in a
neighborhood. Finally, if ∆ > 0 then the non–elementary singular point of the
case ∆ = 0 splits into a saddle and a center, and the saddle persists.

The phase portraits are shown in (52) if ∆ < 0, in (52) if b00 = b10 = 0, in
(69) if ∆ = 0 and in (80) if ∆ > 0.
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(III.2a) The origin is a saddle if δ = 1 and a center if δ = −1. In this second
case, the set V −1(0) separates the period annulus of the center from the rest of
the phase space.

The point A is in all cases a non–elementary infinite singular point, with
(e,h) = (1, 1) if δ = 1 and (e,h) = (0, 4) if δ = −1. Moreover, there is a node on
U1.

We note that the behavior of the system in this case is the same as in (IV.3b),
so the phase portraits are the same.

(III.2b) In this case, the infinity is degenerated. At the finite region, the
number of singular points is related to the sign of the discriminant ∆ = 4b310 −
27b200. If ∆ < 0, then we have an unstable focus. If ∆ = 0, then we get a
saddle–node and an unstable node. In the particular case b00 = b10 = 0, we have
a non–elementary singular point, with (e,h) = (1, 1). Finally, if ∆ > 0 then we
have a saddle, a stable node and an unstable node.

The phase portraits are shown in (3) if ∆ < 0, in (4) if b00 = b10 = 0, in
(10) if ∆ = 0 and in (11) if ∆ > 0. If ∆ < 0, then V −1(0) contains the focus.
In the case b00 = b10 = 0, the set V −1(0) is the straight line y = 0, which is
a separatrix of the singular point. There are two more separatrices, which are
included in H−1(0) and define the elliptic sector. If ∆ = 0, then V −1(0) contains
the separatrices of the saddle–node. Finally, if ∆ > 0, then V −1(0) contains the
separatrices of the saddle.

(III.2c) In the finite region, the number of singular points is related to the
sign of b10. If b10 < 0, then we have a center. If b10 = 0, then we have a non–
elementary singular point, with (e,h) = (1, 1). Finally, if b10 > 0 then we have a
saddle, a stable node and an unstable node.

At infinity, A is a non–elementary singular point with (e,h) = (1, 1). There
is also a saddle on U1.

The phase portraits are shown in (62) if b10 < 0, in (53) if b10 = 0 and in (81)
if b10 > 0. In all cases, V −1(0) contains the separatrices of the infinite saddle.

(III.2d) In the finite region, the number of singular points is related to the sign
of b10m. At infinity, in addition to A, there is a singular point p1 on the chart
U1. A is non–elementary, and the behavior of p1 depends on the sign of m− 1.

We first study the finite points. Assume that b10 < 0. If m < 0, then there
are three finite singular points: two saddles and one center. If m > 0, then there
is one center.

Assume that b10 = 0. The origin is, in this case, a non–elementary singular
point. It has four hyperbolic sectors if m < 1 and a hyperbolic and an elliptic
sector if m > 1.
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If b10 > 0, then we have a saddle if m < 0 and there are a saddle, a stable
node and an unstable node if m > 0.

Next we study the infinite singular points. With respect to A, if 0 < m < 1
and b10 6= 0, then (e,h) = (0, 4). Otherwise, (e,h) = (1, 1). The point p1 is a
node if m < 1 and a saddle if m > 1.

We finally give the relation of phase portraits. If b10,m < 0, then we have
(77). V −1(0) contains the separatrices of the saddles, dividing the phase space
into five canonical regions. If b10 < 0 and 0 < m < 1, then we have (63). In
this case, V −1(0) defines the period annulus of the center. If b10 < 0 and m > 1,
then we have (62). The set V −1(0) contains the separatrix of the infinite saddle,
defining again the period annulus of the center.

If b10 = 0 and m < 1, then we have (52). If b10 = 0 and m > 1, then we
have (54). In both cases, the set V −1(0) contains all the separatrices of the finite
singular point.

If b10 > 0 and m < 0, then we have (52). If b10 > 0 and 0 < m < 1, then we
have (76). In this case, V −1(0) separates two hyperbolic sectors of A. Finally, if
b10 > 0 and m > 1, then we have (81). The set V −1(0) contains the separatrices
of the infinite saddle. In these three cases, the separatrices of the finite saddle
are contained in a level set of H.

(III.3) At the finite region, we have an unstable node. At infinity, A is non–
elementary with four hyperbolic sectors, and there is a node on the chart U1. The
phase portrait is shown in (64). The separatrices of A are contained in the level
set H−1(−1).

(III.4) In the finite region, the number of singular points is related to b10−3. If
b10 < 3, then there is a focus. If b10 = 3, then we have a node and a saddle–node.
If b10 > 3, then we have a saddle, a stable node and an unstable node.

At infinity, A is a non–elementary singular point with (e,h) = (1, 1). There
is also a saddle on U1.

The phase portraits are shown in (65) (b10 < 3), (70) (b10 = 3) and (81)
(b10 > 3). If b10 ≥ 3, then V −1(0) contains the separatrices of the finite singular
points. If b10 < 3 then V −1(0) contains the focus.

(III.5) At the finite region, we have an unstable node. At infinity, A is non–
elementary with (e,h) = (1, 1), and there is a saddle on the chart U1. The phase
portrait is shown in (65). The separatrices of A are contained in the level set
H−1(4).

(III.6) At the finite region, the number of singular points is related to the
discriminant 16b210(1 − 2b10). If b10 < 0, then there are two saddles, an unstable



3.2. Phase portraits 157

node and a stable node. If 0 < b10 < 1/2, then there are no finite singular points.
If b10 = 1/2, we have a non–elementary singular point, which splits in a saddle
and a center for b10 > 1/2.

At infinity, A is a node and there are a saddle and a node on U1. The set
V −1(0) contains the separatrix of this infinite saddle. For the finite singular
points, the separatrices are contained in level set H−1(0).

The phase portraits are shown in (93) if b10 < 0, in (84) if 0 < b10 < 1/2, in
(87) if b10 = 1/2 and in (99) if b10 > 1/2.

(III.7) There are a saddle and a non–elementary singular point at the finite
region. At infinity, we have a saddle and two nodes. The phase portrait is shown
in (94). The set V −1(0) is the straight line y = 0.

3.2.9 Systems (VII)

These systems were studied in Subsection 2.3.5. We use the notation given in
that subsection.

(VII.1) There are no finite singular points. At infinity, A is non–elementary,
with two hyperbolic sectors and there is a node on U1. The phase portrait is
shown in (45).

Remark 3.2.6. We note that (45) is an example of a quadratic polynomial
foliation with three separatrices of hyperbolic sectors (see [29]). 2

(VII.2) The behavior of this system is similar as in (VII.1), the only difference
is the number of parabolic sectors in a neighborhood of A. The phase portrait is
shown in (46). The separatrix is contained in V −1(0).

(VII.3) Once again, there are no finite singular points. At infinity, A is a non–
elementary singular point. It has two hyperbolic sectors if m < 1 and it has two
elliptic sectors if m > 1. There is also a singular point on U1. It is a node if
m < 1 and a saddle if m > 1. The set V −1(0) contains the finite separatrices of
the infinite singular points.

The phase portraits are shown in (45) if m < −1, in (46) if −1 < m < 1 and
in (43) if m > 1.

(VII.4) The study of the phase portraits is the same for both values of δ. Its
behavior is the same as in (VII.3) for −1 < m < 1, so we get (46).
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(VII.5) Once again, there are no finite singular points. The infinite singular
point A, which is non–elementary, defines two elliptic sectors for δ = −1. If
δ = 0, then the infinity is degenerated, and A is a non–elementary singular point.
In this case, the ω–limit of the left half–plane is A, and the α–limit of the right
half–plane is the infinite singular point A′. Both half planes are separated by
V −1(0).

If δ = −1, then we have (35). If δ = 0, then we have (1). If δ = 1, then we
have (12).

(VII.6) The origin is a saddle–node. The point A is non–elementary, and there
is a singular point p1 on U1, which is a node if m < 1 and a saddle if m > 1. In
the case m = 1, the infinity is degenerated.

The phase portraits are shown in (56) if m < 1, in (5) if m = 1 and in (55)
if m > 1. All the separatrices are contained in V −1(0).

(VII.7) The origin is a non–elementary singular point with two hyperbolic
sectors, defined by V −1(0). The point A is also non–elementary, and it has two
elliptic sectors. Moreover, there is a saddle on U1. The phase portrait is shown
in (51).

(VII.8) The origin is a non–elementary singular point with two hyperbolic
sectors, defined by H−1(0). The point A is a node. Moreover, there are a saddle
and a node on U1. The separatrices of this infinite saddle are contained in V −1(0).
The phase portrait is shown in (88).

(VII.9) The behavior of the system for b20 > −1 is the same as in (VII.8),
but in this case all the separatrices are contained in V −1(0). If b20 = −1, then
the origin is a non–elementary singular point and an infinite point p1 on U1 is a
saddle–node. A is a node. Finally, if b20 < −1 then A is the only infinite singular
point, and the origin is a non–elementary singular point. The separatrices of all
the singular points are contained in V −1(0).

The phase portraits are shown in (13) if b20 < −1, in (66) if b20 = −1 and in
(88) if b20 > −1.

(VII.10) There are no finite singular points if b00 < 0 and two finite saddle–
nodes if b00 > 0. The separatrices are contained in V −1(0). At infinity, A is a
node and there are two singular points on chart U1. One of them is a node and
the other one is a saddle. The separatrices of the saddle are contained in a level
set of H.

The phase portraits are shown in (85) if b00 < 0 and in (91) if b00 > 0.
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(VII.11) The behavior of the system is the same as in (VII.10) for b00 > 0, so
its phase portrait is (91).

(VII.12) The behavior of the system is the same as in (VII.10) for b00 < 0, so
its phase portrait is (85).

3.2.10 Systems (VI)

These systems were studied in Subsection 2.3.6. We use the notation given in
that subsection.

As ẋ = 1+x2 > 0, there are no finite singular points in the following systems,
so we just have to study the infinity.

(VI.1) A is a non–elementary singular point with two hyperbolic sectors. More-
over, there is a node on U1. The phase portrait is shown in (44).

(VI.2) The behavior of this system is the same as in (VI.1).

(VI.3) The behavior of this system is the same as in (VI.1).

(VI.4) The infinity is degenerated. After removing the line of infinite singular
points, if b 6= 0 then A is a focus, and if b = 0 then it is a center. The phase
portrait is shown in (2).

Remark 3.2.7. A perturbation of system (2) could give a limit cycle from the
graphic formed by the infinite line of singular points and the set V −1(0). 2

(VI.5) A is non–elementary; it has two elliptic sectors if m > 1 and two hyper-
bolic sectors if m < 1. Moreover, there is an infinite singular point p1 on U1. It
is a saddle if m > 1 and a node if m < 1. In the case m > 1, the straight line
y = 0 is contained in V −1(0), separates the plane into two canonical regions, and
the phase portrait (42) is obtained. In the second case, we have a phase portrait
as in (VI.1).

(VI.6) The behavior of this system is the same as in (VI.1).

(VI.7) The point A is non–elementary, and it has two elliptic sectors. Moreover,
there is a saddle on chart U1. The phase portrait is shown in (43). The set V −1(0)
is not relevant for this system.
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(VI.8) The point A is a node. Moreover, there are a saddle and a node on U1.
The separatrices of this infinite saddle are formed by V −1(0). The phase portrait
is shown in (84).

(VI.9) For all possible values of b00, the behavior of the system is the same as
in (VII.12), so we have the phase portrait shown in (85).

(VI.10) The behavior of this system is the same as in (VI.9).

3.2.11 Systems (V)

These systems were studied in Subsection 2.3.7. We use the notation given in
that subsection.

(V.1) There are two finite saddles. At infinity, A is a non–elementary singular
point with two elliptic sectors. Moreover, there is a node on U1. The phase
portraits are shown in (73) if δ = 0 and in (72) if δ = 1. The difference between
the two phase portraits is that in the case δ = 0 the saddles are connected.

(V.2) There are no finite singular points. At infinity, A is a non–elementary
singular point with two hyperbolic sectors, and there is a node on U1. The phase
portrait is the same for the two possible systems, and it is shown in (47). V −1(0)
contains the two straight lines which separate the phase space in three canonical
regions.

(V.3) At the finite region, there are a saddle and an unstable node. At infinity,
A is non–elementary, with two hyperbolic sectors. Moreover, there is a node on
U1. The set V −1(0) contains the separatrices of the saddle and the straight line
x = 1 which defines the hyperbolic sectors of A. The phase portrait is shown in
(71).

(V.4) The behavior of the system is the same as in (V.3). In this case, the
separatrices of the saddle are contained in a level set of H, and V −1(0) is the
straight line x = 1.

(V.5) The infinity is degenerated. Removing the line of singularities, A is a
node if |b| > 1 and a saddle if |b| < 1. At the finite region, there are a saddle
and an unstable node if |b| > 1 and two nodes (of different stability) if |b| < 1. If
|b| > 1, then the separatrices of the saddle are contained in V −1(0). For |b| < 1,
V −1(0) defines two hyperbolic sectors. The phase portraits are shown in (9) if
|b| > 1, and in (8) if |b| < 1.
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(V.6) If δ = 0, then the phase portrait is the same as in (V.5) for |b| > 1.
In this case, the separatrices of the saddle are not contained in V −1(0), but we
have another inverse integrating factor, which is W (x, y) = (−1 + x2)y, and the
separatrices are contained in W−1(0). We have here an example of a system hav-
ing two different polynomial inverse integrating factors, one of them containing
separatrices and the other one not.

Assume δ = 1. We have a saddle and an unstable node at the finite region, and
A is the only infinite singular point. It is non–elementary, with (e,h) = (1, 1). Its
phase portrait is shown in (18). The separatrices of the saddle are contained in
a level set of H, and V −1(0) contains the separatrix which defines the hyperbolic
sector of A′.

(V.7) An unstable node is the only finite singular point. If δ = 0, then b00 6= 0,
so by an easy change of variables we transform it into 1. In this case, the infinity
is degenerated, and A′ is a saddle–node. The set V −1(0) contains the finite
separatrix which define it. The phase portrait is shown in (6).

If δ = 1, then A is the only infinite singular point, with (e,h) = (1, 3) if
b00 < −1 and (e,h) = (0, 2) if b00 > −1. The set V −1(0) contains the separatrices
which define all the sectors. The phase portraits are shown in (40) if b00 < −1
and in (39) if b00 > −1.

(V.8) There are two finite singular points. If m < −|b|, then we have two
saddles. If either −|b| < m < |b| and m < 1, or 1 < m < |b|, then we have a
saddle and an unstable node. If either m > |b| and m > 1, or |b| < m < 1, then
we have two nodes of different stability.

At infinity, the point A is non–elementary, and there is a singular point on
U1, which is a saddle or a node depending on the values of m and b.

In all cases, V −1(0) contains all the finite separatrices of the phase portrait.
The phase portraits are (73) if m < −|b|, in (71) if −|b| < m < |b|, 1, in (67) if
1 < m < |b|, in (74) if m > |b|, 1 and in (75) if |b| < m < 1.

(V.9) There are two finite singular points. If m < −1, then we have two
saddles. The separatrices of the saddle laying on x = 1 are contained in V −1(0).
If m > −1, then we have a saddle and a node. In this case, the separatrices are
not contained in V −1(0).

At infinity, A is non–elementary. If |m| > 1, then it has two elliptic sectors.
If |m| < 1, then it has two hyperbolic sectors. There is a singular point on U1,
which is a saddle if m > 1 and a node if m < 1. In the saddle case, its separatrices
are contained in V −1(0).

The phase portraits are shown in (72) if m < −1, in (71) if −1 < m < 1 and
in (68) if m > 1.
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(V.10) The behavior of the system if |b| < k−2 is the one of (74), explained in
(V.8), but in this case V −1(0) contains the separatrices on the straight lines x =
±1. If |b| > k− 2, the phase portrait is the one corresponding to (68), explained
in (V.9), but in this case the straight line x = −1, formed by separatrices, is
contained in V −1(0).

(V.11) If q− r− 1 > 0, then the behavior of the system is the same as in (V.1)
for δ = 1, so its phase portrait is (72). The straight lines x = ±1 are contained
in V −1(0). If q − r − 1 < 0, then the phase portrait is equivalent to the one in
(V.3), but in this case only the separatrices on x = ±1 are contained in V −1(0).

(V.12) If r > 0, then the behavior of the system is the same as in (V.11) for
q − r − 1 > 0, so its phase portrait is (72). If r < 0, then the phase portrait is
equivalent to the one in (V.11) for q − r − 1 < 0.

(V.13) The behavior of the system is the same as in (V.11) for q − r − 1 > 0,
so its phase portrait is (72).

(V.14) There are four finite singular points, two saddles and two nodes of
different stability. The separatrices of the saddles are not contained in V −1(0).

At infinity, A is a node. There are two singular points on U1: a node and a
saddle. The separatrices of the saddle are contained in V −1(0).

The phase portrait is shown in (93).

(V.15) There are two finite singular points if b20 < −1 (a node and a saddle),
three if b20 = −1 (a node, a saddle and a saddle–node) and four if b20 > −1 (two
saddles and two nodes of different stability).

At infinity, A is a node. If b20 = −1, then there is a non–elementary singular
point p1 on U1, which splits into a saddle and a node if b20 > −1.

If b20 < −1, then V −1(0) contains the node, and the phase portrait is (20).
If b20 = −1, then V −1(0) contains the separatrices of the saddle–node and p1,
and the phase portrait is (78). If b20 > −1, the phase portrait is as in (V.14),
but in this case V −1(0) contains the separatrices of the infinite saddle and the
separatrices of the finite saddle with x = −1.

(V.16) If b00 > 0, then the phase portrait is the one appearing in (V.14), but
now V −1(0) contains only the separatrices of the finite saddles.

If b00 = 0, then we have two finite saddle–nodes. Their separatrices are
contained in V −1(0).
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At infinity, A is a node, and there are a saddle and a node on U1. The
separatrices of this saddle are not contained in V −1(0). The phase portrait is
(91).

If b00 < 0, the behavior of the system is the same as in (VI.10).

(V.17) The phase portrait is equivalent to the one of (V.14). The set V −1(0)
contains the separatrices of the finite saddles which are on the straight lines
x = ±1.

3.2.12 Systems (II)

These systems were studied in Subsection 2.3.8. We use the notation given in
that subsection. In the study of the phase portraits of systems (II) we must
take into account, for n 6= 0, 1 and l 6= 0, three discriminants. The first one is
m2 − 4l(n− 1), which corresponds to the infinite singular points. The second one
belongs to ẏ = 0 assuming x = 0, and it is b2 − 4dn. And the third one belongs
to ẏ = 0 assuming y = 0, and it is a2 − 4dl. If n ∈ {0, 1} and/or l = 0, it is not
necessary to compute some of these discriminants, so the study is a priori easier.

We summarize the study of these systems in tables, following this notation:
F.S.P.: finite singular points. I.S.P.: infinite singular points. P.P.: phase portrait.
∅: no singular points. S: saddle. C: center. N: node. F: focus. SN: saddle–node.
n ∈ Z: non–elementary singular point of index n. D.I.: degenerate infinity.

(II.1) We first consider the systems (II.1a). As n 6= 0, 1 and l 6= 0, we must
study all the discriminants. The first one is a constant, and the others are, up
to a non–zero constant, b00 and 1 − 4b00δ. So, depending on b00 and δ = ±1, we
may have ten different phase portraits.

For the systems (II.1b) we must consider the six cases which appear from the
combinations of the values of σ and δ. So six phase portraits appear.

For the systems (II.1c) we must consider the three cases corresponding to the
different values of σ.

For the systems (II.1d) two different phase portraits may appear.
In Table 3.1 we show the different systems which arise from system (II.1). We

give the corresponding number of their phase portrait figure.

(II.2) In the following systems, the infinite singular point A is semi–hyperbolic.
We first consider the system (II.2a). The discriminants to study are, up to a

non–zero constant, b20, (1− 4b20δ). So, depending on b20 and δ, we may have ten
different phase portraits.

For the systems (II.2b) we consider the six systems which appear from the
combinations of the values of σ and δ.
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Subcase Range of parameters F.S.P. I.S.P. P.P.
(a) δ = 1, b00 < 0 S,S N,N,N 95
(a) δ = 1, b00 = 0 S,-1 N,N,N 95
(a) δ = 1, 0 < b00 < 1/4 S,S,S,C N,N,N 115
(a) δ = 1, b00 = 1/4 S,S,0 N,N,N 116
(a) δ = 1, b00 > 1/4 S,S N,N,N 105
(a) δ = −1, b00 < −1/4 ∅ N 12
(a) δ = −1, b00 = −1/4 0 N 13
(a) δ = −1, −1/4 < b00 < 0 S,C N 16
(a) δ = −1, b00 = 0 C,-1 N 16
(a) δ = −1, b00 > 0 S,S,C,C N 22
(b) δ = −1, σ = −1 ∅ N 12
(b) δ = −1, σ = 0 0 N 13
(b) δ = −1,σ = 1 S,S,C,C N 22
(b) δ = 1, σ = −1 S,S N,N,N 95
(b) δ = 1, σ = 0 -2 N,N,N 90
(b) δ = 1, σ = 1 S,S N,N,N 105
(c) σ = −1 S N,1 52
(c) σ = 0 -1 N,1 52
(c) σ = 1 S,S,C N,1 77
(d) δ = −1 ∅ N,0 44
(d) δ = 1 S,S N,2 73

Table 3.1: Relations between the parameters of cases (II.1) and the phase portraits.

In Table 3.2 we show the different systems which arise from system (II.2). The
set V −1(0) is the straight line x = 0. It plays an important role in the systems
where δ = 1, because it is the separatrix of the infinite saddle. If δ = −1, then
the set V −1(0) is not relevant.

(II.3) For systems (II.3a) the discriminants are, up to a non–zero constant, b20,
δ and (1 − 4b20δ). So, depending on b20 and δ, we may have ten different phase
portraits. The different systems are summarized in Table 3.3. For the rest of
the systems, as the parameters take discrete values, we consider all these values.
The set V −1(0) is the straight line x = 0. It plays an important role in all the
systems, because it contains the separatrices of the infinite saddle.

(II.4) The number of finite singular points is δ + 1. Moreover, the kind of
singular points depend on the sign of b00. The discriminants depend on b00 6= 0.

When saddles or saddle–nodes (finite or infinite) appear, the set V −1(0) con-
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Subcase Range of parameters F.S.P. I.S.P. P.P.
(a) δ = 1, b20 < 0 C,C S 27
(a) δ = 1, b20 = 0 C S,1 62
(a) δ = 1, 0 < b20 < 1/4 S,C S,N,N 99
(a) δ = 1, b20 = 1/4 0 S,N,N 87
(a) δ = 1, b20 > 1/4 ∅ S,N,N 84
(a) δ = −1, b20 < −1/4 ∅ N 12
(a) δ = −1, b20 = −1/4 0 N 13
(a) δ = −1, −1/4 < b20 < 0 S,C N 16
(a) δ = −1, b20 = 0 S N,1 52
(a) δ = −1, b20 > 0 S,S N,N,N 95
(b) δ = −1, σ = −1 ∅ N 12
(b) δ = −1, σ = 0 ∅ N,0 44
(b) δ = −1,σ = 1 S,S N,N,N 95
(b) δ = 1, σ = −1 C,C S 27
(b) δ = 1, σ = 0 ∅ S,2 42
(b) δ = 1, σ = 1 ∅ S,N,N 84

Table 3.2: Relations between the parameters of cases (II.2) and the phase portraits.

tains their separatrices, except for the finite saddle when δ = 1 and b00 < 0. So,
as we can see in the phase portraits, V −1(0) plays a very important role in the
sense that it defines almost all the canonical regions of the system. The results
are shown in Table 3.4.

(II.5) For systems (II.5a) the relevant discriminants are, up to a non–zero con-
stant, δ, (1 − 4b20δ). Moreover, if b20 = 0, then the infinity is degenerated. So,
depending on b20 and δ, we may have ten different phase portraits. When b20 < 0,
the set V −1(0) contains the separatrices of the infinite saddle. Otherwise it is not
relevant.

For systems (II.5c), if σ = 0 then the infinity is degenerated. After removing
the line of singularities, if δ = 1 then the point p1 = (0, 0) on U1 is a center, and
if δ = −1 then it is a saddle. The set V −1(0) does not play an important role if
σ = 0.

The different systems are summarized in Table 3.5.
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Subcase Range of parameters F.S.P. I.S.P. P.P.
(a) δ = 1, b20 < 0 C,C S 27
(a) δ = 1, b20 = 0 C S,1 62
(a) δ = 1, 0 < b20 < 1/4 S,C S,N,N 99
(a) δ = 1, b20 = 1/4 0 S,N,N 87
(a) δ = 1, b20 > 1/4 ∅ S,N,N 84
(a) δ = −1, b20 < −1/4 N,N S 30
(a) δ = −1, b20 = −1/4 N,N,0 S 31
(a) δ = −1, −1/4 < b20 < 0 S,C,N,N S 32
(a) δ = −1, b20 = 0 S,N,N S,1 81
(a) δ = −1, b20 > 0 S,S,N,N S,N,N 93
(b) σ = −1 C,1 S 25
(b) σ = 0 1 S,1 53
(b) σ = 1 S,1 S,N,N 94
(c) δ = −1, σ = −1 N,N S 30
(c) δ = −1, σ = 0 N,N S,0 74
(c) δ = −1,σ = 1 S,S,N,N S,N,N 93
(c) δ = 1, σ = −1 C,C S 27
(c) δ = 1, σ = 0 ∅ S,2 42
(c) δ = 1, σ = 1 ∅ S,N,N 84
(d) δ = −1 2 S 24
(d) δ = 1 0 S,N,N 88

Table 3.3: Relations between the parameters of cases (II.3) and the phase portraits.

Range of parameters F.S.P. I.S.P. P.P.
δ = 0, b00 < 0 N SN,SN 60
δ = 0, b00 > 0 S SN,2 59
δ = 1, b00 < 0 S,N N,SN,SN 101
δ = 1, b00 > 0 S,C N,SN,SN 100

Table 3.4: Relations between the parameters of cases (II.4) and the phase portraits.
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Subcase Range of parameters F.S.P. I.S.P. P.P.
(a) δ = 1, b20 < 0 C,C S 27
(a) δ = 1, b20 = 0 C D.I. 7
(a) δ = 1, 0 < b20 < 1/4 S,C N 16
(a) δ = 1, b20 = 1/4 0 N 13
(a) δ = 1, b20 > 1/4 ∅ N 12
(a) δ = −1, b20 < −1/4 N,N S 30
(a) δ = −1, b20 = −1/4 N,N,0 S 31
(a) δ = −1, −1/4 < b20 < 0 S,C,N,N S 32
(a) δ = −1, b20 = 0 S,N,N D.I. 11
(a) δ = −1, b20 > 0 S,S,N,N N 21
(b) σ = −1 C,1 S 25
(b) σ = 0 1 D.I. 4
(b) σ = 1 S,1 N 17
(c) δ = −1, σ = −1 N,N S 30
(c) δ = −1, σ = 0 N,N D.I.,S 8
(c) δ = −1,σ = 1 S,S,N,N N 21
(c) δ = 1, σ = −1 C,C S 27
(c) δ = 1, σ = 0 ∅ D.I.,C 2
(c) δ = 1, σ = 1 ∅ N 12
(d) δ = −1 2 S 24
(d) δ = 1 0 N 13

Table 3.5: Relations between the parameters of cases (II.5) and the phase portraits.

(II.6) The number of finite singular points is 2δ + 1. Moreover, the local be-
havior at the singular points depends on the sign of b20. The discriminants are
always constant, so they do not affect in the study of the systems. If δ = 1 and
b20 < 0, then the infinite saddle is semi–hyperbolic.

The set V −1(0) contains all the separatrices appearing in the phase portraits,
except the separatrices of the saddle when δ = 1 and b20 > 0. The results are
shown in Table 3.6. For δ = 0, the system is homogeneous of degree 2, so the
Jacobian matrix at the origin is the zero matrix.

(II.7) The infinity is degenerated. At the finite region, there are a saddle–node
and a stable node. The set V −1(0) contains the separatrices of the saddle–node.
The phase portrait is shown in (10).
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Range of parameters F.S.P. I.S.P. P.P.
δ = 0, b20 < 0 2 S,SN 50
δ = 0, b20 > 0 0 N,SN 66
δ = 1, b20 < 0 C,N,SN S,SN 79
δ = 1, b20 > 0 S,N,SN N,SN 78

Table 3.6: Relations between the parameters of cases (II.6) and the phase portraits.

(II.8) The infinity is degenerated. After removing the line of singularities, and
in the case δ = 0, A is a saddle if b00 < 0, a node if 0 < b00 ≤ 1/4 and a focus if
b00 > 1/4. The set V −1(0) contains all the separatrices of all the phase portraits.
The results are shown in Table 3.7.

Range of parameters F.S.P. I.S.P. P.P.
δ = 1, b00 < 0 S,N,N - 11

δ = 1, 0 < b00 < 1/4 S,N,N - 11
δ = 1, b00 = 1/4 N,SN - 10
δ = 1, b00 > 1/4 F - 3
δ = 0, b00 < 0 N,N S 8

δ = 0, 0 < b00 < 1/4 S N 9
δ = 0, b00 = 1/4 SN N 5
δ = 0, b00 > 1/4 ∅ F 2

Table 3.7: Relations between the parameters of cases (II.8) and the phase portraits. The
infinity is degenerated.

(II.9) We distinguish six cases, depending on the values of δ and σ. The first
discriminant, affecting the infinite, is always −4b20(n − 1). The second one is
−4σn. The third one is δ−4σb20. So depending on their values, we have different
behaviors. The set V −1(0) contains the straight line. Moreover, there is a conic
in V −1(0), which may contain separatrices of the saddles, when they exist. If
such conic is an ellipse, then it is formed by more than one orbit.

For each one of these six systems which arise from the values of δ and σ we
have done a table specifying the singular points, the conditions on the parameters
and the number of the corresponding phase portrait.
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Range of parameters F.S.P. I.S.P. P.P.
b20 < 0, n < 0 S,S,C,C N 22
b20 = 0, n < 0 S,S,C N,1 77

0 < b20 < 1/4, n < 0 S,S,S,C N,N,N 115
b20 = 1/4, n < 0 S,S,0 N,N,N 116
b20 > 1/4, n < 0 S,S N,N,N 105
b20 < 0, 0 < n < 1 C,C S 27
b20 = 0, 0 < n < 1/2 C S,1 62
b20 = 0, 1/2 < n < 1 C S,1 82

0 < b20 < 1/4, 0 < n < 1 S,C S,N,N 99
b20 = 1/4, 0 < n < 1 0 S,N,N 87
b20 > 1/4, 0 < n < 1 ∅ S,N,N 84

b20 < 0, n > 1 C,C S,S,N 106
b20 = 0, n > 1 C N,-1 63

0 < b20 < 1/4, n > 1 S,C N 16
b20 = 1/4, n > 1 0 N 13
b20 > 1/4, n > 1 ∅ N 12

Table 3.8: Relations between the parameters of cases (II.9) with δ = σ = 1 and the phase
portraits.

Range of parameters F.S.P. I.S.P. P.P.
b20 < −1/4, n < 0 ∅ N 12
b20 = −1/4, n < 0 0 N 13

−1/4 < b20 < 0, n < 0 S,C N 16
b20 = 0, n < 0 S N,1 52
b20 > 0, n < 0 S,S N,N,N 95

b20 < −1/4, 0 < n < 1 N,N S 30
b20 = −1/4, 0 < n < 1 N,N,0 S 31

−1/4 < b20 < 0, 0 < n < 1 S,C,N,N S 32
b20 = 0, 0 < n < 1 S,N,N S,1 81
b20 > 0, 0 < n < 1 S,S,N,N S,N,N 93
b20 < −1/4, n > 1 N,N S,S,N 107
b20 = −1/4, n > 1 N,N,0 S,S,N 111

−1/4 < b20 < 0, n > 1 S,C,N,N S,S,N 117
b20 = 0, n > 1 S,N,N N,-1 76
b20 > 0, n > 1 S,S,N,N N 21

Table 3.9: Relations between the parameters of cases (II.9) with δ = 1, σ = −1 and the phase
portraits.
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Range of parameters F.S.P. I.S.P. P.P.
b20 < 0, n < 0 C,-1 N 16
b20 = 0, n < 0 -1 N,1 52
b20 > 0, n < 0 S,-1 N,N,N 95

b20 < 0, 0 < n < 1 C,1 S 26
b20 = 0, 0 < n < 1 1 S,1 54
b20 > 0, 0 < n < 1 S,1 S,N,N 96
b20 < 0, n > 1 C,1 S,S,N 97
b20 = 0, n > 1 1 N,-1 57
b20 > 0, n > 1 S,1 N 17

Table 3.10: Relations between the parameters of cases (II.9) with δ = 1, σ = 0 and the phase
portraits.

Range of parameters F.S.P. I.S.P. P.P.
b20 < 0, n < 0 S,S,C,C N 22
b20 = 0, n < 0 S,S N,2 73
b20 > 0, n < 0 S,S N,N,N 105

b20 < 0, 0 < n < 1 C,C S 27
b20 = 0, 0 < n < 1 ∅ S,2 42
b20 > 0, 0 < n < 1 ∅ S,N,N 84
b20 < 0, n > 1 C,C S,S,N 106
b20 = 0, n > 1 ∅ N,0 44
b20 > 0, n > 1 ∅ N 12

Table 3.11: Relations between the parameters of cases (II.9) with δ = 0, σ = 1 and the phase
portraits.
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Range of parameters F.S.P. I.S.P. P.P.
b20 < 0, n < 0 ∅ N 12
b20 = 0, n < 0 ∅ N,0 44
b20 > 0, n < 0 S,S N,N,N 95

b20 < 0, 0 < n < 1 N,N S 30
b20 = 0, 0 < n < 1 N,N S,0 74
b20 > 0, 0 < n < 1 S,S,N,N S,N,N 93
b20 < 0, n > 1 N,N S,S,N 107
b20 = 0, n > 1 N,N N,-2 75
b20 > 0, n > 1 S,S,N,N N 21

Table 3.12: Relations between the parameters of cases (II.9) with δ = 0, σ = −1 and the
phase portraits.

Range of parameters F.S.P. I.S.P. P.P.
b20 < 0, n < 0 0 N 13

b20 < 0, 0 < n < 1 2 S 24
b20 < 0, n > 1 2 S,S,N 86
b20 > 0, n < 0 -2 N,N,N 90

b20 > 0, 0 < n < 1 0 S,N,N 88
b20 > 0, n > 1 0 N 13

Table 3.13: Relations between the parameters of cases (II.9) with δ = σ = 0 and the phase
portraits.
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(II.10) The number of finite singular points depends on the sign of ∆ = b2−4dn.
Moreover, the behavior of the singular points depends, when ∆ > 0 on the relation
between b and

√
∆.

At infinity the behavior of A depends on the sign of n and n − 1. There is
another infinite singular point p1 on U1 which is non–elementary.

The set V −1(0) contains all the separatrices of all the phase portraits. The
results are shown in Table 3.14.

Range of parameters F.S.P. I.S.P. P.P.
∆ < 0, n < 0 ∅ N,0 44

∆ < 0, 0 < n < 1 ∅ S,2 42
∆ < 0, n > 1 ∅ N,0 44
∆ = 0, n < 0 SN N,0 56

∆ = 0, 0 < n < 1 SN S,2 55
∆ = 0, n > 1 SN N,0 56

∆ > 0, n < 0, b < −
√

∆ S,N N,0 71

∆ > 0, n < 0, |b| <
√

∆ S,S N,2 73

∆ > 0, n < 0, b >
√

∆ S,N N,0 71

∆ > 0, 0 < n < 1, b < −
√

∆ S,N S,2 67

∆ > 0, 0 < n < 1, |b| <
√

∆ N,N S,0 74

∆ > 0, 0 < n < 1, b >
√

∆ S,N S,2 67

∆ > 0, n > 1, b < −
√

∆ S,N N,0 71

∆ > 0, n > 1, |b| <
√

∆ N,N N,-2 75

∆ > 0, n > 1, b >
√

∆ S,N N,0 71

Table 3.14: Relations between the parameters of cases (II.10) and the phase portraits.

(II.11) The number of singular points and their behavior depends on δ, n and
∆ = 1− 4b00(n− 1). The set V −1(0) contains all the separatrices of all the phase
portraits with δ = 0. When δ = 1, V −1(0) contains all the separatrices if there
is a center. If δ = 1 and the system does not have a center, V −1(0) contains the
separatrices of the infinite saddles, saddles or saddle–nodes which are on x = 0.

The results are shown in Tables 3.15 and 3.16.

(II.12) The origin is a non–elementary singular point. There is also an unstable
node at the finite region. At infinity we have two saddles and one node. The set
V −1(0) contains the separatrices of the origin. The phase portrait is shown in
(98).
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Range of parameters F.S.P. I.S.P. P.P.
∆ 6∈ R, n < 0 0 N 13

∆ 6∈ R, 0 < n < 1 2 S 24
∆ 6∈ R, n > 1 0 N 13
∆ = 0, n < 0 0 N,SN 66

∆ = 0, 0 < n < 1 2 S,SN 50
∆ = 0, n > 1 0 N,SN 66

0 < ∆ < 1, n < 0 0 S,N,N 87
0 < ∆ < 1, 0 < n < 1 2 S,S,N 86

0 < ∆ < 1, n > 1 0 S,N,N 87
∆ > 1, n < 0 -2 N,N,N 90

∆ > 1, 0 < n < 1 0 S,N,N 87
∆ > 1, n > 1 2 S,S,N 86

Table 3.15: Relations between the parameters of cases (II.11) with δ = 0 and the phase
portraits.

Range of parameters F.S.P. I.S.P. P.P.
∆ 6∈ R, n < 0 S,F N 19

∆ 6∈ R, 0 < n < 1 C,F S 28
∆ 6∈ R, n > 1 S,F N 19
∆ = 0, n < 0 S,N,SN N,SN 78

∆ = 0, 0 < n < 1 C,N,SN S,SN 79
∆ = 0, n > 1 S,N,SN N,SN 78

0 < ∆ < 1, n < 0 S,S,N,N S,N,N 93
0 < ∆ < 1, 0 < n < 1 S,C,N,N S,S,N 118

0 < ∆ < 1, n > 1 S,S,N,N S,N,N 93
∆ > 1, n < 0 S,S,S,C N,N,N 119

∆ > 1, 0 < n < 1 S,S,N,N S,N,N 93
∆ > 1, n > 1 S,C,N,N S,S,N 118

Table 3.16: Relations between the parameters of cases (II.11) with δ = 1 and the phase
portraits.

(II.13) There are four finite singular points: one saddle (whose separatrices are
contained in V −1(0)) and three nodes, two of them unstable. At infinity, we have
two saddles and one node. The phase portrait is shown in (120).

(II.14) If δ = 1 then we have five phase portraits, which are discussed in Table
3.17. The separatrices of the infinite saddle are not contained in V −1(0), but this
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set contains the separatrices of finite saddles and saddle–nodes. The subcases
depend on the value of b00.

If δ = 0 and σ = −1, then the phase portrait is the same as the one for δ = 1
and b00 < −1/4. If δ = 0 and σ = 1, then the phase portrait is the same as the
one for δ = 1 and b00 > 0.

Range of parameters F.S.P. I.S.P. P.P.
δ = 1, b00 < −1/4 ∅ S,N,N 85
δ = 1, b00 = −1/4 SN,SN S,N,N 91

δ = 1, −1/4 < b00 < 0 S,S,N,N S,N,N 93
δ = 1, b00 = 0 S,N,SN S,N,N 112
δ = 1, b00 > 0 S,S,N,N S,N,N 121
δ = 0, σ = −1 ∅ S,N,N 85
δ = 0, σ = 1 S,S,N,N S,N,N 121

Table 3.17: Relations between the parameters of cases (II.14) and the phase portraits.

(II.15) Following the values of the discriminants, the behavior of the singular
points depends on the value of δ, b00 and 1 − 8b00.

We remark that one of the nodes in the case δ = −1 and b00 = 0 is semi–
hyperbolic. It is a node for b00 < 0 and it bifurcates into two nodes and one
saddle for 0 < b00 < 1/8. This saddle and the other node become a saddle–node
for b00 = 1/8, disappearing for b00 > 1/8.

In the case δ = 1, a similar behavior happens. The two saddles and one node
in the case b00 < 0 become a semi–hyperbolic saddle when b00 = 0.

The set V −1(0) contains the separatrices of the finite saddles and saddle–
nodes. The results are shown in Table 3.18.

We recall that we do not have the expression of V (x, y) for the following four
families.

(II.16) Following the values of the discriminants, the behavior of the singular
points depends on the sign of δ, and p − 1 6= 0. The results are shown in Table
3.19.

(II.17) For system (II.17a), the behavior of the singular points depends on the
values of b00 and 4b00 + q − 2. For system (II.17b) it depends on δ. The results
are shown in Table 3.20.
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Range of parameters F.S.P. I.S.P. P.P.
δ = −1, b00 < 0 N,N S,S,N 107
δ = −1, b00 = 0 N,N S,N,N 107

δ = −1, 0 < b00 < 1/8 S,N,N,N S,S,N 120
δ = −1, b00 = 1/8 N,N,SN S,S,N 113
δ = −1, b00 > 1/8 F,F S,S,N 108
δ = 1, b00 < 0 S,S,N,N N 21
δ = 1, b00 = 0 S,N N 20

δ = 1, 0 < b00 < 1/8 S,N N 20
δ = 1, b00 = 1/8 SN N 14
δ = 1, b00 > 1/8 ∅ N 12

Table 3.18: Relations between the parameters of cases (II.15) and the phase portraits.

Range of parameters F.S.P. I.S.P. P.P.
δ = −1, p = 0 ∅ S,N,N 85
δ = 1, p = 0 S,S,N,N S,N,N 121
δ = −1, p > 1 S,S N,N,N 95
δ = 1, p > 1 S,S N,N,N 105

Table 3.19: Relations between the parameters of cases (II.16) and the phase portraits.

Subcase Range of parameters F.S.P. I.S.P. P.P.
(a) b00 < 0 S,S,N,N S,N,N 121
(a) b00 = 0 S,N,SN S,N,N 112
(a) 0 < b00 < (q − 2)/4 S,S,N,N S,N,N 93
(a) b00 = (q − 2)/4 SN,SN S,N,N 91
(a) b00 > (q − 2)/4 ∅ S,N,N 85
(b) δ = −1 ∅ S,N,N 85
(b) δ = 1 S,S,N,N S,N,N 121

Table 3.20: Relations between the parameters of cases (II.17) and the phase portraits.
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(II.18) At infinity, we have a saddle and two nodes. The behavior of the finite
singular points depends on the sign of δ. If δ = −1, then there are two finite
saddles and two finite nodes. The corresponding phase portrait is (93). If δ = 1,
then there are no finite singular points. We have phase portrait (84).

(II.19) We have two not connected saddles and two nodes. At infinity, there
are two nodes and one saddle. The corresponding phase portrait is (93).

3.2.13 Systems (I)

These systems were studied in Subsection 2.3.8. We use the notation given in
that subsection. In the study of the finite singular points of systems (I), we must
take into account the discriminant of the polynomial equation of degree at most
4 lx4 + ax3 + (d − m)x2 − bx + n = 0, which is shown in (3.6) for l 6= 0. The
discriminant m2 − 4l(n − 1) corresponds again to the infinite singular points. If
n = 1 and/or l = 0, the study is a priori easier.

We summarize the study of the systems in tables, following the same legend
as for systems (II).

(I.1) We first study (I.1a). In order to know the behavior of all the singular
points, we must take into account the sign of the discriminants ∆1 = 3a2

20 + 4b20
and ∆2 = 75a6

20+220a4
20b20−116a3

20+208a2
20b

2
20−144a20b20+64b320+54. In Figure

3.1 we show the bifurcation diagram of the system. We denote by γ1 the blue
curve; by γ2 the black one above γ1; by γ3 the green one; and by γ4 the black and
red below γ1. The curve γ1 corresponds to the equation ∆1 = 0; the others to the
equation ∆2 = 0. Table 3.21 shows the different cases which arise from system
(II.1a). In this table, R1 is the region between γ2 and γ3. R2 is the intersection
of {∆1 < 0} and the region between γ3 and γ4. R3 is the region under γ4.

Next we consider the system (I.1b). The bifurcation values are b00 = −1,−3/4
for σ = 1, b00 = −3/4 for σ = −1 and b00 = 0 for σ = 0. Table 3.22 shows the
different cases which arise from this system.

(I.2) First we study the infinity. If b11 = 0, then we have a non–elementary
singular point p1 = (0, 0) on U1. If b11 6= 0, then there are two on U1. One of
them is p1, which is semi–hyperbolic. The point A is always a node.

At the finite region the bifurcation values are b11 = 0 and, if δ = 1, the value
b11 = 1/4.

The set V −1(0) is the finite separatrix of p1 for b11 ≥ 0. Table 3.23 shows the
different cases which arise from system (I.2).
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Figure 3.1: Bifurcation diagram of system (I.1a). We have a20 in the horizontal axis and b20

in the vertical one.

Region F.S.P. I.S.P. P.P.
{∆1 > 0} \R1 S,S N,N,N 95

R2 S,C N 16
R3 ∅ N 12

R1 ∩ {∆1 < 0} S,S,C,C N 23
R1 ∩ {∆1 > 0} S,S,S,C N,N,N 122

{∆1 = 0} \ {R1 ∩ γ3} S N,1 52
{∆1 = 0} ∩R1 S,S,C N,1 80

γ1 ∩ γ3 S,0 N,1 69
γ2 ∩ γ3 S,-1 N,N,N 95
γ4 0 N 13

γ3 ∩ {∆1 > 0} S,S,0 N,N,N 114
γ2 S,S,0 N,N,N 114

γ3 ∩ {∆1 < 0} S,S,C,C N 41

Table 3.21: Relations between the parameters of cases (I.1a) and the phase portraits.

(I.3) The bifurcation values are b11 = −1/4, 0. The set V −1(0) contains the
finite separatrices of the infinite saddle–nodes. Table 3.24 shows the different
phase portraits which arise from system (I.3).
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Range of parameters F.S.P. I.S.P. P.P.
σ = −1, b00 < −3/4 ∅ N 12
σ = −1, b00 = −3/4 ∅ N,0 44
σ = −1, b00 > −3/4 S,S N,N,N 95
σ = 0, b00 < 0 ∅ N 12
σ = 0, b00 = 0 ∅ N,0 45
σ = 0, b00 > 0 S,S N,N,N 95
σ = 1, b00 < −1 ∅ N 12
σ = 1, b00 = −1 0,0 N 15

σ = 1, −1 < b00 < −3/4 S,S,C,C N 23
σ = 1, b00 = −3/4 S,S N,2 72
σ = 1, b00 > −3/4 S,S N,N,N 95

Table 3.22: Relations between the parameters of cases (I.1b) and the phase portraits.

Range of parameters F.S.P. I.S.P. P.P.
δ = 0, b11 < 0 S,S N,N,N 95
δ = 0, b11 = 0 ∅ N,0 46
δ = 0, b11 > 0 ∅ S,N,N 84
δ = 1, b11 < 0 S,S N,N,N 95
δ = 1, b11 = 0 S N,1 61

δ = 1, 0 < b11 < 1/4 S,C S,N,N 99
δ = 1, b11 = 1/4 0 S,N,N 87
δ = 1, b11 > 1/4 ∅ S,N,N 84

Table 3.23: Relations between the parameters of cases (I.2) and the phase portraits.

Range of parameters F.S.P. I.S.P. P.P.
b11 < −1/4 ∅ N,SN,SN 83
b11 = −1/4 0 N,SN,SN 89

−1/4 < b11 < 0 S,C N,SN,SN 103
b11 = 0 S SN,2 58
b11 > 0 S,C N,SN,SN 104

Table 3.24: Relations between the parameters of cases (I.3) and the phase portraits.
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(δ = 1) (δ = 0)

Figure 3.2: Bifurcation diagram of system (I.4).

(I.4) The infinity is degenerated. At the finite region the discriminants that
must be considered are ∆1 = b10 and ∆2 = 4b300 + 27b210 − (b200 + 4b10 − 18b00b10)δ.
The bifurcation diagrams on the plane (b00, b10) are shown in Figure 3.2. The set
V −1(0) contains all the separatrices appearing in the phase portraits.

The different cases are shown in Tables 3.25 and 3.26. In Table 3.25, we denote
by γ1 the curve ∆1 = 0 (in blue at the picture) and by γ2 the curve ∆2 = 0.
R1 and R2 are the regions outside and inside γ2, respectively. A1 = (a1, 0) is
the intersection point of the green and the blue curves. A2 = (a2, 0) is the
intersection point of the green and the red curves. A3 = (a3, 0) is the intersection
point of the blue and the red curves. The curve γ3 is the line b10 = (2− 9b00)/27,
b00 > a2 = 1/3, in black in the figure. We denote by L1 = (−∞, a1) × {0},
L2 = (a1, a3)×{0} and L3 = (a3,∞)×{0} the three segments, from left to right,
in which γ1 is divided by γ2.

In Table 3.26, we denote by γ1 the curve ∆1 = 0 (in blue at the picture)
and by γ2 the curve ∆2 = 0. R1 and R2 are the regions outside and inside γ2,
respectively. We denote by L1 and L2 the two segments, from left to right, in
which γ1 is divided by γ2.

We note that all from this system we obtain all the phase portrait with de-
generated infinity of Section 3.4.

(I.5) If δ = 1 then the bifurcation values of b11 are b11 = 0, b11 = −1/(4(2n+1))
and b11 = (1−n2)/(4n2(2n+1)). If δ = 0 then we have the bifurcation value b11 =
0. Moreover in all cases we must take into account the values n = −1,−1/2, 0, 1.
The bifurcation diagram in the case δ = 1 is shown in Figure 3.3. In this figure, we
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Region F.S.P. I.S.P. P.P.
R1 F - 3
R2 S,N,N - 11

γ2 \ γ1 N,SN - 10
γ3 C - 7
A1 N SN 6
A2 1 - 4
L1 N,N S 8
L2 ∅ F 2
L3 S,N N 9
A3 SN N 5

Table 3.25: Relations between the parameters of cases (I.4) and the phase portraits for δ = 1.

Region F.S.P. I.S.P. P.P.
R1 F - 3
R2 S,N,N - 11
L1 N,N S 8
L2 ∅ C 2

γ1 ∩ γ2 ∅ 1 1
γ2 \ γ1 N,SN - 10

Table 3.26: Relations between the parameters of cases (I.4) and the phase portraits for δ = 0.

denote by γ1 the red curve and by γ2 the green one. They correspond, respectively,
to the bifurcation curves b11 = −1/(4(2n+ 1)) and b11 = (1− n2)/(4n2(2n+ 1)).
The blue one is b11 = 0. The vertical straight lines are, from left to right,
n = −1,−1/2, 0, 1. For n < −1, up to down, the respective regions between the
curves are R1, R2, R3 and R4. For −1 < n < −1/2, up to down, we have R5 to
R8. For −1/2 < n < 0, R9 to R12. For 0 < n < 1, R13 to R16. And for n > 1,
R17 to R20.

The set V −1(0) contains all the separatrices appearing in the phase portraits.
The different cases are summarized in Tables 3.27 and 3.28.
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Figure 3.3: Bifurcation diagram of system (I.5) for δ = 1.

Range of parameters F.S.P. I.S.P. P.P.
n < −1, b11 > 0 ∅ S,N,N 84
n < −1, b11 < 0 S,S,N,N S,N,N 93

−1 < n < −1/2, b11 > 0 S,S N,N,N 105
−1 < n < −1/2, b11 < 0 S,S N,N,N 95
−1/2 < n < 0, b11 > 0 S,S N,N,N 95
−1/2 < n < 0, b11 < 0 S,S N,N,N 105

0 < n < 1, b11 > 0 C,C S,S,N 106
0 < n < 1, b11 < 0 N,N S,S,N 107
n > 1, b11 > 0 S,S,N,N S,N,N 93
n > 1, b11 < 0 ∅ S,N,N 84
n < −1, b11 = 0 ∅ N,0 46

−1 < n < 0, b11 = 0 ∅ N,0 45
0 < n < 1, b11 = 0 ∅ S,2 43
n > 1, b11 = 0 ∅ N,0 46

Table 3.27: Relations between the parameters of cases (I.5) with δ = 0 and the phase portraits.
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Region F.S.P. I.S.P. P.P.
R1 ∅ S,N,N 84
R2 S,C S,N,N 99
R3 S,S,N,N S,N,N 93
R4 S,S,N,N S,N,N 93
R5 S,S N,N,N 105
R6 S,S,S,C N,N,N 109
R7 S,S,S,C N,N,N 115
R8 S,S N,N,N 95
R9 S,S N,N,N 95
R10 S,S,S,C N,N,N 115
R11 S,S,S,C N,N,N 109
R12 S,S N,N,N 105
R13 C,C S,S,N 106
R14 S,C,N,N S,S,N 117
R15 S,C,N,N S,S,N 110
R16 N,N S,S,N 107
R17 S,S,N,N S,N,N 93
R18 S,S,N,N S,N,N 93
R19 S,C S,N,N 99
R20 ∅ S,N,N 84

{n < −1} ∩ γ1 0 S,N,N 87
{n < −1} ∩ γ2 S,1 S,N,N 96

{−1 < n < −1/2} ∩ γ1 S,S,0 N,N,N 116
{−1 < n < −1/2} ∩ γ2 S,-1 N,N,N 95
{−1/2 < n < 0} ∩ γ2 S,-1 N,N,N 95
{−1/2 < n < 0} ∩ γ1 S,S,0 N,N,N 116
{0 < n < 1} ∩ γ2 C,1 S,S,N 97
{0 < n < 1} ∩ γ1 N,N,0 S,S,N 111
{n > 1} ∩ γ2 S,1 S,N,N 94
{n > 1} ∩ γ1 0 S,N,N 87

{n < −1} ∩ {b11 = 0} S,N N,0 71
{−1 < n < 0} ∩ {b11 = 0} S,S N,2 72
{0 < n < 1} ∩ {b11 = 0} S,N S,2 68
{n > 1} ∩ {b11 = 0} S,N N,0 71

Table 3.28: Relations between the parameters of cases (I.5) with δ = 1 and the phase portraits.
For more information about the definition of the regions, see the legend of Figure 3.3.
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(I.6) The bifurcation values are b00 = 0 and b00 = 1/2. At infinity, A is always
a saddle and there is a singular point p1 on the U1. If b00 ≤ 0, then the set V −1(0)
contains the finite separatrices of p1. If 0 < b00 ≤ 1/2, the horizontal separatrices
of the finite saddle are contained in V −1(0). The results are shown in Table 3.29.

Range of parameters F.S.P. I.S.P. P.P.
b00 < 0 N,N S,0 74
b00 = 0 N S,1 48

0 < b00 < 1/2 S,N S,2 68
b00 = 1/2 SN S,2 51
b00 > 1/2 ∅ S,2 43

Table 3.29: Relations between the parameters of cases (I.6) and the phase portraits.

(I.7) The bifurcation values are b00 = 0 for the infinite singular points and
b00 = −

√
2 for the finite singular points. The set V −1(0) contains the separatrices

of the finite singular points. The results are shown in Table 3.30.

Range of parameters F.S.P. I.S.P. P.P.

δ = 1, b00 < −
√

2 S,S,N,N S,N,N 93

δ = 1, b00 = −
√

2 SN,SN S,N,N 91

δ = 1, b00 > −
√

2 ∅ S,N,N 85
δ = −1 F,F S 29

Table 3.30: Relations between the parameters of cases (I.7) and the phase portraits.

(I.8) If δ = −1 then there is a singular point p1 on the U1; it has two hyperbolic
sectors, determined by the set V −1(0). The point A is a saddle, and there are
two finite nodes. We are in the phase portrait (74).

If δ = 1 then p1 has two elliptic sectors, determined by the finite separatrices
of A, a saddle. There are no finite singular points. The phase portrait is (43).

(I.9) The study of this system is exactly the same as in (I.6). The only differ-
ence is that all the separatrices of finite saddles or saddle-nodes are contained in
V −1(0).
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(I.10) The bifurcation values are b00 = 0 for the infinite singular points and
b00 = 5 for the finite singular points. The set V −1(0) is relevant only for b00 = 5.
In this case, it contains the two separatrices of the hyperbolic sector of the non–
elementary finite singular point. The results are shown in Table 3.31.

Range of parameters F.S.P. I.S.P. P.P.
b01 < 0 S,N N 20
b00 = 0 N N,-1 64

0 < b00 < 5 C,N S,S,N 102
b00 = 5 N,1 S,S,N 98
b00 > 5 S,N,N,N S,S,N 120

Table 3.31: Relations between the parameters of cases (I.10) and the phase portraits.

(I.11) If δ = −1 then there are two saddles on U1. The point A is a node, and
there are also two finite nodes. We have phase portrait (107).

If δ = 1 then the only infinite singular point is A, which is a node. There are
no finite singular points. The corresponding phase portrait is (12).

In both cases, the set V −1(0) is not relevant in the global phase portrait.

(I.12) The behavior of the system is, in all the cases, the same as in (I.11) with
δ = −1.

We recall that we do not have the expression of V (x, y) for the following
families, except for (I.17).

(I.13) The bifurcation values are b00 = (Q−1)/(Q(2Q−1)), (Q+1)/Q if δ = 1
and b00 = (Q− 1)/Q if δ = −1. The results are shown in Table 3.32.

(I.14) The bifurcation values are b11 = δ1 and b11 = δ2, where

δ1 = −jq(q − 2)(q − 2 − j)

4(q − 2 − 2j)2
< 0, δ2 =

j2q(q − 2)(q − 2 − j)2

(q − 2 − 2j)4
> 0.

The results are shown in Table 3.33.

(I.15) The bifurcation values are b00 = 1−2δ/q. The results are shown in Table
3.34.

(I.16) The study is the same as in (I.14).
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Range of parameters F.S.P. I.S.P. P.P.
δ = −1, b00 < (Q− 1)/Q S,S,N,N S,N,N 93
δ = −1, b00 = (Q− 1)/Q SN,SN S,N,N 91
δ = −1, b00 > (Q− 1)/Q ∅ S,N,N 85

δ = 1, b00 < (Q− 1)/(Q(2Q− 1)) ∅ S,N,N 85
δ = 1, b00 = (Q− 1)/(Q(2Q− 1)) ∅ S,N,N 84

δ = 1, (Q− 1)/(Q(2Q− 1)) < b00 < (Q+ 1)/Q ∅ S,N,N 85
δ = 1, b00 = (Q+ 1)/Q SN,SN S,N,N 92
δ = 1, b00 > (Q+ 1)/Q S,S,N,N S,N,N 93

Table 3.32: Relations between the parameters of cases (I.13) and the phase portraits.

Range of parameters F.S.P. I.S.P. P.P.
b11 < δ1 ∅ S,N,N 85
b11 = δ1 SN,SN S,N,N 91

δ1 < b11 6= δ2 S,S,N,N S,N,N 93
b11 = δ2 S,N,SN S,N,N 112

Table 3.33: Relations between the parameters of cases (I.14) and the phase portraits.

Range of parameters F.S.P. I.S.P. P.P.
δ = −1, b00 < 1 + 2/q ∅ S,N,N 85
δ = −1, b00 = 1 + 2/q SN,SN S,N,N 91
δ = −1, b00 > 1 + 2/q S,S,N,N S,N,N 93
δ = 1, b00 < 1 − 2/q S,S,N,N S,N,N 93
δ = 1, b00 = 1 − 2/q SN,SN S,N,N 92
δ = 1, b00 > 1 − 2/q ∅ S,N,N 85

Table 3.34: Relations between the parameters of cases (I.15) and the phase portraits.

(I.17) The bifurcations values of b11 are −5/12 and 10. The set V −1(0) contains
the separatrices of the connected saddles if b11 < 10, and the separatrices of the
non–elementary singular point if b11 = 10. Otherwise V −1(0) is not relevant. The
results are shown in Table 3.35.

(I.18) First we study the finite region. If δ = −1, then there are no finite
singular points. If δ = 1, then we have two saddles and two nodes. At infinity,
the point A is a saddle, and there are also two nodes on U1. The corresponding
phase portraits are (85) if δ = −1 and (121) if δ = 1.
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Range of parameters F.S.P. I.S.P. P.P.
b11 < −5/12 S,S N,N,N 105
b11 = −5/12 S,S,0 N,N,N 116

−5/12 < b11 < 10 S,S,S,C N,N,N 115
b11 = 10 S,-1 N,N,N 95
b11 > 10 S,S N,N,N 95

Table 3.35: Relations between the parameters of cases (I.17) and the phase portraits.

(I.19) The behavior of the singular points depends on the values of δ, and p.
The results are shown in Table 3.36.

Range of parameters F.S.P. I.S.P. P.P.
δ = −1, p = 0 S,S,N,N S,N,N 121
δ = 1, p = 0 ∅ S,N,N 85
δ = −1, p > 1 S,S N,N,N 105
δ = 1, p > 1 S,S N,N,N 95

Table 3.36: Relations between the parameters of cases (I.19) and the phase portraits.

(I.20) The behavior of this system is the same as (I.18), interchanging the
values of δ.

3.3 Conclusions

From the study of the polynomial inverse integrating factors and the correspon-
ding first integrals and phase portraits, we extract some conclusions.

3.3.1 On the polynomial inverse integrating factors

Phase portraits. From all the families of quadratic systems of the classification
of Section 2.3 we have obtained 122 topologically different phase portraits. In our
classification there are few quadratic systems having a polynomial first integral,
which makes explicit that the inverse integrating factor has, in general, an easier
expression (and a bigger domain of definition) than the first integral.

Invariant algebraic curves of arbitrary degree. The classification of the
polynomial inverse integrating factors of Chapter 2 provides examples of invariant
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algebraic curves of arbitrarily high degree, see for example cases (VI.7), (VI.10) or
(II.16). There are in the literature some examples of such curves of high degree,
but as far as we know all of them have a Darboux first integral, as the ones that
we have found.

Some other examples of invariant algebraic curves of arbitrary degree can be
extracted from the expressions of the polynomial and rational first integrals. For
this purpose, we take an example of (polynomial or rational) first integral H of
arbitrary degree and a convenient h ∈ R such that the factorized expression of
H(x, y) − h contains a polynomial of arbitrary high degree. This can be done
with 17 of the 18 polynomial first integrals appearing in Proposition 3.1.3 (the
exception is (I.17)) and with 26 of the 49 rational first integrals appearing in
Proposition 3.1.4.

The degree of V and the phase portraits. From the study of the phase
portraits and the expressions of V , we can state the following result.

Theorem 3.3.1. For each one of the phase portraits shown in Section 3.4 there
is a quadratic system having a polynomial inverse integrating factor of degree at
most six.

We remark that (92) is the only phase portrait for which we have not given an
explicit expression of a polynomial inverse integrating factor. This phase portrait
corresponds to systems (I.13) and (I.15). As the phase portrait does not change
if we vary the degree k of V , we have computed a polynomial inverse integrating
factor of degree six for system (I.13). So Theorem 3.3.1 does not need to be
restricted to (⋆) quadratic systems.

3.3.2 On the phase portraits

As we see in the pictures of Section 3.4, the behaviors of the quadratic systems
having a polynomial inverse integrating factor can be very different, in the sense
that many different topological phase portraits are found in these systems, and
then the existence of a polynomial inverse integrating factor is not restricted to
a certain kind of quadratic systems, except for the fact that all of them have a
Darboux first integral.

We have obtained 122 topologically different phase portraits for the quadratic
systems having a polynomial inverse integrating factor. In these phase portraits
it has been clearly shown the importance of the inverse integrating factor in the
behavior of the orbits of the system. In the most of the cases, the inverse inte-
grating factor contains all or almost all the finite separatrices of the system and
many singular points, so the knowledge of such function gives a lot of information
about the phase portrait.
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The phase portrait (45) corresponds to an example given in [29]. It is a
foliation (a system without finite singular points) of degree two having three
inseparable leaves. With this example, the claim that a quadratic system has at
most two inseparable leaves given in [21] becomes false.

3.3.3 On the non–existence of algebraic limit cycles

As we explained in the introduction, one important property of an inverse inte-
grating factor V (x, y) is that all the limit cycles of the system which are in the
domain of definition of V (x, y) are contained in the set V −1(0). In our study,
the domain of definition of V (x, y) is the whole plane, so V −1(0) contains all the
limit cycles of the system whenever they exist. Moreover, as our inverse inte-
grating factors are polynomials, the limit cycles must be algebraic; that is, they
are contained in an invariant algebraic curve f = 0. It is proved that the known
quadratic systems having an algebraic limit cycle mentioned in the introduction
do not have a Darboux first integral, so they cannot have a polynomial inverse
integrating factor.

From the classification of Chapter 2 we stated Theorem 2.4.2: a (⋆) quadratic
system having a polynomial inverse integrating factor has no algebraic limit cycles.

We believe that this theorem is true for all the quadratic system having a
polynomial inverse integrating factor.

3.3.4 On the critical remarkable values

In Proposition 3.1.4 of Section 3.1, we have listed the rational first integrals as-
sociated to the quadratic systems having a polynomial inverse integrating factor.
For some of these first integrals, there exist one or two critical remarkable values.
These values are always either c = −c2 or c = −c2 − c−1

1 (see Proposition 1.5.3),
and then the corresponding critical remarkable invariant algebraic curves are fac-
tors of the numerator or the denominator of the first integral. The following
theorem gives more information about these curves. Its proof is a consequence of
Proposition 3.1.4.

Theorem 3.3.2. Let ẋ = P (x, y), ẏ = Q(x, y) be a (⋆) quadratic system having a
polynomial inverse integrating factor V (x, y) and a rational first integral H(x, y).
Assume that u1, . . . , ur are critical remarkable invariant algebraic curves associa-
ted to H. Then, the curve ui = 0 is completely contained in the curve V = 0, for
all i ∈ {1, . . . , r}.

3.3.5 Homogeneous quadratic systems

If a quadratic polynomial system has a finite linearly zero singular point, then
it is equivalent to the homogeneous quadratic system ẋ = P2(x, y), ẏ = Q2(x, y),
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where P2 and Q2 are quadratic homogeneous polynomials, doing if necessary a
translation of the linearly zero singular point to the origin. The global phase
portraits of the quadratic homogeneous systems are well known, see [51].

As we know from Example 1.4.4, such homogeneous systems have a polynomial
inverse integrating factor of degree 3, which is yP2 − xQ2. Then these systems
appear in our classification. They correspond to the phase portraits (13), (24),
(66), (50), (90), (86) and (88).

3.3.6 Hamiltonian quadratic systems

The topologically equivalent phase portraits of the Hamiltonian quadratic systems
have been classified in [4]. There are 28 topologically equivalent phase portraits
of such systems. In two of them the component of ẋ is zero and in another one
the system has a common factor. The other 25 systems are contained in our
study. They correspond to the phase portraits (16), (22), (23), (41), (77),
(80), (115), (109), (119), (122), (12), (44), (45), (13), (36), (52), (72),
(73), (69), (90), (116), (95), (105), (114) and (15).

3.3.7 Quadratic systems having a center

The topologically equivalent phase portraits of the quadratic polynomial systems
having a center have been classified in [48]. As we know from Example 1.4.4, such
systems have a polynomial inverse integrating factor, so all these systems appear
in our classification. There are 32 non–topologically equivalent phase portraits
of quadratic systems having a center, but one of them is a linear system and
another one has a finite line of singularities, so we do not consider them. The
others correspond to the phase portraits (16), (22), (23), (77), (80), (41),
(115), (109), (119), (122), (62), (63), (82), (7), (104), (100), (103), (99),
(27), (106), (26), (25), (97), (32), (117), (118), (110), (28), (79) and (102).

In Example 1.4.4 it is said that these systems have a polynomial inverse in-
tegrating factor of degree 3 or 5. With our classification we show that some of
the phase portraits may correspond to quadratic systems having a polynomial
inverse integrating factor of degree k < 3. The only one for which we have a
polynomial inverse integrating factor of degree k > 3 is (102). In this case, we
have a polynomial inverse integrating factor of degree 5.

3.3.8 Quadratic systems having a polynomial first integral

The classification of the quadratic systems having a polynomial first integral is
done in [9]. As we mentioned in Section 2.3, we have used some of the techniques
of that work.
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In Chapter 3 we show the first integrals appearing from our classification,
distinguishing their type. That is, either polynomial, or rational, or Darboux
but neither polynomial nor rational. In Proposition 3.1.3 we show the quadratic
systems having a polynomial inverse integrating factor and a polynomial first
integral, giving the expression of such functions. As the systems having a poly-
nomial first integral have a polynomial inverse integrating factor (see [27]), the
classification in [9] is strongly related with a part of our classification. Moreover,
in [30] it is proved that the set of phase portraits of these systems is included in
the set of Hamiltonian quadratic systems.

3.3.9 Quadratic systems having a rational first integral of
degree 2

In [7] the global phase portraits of the quadratic systems having a rational first
integral of degree 2 are classified. There are 25 non topologically equivalent phase
portraits. Six of these phase portraits correspond to quadratic systems with a
finite curve of singularities. The others are contained in our classification, and
they correspond to the phase portraits (1), (2), (4), (7), (8), (9), (11), (12),
(24), (27), (30), (37), (42), (46), (71), (74), (84), (88) and (93).

3.3.10 Quadratic systems with degenerated infinity

We know from Subsection 3.2.4 that a quadratic system having degenerated in-
finity can be written into the form

ẋ = a00 +a10x+a01y+a20x
2 +a11xy, ẏ = d+ax+ by+a20xy+a11y

2, (3.10)

where all the parameters are real. The following result characterizes this family
of systems.

Proposition 3.3.3. Any quadratic system having degenerated infinity has a poly-
nomial inverse integrating factor of degree 3.

Proof: By using Proposition 2.1.2 and after an affine change of variables and a
rescaling of the time, we can transform system (3.10) into a family or a subfamily
of systems (III.2b), (VII.5), (VII.6), (VI.4), (V.5), (V.6), (V.7), (II.5a), (II.5b),
(II.5c), (II.7), (II.8) and (I.4), and as we proved in Chapter 2 we have a polynomial
inverse integrating factor of degree 3 for each one of them.

The phase portraits obtained from system (3.10) are the phase portraits (1)–
(11) given in Section 3.4. They are also obtained only from system (I.4),

ẋ = 1 + xy, ẏ = b00 + b10x+ δy + y2,

where δ ∈ {0, 1} and b00, b10 ∈ R.
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3.4 List of phase portraits

We finally show the phase portraits of the quadratic systems having a polynomial
inverse integrating factor. We have used the program P4 for drawing them. In
the pictures, a blue (red) curve means stable (unstable) separatrix, green means
curve of singularities, black means regular orbit. For the singular points, see
Table 3.37.

Symbol Behavior of the singular point

Green square (rhombus) Saddle (center)

Green triangle Semi–hyperbolic saddle

Violet triangle Saddle–node

Blue (red) square Stable (unstable) node

Blue (red) triangle Stable (unstable) semi–hyperbolic node

Blue (red) rhombus Stable (unstable) strong focus

White cross Non–elementary singular point

Table 3.37: Legend of the singular points of the phase portraits.

(1) (2) (3) (4)

(5) (6) (7) (8)
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(9) (10) (11) (12)

(13) (14) (15) (16)

(17) (18) (19) (20)

(21) (22) (23) (24)

(25) (26) (27) (28)
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(29) (30) (31) (32)

(33) (34) (35) (36)

(37) (38) (39) (40)

(41) (42) (43) (44)

(45) (46) (47) (48)
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(49) (50) (51) (52)

(53) (54) (55) (56)

(57) (58) (59) (60)

(61) (62) (63) (64)

(65) (66) (67) (68)
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(69) (70) (71) (72)

(73) (74) (75) (76)

(77) (78) (79) (80)

(81) (82) (83) (84)

(85) (86) (87) (88)
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(89) (90) (91) (92)

(93) (94) (95) (96)

(97) (98) (99) (100)

(101) (102) (103) (104)

(105) (106) (107) (108)
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(109) (110) (111) (112)

(113) (114) (115) (116)

(117) (118) (119) (120)

(121) (122)

Figure 3.4: Phase portraits corresponding to the quadratic systems having a polynomial
inverse integrating factor.
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Chapter 4

Polynomial inverse integra-
ting factors for polynomial
vector fields

In this first article, we present some results and one open question on the existence
of polynomial inverse integrating factors for planar polynomial vector fields. This
is a joint work with Jaume Llibre and Adam Mahdi, and it has been accepted for
publication in Discrete and Continuous Dynamical Systems.

4.1 Introduction

A polynomial vector field defined on C2 (respectively R2) is a vector field of the
form

X(x, y) = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
, (4.1)

where P and Q are complex (respectively real) polynomials in the variables x and
y. The maximum of the degrees of P and Q is called the degree of X. Sometimes
to simplify notation we shall write that X = (P,Q).

For simplicity, in the whole paper we will assume that the polynomials P and
Q are coprime in the ring of all complex polynomials C[x, y]. If they are not
coprime, doing easy arguments, we can extend all the results to that case.

We remark that since the real polynomial vector fields are particular cases of
the complex ones, the results for the complex are also true for the reals. In what
follows we shall give several definitions for polynomial vector fields in C2, but in
a similar way they can be given for polynomial vector fields in R2.

Let U be an open subset of C2. If there exists a non–constant C1 function
H : U → C, eventually multi–valued, which is constant on all the solutions of
X contained in U , then we say that H is a first integral of X, and that X is
integrable on U . Then, we have XH = 0 on U .

If V : U → C is a function satisfying the linear partial differential equation

P
∂V

∂x
+Q

∂V

∂y
=

(
∂P

∂x
+
∂Q

∂y

)
V (4.2)
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on U , then V is called an inverse integrating factor of X on U . From its definition,
it follows that the curve V = 0 is formed by trajectories of the system.

We say that the inverse integrating factor V is associated to the first integral
H of the vector field X given by (4.1) on U if we have

P

V
= −∂H

∂y
,

Q

V
=
∂H

∂x

on U .
One of the main open problems in the qualitative theory of planar polynomial

vector fields X is to characterize the integrable ones. A good way to study
integrable vector fields is through the inverse integrating factor V , for more details
see [4]. Moreover, if X is real and V : U → R is an inverse integrating factor of
X on the open subset U of R2, then V becomes very important because {V = 0}
contains the limit cycles of X which are in U , see [9, 10]. Moreover if V is
polynomial, then it is defined on the whole R2 and consequently knowing such
kind of V ’s we can control all limit cycles of X, see for instance [10].

In this paper we are mainly interested in studying the polynomial vector
fields having a polynomial inverse integrating factor. But we start presenting the
known relationships between the nature of the first integrals and the nature of
their associated inverse integrating factors.

Let f1, . . . , fp, g, h be complex polynomials in the variables x and y and let
λ1, . . . , λp be complex numbers. Then, a function of the form

fλ1
1 · · · fλp

p exp (g/h)

is called Darboux.
For a definition of Liouvillian function see Singer [14], roughly speaking a

Liouvillian function comes from the integral of a Darboux function.
The following theorem summarizes some relations between the first integrals

and the inverse integrating factors for a polynomial vector field X in C2.

Theorem 1. Let X be a polynomial vector field in C2.

(a) If X has a Liouvillian first integral, then it has a Darboux inverse integrating
factor.

(b) If X has a Darboux first integral, then it has a rational inverse integrating
factor.

(c) If X has a polynomial first integral, then it has a polynomial inverse inte-
grating factor.

Statement (a) of Theorem 1 was proved in [14] and [6]. Statement (b) was
proved in [5]. Note that statement (c) corresponds to statement (b) of the Main
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Theorem of [5], but there is a misprint in [5], because in the proof of this statement
is shown the existence of a polynomial integrating factor, instead of the existence
of a polynomial inverse integrating factor. Statement (c) of Theorem 1 is proved
in Proposition 8, see Section 4.2.

Note that in statements (a) and (b) of Theorem 1 the expression of the inte-
grating factor is easier than the expression of the first integral. So, in these cases
the study of the integrability of such systems is easier looking for their inverse
integrating factors instead of looking for their first integrals.

Looking at Theorem 1 a natural question appears: Suppose that the polynomial
vector field X has a rational first integral. When does X have a polynomial inverse
integrating factor? Such X’s were characterized in the next result proved in [5].
For the precise definitions of the notions which appear in it, see Section 4.3.

Theorem 2. Let X be a polynomial vector field. Suppose that H = f/g is
a canonical rational first integral and that X has no polynomial first integrals.
Then, X has a polynomial inverse integrating factor if and only if H has at most
two critical remarkable values.

We mention here that if X has a rational first integral, then it always has a
canonical rational first integral, for a proof see Section 4.3.

As far as we know Theorem 2 was not complete in the sense that there were
no examples of polynomial vector fields satisfying its assumptions and without
a polynomial inverse integrating factor. In what follows we provide such an
example.

Proposition 3. The polynomial vector field

X = 2x(5 + 30x+ 40x2 + 8y2)
∂

∂x
+ y(5 + 44x+ 80x2 + 16y2)

∂

∂y
, (4.3)

has a rational first integral, and has neither a polynomial first integral, nor a
polynomial inverse integrating factor.

In Section 4.3 we present some preliminary results that we need for proving
Proposition 3 in Section 4.4. We remark that the polynomial vector field of
Proposition 3 also has been studied for other reasons in [5], see there system (23)
with a = 1.

As we will see in the next result many families of polynomial vector fields in
R2 with a center have a polynomial inverse integrating factor. The definitions of
the notions which appear in the statement of these results are given in Section
4.5, where we also give either references for their proofs, or prove them.

Theorem 4. Assume that X is a polynomial vector field in R2. Suppose that X
satisfies one of the following conditions:
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(i) It is homogeneous.

(ii) It is quasi–homogeneous.

(iii) It has degree 2 and a center.

Then, X has a polynomial inverse integrating factor.

All polynomial vector fields of Theorem 4 having a center; of course, also have
a polynomial inverse integrating factor. But, as the following result shows, there
are polynomial vector fields having a center which do not have polynomial inverse
integrating factors.

Proposition 5. The polynomial vector field

X(x, y) = y3 ∂

∂x
− 1

2
x2(2x− y2)

∂

∂y
, (4.4)

has a center at the origin and has no polynomial inverse integrating factors.

The polynomial vector field of Proposition 5 was studied by Moussu [11] in
order to provide a degenerate center for which does not exist a local analytic first
integral. Proposition 5 will be proved in Section 4.6.

We have the following question.

Open Question. Assume that X is a polynomial vector field having a center.
How to characterize the X’s having a polynomial inverse integrating factor?

There are other papers which deal with polynomial inverse integrating factors,
but considering distinct aspects of those studied here, see for instance [2, 11, 39].

4.2 X has a polynomial first integral

In the rest of this paper X will always denote a polynomial vector field.
Let f ∈ C[x, y]. The algebraic curve f(x, y) = 0 is invariant for X if Xf/f is

a polynomial of C[x, y]. It is known that if the algebraic curve f = 0 is invariant,
then it is formed by orbits of X, for more details see [7]. We note that the
invariant algebraic curves will play a key role in this paper. In fact, they play a
main role in the Darboux theory of integrability, and our paper is dedicated to
a particular case of this theory, to study the systems which have a polynomial
inverse integrating factor.

Proposition 6. Let g be a polynomial and gn1
1 · · · gnr

r its decomposition in irre-
ducible factors in C[x, y]. Then, g = 0 is an invariant algebraic curve if and only
if all the gj are invariant algebraic curves for j = 1, . . . , r. Moreover, if K and
Kj are the cofactors of f and fj, then K = n1K1 + · · · + nrKr.
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Proof: See [7].
We shall need the following result.

Lemma 7. Let X be a polynomial vector field, H be a first integral of X, and V
be an inverse integrating factor of X. Then, V H is another inverse integrating
factor of X.

Proof: It follows easily from the definition (4.2) of inverse integrating factor.
Now we prove statement (c) of Theorem 1.

Proposition 8. Let X be a polynomial vector field X in C2. If X has a polyno-
mial first integral, then it has a polynomial inverse integrating factor.

Proof: Let H be a polynomial first integral of X. We note that a polynomial
function is a particular case of a Darboux function. Therefore, by statement (b)
of Theorem 1, X has a rational inverse integrating factor V = f/g, where f and
g are coprime polynomials. It is known that the curves f = 0 and g = 0 are
invariant algebraic curves of X, see for instance [5].

Let gn1
1 · · · gnr

r be with ni ∈ N the factorization of g in irreducible factors
in C[x, y]. By Proposition 8, gj = 0 is an invariant algebraic curve of X for
j = 1, . . . , r. Let hj be the value of the first integral H on the points of the
irreducible invariant algebraic curve gj = 0.

The Hilbert’s Nullstellensatz (see for instance, [8]) states: Set A,Bi ∈ C[x, y]
for i = 1, · · · , s. If A vanishes in C2 whenever the polynomials Bi vanish simul-
taneously, then there exist polynomials Mi ∈ C[x, y] and a nonnegative integer n
such that An = M1B1 + · · · +MsBs. Taking A = H − hj, s = 1 and B1 = gj, we
get that gj divides (H − hj)

n for some nonnegative n. Since gj is irreducible, gj
divides H − hj. Therefore, there exists a polynomial sj such that H − hj = sjgj.

Since H is a polynomial first integral of X (i.e. H is constant on the solutions
of X), it follows that K = (H − h1)

n1 · · · (H − hr)
nr is another polynomial first

integral of X. By Lemma 7, V K is an inverse integrating factor of X. Since
H − hj = sjgj, it follows that V K is a polynomial. Hence, the proposition is
proved.

4.3 Some preliminary results

Let H = f/g be a rational first integral of the polynomial vector field X. We say
that H has degree n if n is the maximum of the degrees of f and g. We say that
the degree of H is minimal between all the degrees of the rational first integrals
of X if any other rational first integral of X has degree ≥ n.

Let H = f/g be a rational first integral of X. According to Poincaré [13] we
say that c ∈ C∪{∞} is a remarkable value of H if f+cg is a reducible polynomial
in C[x, y]. Note that for all c ∈ C the curve f + cg = 0 is an invariant algebraic
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curve. Here, if c = ∞, then f + cg denotes g. In [5] it is proved that there are
finitely many remarkable values for a given rational first integral H.

Now suppose that c ∈ C is a remarkable value of a rational first integral H
and that uα1

1 · · ·uαr
r is the factorization of the polynomial f + cg into irreducible

factors in C[x, y]. If some of the αi for i = 1, . . . , r is larger than 1, then we say
(following again Poincaré) that c is a critical remarkable value of H, and that
ui = 0 having αi > 1 is a critical remarkable invariant algebraic curve of X with
exponent αi.

Now, if H = f/g is a minimal rational first integral of X of degree n which is
not polynomial, then

H1 =
1

c1 + f/g
+ c2 =

g + c2(f + c1g)

f + c1g
=
f1

g1

, (4.5)

for any c1, c2 ∈ C, is also a rational first integral of X. It is known that there are
complex values of c1 and c2 for which the numerator and the denominator of H1

are irreducible polynomials of degree n. One way to see this is the following. We
claim that there are finitely many values of c1 and c2 such that g + c2(f + c1g)
and f + c1g are reducible. In order to prove the claim assume that it is not
true. Then, in particular there are infinitely many values of c1 and c2 for which
g+ c2(f + c1g) and f + c1g factorize in polynomial factors of degree smaller than
n. Consequently, the rational first integral H1 has infinitely many remarkable
values, and this is a contradiction.

We say that a rational first integral H1 = f1/g1 of a polynomial vector field
X is canonical if H1 is minimal and f1 and g1 are irreducible polynomials in
C[x, y] having the same degree. Note that the previous arguments show that
if a polynomial vector field has a rational first integral, then it has a canonical
rational first integral.

Theorem 9. Let X be a polynomial vector field. Suppose that H = f/g is
a canonical rational first integral and that X has no polynomial first integrals.
Consider the rational function

Vf/g =
g2

∏
uαi−1
i

,

where the product runs over all critical remarkable invariant algebraic curves
ui = 0 having exponent αi of X. Then, Vf/g is an inverse integrating factor of
X.

For a proof of Theorem 9 see the Main Theorem in [5].
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4.4 Proof of Proposition 3

In all this section X is the polynomial vector field of Proposition 3. Then, it is
easy to check that X has the rational first integral

H(x, y) =
(3x+ 12x2 − 4 y2)

2
(x+ 2x2 + 2 y2)

3

y10
;

i.e. XH = 0. From (4.5) and for convenient complex numbers c1 and c2, we have
that H1 = f1/g1 is a canonical rational first integral of X, where

f1(x, y) = 9 c2 x
5 + 126 c2 x

6 + 684 c2 x
7 + 1800 c2 x

8 + 2304 c2 x
9 +

1152 c2 x
10 + 30 c2 x

4 y2 + 408 c2 x
5 y2 + 1944 c2 x

6 y2 +

3840 c2 x
7 y2 + 2688 c2 x

8 y2 − 20 c2 x
3 y4 + 24 c2 x

4 y4 +

768 c2 x
5 y4 + 1280 c2 x

6 y4 − 120 c2 x
2 y6 − 768 c2 x

3 y6 −
768 c2 x

4 y6 − 384 c2 x
2 y8 + (1 + 128 c2 + c1 c2) y

10,

g1(x, y) = 9x5 + 126x6 + 684x7 + 1800x8 + 2304x9 + 1152x10 +

30x4 y2 + 408x5 y2 + 1944x6 y2 + 3840x7 y2 +

2688x8 y2 − 20x3 y4 + 24x4 y4 + 768x5 y4 + 1280x6 y4 −
120x2 y6 − 768x3 y6 − 768x4 y6 − 384x2 y8 + (c1 + 128) y10.

Now we show that X has no polynomial first integrals. Assume that F is a
polynomial first integral of X of degree m. Let Fm be the homogeneous part of
F of degree m. Then, since XF = 0, taking only the higher order terms of XF ,
we get that

2x
(
40x2 + 8 y2

) ∂Fm
∂x

+ y
(
80x2 + 16 y2

) ∂Fm
∂y

= 0,

or equivalently,

x
∂Fm
∂x

+ y
∂Fm
∂y

= 0.

Since the general solution of this linear partial differential equation is an arbitrary
function in the variable y/x, and Fm must be a homogeneous polynomial of degree
m, it follows that X cannot have a polynomial first integral.

We remark that H1 is a canonical rational first integral of X, and that X
has no polynomial first integrals. So, X satisfies the assumptions of Theorem 2.
Therefore, if we prove that H1 has at least three critical remarkable values, by
Theorem 2(a), it follows that X has no polynomial inverse integrating factors.
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For c = −c2, we have that f1 + cg1 = y10. So, −c2 is a critical remarkable
value of H1 and y = 0 is the corresponding critical remarkable invariant curve of
X with exponent 10.

For c = −(1 + 128c2 + c1c2)/(128 + c1), we have that

f1 + cg1 = − x2

128 + c1
h(x, y),

where

h(x, y) = 9x3 + 126x4 + 684x5 + 1800x6 + 2304x7 + 1152x8 +

30x2 y2 + 408x3 y2 + 1944x4 y2 + 3840x5 y2 + 2688x6 y2 −
20x y4 + 24x2 y4 + 768x3 y4 + 1280x4 y4 − 120 y6 −
768x y6 − 768x2 y6 − 384 y8.

Hence, −(1 + 128c2 + c1c2)/(128 + c1) is a critical remarkable value of H1 and
x = 0 is the corresponding critical remarkable invariant curve of X with exponent
2.

For c = −(1 + c1c2)/c1, we have that

f1 + cg1 = − 1

c1

(
3x+ 12x2 − 4 y2

)2 (
x+ 2x2 + 2 y2

)3
.

Therefore, −(1 + c1c2)/c1 is a critical remarkable value of H1, and 3x + 12x2 −
4 y2 = 0 and x+2x2+2 y2 = 0 are the corresponding critical remarkable invariant
curves of X with exponent 2 and 3, respectively.

In short, we have proved that the polynomial vector field X given by (4.3)
has a rational first integral and does not have a polynomial inverse integrating
factor. Therefore, Proposition 3 is proved.

In fact, we can prove that H1 has exactly these three critical remarkable
values. This follows from statement (c.1) of the Main Theorem of [5], because
the rational function

V =
g2
1

y9x(3x+ 12x2 − 4 y2)(x+ 2x2 + 2 y2)2

is the inverse integrating factor of the polynomial vector field (4.3), having in its
denominator all the critical remarkable invariant algebraic curves.

4.5 Proof of Theorem 4

In all this section we assume that X is a polynomial vector field in R2 having a
center.
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First we provide all the definitions that appear in the statement of Theorem
4.

Let p ∈ R2 be a singular point of X. We say that p is a center if there is a
neighborhood U of p such that all the orbits of U \ {p} are periodic.

If X given by (4.1) has the polynomials P and Q homogeneous with the same
degree, then we say that the polynomial vector field X is homogeneous.

In what follows p and q will denote positive integers. We say that a func-
tion F (x, y) is (p, q)–quasi–homogeneous of weight degree m ≥ 0 if F (ℓpx, ℓqy) =
ℓmF (x, y) for all ℓ ∈ R.

A polynomial vector field X given by (4.1) is (p, q)–quasi–homogeneous of
weight degree m ≥ 0 (or simply quasi–homogeneous) if P and Q are (p, q)–quasi–
homogeneous functions of weight degrees p− 1 +m and q − 1 +m, respectively.

Note that the (1, 1)–quasi–homogeneous polynomial vector fields of weight
degree m coincide with the homogeneous polynomial vector fields of degree m.

We also note that if X is (p, q)–quasi–homogeneous, then the differential equa-
tion dy/dx = Q/P (another way to work with X) is invariant by the change of
variables (x, y) → (ℓpx, ℓqy).

If condition (i) of Theorem 4 holds by X, then it is easy to check that
xQ(x, y)−yP (x, y) is a polynomial inverse integrating factor of the homogeneous
polynomial vector field X.

If condition (ii) of Theorem 4 holds by X, then it is easy to check that
pxQ(x, y) − qyP (x, y) is a polynomial inverse integrating factor of the (p, q)–
quasi–homogeneous polynomial vector field X.

If condition (iii) of Theorem 4 is satisfied by X, in [1] and [12] it is proved that
X has a polynomial inverse integrating factor of degree 3 or 5 for any quadratic
vector field X having a center.

In short, we have proved Theorem 4.

4.6 Proof of Proposition 5

In all this section X will be the polynomial vector field (4.4) of Proposition 5.
The origin is a center of X because it is a monodromic singular point, and X

is ϕ–reversible with respect to the involution ϕ(x, y) = (x,−y); i.e. X satisfies

Dϕ(p)X(p) = −X ◦ ϕ(p), p ∈ R2.

Suppose that X has a polynomial inverse integrating factor V of degree k.
Then, it satisfies equation (4.2). Writing V as a sum of homogeneous polynomials;
i.e,

V (x, y) = V0 +
k∑

i=1

Vi(x, y),
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where V0 ∈ R and Vi ∈ R[x, y] are homogeneous polynomials of degree i for
i = 1, . . . , k, we obtain a system of partial differential equations. The partial
differential equation of degree k + 3, using the Euler formula for homogeneous
functions, becomes

x2y

(
Vk(x, y) −

y

2

∂Vk
∂y

)
= 0.

From this equation and since V can be determined unless a constant, we get

Vk(x, y) = xk−2y2.

Now we can substitute this expression in the partial differential equation of degree
k+2, and again using the Euler formula for the homogeneous functions, it becomes

x2y

(
xk−5(−2x4 + (k − 2)y4) + Vk−1(x, y) −

y

2

∂Vk−1

∂y
(x, y)

)
= 0.

¿From this equation, we obtain

Vk−1(x, y) = xk−5
(
−2x4 + c1x

2y2 − (k − 2)y4
)
,

where c1 ∈ R. Finally, substituting the expressions of Vk and Vk−1 into the partial
differential equation of degree k + 1, we obtain

x2y
(
− xk−8(2c1x

6 − 2(k − 3)x4y2 − 3c1(k − 3)x2y4 + (k − 2)(k − 5)y6)

−Vk−2(x, y) +
y

2

∂Vk−2

∂y
(x, y)

)
= 0.

Therefore, we have

Vk−2(x, y) = −2c1x
k−2 +

(
−4(k − 3)xk−4 log y + c2x

k−4
)
y2

−c1(k − 3)xk−6y4 + (k − 2)(k − 5)xk−8y6/2,

where c2 ∈ R. This function must be a polynomial, and then we must take k = 3.
Finally, direct computations show that there is no polynomial inverse inte-

grating factor of degree 3 for the vector field (4.4).

Acknowledgments. We must thank Javier Chavarriga for his good comments
related with Propositions 3 and 8.
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Chapter 5

Periodic orbits for a class
of C1 three–dimensional sys-
tems

In this second article, we perturb a reversible polynomial differential system of
degree 4 in R3 by C1 functions. If the perturbation is strongly reversible, the
dynamics of the perturbed system do not change. Otherwise, if the perturba-
tion is non–strongly reversible, we prove the existence of an arbitrary number of
symmetric periodic orbits. This is a joint work with Jaume Llibre and Marco
António Teixeira, and it has been submitted for publication.

5.1 Introduction

A vector field X : R3 → R3 of the form X = (P,Q,R) is called a polynomial
vector field of degree m if P , Q and R are polynomials of degree ≤ m and at least
one of them has degree m.

A diffeomorphism ϕ : R3 → R3 is called an involution if ϕ ◦ ϕ = Id. A vector
field X is reversible if there exists an involution ϕ such that ϕ∗X = −X ◦ ϕ; i.e.,
dϕp(X(p)) = −X(ϕ(p)). Let Sϕ be the set of fixed points of ϕ. An orbit γ is
symmetric if ϕ(γ) = γ. Hence, every singular point of X in Sϕ is symmetric.
Some classical properties of reversible systems are:

(i) The phase portrait of X is symmetric with respect to Sϕ.

(ii) A symmetric singular point or a symmetric periodic orbit cannot be an
attractor or a repellor.

(iii) If X(p) = 0 and p 6∈ Sϕ, then X(ϕ(p)) = 0.

(iv) If an orbit γ intersects Sϕ in two distinct points, then γ is a periodic orbit.

(v) If γ is an orbit of X such that γ 6⊂ Sϕ and p ∈ γ ∩ Sϕ, then X(p) 6∈ TpSϕ.

(vi) Any periodic orbit γ of X not crossing Sϕ, has a symmetric one given by
ϕ(γ).

217
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(vii) Let γ be an orbit having stable manifold W s(γ) and unstable manifold
W u(γ). Then,

ϕ(W s(γ)) = W u(ϕ(γ)), ϕ(W u(γ)) = W s(ϕ(γ)).

In this paper we perturb a polynomial system in R3 by C1 functions and we
use the symmetry to prove that the perturbed system has an arbitrary number
of symmetric periodic orbits.

Let X0 be the vector field associated to the polynomial differential system of
degree 4

ẋ = (y2 + z2)(1 − y2 − z2), ẏ = −z + xy, ż = y + xz, (5.1)

where x, y, z ∈ R, or in cylindric coordinates (taking y = r cos θ and z = r sin θ)

ẋ = r2(1 − r2), ṙ = xr, θ̇ = 1, (5.2)

where x, r ∈ R, r ≥ 0, and θ ∈ Σ1. In both cases, the dot means derivative with
respect to the time t ∈ R.

System (5.2) has a first integral H : R2 × Σ1 → R defined by

H(x, r, θ) = −2x2 + 2r2 − r4. (5.3)

We denote Hc = H−1(c), for c ∈ [0, 1]. The level H0 is, topologically, a sphere
with two different points identified at the origin. The origin is a singular point,
and all the other orbits in H0 are homoclinic orbits at the origin. The level H1 is
the periodic orbit x = 0, r = 1, see Figure 5.1.

We denote D3 the bounded region H−1((0, 1)) ⊂ R3. If 0 < c < 1, then Hc

is an invariant torus inside D3. In the whole paper, all the three–dimensional
systems considered are studied only in the bounded region D3 = H−1([0, 1]) =
H0 ∪D3 ∪H1.

Systems (5.1) and (5.2) are reversible with respect to the linear involution ϕ
defined by

ϕ(x, y, z) = (−x, y,−z) (5.4)

for system (5.1), and

ϕ(x, r, θ) = (−x, r,−θ) (5.5)

for system (5.2). The set Sϕ of fixed points of ϕ is the segment x = z = 0,
y ∈ [−

√
2,
√

2]. In polar coordinates, Sϕ can be written as x = 0, r ∈ [0,
√

2],
θ ∈ {0, π}.
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Figure 5.1: Phase portrait of system (5.2) in the region D3.

We say that a ϕ–reversible system of the form

ẋ = f(x2, r, θ), ṙ = x g(x2, r, θ), θ̇ = 1 + h(x2, r, θ),

is strongly reversible if f , g and h do not depend on θ.
For a strongly ϕ–reversible perturbation Yε of the vector field Y0 = X0, defined

by system (5.2), we prove the following theorem.

Theorem 1. Let Yε be the strongly ϕ–reversible vector field associated to the
system

ẋ = r2(1 − r2) + εf(x2, r, ε),
ṙ = x(r + εg(x2, r, ε)),

θ̇ = 1 + εh(x2, r, ε),
(5.6)

with f, g, h ∈ C1, f(0, 0, ε) = 0. Suppose that H0 and H1 are invariant by the
flow of Yε, and that the system (ẋ, ṙ) restricted to D3 ∩ {θ = constant} has only
two singular points, (x, r) = (0, 0) and (x, r) = (0, 1). Then, D3 is fulfilled of
invariant tori.

Let Xε be the non–strongly ϕ–reversible perturbation of X0 associated to the
system

ẋ = r2(1 − r2) + εf(x, r, θ, ε),
ṙ = x(r + εg(x, r, θ, ε)),

θ̇ = 1 + εh(x, r, θ, ε),
(5.7)

with f, g, h ∈ C1. The main goal of this paper is to prove that, for ε > 0 sufficiently
small and under convenient conditions there exist an arbitrary number of periodic
orbits for system Xε.

Let γ be a periodic orbit of period P such that there existm,n ∈ N, (m,n) = 1
satisfying the relation

2πn = mP.



220 5. Periodic orbits for 3–dimensional systems

We define the rotation number of γ as m/n. If a periodic orbit γ of system (5.2)
has rotation number m/n, then after a time 2πn it has made m turns to the
periodic orbit H1.

We prove the following theorem.

Theorem 2. Let (5.7) be a non–strongly ϕ–reversible C1–perturbation of system
(5.2) such that H0 and H1 are invariant by the flow of (5.7) and f(0, 0, θ, ε) = 0.
Let m/n ∈ (0,

√
2), m,n ∈ N, (m,n) = 1. Then, there exists εn > 0 such that

if ε ∈ (0, εn), then Xε has two periodic orbits of period 2πn and rotation number
m/n.

Let T̃n,ε be the n–th return map of the Poincaré function of system (5.7); that
is, the image of the section θ = 0 under the flow of system (5.7) after a time 2πn.

Corollary 3. Under the hypotheses of Theorem 2, all the periodic orbits γ of
system (5.7) with period ≤ 2πn and rotation number m/n, satisfy

T̃n,ε(γ)−→
ε→0

T̃n(γ),

where T̃n = Tn,0.

The paper is structured as follows. In Section 5.2 we study the dynamics of
the vector field X0. In Section 5.3 and 5.4 we prove Theorem 1 and Theorem
2, respectively. Finally, in Section 5.5 we relate Theorem 2 with the well–known
Poincaré–Birkhoff Theorem.

5.2 The dynamics of X0 on D3

As we said in Section 5.1, the level H0 is formed by homoclinic orbits at the
origin. These homoclinic orbits are γµ = {(xµ(t), rµ(t), t) : t ∈ R}, where

xµ(t) =
2(µ− t)

1 + 2(µ− t)2
, rµ(t) =

√
2√

1 + 2(µ− t)2
,

for all µ ∈ R. Then, H0 \ {(0, 0, 0)} = {γµ : µ ∈ R}. The set H1 can be written
as H1 = {(0, 1, t) : t ∈ R (mod 2π)}.

The phase portrait of system (5.2) comes from a rotation of the phase portrait
of the system

ẋ = r2(1 − r2), ṙ = rx, (5.8)

defined in R2
+ = {(x, r) ∈ R2 : r ≥ 0}, see Figure 5.1. This planar system has the

first integral K : R2
+ → R given by

K(x, r) = −2x2 + 2r2 − r4. (5.9)
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We note that K is the same function as the first integral H defined in Section
5.1, but we write different names in order to distinguish the space where they are
used, R3 for H and R2

+ for K.
System (5.8) has a degenerate saddle at the origin, and the curve K−1(0) is

a homoclinic loop of this saddle. It also has a center at x = 0, r = 1, with
eigenvalues ±i

√
2, where i =

√
−1. This center corresponds to K−1(1), and

becomes the periodic orbit H1 when we consider system (5.2).
System (5.8) is reversible with respect to the linear involution

ψ(x, r) = (−x, r). (5.10)

The set Sψ of fixed points of ψ in the region D2 = K−1([0, 1]) is the segment
x = 0, r ∈ [0,

√
2]. The phase portrait of system (5.8) restricted to D2 is shown

in Figure 5.1.
We can derive the dynamics of system (5.2) restricted toD3 from the dynamics

of system (5.8) restricted to D2 just observing that the angle θ can be taken as
the time modulus 2π. The flow of system (5.8) at t = 2π gives the first return
map of system (5.2) at the transversal section θ = 0.

Lemma 4. The period function of the periodic orbits γc = K−1(c), c ∈ (0, 1), is
given by

P (c) =
2π√
2c

∈ (
√

2π,+∞).

Proof. Let P (c) be the period of γc. The curve γc cuts Sψ at the points

P0 = (0,
√

1 −
√

1 − c) and P1 = (0,
√

1 +
√

1 − c). We will compute the time
spent by the flow os system (5.2) for going from P0 to P1 through γc. Because of
the symmetry ψ, this time corresponds to half the period. From K(γc) = c, we

have x = ±
√

2r2−r4−c
2

. We take x > 0; if x < 0, then we get the other half of the

period. Substituting x in the expression ṙ = xr and integrating, we obtain

P (c)

2
=

∫ P (c)/2

0

dt =

√
1+

√
1−c∫

√
1−

√
1−c

√
2

r
√

2r2 − r4 − c
dr =

π√
2c
.

Then, the lemma follows.

If 2π/P (c) =
√

2c = m/n ∈ Q, for certain m,n ∈ N such that (m,n) = 1
and m/n ∈ (0,

√
2), then the corresponding torus Hc is fulfilled of periodic orbits.

This happens if c = m2/(2n2). Otherwise, it has a dense orbit, see Appendix 1
of [1].
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Proposition 5. Let m,n ∈ N, (m,n) = 1, such that m/n ∈ (0,
√

2). Let c =
m2/(2n2) ∈ (0, 1). Then, there exist two symmetric periodic orbits of system
(5.2) in the torus Hc with rotation number m/n. These kind of orbits tend to H0

as n tends to infinity, for fixed m.

Proof. Let γ1, γ2 be the orbits of Hc such that (0,
√

1 +
√

1 − c, 0) ∈ γ1 and

(0,
√

1 −
√

1 − c, 0) ∈ γ2. As c = m2/(2n2), we have 2πn = mP (c), so these two
orbits, after a time t = nπ, have done exactly m/2 turns to the periodic orbit
H1, and then they cut Sϕ twice. So they are closed orbits by the property (iv) of
reversible systems stated in Section 5.1.

If n → ∞, then c → 0, so γ1 and γ2 get closer to H0 as n increases, for fixed
m.

Consider the image of the section θ = nπ (mod 2π) by the flow of system
(5.2) at time nπ and let Snπ be the image of the curve Sϕ under the flow of (5.2)
at time nπ. In Figure 5.2 we draw Snπ for n = 0, 1, 2, 3. As H1 is invariant and
the origin is a singular point, Snπ always cuts the axis {x = 0, θ = π} at r = 0
and r = 1.

At time t = 0, we have S0 = Sϕ. At time t = π, Sπ cuts the axis {x = 0, θ = π}
four times (two of them at r = 0, 1), so there exist two symmetric periodic orbits
of period 2π. On these orbits, we have H = 1/2 because m = n = 1, and the
rotation number is 1.

At time t = 2π, S2π cuts the axis {x = θ = 0} six times, two of them at
r = 0, 1 and two of them corresponding to the curves with rotation number 1.
So, there exist two symmetric periodic orbits of period 4π, and on these curves
H = 1/8 (the rotation number is 1/2).

At time t = 3π, S3π cuts the axis {x = 0, θ = π} ten times. Two of them are
at r = 0, 1 and two of them correspond to the curves of rotation number 1, so
there are six symmetric periodic orbits of period 6π, and on these curves either
H = 1/18 or H = 2/9 or H = 8/9 (the respective rotation numbers are 1/3, 2/3
and 4/3).

As time tends to infinity increasing by multiples of π, we find more symmetric
periodic orbits, corresponding to H = m2/(2n2), (m,n) = 1, m/n ∈ (0,

√
2).

We can ensure that at least two of such orbits exist, because (1, n) = 1, for any
n ∈ N.

In the following proposition we prove that, for any n ∈ N, Snπ cuts the y–axis
transversally.

Proposition 6. Let c ∈ (0, 1) and γ ∈ Hc. Let P = (0, r0, 0) ∈ γ ∩ Sϕ, r0 ∈
(0,

√
2). Let Q be the image of P by the flow of system (5.2) at time nπ. Suppose

that Q =∈ Snπ is on the y–axis. Then, Snπ crosses the y–axis at Q transversally.

Proof. Let 0 < c1 < c < c2 < 1. For i = 1, 2, let γi be an orbit of system
(5.2) such that H(γi) = ci and such that there exists Pi ∈ γi ∩ Sϕ. Let P n

i =
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Figure 5.2: The evolution of the set Sϕ for some values of the time.

(xni , r
n
i , nπmod 2π) ∈ γi ∩ Snπ, i = 1, 2. The points P n

1 and P n
2 are close to Q

if c1 and c2 are close to c. Since the period function P is strictly decreasing,
P (c1) > P (c) > P (c2). Then, as Q ∈ Snπ, we have xn1 · xn2 < 0. Taking c1 and c2
are as close to c as we want, the proposition follows.

5.3 On Theorem 1

In this section we prove Theorem 1 and we provide a polynomial differential
system of degree 4 satisfying all its assumptions.

Proof of Theorem 1: Consider the strongly ϕ–reversible perturbation (5.6) of
system (5.2) defined in Theorem 1. As h is defined in the bounded domain D3,
then it is bounded, so for ε small enough, θ̇ = 1 + εh > 0 in D3. Then, we
can take θ as the independent variable to obtain from (5.6) the two–dimensional
system

x′ = F (x2, r, ε) =
r2(1 − r2) + εf(x2, r, ε)

1 + εh(x2, r, ε)
,

r′ = xG(x2, r, ε) = x
r + εg(x2, r, ε)

1 + εh(x2, r, ε)
,

(5.11)

where ′ means derivative with respect to θ. This system is reversible with respect
to the linear involution ψ defined in (5.10), and it is defined in the bounded
domain D2 defined in Section 5.2.
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By hypotheses, the point P1 = (0, 1) is a singular point of (5.11). The Jaco-
bian matrix of (5.11) at P1 is




0
−2 + ε

∂f

∂r
(0, 1, ε)

1 + εh(0, 1, ε)
1 + εg(0, 1, ε)

1 + εh(0, 1, ε)
0


 ,

and it has eigenvalues

±i

√
2 − ε

(
∂f
∂r

(0, 1, ε) + 2g(0, 1, ε)
)

+ ε2 ∂f
∂r

(0, 1, ε)g(0, 1, ε)

1 + εh(0, 1, ε)
.

So P1 is either a center or a focus. But, as it belongs to the set Sψ of fixed points
of ψ, it cannot be a focus, so it is a center, and by hypotheses it is the only
singular point inside the region K−1([0, 1]) \ {(0, 0)}. So the region K−1((0, 1)) is
fulfilled of periodic orbits. Going back to (5.6), as θ̇ > 0 for ε small enough, the
region D3 is fulfilled of invariant tori, and the theorem follows.

Example 5.3.1. Consider the differential system of R3

ẋ = P (x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z),

where P , Q and R are polynomials of degree 4. If this system has a singular point
at the origin, is strongly ϕ–reversible with respect to the linear involution (5.4)
and has H0 and H1 invariant, then it becomes, in polar coordinates,

ẋ = a2r
2(1 − r2) + x2[2a1 + 2a3x

2 − (2a1 + a3)r
2],

ṙ = x r[2a1 + a2 + a3x
2 − a1r

2],

θ̇ = c1 + c2x
2 + c3r

2.
(5.12)

Observe that system (5.2) is a particular example of system (5.12), just take
a2 = c1 = 1 and a1 = a3 = c2 = c3 = 0. So system (5.12) can be written as a
perturbation of (5.2) (we take a2 = c1 = 1 for simplicity):

ẋ = r2(1 − r2) + εx2[2a1 + 2a3x
2 − (2a1 + a3)r

2],
ṙ = x r[1 + ε(2a1 + a3x

2 − a1r
2)],

θ̇ = 1 + ε(c2x
2 + c3r

2).

(5.13)

For this system, Ḣ = 4εx(a1(1−r2)+a3x
2)H, where H is the function defined in

(5.3). For ε small enough, system (5.13) can be written as the two–dimensional
system

x′ =
r2(1 − r2) + εx2[2a1 + 2a3x

2 − (2a1 + a3)r
2]

1 + ε(c2x2 + c3r2)
,

r′ = x r
1 + ε(2a1 + a3x

2 − a1r
2)

1 + ε(c2x2 + c3r2)
.
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For ε small enough, (0, 0) and (0, 1) are the only singular points of this system in
the region K−1([0, 1]), where K is the function defined in (5.9). Then, Theorem
1 can be applied. So, for system (5.13), the region D3 is fulfilled of invariant tori.

5.4 On Theorem 2

In this section we prove Theorem 2 and we provide a polynomial differential
system of degree 4 satisfying all its assumptions.

Proof of Theorem 2: According to Proposition 5, there exist two symmetric pe-
riodic orbits γ1 and γ2 of period 2πn and rotation number m/n of system (5.2)
in the torus Hc, c = m2/(2n2). Each one of these symmetric periodic orbits cut
transversally the y–axis twice, see Proposition 6. Then, due to the theorem of
continuous dependence of the solution of an ODE with respect to initial condi-
tions and parameters, there exist εn > 0 such that, for an ε–perturbation (5.7) of
system (5.2), with ε ∈ (0, εn), two symmetric periodic orbits γε1, γ

ε
2 appear ε–close

to γ1 and γ2, respectively, and γεi −→
ε→0

γi, i = 1, 2. So, Theorem 2 is proved.

From the proof of Theorem 2 it follows immediately Corollary 3.

Example 5.4.1. Consider the differential system of R3

ẋ = P (x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z),

where P , Q and R are polynomials of degree 4. If this system has a singular point
at the origin, is not strongly ϕ–reversible with respect to the linear involution (5.4)
and has H0 and H1 invariant, then it becomes, in polar coordinates,

ẋ = x2[2a1 + 2a3x
2 − (2a1 + a3)r

2] + a5x r(2x
2 − r2) sin θ+

r(1 − r2)[a2r + a6 cos θ + a7r cos2 θ + a4x sin θ],
ṙ = x r[2a1 + a2 + a3x

2 − a1r
2] + a5x

2r2 sin θ+
x[a6 cos θ + a7r cos2 θ + a4x sin θ],

θ̇ = c1 + c2x
2 + c3r

2 + [c4r + c5x
2r + c6r

3] cos θ + c7r
2 cos2 θ+

c8r
3 cos3 θ + c9xr sin θ − (a7 − c10r

2)x cos θ sin θ,

with θ̇ 6= 0. In this case, Ḣ = 4x(a1(1 − r2) + a3x
2 + a5xr sin θ)H. Observe that

if a4 = a5 = a6 = a7 = 0 and c4 = · · · = c10 = 0, we get system (5.12), and we
get system (5.2) if we take a2 = c1 = 1 and the rest of the coefficients zero. So,
we obtain an example of (5.7) taking a2 = c1 = 1 and multiplying the rest of the
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coefficients by ε:

ẋ = ε
[
x2[2a1 + 2a3x

2 − (2a1 + a3)r
2] + a5x r(2x

2 − r2) sin θ+
r(1 − r2)[r + a6 cos θ + a7r cos2 θ + a4x sin θ]

]
,

ṙ = x r + ε
[
x r[2a1 + a3x

2 − a1r
2] + a5x

2r2 sin θ+
x[a6 cos θ + a7r cos2 θ + a4x sin θ]

]
,

θ̇ = 1 + ε
[
c2x

2 + c3r
2 + [c4r + c5x

2r + c6r
3] cos θ + c7r

2 cos2 θ+
c8r

3 cos3 θ + c9xr sin θ − (a7 − c10r
2)x cos θ sin θ

]
.

Then, Theorem 2 can be applied to this system. So, there exist an arbitrary
number of symmetric periodic orbits for this system in the region D3.

5.5 The Poincaré map T̃n,ε

Let A = I × Σ1 be an annulus, where I is a closed interval. We denote its
coordinates by c ∈ I and t (mod 2π) ∈ Σ1. A twist map is a C1–map T : A→ A
such that

T (c, t) =
(
c, t+ τ(c) (mod 2π)

)
(5.14)

for a certain τ(c) and such that τ ′(c) is strictly increasing or decreasing.

We extend the notion of twist map as follows. Let Ã be an annulus and let
T̃ : Ã→ Ã be a C1–map such that the diagram

A −→
T

A

h ↓ ↓ h
Ã −→eT Ã.

commutes, where h is a C1–diffeomorphism. Then, we also say that T̃ is a twist
map.

Let Ã be the annulus of D3 ∩{θ = 0} having boundaries Hci ∩{θ = 0}, where

2π

P (ci)
=

√
2ci ∈ Q,

for i = 1, 2, c1, c2 ∈ (0, 1) and c1 < c2. Let (x(t), r(t)) be the periodic solution

living on Hc ∩ {θ = 0} ⊂ A. Suppose that r(0) = 1. Then, we define T̃n : Ã→ Ã
by

T̃n(x(t), r(t)) = (x(t+ 2πn), r(t+ 2πn)).

Proposition 7. The function T̃n is a twist map in Ã.
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Proof. We define A as the annulus formed by the points
(
c, t (mod 2π)

)
, with

c1 ≤ c ≤ c2 and t ∈ R. Let Tn : A→ A be given by

Tn(c, t) = (c, t+ τ(c)) = (c, t+ 2πn (mod P (c)).

Since P (c) is strictly decreasing, τ(c) is strictly increasing. Finally, defining

h(c, t (mod P (c)) = (x(t+ 2πn), r(t+ 2πn))

if (x(t), r(t)) is the periodic solution such that H(x(t), r(t)) = c, it follows that
the diagram

A −→
Tn

A

h ↓ ↓ h
Ã −→eTn

Ã.

commutes. So, T̃n is a twist map.

Let T̃n be the twist map (5.14) and let T̃n,ε : A→ A be defined by

T̃n,ε(c, t) =
(
c+ εf(c, t, ε), t+ τ(c) + εg(c, t, ε)

)
,

where f and g are C1–functions and ε is a small parameter. If T̃n,ε is area–

preserving, then the Poincaré–Birkhoff Theorem says that T̃n,ε has two different

periodic orbits for each rational number between the rotation numbers of T̃n,ε
on the boundary components of the annulus A. The theorem was conjectured
by Poincaré (see [8]) and proved by Birkhoff (see [2] and [3]) and Brown and
von Newmann (see [4]). Other more recent proofs have weakened the area–
preservation hypotheses (see [6]).

We say that a periodic orbit is hyperbolic if the jacobian of the Poincaré map
on this orbit has not pure imaginary eigenvalues, and they are different from 1
and −1. If all the eigenvalues are pure imaginary and the matrix diagonalizes,
then the periodic orbit is elliptic.

A version of the Poincaré–Birkhoff Theorem is the following one, using the
notation introduced in Proposition 7.

Theorem 8 (Poincaré–Birkhoff Theorem). Let Γ be an invariant curve of T̃n,

n ∈ N, formed by fixed points of (T̃n)
s, where s is the denominator of

√
2c ∈ Q.

If T̃n,ε preserves area, then for ε > 0 sufficiently small the map (T̃n,ε)
s has 2ks

fixed points (k ∈ N) in the neighborhood of the curve Γ, half of them are elliptic
and the other half are hyperbolic.

Note that if our T̃n,ε preserves area, then the two periodic orbits of Theorem
2 correspond to the two periodic orbits of the Poincaré–Birkhoff Theorem. But
we do not know in general that our T̃n,ε preserves the area, or that T̃n,ε satisfies
other assumptions for which the theses of the Poincaré–Birkhoff Theorem hold.
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Chapter 6

Hyperbolic periodic orbits
coming from the bifurca-
tion of a 4–dimensional non–
linear center

In this third article, we study the bifurcation of hyperbolic periodic orbits from
a 4–dimensional non–linear center in a class of differential systems. The tool for
proving these results is the averaging theory. This is a joint work with Jaume
Llibre and Marco António Teixeira, and it has been accepted for publication in
International Journal of Bifurcations and Chaos.

6.1 Introduction

Consider the real differential system

ẍ = −x (p+ q x)−3, ÿ = −y (p+ q x)−3, (6.1)

where p and q are real parameters. The overdot indicates derivative with respect
to time t. This system was studied by Barone–Netto and Cesar in [1], as an
example of a non–trivial stable system of the form ẍ = −x f(x), ÿ = −y f(x). In
that work, it was proved that, for p > 0, the origin is stable and any trajectory
projected into the (x, y)–plane is a conic.

Let ẋ = u, ẏ = v. Then, system (6.1) can be transformed into the R4

differential system

ẋ = u, u̇ = −x (p+ q x)−3, ẏ = v, v̇ = −y (p+ q x)−3. (6.2)

We say that a singular point of system (6.2) is a center if it has a neighborhood
where all the orbits except the singular point are periodic.

By the change of time dt = (p+ q x)3 ds, we obtain the following polynomial
system of degree 4, defined in the whole R4:

ẋ = u (p+ q x)3, u̇ = −x, ẏ = v (p+ q x)3, v̇ = −y. (6.3)

231



232 6. Hyperbolic periodic orbits

Now, the dot denotes derivative with respect to s. This system is equivalent to
(6.2) outside the hyperplane p + q x = 0. Since we shall work near the origin
and in the case p 6= 0, system (6.2) has a center if and only if system (6.3) has a
center.

Our first main result is the following theorem, which will be proved in Section
6.2.

Theorem 1. Differential system (6.3) has a center at the origin if and only if
p > 0.

Since in Mechanics the systems of the form

ẍ = −x p(x, y), ÿ = −y q(x, y)

have some relevance, we want to study perturbations of system (6.1) by systems
of the form

ẍ = −x (p+ q x)−3(1 + ε2 g2(x, ẋ, y, ẏ) + ε g4(x, ẋ, y, ẏ)),
ÿ = −y (p+ q x)−3(1 + ε2 h2(x, ẋ, y, ẏ) + ε h4(x, ẋ, y, ẏ)),

(6.4)

where gi and hi are homogeneous polynomials of degree i, for i = 2, 4. We remark
that the perturbed system we are presenting is the one of minimum degree from
which hyperbolic periodic orbits can be obtained using the first order theory of
averaging of Section 6.3, as we will show in Section 6.4.

The same arguments used for passing from system (6.1) to system (6.3) can
be applied to system (6.4) to transform it into

ẋ = u (p+ q x)3,
u̇ = −x(1 + ε2 g2(x, u, y, v) + ε g4(x, u, y, v)),
ẏ = v (p+ q x)3,
v̇ = −y(1 + ε2 h2(x, u, y, v) + ε h4(x, u, y, v)).

(6.5)

A hyperbolic periodic orbit of system (6.5) is an isolated periodic orbit in
the set of all periodic orbits of (6.5). The Poincaré map (or, equivalently, the
displacement map) is a good tool for studying the hyperbolic periodic orbits of
autonomous systems (for more details, see [4, 5] and also the end part of Section
6.3). We recall that a hyperbolic periodic orbit of a system corresponds to an
isolated zero of its displacement function.

We study how many hyperbolic periodic orbits can bifurcate from the center
of system (6.3) when p > 0. Our main result is the following.

Theorem 2. Suppose that p > 0. Using the first order averaging method applied
to system (6.5) we can obtain at most 16 hyperbolic periodic orbits bifurcating
from the periodic orbits of the center of system (6.3). Moreover, there are systems
(6.5) having exactly 0, 1, . . . , 16 hyperbolic periodic orbits.
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We use the averaging theory for proving Theorem 2, see Section 6.3. For
additional results in the use of the averaging theory for computing periodic orbits,
see [2, 7]. In general, it is not easy to find a change of variables to pass from a
given differential system to its normal form by applying the averaging method
for finding periodic orbits. In particular, it is not easy to apply the averaging
method for studying the hyperbolic periodic orbits bifurcating from the periodic
orbits of a center, mainly if the center is non–linear; for 2–dimensional systems
see [7, 11]; for higher dimensional systems see [6, 3, 8]. The general idea is to
relate this change of variables to the first integrals of the center.

6.2 Characterization of the center

Let U be an open set of R4. A C1 function H : U → R is a first integral of system
(6.3) if it is constant on the solutions of (6.3) contained in U . In other words, if

X = u(p+ q x)3 ∂

∂x
− x

∂

∂u
+ v(p+ q x)3 ∂

∂y
− y

∂

∂v

is the vector field associated to system (6.3), then H is a first integral if and only
if X H = 0 in U .

System (6.3) has three functionally independent first integrals; one of them
corresponds to the energy of the mechanical system in the (x, u)–plane:

H1(x, u) =
u2

2
+

x2

2p (p+ q x)2
; (6.6)

another one corresponds to the angular momentum:

H2(x, u, y, v) = v x− u y; (6.7)

and the last one is

H3(x, u, y, v) = u v(p+ q x) − q u2 y +
x y

(p+ q x)2
. (6.8)

Of course, (6.6), (6.7) and (6.8) are also first integrals of system (6.2).

We note that system (6.3) is invariant under the symmetry

(x, u, y, v, t) → (x,−u,−y, v,−t).

If q = 0, then system (6.3) is a linear center. If p = 0, then the plane x = y = 0
of R4 is full of singular points, and then the origin is not an isolated singular point,
so it cannot be a center. As we are interested in studying non–linear centers in
R4, we take p q 6= 0. In this case, the system becomes easier.
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Figure 6.1: Phase portrait of system (6.10) with a plus on the Poincaré disc. The
period annulus of the center is the region inside the homoclinic loop of the singular
point at infinity. The vertical straight line corresponds to x = −1.

Lemma 3. If p q 6= 0, then system (6.3) is topologically equivalent to

ẋ = u(x± 1)3, u̇ = −x, ẏ = v(x± 1)3, v̇ = −y, (6.9)

where we take the ± sign to be + if p > 0, or − if p < 0.

Proof. We scale the variables and the time as follows

x→ |p|
q
x, u→ u

q
√
|p|
, y → |p|

q
y, v → v

q
√
|p|
, t→ t√

|p|3
.

Then, the lemma follows.

Next we prove that, in order to have a center at the origin, p must be positive.

Proposition 4. Consider the system

ẋ = u(x± 1)3, u̇ = −x, (6.10)

which corresponds to system (6.9) restricted to the plane (x, u), which is invariant.
Then, the following statements hold.

(a) If in (6.10) we have a minus, then system (6.9) has no center at the origin.

(b) If in (6.10) we have a plus, then (6.10) has a center at the origin (see Figure
1).

Proof. The origin is a singular point of system (6.10) with eigenvalues ±
√
∓1.

If in (6.10) we have a minus, these eigenvalues are real numbers, and then the
origin is a saddle of (6.10). Clearly, in this case, (6.9) cannot have a center. If
in (6.10) we have a plus, then the eigenvalues are pure imaginary numbers, and
then the origin is either a focus or a center for system (6.10). But the function
H1(x, u) defined in (6.6) with p = q = 1 is a first integral of this system defined
in a neighborhood of the origin. Therefore, the origin cannot be a focus, so it is
a center.
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We note that Proposition 4 proves that if system (6.9) has a center at the
origin, then it has the sign plus. That is, using Lemma 3, we have proved the
“if” part of Theorem 1.

In order to prove the “only if” part of Theorem 1 the key point will be to
show that the projection on the (x, y)–plane of any trajectory of system (6.9) is
a conic, and that it is an ellipse if it is sufficiently close to the origin. Before the
proof, we give a lemma which will simplify our computations.

Lemma 5. Let Γ be a trajectory of system (6.9) different from the origin for
which H1 is defined. Let γ be its projection in the (x, u)–plane. Assume that γ is
in the period annulus of the origin for system (6.10). Then, there exists a point
(x0, u0, y0, v0) ∈ Γ such that u0 = 0.

Proof. Let P1 = (x1, u1, y1, v1) be a point of Γ, and let h1 = H1(x1, u1). Let x0

be a solution of the equation

u2
1

2
+

x2
1

2(1 + x1)2
= h1 =

x2
0

2(1 + x0)2
.

Then, (x0, 0) ∈ γ is the projection of a point P0 = (x0, 0, y0, v0) ∈ Γ in the (x, u)–
plane, where y0 and v0 can be obtained explicitly from the equations H2(P1) =
H2(P0) and H3(P1) = H3(P0).

Proof of Theorem 1. The theorem will be proved if we show that the projection
of any trajectory different from the origin and sufficiently close to it in the (x, y)–
plane is an ellipse. That is due to the fact that if x(t) and u(t) are periodic
functions with the same minimal period T in a neighborhood of the origin (see
Proposition 4), then the ellipse (x(t), y(t)) implies that y(t) is periodic of period
T . Using the last equation of (6.9) it will be proved that v(t) is periodic of period
T .

Let Γ be a trajectory of system (6.9) different from the origin such that its
projection into the (x, u)–plane, denoted by γ0, is in the period annulus of the
center of system (6.10). Let γ be the projection of Γ into the (x, y)–plane and
P0 = (x0, 0, y0, v0) a point of Γ (see Lemma 5).

If x0 = 0, then the three first integrals vanish on P0, and then Γ is the origin.
So we can assume x0 6= 0. Moreover, as γ0 is surrounding the origin for system
(6.10), it cuts the straight line u = 0 at two points, one of them with positive
x–coordinate. Then, we can assume x0 > 0.

Since the hyperplane 1 + x = 0, where the first integrals H1 and H3 are not
defined, is far enough from the origin, we can choose the curve Γ contained in
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x > −1. For the points of Γ we have H1(x, u) = H1(x0, 0) and Hi(x, u, y, v) =
Hi(P0), for i = 2, 3; that is,

u2 +
x2

(1 + x)2
− x2

0

(1 + x0)2
= 0,

v x− u y − v0 x0 = 0, (6.11)

u v(1 + x) − u2 y +
x y

(1 + x)2
− x0 y0

(1 + x0)2
= 0.

Since x0 > 0, it follows that Γ cannot be contained in the hyperplane x = 0. For
any point (x, u, y, v) ∈ Γ, x 6= 0, we can isolate u2 and v in terms of x and y from
the first and the second equations of (6.11), respectively:

u2 =
(x0 − x)(x− x0 + 2x0 x)

(1 + x)2(1 + x0)2
, v =

v0 x0 + u y

x
.

From the third equation of (6.11) we obtain the equation of γ:

(y0 x− x0 y)
2 + v2

0(x− x0)(1 + x0)
2(x− x0 + 2x0 x) = 0. (6.12)

This curve is a conic in the variables x and y. In order to prove that if γ is close
enough to the origin, then it is an ellipse, we must prove that the determinant

∣∣∣∣∣∣

y2
0 + v2

0(1 + x0)
2(1 + 2x0) −x0y0 −v2

0x
2
0(1 + x0)

2

−x0y0 x2
0 0

−v2
0x

2
0(1 + x0)

2 0 −v2
0x

2
0(1 + x0)

2

∣∣∣∣∣∣
= −v4

0x
2
0(1 + x0)

6

is not zero, and that its 2 × 2 minor

∣∣∣∣
y2
0 + v2

0(1 + x0)
2(1 + 2x0) −x0y0

−x0y0 x2
0

∣∣∣∣ = v2
0x

2
0(1 + x0)

2(1 + 2x0)

is positive.

If v0 = 0, then (6.12) is the straight line y = y0 x/x0, which is far from
the origin. If v0 6= 0, then we can take x0 sufficiently small such that both
determinants are different from zero and the second one is positive. Then, γ is
an ellipse and the theorem follows.

6.3 First order averaging method for periodic

orbits

We consider the differential system

ẋ(t) = εF (t, x(t)) + ε2R(t, x(t), ε), (6.13)
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with x ∈ D ⊂ Rn, D a bounded domain and t ≥ 0. We assume that F (t, x) and
R(t, x, ε) are T–periodic in t.

The averaged system associated to system (6.13) is defined by

ẏ(t) = εf(y(t)), (6.14)

where

f(y) =
1

T

∫ T

0

F (s, y)ds. (6.15)

The following theorem shows under which sufficient conditions the singular
points of the averaged system (6.14) provide T–periodic orbits for system (6.13).
For a proof see Theorem 2.6.1 of [10], Theorems 11.5 and 11.6 of [11], and Theorem
4.1.1 of [5].

Theorem 6. We consider system (6.13) and assume that the vector functions
F , R, DxF1, D

2
xF1 and DxR are continuous and bounded by a constant M (in-

dependent of ε) in [0,∞) ×D with −ε0 < ε < ε0. Moreover, we suppose that F
and R are T–periodic in t, with T independent of ε.

(a) If a ∈ D is a singular point of the averaged system (6.14) such that the
determinant of Dxf(a) is different from zero then, for |ε| > 0 sufficiently
small, there exists a T–periodic solution xε(t) of system (6.13) such that

xε(t)−→
ε→0

a.

(b) If the singular point y = a of the averaged system (6.14) is hyperbolic then,
for |ε| > 0 sufficiently small, the corresponding periodic solution xε(t) of
system (6.13) is unique, hyperbolic and of the same stability type as a.

For every z ∈ D, we denote by x(·, z, ε) the solution of (6.13) with the initial
condition x(0, z, ε) = z. We also consider the function ζ : D × (−ε0, ε0) → Rn,
defined by

ζ(z, ε) =

∫ T

0

[
εF (t, x(t, z, ε)) + ε2R(t, x(t, z, ε), ε)

]
dt. (6.16)

From (6.13) it follows that, for every z ∈ D,

ζ(z, ε) = x(T, z, ε) − x(0, z, ε). (6.17)

The function ζ can be written in the form

ζ(z, ε) = εTf(z) + ε2O(1), (6.18)

where f is given by (6.15) and the symbol O(1) denotes a bounded function
on every compact subset of D × (−ε0, ε0). Moreover, for |ε| sufficiently small,
z = xε(0) is an isolated zero of ζ(·, ε). Of course, due to (6.17) the function ζ is
a displacement function for system (6.13), and its fixed points are the T–periodic
solutions of (6.13).
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6.4 Proof of Theorem 2

We study in this section hyperbolic periodic orbits bifurcating from the periodic
orbits of the 4–dimensional centerr

ẋ = u(x+ 1)3, u̇ = −x, ẏ = v(x+ 1)3, v̇ = −y, (6.19)

which corresponds to system (6.3) for p > 0, see Lemma 3. We perturbe system
(6.3) as follows

ẋ = u(x+ 1)3, u̇ = −x[1 + ε2g2(x, u, y, v) + g4(x, u, y, v)],
ẏ = v(x+ 1)3, v̇ = −y[1 + ε2h2(x, u, y, v) + εh4(x, u, y, v)],

(6.20)

where gi and hi are homogeneous polynomials of degree i in the variables x, u, y, v,
for i = 2, 4. The coefficient of xiujykvl in g (respectively, h) will be denoted by
aijkl (respectively bijkl).

Let Γ be a closed trajectory of (6.19). Assume that the three first integrals
of (6.19),

h1(x, u) = u2 +
x2

(x+ 1)2
,

h2(x, u, y, v) = v x− u y,

h3(x, u, y, v) = u v(x+ 1) − u2 y +
x y

(x+ 1)2
,

(6.21)

take the values h1 > 0, h2 6= 0 and h3 ∈ R on Γ. Then, we can write x, u, y, v in
terms of h1, h2, h3 and a new variable θ as

x = ρ cos θ, u =
ρ(h3 cos θ − 2h1 sin θ)

h2(1 + ρ cos θ)
,

y = ρ sin θ, v =
(h2

2(1 − 2h1) + h2
3)ρ cos θ − 2h1(h

2
2 + h3ρ sin θ)

2h1h2(1 + ρ cos θ)
,

where

ρ =

√
2h1h2√

h2
2 cos2 θ + (h3 cos θ − 2h1 sin θ)2 −

√
2h1h2 cos θ

.

In the new variables, system (6.20) writes

ḣs =
∂hs
∂t

, s = 1, 2, 3, θ̇ = Ω(h1, h2, h3, θ, ε),

for a certain function Ω; or, equivalently,

h′s =
∂hs
∂θ

=
∂hs
∂t

∂t

∂θ
=

r2ḣs
ẏx− ẋy

,
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Number of Number of

singular points rank(A) independent solutions

n ≥ 21 58 32
17 ≤ n ≤ 20 2n+ 17 73 − 2n
1 ≤ n ≤ 16 3n 3(30 − n)

Table 6.1: Relation between the number of singular points of (6.23) and the number of
independent solutions of the linear system Ax = 0.

for s = 1, 2, 3. Taking hs = εks, this system is transformed into

k′1 = ε4F1(θ, k1, k2, k3) + ε9/2R1(θ, k1, k2, k3, ε),
k′2 = ε4F2(θ, k1, k2, k3) + ε9/2R2(θ, k1, k2, k3, ε),
k′3 = ε4F3(θ, k1, k2, k3) + ε9/2R3(θ, k1, k2, k3, ε),

(6.22)

for some functions Fs, Rs, with s = 1, 2, 3. Applying the averaging theory de-
scribed in Section 6.3, we obtain the system

y′1 = ε4f1(y1, y2, y3), y
′
2 = ε4f2(y1, y2, y3), y

′
3 = ε4f3(y1, y2, y3), (6.23)

where the functions fs are given in Section 6.5.

Monomials of odd degree in the functions gi and hi would vanish after applying
the averaging theory, so we do not consider them in the perturbed system. If we
consider the perturbed system

ẋ = u(x+ 1)3, u̇ = −x[1 + εg(x, u, y, v)],
ẏ = v(x+ 1)3, v̇ = −y[1 + εh(x, u, y, v)],

where g and h are homogeneous polynomials of the same degree, then the corre-
sponding fs, for s = 1, 2, 3, of the averaged system are also homogeneous poly-
nomials. By the Euler Theorem, we have

3∑

j=1

ys
∂fs
∂yj

= deg (fs)fs,

for s = 1, 2, 3. So, if fs(y
0
1, y

0
2, y

0
3) = 0, s = 1, 2, 3, there exists a non–zero linear

combination of the columns of the Jacobian matrix at (y0
1, y

0
2, y

0
3) which vanishes.

Then, its determinant is zero and we cannot apply the averaging theory. So, the
easiest perturbation (i.e., with the lower degree) that can be considered is the
one that we are using.

We find the isolated singular points of system (6.23) in the following way.
Let (yr1, y

r
2, y

r
3), for r = 1, . . . , n, be n singular points of the averaged system
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(6.23). Substituting these points in fs(y1, y2, y3) for s = 1, 2, 3, we get a linear
homogeneous system with a matrix A of dimension 3n × 90. Of course, the
90 unknowns are the coefficients aijkl and bijkl of g2, g4, h2 and h4. Using the
algebraic manipulator Mathematica (see [9]), we can compute the rank of the
matrix A as a function of n. The results are given in Table 6.1.

We note that when n ≥ 21, substituting the 58 depending unknowns, determi-
ned as a function of the 32 independent unknowns, in the functions fs(y1, y2, y3),
then the three functions become identically zero. So, we cannot apply the averag-
ing method to determine hyperbolic periodic orbits because the Jacobian matrix
is identically zero at the singular points.

When n ∈ {17, 18, 19, 20}, substituting the 2n + 17 depending unknowns,
determined as a function of the 73 − 2n independent unknowns, in the func-
tion f1(y1, y2, y3), then it becomes identically zero. Hence, we cannot apply the
averaging method to determine hyperbolic periodic orbits because the Jacobian
matrix has a row identically zero at the singular points.

An example of system (6.23) having 16 singular points with non–zero Jacobian
is given in Section 6.6. Therefore, system (6.20) for the values of Section 6.6 has 16
hyperbolic periodic orbits, for ε > 0 sufficiently small, bifurcating from the center
of system (6.20) with ε = 0. In a similar way, we can obtain systems (6.20) with
0, 1, . . . , 14 or 15 hyperbolic periodic orbits bifurcating from the periodic orbits
of the center of system (6.20) with ε = 0.

In short, Theorem 2 is proved. 2

6.5 The functions f1, f2 and f3

We give in this section the expression of the functions f1, f2 and f3 of system
(6.23):

f1(y1, y2, y3) = −

1

64y1

(16a3100y
4

1
+ 16a1300y

4

1
+ 32a1100y

3

1
− 8a3010y

3

1
y2 + 8a2101y

3

1
y2 −

8a1210y
3

1
y2 + 8a0301y

3

1
y2 + 8a3001y

3

1
y3 + 8a2110y

3

1
y3 + 8a1201y

3

1
y3 + 8a0310y

3

1
y3 −

4a2011y
2

1
y
2

2
+ 4a1120y

2

1
y
2

2
+ 4a1102y

2

2
y
2

1
− 4a0211y

2

2
y
2

1
+ 4a2011y

2

3
y
2

1
+ 4a1120y

2

3
y
2

1
+

4a1102y
2

3
y
2

1
+ 4a0211y

2

3
y
2

1
+ 16a0101y2y

2

1
− 16a1010y2y

2

1
+ 16a0110y3y

2

1
+

16a1001y3y
2

1
− 8a2020y2y3y

2

1
+ 8a2002y2y3y

2

1
− 8a0220y2y3y

2

1
+ 8a0202y2y3y

2

1
−

2a1030y
3

2
y1 − 2a1012y

3

2
y1 + 2a0103y

3

2
y1 + 2a0121y

3

2
y1 + 2a1003y

3

3
y1 + 2a1021y

3

3
y1 +

2a0130y
3

3
y1 + 2a0112y

3

3
y1 − 8a0011y

2

2
y1 + 8a0011y

2

3
y1 − 6a1030y2y

2

3
y1 + 2a1012y2y

2

3
y1 +

6a0103y2y
2

3
y1 − 2a0121y2y

2

3
y1 + 6a1003y

2

2
y3y1 − 2a1021y

2

2
y3y1 + 6a0130y

2

2
y3y1 −

2a0112y
2

2
y3y1 − 16a0020y2y3y1 + 16a0002y2y3y1 − a0031y

4

2
− a0013y

4

2
+ a0031y

4

3
+

a0013y
4

3
− 4a0040y2y

3

3
+ 4a0004y2y

3

3
− 4a0040y

3

2
y3 + 4a0004y

3

2
y3),
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f2(y1, y2, y3) =
1

256y2

1

(a0031y
5

2
+ a0013y

5

2
− b0031y

5

2
− b0013y

5

2
+ 2a1030y1y

4

2
+ 2a1012y1y

4

2
−

2a0103y1y
4

2
− 2a0121y1y

4

2
− 2b1030y1y

4
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− 2b1012y1y
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+
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6.6 An example with 16 hyperbolic periodic or-

bits
We take the coefficients

a0110 = −0.44273799230932176, a0101 = −0.0016215945505887238,
a0020 = −0.00097478324838714, a0011 = −0.003918882434202215,
a0002 = 0.00007081854058168514, a4000 = 0.5989505745384144,
a3100 = 0.000002966367759708, a3010 = −0.1687679624360404,
a3001 = 0.18506308130804394, a2020 = −0.012049647635249473,
a2002 = −0.0036240063728033025, a2110 = −0.18620230772935153,
a2101 = −0.17263861380369933, a2011 = 0.00047403650848489584,
a1030 = −0.0018042655006471255, a1003 = −0.0007465749618595678,
a1120 = 0.00009368584384093783, a1021 = 0.0020131588337237534,
a1012 = 0.005506754204431025, a1102 = −0.00011351408717201784,
a1111 = 0.0074713005144913785, a0400 = −0.004655785701991735,
a0040 = 0.00001968558790431901, a0004 = −0.0000032848225314553,
a0310 = 0.0012461786194435333, a0301 = 0.003941103289490351,
a0130 = 0.0007943513793541091, a0031 = 0.000052808789509939704,
a0103 = −0.001807654766145478, a0220 = 0.00940846361405681,
a0202 = 0.0009673162067761705, a0211 = −0.0003272826514772228,
a0121 = 0.005645104995454165, a0112 = −0.002154963920384549,
a2000 = 0.3346899322743752, a1100 = 0.000027779345493788038,
a1010 = −0.0005686779752235013, a1001 = 0.44083258814665977,
b0110 = −0.8793311376819993, b0101 = −0.009884290550174158,
b0011 = 0.0026112577489967063, b4000 = 0.5980524777204888,
b3100 = −0.000037200708610095267, b3010 = −0.16878494791125745,
b3001 = 0.44488101166264415, b2020 = −0.009125904399372506,
b2110 = 0.3344329805234952, b2101 = −0.16839063503055093,
b0200 = 1,

and the rest of the coefficients zero. The set of solutions (y1, y2, y3) is

{(41, 35,−19), (18,−13, 9), (37,−18,−35), (31,−47, 14), (22, 3,−15), (33, 5,−16),

(35,−28, 2), (37,−31, 28), (16, 9, 5), (30,−28, 21), (27,−33, 33), (17,−32,−50),

(22, 27, 28), (5, 26,−25), (43,−7, 29), (7,−31,−20)}.
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[2] A. Buică and J. Llibre, Averaging methods for finding periodic orbits via
Brouwer degree, Bull. Sci. Math. 128 (2004), 7–22.
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