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Abstract: In this study, I investigate the necessary condition for the consistency of the
maximum likelihood estimator (MLE) of spatial models with a spatial moving average
process in the disturbance term. I show that the MLE of spatial autoregressive and
spatial moving average parameters is generally inconsistent when heteroskedasticity is not
considered in the estimation. I also show that the MLE of parameters of exogenous variables
is inconsistent and determine its asymptotic bias. I provide simulation results to evaluate the
performance of the MLE. The simulation results indicate that the MLE imposes a substantial
amount of bias on both autoregressive and moving average parameters.
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1. Introduction

The spatial dependence among the disturbance terms of a spatial model is generally assumed to take
the form of a spatial autoregressive process. The spatial model that has a spatial lag in the dependent
variable and an autoregressive process in the disturbance term is known as the SARARmodel. The
main characteristic of an autoregressive process is that the effect of a location-specific shock transmits
to all other locations with its effects gradually fading away for the higher order neighbors. The spatial
autoregressive process may not be appropriate if there is strong evidence of the localized transmission
of shocks. That is, the autoregressive process is not the correct specification when the effects of
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shocks are contained within a small region and are not transmitted to other regions. An alternative
to an autoregressive process is a spatial moving average process, where the effects of shocks are more
localized. Haining [1], Anselin [2] and, more recently, Hepple [3] and Fingleton [4,5] consider a spatial
moving average process for the disturbance terms. The spatial model that contains a spatial lag of
the dependent variable and a spatial moving average process for the disturbance term is known as the
SARMA model.

In the literature, various estimation methods have been proposed [6–16]. The ML method is the best
known and most common estimator used in the literature for both SARAR and SARMA specifications.
Lee [11] shows the first order asymptotic properties of the MLE for the case of SARAR(1,0). The
generalized method of moment (GMM) estimators is also considered for the estimation of the spatial
models. Kelejian and Prucha [6,7] suggest a two-step GMM estimator for the SARAR(1,1) specification.
One disadvantage of the two-step GMME is that it is usually inefficient relative to the MLE [10,17,18].

To increase efficiency, Lee [12], Liu et al. [10] and Lee and Liu [13] formulate one-step GMMEs
based on a set of moment functions involving linear and quadratic moment functions. In this approach,
the reduced form of spatial models motivates the formulation of moment functions. The reduced
equations indicate that the endogenous variable, i.e., the spatial lag term, is a function of a stochastic
and a non-stochastic term. The linear moment functions are based on the orthogonality condition
between the non-stochastic term and the disturbance term, while the quadratic moment functions are
formulated for the stochastic term. Then, the parameter vector is estimated simultaneously with a
one-step GMME. Lee [12] shows that the one-step GMME can be asymptotically equivalent to the MLE
when disturbance terms are i.i.d. normal. In the case where disturbances are simply i.i.d., Liu et al. [10]
and Lee and Liu [13] suggest a one-step GMME that can be more efficient than the (quasi) MLE.

Fingleton [4,5] extend the two-step GMME suggested by Kelejian and Prucha [6,7] for spatial models
that have a moving average process in the disturbance term, i.e., SARMA(1,1). Baltagi and Liu [19]
modify the moment functions considered in Fingleton [4] in the manner of Arnold and Wied [20]
and suggest a GMME for the case of SARMA(0,1). The spatial moving average parameter in both
Fingleton [4] and Baltagi and Liu [19] is estimated by a non-linear least squares estimator (NLSE). The
asymptotic distribution for the NLSE of the spatial moving average parameter is not provided in either
Fingleton [4] or Baltagi and Liu [19]. Recently, Kelejian and Prucha [9] and Drukker et al. [21] provided
a basic theorem regarding the asymptotic distribution of their estimator under fairly general conditions.
The estimation approach suggested in Kelejian and Prucha [9] and Drukker et al. [21] can easily be
adapted for the estimation of the SARMA(1,1) and SARMA(0,1) models. Finally, although the Kelejian
and Prucha approach in Fingleton [4] and Baltagi and Liu [19] has computational advantages, it may be
inefficient relative to the ML method 1.

In the presence of an unknown form of heteroskedasticity, Lin and Lee [22] show that the MLE for
the case of SARAR(1,0) may not be consistent, as the log-likelihood function is not maximized at the
true parameter vector. They suggest a robust GMME for the SARAR(1,0) specification by modifying

1 Fingleton [4] and Baltagi and Liu [19] do not compare the finite sample efficiency of their estimators with the MLE.
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the moment functions considered in Lee [12]. Likewise, Kelejian and Prucha [9] modify the moment
functions of their previous two-step GMME to allow for an unknown form of heteroskedasticity.

The spatial moving average model introduces a different interaction structure. Therefore, it is of
interest to investigate the implications of a moving average process for estimation and testing issues.
In this paper, I investigate the effect of heteroskedasticy on the MLE for the case of SARMA(1,1)
and SARMA(0,1) along the lines of Lin and Lee [22]. The analytical results show that when
heteroskedasticity is not considered in the estimation, the necessary condition for the consistency of
the MLE is generally not satisfied for both the SARMA(1,1) and SARMA(0,1) models. For the
SARMA(1,1) specification, I also show that the MLE of other parameters is also inconsistent, and I
determine its asymptotic bias. My simulation results indicate that the MLE imposes a substantial amount
of bias on spatial autoregressive and moving average parameters. However, the simulation results also
show that the MLE of other parameters reports a negligible amount of bias in large samples.

The rest of this paper is organized as follows. In Section 2, I specify the SARMA(1,1) model in more
detail and list assumptions that are required for the asymptotic analysis. In Section 3, I briefly discuss
the implications of the spatial processes proposed for the disturbance term in the literature. Section 4
investigates the necessary condition for the consistency of the MLE of the autoregressive and moving
average parameters. Section 5 provides expressions for the asymptotic bias of the MLE of parameters
of the exogenous variables. Section 6 contains a small Monte Carlo simulation. Section 7 closes with
concluding remarks.

2. Model Specification and Assumptions

In this study, the following first order SARMA(1,1) specification is considered:

Yn = λ0WnYn +Xnβ0 + un, un = εn − ρ0Mnεn (1)

where Yn is an n × 1 vector of observations of the dependent variable, Xn is an n × k matrix of
non-stochastic exogenous variables, with an associated k × 1 vector of population coefficients β0, Wn,
Mn are n×n spatial weight matrices of known constants with zero diagonal elements and εn is an n× 1

vector of disturbances. The variables WnYn and Mnεn are known as the spatial lag of the dependent
variable and the disturbance term, respectively. The spatial effect parameters λ0 and ρ0 are known as the
spatial autoregressive and moving average parameters, respectively. As the spatial data are characterized
with triangular arrays, the variables in Equation (1) have subscript n 2. The model specifications with
λ0 6= 0, ρ0 6= 0 and λ0 = 0, ρ 6= 0 are known, respectively, as SARMA(1,1) and SARMA(0,1) in the
literature. Let Θ be the parameter space of the model. In order to distinguish the true parameter vector
from other possible values in Θ, the model is stated with the true parameter vector θ0 =

(
β
′
0, δ

′
0

)′
with

δ0 = (λ0, ρ0)
′
.

For notational simplicity, I denote Sn (λ) = (In − λWn),Rn(ρ) = (In − ρMn),Gn(λ) = WnS
−1
n (λ),

Hn(ρ) = MnR
−1
n (ρ), X̄n(ρ) = R−1

n (ρ)Xn, and Ḡn(δ) = R−1
n (ρ)Gn(λ)Rn(ρ). Furthermore, at the

2 See Kelejian and Prucha [9].
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true parameter values (ρ0, λ0), I denote Sn(λ0) = Sn, Rn(ρ0) = Rn, Gn(λ0) = Gn, Hn(ρ0) = Hn,
X̄n(ρ0) = X̄n and Ḡn(δ0) = Ḡn.

The model in Equation (1) is considered under the following assumptions.

Assumption 1. The elements εni of the disturbance term εn are distributed independently with mean
zero and variance σ2

ni and E |εni|ν <∞ for some ν > 4 for all n and i.

The elements of the disturbance term have moments higher than the fourth moment. The existence
moments condition is required for the application of the central limit theorem for the quadratic form
given in Kelejian and Prucha [9]. In addition, the variance of a quadratic form in εn exists and is finite
when the first four moments are finite. Finally, Liapunov’s inequality guarantees that the moments less
than ν are also uniformly bounded for all n and i.

Assumption 2. The spatial weight matrices Mn and Wn are uniformly bounded in absolute value in row
and column sums. Moreover, S−1

n , S−1
n (λ), R−1

n and R−1
n (ρ) exist and are uniformly bounded in absolute

value in row and column sums for all values of ρ and λ in a compact parameter space.

The uniform boundedness of the terms in Assumption 2 is motivated to control spatial autocorrelations
in the model at a tractable level [6] 3. Assumption 2 also implies that the model in Equation (1) represents
an equilibrium relation for the dependent variable. By this assumption, the reduced form of the model
becomes feasible as Yn = S−1

n Xnβ0 + S−1
n Rnεn. The uniform boundedness of S−1

n (λ) and R−1
n (ρ) in

Assumption 2 is only required for the MLE, not for the GMME [10]. When Wn is row normalized, a
closed subset of interval (1/λmin, 1), where λmin is the smallest eigenvalue of Wn, can be considered
as the parameter space for λ0. Analogously, a closed subset of (1/ρmin, 1), where ρmin is the smallest
eigenvalue of Mn, can be the parameter space of ρ0 ([15], p.128) 4.

The next assumption states the regularity conditions for the exogenous variables.

Assumption 3. The matrix Xn is an n × k matrix consisting of constant elements that are uniformly
bounded. It has full column rank k. Moreover, limn→∞

1
n
X
′
nXn and limn→∞

1
n
X̄
′
n(ρ)X̄n(ρ) exist and

are nonsingular for all values of ρ in a compact parameter space.

3. Spatial Processes for the Disturbance Term

In the literature, there are three main parametric processes to model spatial autocorrelation among
disturbance terms: (i) the spatial autoregressive process (SAR); (ii) the spatial moving average process
(SMA); and (iii) the spatial error components model (SEC). The implied covariance structure is different
under each specification. In this section, I describe the transmission and the effect of shocks under each
specification. The SAR process is specified as:

un = ρ0Mnun + εn (2)

3 For a definition and some properties of uniform boundedness, see Kelejian and Prucha [9].
4 There are some other formulations for the parameter spaces in the literature. For details, see Kelejian and Prucha [9]

and LeSage and Pace [15]. Note that the parameter spaces for β0 and σ2
0 are not required to be compact. As shown in

Equations (8a) and (8b), the MLE of these parameters is an OLS-type estimator; hence, boundedness is enough for the
parameter spaces.
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where un is an n × 1 vector of regression disturbances and εn is an n × 1 vector of i.i.d. innovations
with variance σ2

0 . Under the assumption of an equilibrium, i.e., Rn is invertible, the reduced from of
Equation (2) is un = R−1

n εn with the covariance matrix of E
(
unu

′
n

)
= Ωn = σ2

0R
−1
n R−1′

n . Note
that even if the innovations are homoskedastic, the diagonal elements of Ωn are not equal, suggesting
heteroskedasticity for the regression disturbances. An expansion of (In − ρ0Mn)−1 for |ρ0| < 1 yields
(In − ρ0Mn)−1 =

∑∞
j=0 ρ

j
0M

j
n = In + ρ0Mn + ρ2

0M
2
n + · · · . Hence, the SAR specification of the

disturbance term implies that a shock at location i is transmitted to all other locations. The first term In

implies that the shock at location i directly affects location i and, through other terms denoted by the
powers of Mn, affects higher order neighbors. Eventually, the shock feeds back to location i through the
interconnectedness of neighbors. Note that |ρ0| < 1 ensures that the magnitude of the transmitted shock
decreases for the higher orders of neighbors. As a result, the SAR specification allows researchers to
model the global transmission of shocks where the full effect of a shock to location i is the sum of the
initial shock and the feedback from other locations.

If a more localized spatial dependence is conjectured for an economic model, then a spatial moving
average process (SMA) specification is more suitable [1,3–5]. The SMA process is specified as:

un = εn − ρ0Mnεn (3)

where ρ0 is the spatial moving average parameter. The reduced form does not involve an inverse of a
square matrix. Hence, the transmission of a shock emanated from location i is limited to its immediate
neighbors given by the nonzero elements in the i-th row of Mn. Under this specification, the covariance
matrix of un is Ωn = σ2

0RnR
′
n = σ2

0

(
In − ρ0(Mn +M

′
n) + ρ2

0MnM
′
n

)
. The spatial covariance is limited

to nonzero elements of
(
Mn +M

′
n

)
and MnM

′
n. In comparison with the SAR specification, the range of

covariance induced by the SMA model is much smaller.
Kelejian and Robinson [23] suggest another specification, which is called the spatial error components

(SEC) model. This specification is similar to the SMA process in the sense that the implied covariance
matrix does not involve a matrix inverse. Formally, the SEC model is given by un = Mnεn + εn,
where εn is an n × 1 vector of regional innovations, whereas εn is an n × 1 vector of locational
innovations. Assuming that εn and εn are independent, the variance-covariance matrix becomes
Ωn = σ2

ε In + σ2
εMnM

′
n, which indicates that the spatial correlation in a SEC specification is even

more localized.
There have been some direct attempts to parametrize the covariance matrix of un, rather than

defining a process for the disturbance term. For example, Besag [24] considers a conditional
first-order autoregressive model (CAR(1)), such that the covariance matrix of un takes the form of
Ωn = σ2

0(In − ρ0Mn)−1, where Mn is assumed to be a symmetric contiguity matrix. This covariance
structure implies a process of un = (In − ρ0Mn)−1/2εn. As in the case of the SAR process, a shock in
a location is transmitted to all other locations, but now with a smaller amplitude. Another example is
Ωn = σ2

0(In+ρ0Mn), where Mn is assumed to be symmetric [25,26]. In this case, the spatial correlation
is restricted to first order neighbors, i.e., non-zero elements of Mn.

The elements of Ωn can also be specified through a covariance generating function. For example, in
Ripley [27], the covariance generating function is defined in terms of the distance between two locations
in such a way that the resulting covariance is always non-negative definite. Let dij be the distance
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between locations i and j and Ωij,n be the covariance between these two locations. Then, the covariance
generating function is defined by:

Ωij,n =

σ2
0

2
n

[
cos−1(

dij
2ψ

)− dij
2ψ

(1− d2ij
4ψ2 )1/2

]
, if dij ≤ 2ψ

0, otherwise.
(4)

Intuitively, Ωij,n is proportional to the intersection area of two discs of common radius centered on
locations i and j. The covariance generating function in Equation (4) depends on the single parameter
ψ and has a fairly linear negative relationship with dij [25,27]. Another covariance generating function
family, first introduced by Whittle in 1954, is a two-parameter function defined in terms of gamma and
bessel functions. This family has the following specification:

Ωij,n = σ2
0

[
2ν−1Γ(ν)

]−1
(δdij)

νKν(δdij) (5)

where Kν(·) is the modified bessel function and Γ(·) is the standard gamma function. The parameters
ν > 0 and δ > 0 are respectively known as a shape parameter and a spatial parameter. The spatial
parameter δ determines how far the spatial correlation will stretch. For the special case, where ν = 1

2
,

this covariance generating function gives an exponential decaying spatial correlation [25]. There is also a
more general exponential covariance generating function that depends on two parameters. This function
is specified by Ωij,n = σ2

0γ exp(λdij), where γ and λ are parameters that need to be estimated. This
function also exhibits exponential decay for the spatial correlations.

In the literature, there are some other covariance generating function families. However, the majority
of these functions do not necessarily ensure that Ωn is a positive-definite matrix [25,28]. The formal
properties of the MLE for spatial models that have a covariance structure determined by a parametric
function are investigated in an early study by Mardia and Marshall [29]. In this study, the authors state
conditions under which the MLE is consistent and has an asymptotic normal distribution.

In this study, the spatial model specified in Equation (1) is considered. The interaction between
the spatial autoregressive process and the moving average process for this model induces a
complicated pattern for the transmission of a location-specific shock. Under Assumption 2, the
reduced form of the model is given by Yn = S−1

n Xnβ0 + S−1
n Rnεn. The last term in the reduced

form can be written as S−1
n Rnεn = εn − ρ0Mnεn +

∑∞
l=1 λ

l
0W

l
nεn − ρ0Mn

∑∞
l=1 λ

l
0W

l
nεn. In this

representation, the higher power of Wn does not have zero diagonal elements, which, in turn, implies
that the total effect of a region-specific shock also contains the feedback effects passed through
other locations. The corresponding expression in the case of SARAR(1,1) specification is given by
S−1
n R−1

n εn =
∑∞

l=0 λ
l
0W

l
n

∑∞
k=0 ρ

k
0M

k
nεn. Again, the induced pattern involves the interaction of two

weight matrices and two parameters.
Following Fingleton [4], I illustrate the transmission pattern for a shock under each specification by

using a rook weight matrix over a 15× 15 lattice. Figure 1 shows the impact of a shock emanated from
the unit located at the center of lattice 5. In the case of SAR and SARAR(1,1), the effect of shock is

5 For easy comparison, we set λ0 = 0.9 for SAR, ρ0 = −0.9 for SMA, (λ0, ρ0) = (0.5, 0.9) for SARAR(1,1) and
(λ0, ρ0) = (0.5,−0.9) for SARMA(1,1). The disturbance of the unit located at the center of the lattice is increased
by three.
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more vigorous over the whole lattice. For the SMA specification, the shock is only transmitted to the
immediate units, as shown in Figure 1b. In contrast, the effect of the shock gradually dies out under the
SARMA(1,1) model.
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Figure 1. The effect of a shock. (a) The effect of a shock: spatial autoregressive process
(SAR). (b) The effect of a shock: spatial moving average process (SMA). (c) The effect of a
shock: SARAR(1,1). (d) The effect of a shock: SARMA(1,1).
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4. The MLE of λ0 and ρ0

The log-likelihood function for the model in Equation (1) under the assumption that the disturbance
terms of the model are i.i.d. normal with mean zero and variance σ2

0 can be written as:

lnLn(ζ) = −n
2

ln(2π)− n

2
ln(σ2) + ln |Sn(λ)| − ln |Rn(ρ)|

− 1

2σ2
(Sn(λ)Yn −Xnβ)

′
R
′−1
n (ρ)R−1

n (ρ) (Sn(λ)Yn −Xnβ) (6)

where ζ =
(
θ
′
, σ2

)′
. The first order conditions with respect to β and σ2 are respectively given by:

∂ lnLn(ζ)

∂β
=

1

σ2
X̄
′

n(ρ)R−1
n (ρ) (Sn(λ)Yn −Xnβ) (7a)

∂ lnLn(ζ)

∂σ2
=
−n
2σ2

+
1

2σ4
ε
′

n(θ)εn(θ) (7b)

where εn(θ) = R−1
n (ρ) (Sn(λ)Yn −Xnβ). The solutions of the first order conditions for a given δ yield

the MLE of β0 and σ2
0:

β̂n(δ) =
(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)R−1
n (ρ)Sn(λ)Yn (8a)

σ̂2
n(θ) =

1

n
ε
′

n(θ)εn(θ) (8b)

Concentrating the log-likelihood function by eliminating σ2 gives the following equation:

lnLn(θ) = −n
2

ln(2π)− 1

2
− n

2
ln

(
ε
′
n(θ)εn(θ)

|Sn(λ)| 2n |Rn(ρ)|− 2
n

)
(9)

The above representation is useful for exploring the role of the Jacobian terms |Sn(λ)| and |Rn(ρ)|
in the ML estimation. The MLE of θ is the extremum estimator obtained from the maximization of
Equation (9). In an equivalent way, the MLE of θ0 can be defined by:

θ̂n = argminθ∈Θ

{
ε
′
n(θ)εn(θ)

|Sn(λ)| 2n |Rn(ρ)|− 2
n

}
(10)

In the special case, where |Sn(λ)| = |Rn(ρ)| = 1, the MLE is the NLSE obtained from the
minimization of ε′n(θ)εn(θ), i.e., θ̂NLSE,n = argminθ∈Θ ε

′
n(θ)εn(θ). It is clear that the Jacobian

terms |Sn(λ)| and |Rn(ρ)| play the role of a weight (or a penalty) on ε
′
n(θ)εn(θ). The penalty

is a function of the autoregressive parameters and the spatial weight matrices, which can be
defined as f (λ, ρ,Wn,Mn) = |Sn(λ)|

2
n |Rn(ρ)|−

2
n . For the SARAR(1,1) specification, the last term in

Equation (9) is given by −n
2

ln

(
ε
′
n(θ)εn(θ)

|Sn(λ)|
2
n |Rn(ρ)|

2
n

)
, where εn(θ) = Rn(ρ) (Sn(λ)Yn −Xnβ). Therefore,

in the case of SARAR(1,1), the MLE of θ0 is given by:

θ̂n = argminθ∈Θ

{
ε
′
n(θ)εn(θ)

|Sn(λ)| 2n |Rn(ρ)| 2n

}
(11)

It is hard to make any general statement about the effects and magnitudes of the penalty functions in both
cases. Hepple [30] illustrates that the Jacobian term imposes a substantial penalty for the SARAR(0,1)
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specification. To illustrate the effect of penalty functions for the case of SARMA(1,1) and SARAR(1,1),
I use a distance-based weight matrix for a sample of 91 countries, such that each country is connected to
every other country. The elements of the weight matrices are specified by:

wij = mij =

0 if i = j
d−2
ij∑91

j=1 d
−2
ij

if i 6= j
(12)

where dij between countries i and j is measured by the great circle distance between country capitals 6.
Figure 2 shows the surface plots of penalty functions over a grid of spatial parameters.

(a) (b)

Figure 2. The penalty functions for the dense weight matrix. (a) The penalty function for
SARMA(1,1). (b) The penalty function for SARAR(1,1).

For the SARAR(1,1) specification, the value of the penalty function decreases as the parameter
combination (λ, ρ) moves away from (0, 0) in any direction, as shown in Figure 2b 7. On the other
hand, there is no such monotonic decrease in the penalty function under the SARMA(1,1) specification,
as illustrated in Figure 2a. The penalty function of SARMA(1,1) obtains relatively larger values when
there is strong spatial dependence in the disturbance term, i.e., when ρ is near +1 or −1. In contrast, the
penalty function has smaller values when there is strong spatial dependence in the dependent variable.
This pattern indicates that the sum ε

′
n(θ)εn(θ) is penalized as ρ moves toward either +1 or −1. In the

case of SARAR(1,1), this sum gets larger as (λ, ρ) moves toward (±1,±1) in any direction, suggesting

6 dij = R0 × arccos
(

cos
(
|longitudei − longitudej |

)
cos(latitudei) cos(latitudej) + sin(latitudei) sin(latitudej)

)
,

where R0 is the Earth’s radius.
7 For SARAR(1,1), the penalty function is f(λ, ρ,Wn,Mn) = |Sn(λ)| 2n |Rn(ρ)| 2n .
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that the solution of the minimization problem is restricted to the region (−1,−1) × (+1,+1). Finally,
in a small neighborhood of (0, 0), the surface plots in Figure 2 indicate that the penalty functions take
values around one, suggesting that the parameter estimates from the MLE can be similar to those from
the NLSE under both specifications.

Next, I investigate the effect of heteroskedasticity on the MLE for the case of SARMA(1,1). I assume
that the true data generating process is characterized by Assumption 1. More explicitly, the MLE σ̂2

n(δ)

can be written as:

σ̂2
n(δ) =

1

n
Y
′

nS
′

n(λ)R
′−1
n (ρ)M̄n(ρ)R−1

n (ρ)Sn(λ)Yn (13)

where M̄n(ρ) = (In − Pn(ρ)) is a projection-type matrix with Pn(ρ) = X̄n(ρ)
(
X̄
′
n(ρ)X̄n(ρ)

)−1
X̄
′
n(ρ).

Substituting R−1
n (ρ)Sn(λ)Yn = R−1

n (ρ)Xnβ+εn into σ̂2
n(δ) and using the fact that X̄ ′n(ρ)M̄n(ρ) = 0k×n

and M̄n(ρ)X̄n(ρ) = 0n×k, the MLE σ̂2
n(δ) can be written as:

σ̂2
n(δ) =

1

n
ε
′

nM̄n(ρ)εn (14)

At δ0, the probability limit of σ̂2
n(δ0) is:

plim
n→∞

σ̂2
n(δ0) = plim

n→∞

1

n
ε
′

nεn − plim
n→∞

1

n2
εnX̄n

(
1

n
X̄
′

nX̄n

)−1

X̄
′

nεn (15)

For the first term on the right-hand side, we have 1
n
ε
′
nεn = 1

n

∑n
i=1 σ

2
ni+op(1) by Chebyshev’s weak law

of large numbers. The second term vanishes by virtue of Lemma 1(4) in Appendix A and Assumption 3.
Therefore, we have:

σ̂2
n(δ0) =

1

n

n∑
i=1

σ2
ni + op(1) (16)

The result in Equation (16) indicates that the average of the individual variances is asymptotically
equivalent to σ̂2

n(δ0).
Concentrating out β and σ2 from the log-likelihood function in Equation (6) yields:

lnLn(δ) = −n
2

(ln(2π) + 1)− n

2
ln σ̂2

n(δ) + ln |Sn(λ)| − ln |Rn(ρ)| (17)

The MLEs λ̂n and ρ̂n are extremum estimators obtained from the maximization of Equation (17). The
first order conditions of Equation (17) with respect to ρ and λ are 8:

∂ lnLn(δ)

∂λ
= − n

2σ̂2
n(δ)

∂σ̂2
n(δ)

∂λ
− tr (Gn(λ)) (18a)

∂ lnLn(δ)

∂ρ
= − n

2σ̂2
n(δ)

∂σ̂2
n(δ)

∂ρ
+ tr (Hn(ρ)) (18b)

8 For these results, I use the derivative rule given by ∂ ln |Rn(ρ)|
∂ρ = tr

(
R−1n (ρ)× ∂Rn(ρ)

∂ρ

)
. For a proof, see (Abadir and

Magnus [31], p. 372). Also note the commutative property of R−1n (ρ)Mn = MnR
−1
n (ρ) = Hn(ρ).
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where Gn(λ) = WnS
−1
n (λ) and Hn(ρ) = MnR

−1
n (ρ). For the consistency of λ̂n and ρ̂n, the necessary

condition is plimn→∞
1
n
∂ lnLn(δ0)

∂δ
= 0. Below, I investigate the probability limit of the following

expression:

1

n

∂ lnLn(δ0)

∂δ
=


1
n

(
− n

2
n
ε
′
nM̄nεn

∂σ̂2
n(δ0)
∂λ

)
− 1

n
tr (Gn)

1
n

(
− n

2
n
ε′nM̄nεn

∂σ̂2
n(δ0)
∂ρ

)
+ 1

n
tr (Hn)

 (19)

Under Assumption 2, bothHn andGn are uniformly bounded in absolute value in row and column sums.
Therefore, 1

n
tr (Hn) and 1

n
tr (Gn) in Equation (19) are of order O(1). With these results for 1

n
tr (Hn)

and 1
n

tr (Gn), a convenient result for the probability limit of Equation (19) can be obtained, which is
stated in the following proposition.

Proposition 1. Under Assumptions 1 through 3, we have:

1

n

∂ lnLn(δ0)

∂δ
=


Cov(Ḡn,ii, σ

2
ni)

σ̄2 + op(1)

−Cov(Hn,ii, σ
2
ni)

σ̄2 + op(1)

 (20)

where Cov
(
Ḡn,ii, σ

2
ni

)
is the covariance between the diagonal elements of Ḡn,

{Ḡn,11, Ḡn,22, . . . , Ḡn,nn} and the individual variances {σ2
n1, σ

2
n2, . . . , σ

2
nn}. Similarly, Cov (Hn,ii, σ

2
ni)

denotes the covariance between diagonal elements of Hn, {Hn,11, Hn,22, . . . , Hn,nn} and the individual
variances {σ2

n1, σ
2
n2, . . . , σ

2
nn}.

Proof. See Appendix B.

The above proposition indicates that the MLE of the spatial autoregressive and moving average
parameters is not consistent, as long as the covariance terms in Equation (20) are not zero. Notice
that, when the disturbance terms are homoskedastic, the covariance terms in Equation (40) are zero.
In the special case where Wn = Mn and λ0 = ρ0, we have Sn = Rn and Gn = Hn, so that
Ḡn = R−1

n GnRn = R−1
n HnRn = R−1

n MnR
−1
n Rn = Hn. Hence, the necessary condition for the

consistency of λ̂n is identical to the one for ρ̂n.
The result in Proposition 1 indicates that the consistency of the MLE depends on the specification of

weight matrices. It is of interest to investigate specifications that yield zero covariances. An obvious case
is when there is no variation in the diagonal elements of Ḡn and Hn. Then, the necessary condition for
the consistency of λ̂n and ρ̂n is not violated, even if the disturbances are heteroskedastic. For example,
there is no variations in the diagonal elements of Ḡn and Hn when Wn and Mn are block-diagonal
matrices with an identical sub-matrix in the diagonal blocks and zeros elsewhere. This type of block
diagonal weight matrix can be seen in social interaction scenarios where a block represents a group in
which each individual is equally affected by the members of the group [32,33]. Suppose that there are R
groups, each of which has m members, so that n = mR. If we assign equal weight to each member of a
group, then Wn = Mn = IR ⊗Bm, where Bm = 1

m−1

(
lml

′
m − Im

)
, and lm is an m-dimensional column
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vector of ones. For this setup, there is no variation in the diagonal elements of Ḡn and Hn; therefore
Cov

(
Ḡn,ii, σ

2
ni

)
= Cov (Hn,ii, σ

2
ni) = 0.

There is also no variation in the diagonal elements of Ḡn and Hn when the circular world weight
matrices considered in Kelejian and Prucha [7] are employed. In these weight matrices, the order
of observations is important, since the observations are related to some units in front and to some in
back. As an example, consider a “one ahead and one behind” weight matrix, where each observation
is related to the one immediately after and immediately before it. For this scenario, we also have
Cov

(
Ḡn,ii, σ

2
ni

)
= Cov (Hn,ii, σ

2
ni) = 0. The circular world weight matrices can be adjusted to create

some variation in the diagonal elements of Ḡn and Hn. For example, Kelejian and Prucha [34] construct
a different version in which the first and the last one-third of the sample observations has five neighbors
in front and five in back, while the middle third only has one neighbor in front and one in back. Under
this scenario, the Monte Carlo results in Kelejian and Prucha [34] show that the MLE is significantly
biased for the case of SARAR(1,1).

5. The MLE of β0

In the previous section, I showed that the consistency of the MLE of the spatial autoregressive and
moving average parameters is not ensured. In this section, I investigate the consistency of the MLE of
β0. The result in Equation (8a) indicates that the MLE β̂n(δ̂n) is also inconsistent, since it is based
on the inconsistent estimators λ̂n and ρ̂n. The asymptotic bias of β̂n(δ̂n) can be determined from
Equation (8a). By using Sn(λ) = Sn + (λ0 − λ)Wn, the MLE β̂n(δ) can be written as:

β̂n(δ) =β0 +
(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)R−1
n (ρ)Rnεn

+ (λ0 − λ)
(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)R−1
n (ρ)GnXnβ0

+ (λ0 − λ)
(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)R−1
n (ρ)GnRnεn (21)

Under Assumption 3, the term
(

1
n
X̄
′
n(ρ)X̄n(ρ)

)−1
is uniformly bounded in absolute value in row and

column sums. By Lemma 1(5) of Appendix A, terms involving εn in Equation (21) vanish in probability.
Thus,

β̂n(δ) = β0 + (λ0 − λ)
(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)R−1
n (ρ)GnXnβ0 + op(1) (22)

The asymptotic bias of β̂n(δ̂n) follows from Equation (22), which is given by(
λ0 − λ̂n

) (
X̄
′
n(ρ̂n)X̄n(ρ̂n)

)−1
X̄
′
n(ρ̂n)R−1

n (ρ̂n)GnXnβ0. This result shows that the asymptotic

bias of β̂n(δ̂n) depends on weight matrices and the regressors matrix and is not zero unless the spatial
parameters are consistent. Note that the bias is the OLS estimator obtained from the artificial regression
of R−1

n (ρ̂n)GnXnβ0 on X̄n(ρ̂n). For the special case of λ̂n = λ0 + op(1), we have β̂n(δ) = β0 + op(1).
In this case, there is no asymptotic bias, and the inconsistency of ρ̂n has no effect on β̂n(δ̂n).

The specification with λ0 = 0 in Equation (1) is called the spatial moving average model
(SARMA(0,1) or SMA). For the SARMA(0,1) specification, the log-likelihood function simplifies to:

lnLn(ζ) = −n
2

ln(2π)− n

2
ln(σ2)− ln |Rn(ρ)| − 1

2σ2
(Yn −Xnβ)

′
R
′−1
n (ρ)R−1

n (ρ) (Yn −Xnβ) (23)
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where ζ =
(
θ
′
, σ2
)′

with θ =
(
ρ, β

′)′ . For a given value of ρ, the first order conditions yield:

β̂n(ρ) =
(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)R−1
n (ρ)Yn

σ̂2
n(ρ) =

1

n
ε
′

n(θ)εn(θ)

where εn(θ) = R−1
n Yn − X̄nβ. The necessary condition for the consistency of the MLE ρ̂n

can be obtained from Equation (20). From the second row of Equation (20), we have
1
n
∂ lnLn(ρ0)

∂ρ
= −Cov(Hn,ii, σ

2
ni)

σ̄2 + op(1), which implies that the MLE ρ̂n is inconsistent. Substitution
of Yn = Xnβ0 +Rnεn into β̂n(ρ) yields:

β̂n(ρ) = β0 +
(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)R−1
n (ρ)εn (24)

The variance of
(
X̄
′
n(ρ)X̄n(ρ)

)−1
X̄
′
n(ρ)R−1

n (ρ)Rnεn in Equation (24) has an order of O( 1
n
) by

Lemma 1(5) of Appendix A. Then, Chebyshev’s inequality implies that β̂n(ρ) = β0 + op(1). Hence,
β̂n(ρ̂n) has no asymptotic bias, even though ρ̂n is inconsistent.

For the spatial autoregressive model, where ρ0 = 0 in Equation (1), the result in Equation (20)

simplifies to 1
n
∂ lnLn(λ0)

∂λ
=

Cov(Gn,ii, σ
2
ni)

σ̄2 + op(1). The term
(
X̄
′
n(ρ)X̄n(ρ)

)−1
X̄
′
n(ρ)R−1

n (ρ)GnXnβ0 in
Equation (22) simplifies to

(
X
′
nXn

)−1
X
′
GnXnβ0, so that:

β̂n(λ) = β0 + (λ0 − λ)
(
X
′

nXn

)−1

X
′
GnXnβ0 + op(1) (25)

The result in Equation (25) is the exact result stated in Lin and Lee [22] for the case of SARAR(1,0).
I collect the above results for the MLE of β0 in the following proposition.

Proposition 2. Consider the model in Equation (1) under Assumptions 1 through 3; then:

(1) For the SARMA(1,1) model, we have:

β̂n(δ) = β0 + (λ0 − λ)
(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)R−1
n (ρ)GnXnβ0 + op(1) (26)

(2) For the SARMA(0,1) model, where λ0 = 0, we have β̂n(ρ) = β0 + op(1).

(3) For the SARMA(1,0) model, where ρ0 = 0, we have:

β̂n(λ) = β0 + (λ0 − λ)
(
X
′

nXn

)−1

X
′
GnXnβ0 + op(1) (27)

In Sections 4 and 5, I showed that the MLE of δ0 and β0 is generally inconsistent when
heteroskedasticity is present in the model. Besides its computational burden, the consistency of MLE is
not ensured. In the next section, I confirm these large sample results through a Monte Carlo simulation.

6. Monte Carlo Simulation

In this section, the finite sample properties of the MLE are investigated through a Monte Carlo
experiment for the cases of (i) SARMA(0,1) and (ii) SARMA(1,1). For both models, I assume
heteroskedastic innovations in the data generating processes.
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6.1. Design

There are two regressors and no intercept term, such that Xn = [xn,1, xn,2] and β0 = (β10, β20)′,
where xn,1 and xn,2 are n × 1 independent random vectors that are generated from a Normal(0,1). I
consider n = 100, 500, 1,000; let Wn = Mn, and set β0 = (1, 1)

′ for all experiments. For the spatial
autoregressive parameters (λ0, ρ0), I employ combinations from the set B = (−0.6, −0.3, 0, 0.3, 0.6)

to allow for weak and strong spatial interactions.
The row normalized spatial weight matrix is based on the small group interaction scenario described

in Lin and Lee [22]. In this scenario, the weight matrix is a block diagonal matrix where each block
represents a group interaction. The size of each block is determined by the group size, which is
determined by a random draw from Uniform(15,50). Let {g1, . . . , gG} be the set of groups, where G
is the total number of groups. Denote the size of each group by mi for i = 1, . . . , G. Then, the block
for group i is given by Bi = 1

mi−1

(
lmi
l
′
mi
− Imi

)
, where lmi

is the mi × 1 vector of ones. Then,
Wn = Mn = Diag (B1, . . . , BG) 9.

The observations in a group have the same variance, and I use the group size to create
heteroskedasticity. If the group size is greater than 35, I set the variance of that group equal to its
size raised to 0.4 power; otherwise I let the variance be the square of the inverse of the group size. Then,
the i-th element of the innovation vector εn is generated according to εni = σniξni, where σni is the
standard error for the i-th observation and ξni’s are i.i.d. Normal(0,1).

I use the following expressions to measure the level of signal-to-noise in this setup [35]:

R2
SARMA(1,1) = 1−

tr
(
R
′
nS
−1′
n S−1

n RnΣn

)
β
′
0X

′
nS
−1′
n S−1

n Xnβ0 + tr (R′nS
−1′
n S−1

n RnΣn)
(28)

R2
SARMA(0,1) = 1−

tr
(
R
′
nRnΣn

)
β
′
0X

′
nXnβ0 + tr (R′nRnΣn)

(29)

where Σn is the diagonal n×n covariance matrix of the disturbance terms. This setup yields anR2 value
close to 0.55. For each specification, the Monte Carlo experiment is based on 1,000 repetitions.

6.2. Simulation Results

The simulation results are presented in Appendices C and D. In each table, the empirical mean (Mean),
the bias (Bias), the empirical standard error (SE) and the root mean square error (RMSE) of the parameter
estimates are presented next to each other.

First, I consider the simulation results for the SARMA (0,1) model. The simulation results are
presented in Table C1 of Appendix C. The MLE imposes almost no bias on β10 and β20 in all cases.
The moving average parameter ρ0 has a substantial amount of bias when n = 100, but the amount of
bias decreases as the sample size increases. Despite this, the MLE imposes a significant amount of bias
on ρ0 when n = 500 and n = 1,000 in cases where the true value of ρ0 is nonzero. Overall, the simulation

9 Here, Diag (B1, . . . , BG) denotes the block diagonal matrix in which the diagonal blocks are mi ×mi matrices ofBis.
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results are consistent with our large sample results. That is, the MLE of β10 and β20 is consistent, while
the MLE of ρ0 is inconsistent in the presence of heteroskedasticity.

Now, we turn to the simulation results for the case of SARMA(1,1). First, I consider the simulation
results for λ0 and ρ0. Table D2 shows the estimation results for n = 100. The MLE imposes a substantial
amount of bias on both parameters in all cases. The amount of bias for λ0 is relatively larger when there
exists a strong negative spatial dependence in the dependent variable. There is a similar pattern for
ρ0, where the amount of bias and RMSE is, in general, larger for the cases of high negative spatial
dependence in both the dependent variable and disturbance term. The pattern that we see for λ0 and
ρ0 shows itself for the estimation results of β10 and β20. That is, the reported biases and RMSEs are
relatively larger for β10 and β20, when there are strong spatial dependences in the model.

Table D3 contains the simulation results when n = 500. The same pattern that I described for λ0

and ρ0 is also prevalent in Table D3. The MLE still imposes a substantial amount of bias on λ0 and ρ0.
The noticeable improvement in the estimation results for β10 and β20 suggests that these parameters are
less affected by the inconsistency of the MLE of λ0 and ρ0, when the sample size is moderately large.
The estimation results in Table D4 for β10 and β20 are also consistent with this claim. That is, when the
sample size is large, i.e., n = 1000, the MLE imposes trivial bias on β10 and β20 in most cases. On the
other hand, the estimation results in Table D4 show that the MLE imposes significant bias on λ0 and ρ0,
which, in turn, implies the inconsistency of the MLE for these parameters.

I now evaluate the finite sample efficiency measured by the RMSE of the MLE through the surface
plots given in Appendix E. Figure E1 shows the surface plots of RMSEs for β10 and β20. It is clear
from the surface plots that the MLE has higher RMSEs when strong spatial dependence exists in the
model. The surface plots in Figure E2 are for λ0 and ρ0. These surface plots indicate that the MLE of
these parameters has higher RMSEs when there exists strong negative spatial dependence in both the
dependent variable and disturbance term.

7. Conclusions

In this study, I show that the MLE of the spatial autoregressive and moving average parameters for
the SARMA(1,1) specification is generally inconsistent in the presence of heteroskedastic disturbances.
The analytical results indicate that the concentrated log-likelihood function is not maximized at the true
parameter values when heteroskedasticity is not considered in the estimation. The necessary condition
for the consistency of the MLE depends on the specification of spatial weight matrices. I also show that
the MLE of the parameters of the exogenous variables is inconsistent, and I state the expression for the
corresponding asymptotic bias.

The Monte Carlo results show that the MLE imposes a substantial amount of bias on the spatial
autoregressive and moving average parameters in all cases for all sample sizes when the spatial weight
matrix has non-identical blocks on the diagonals. The simulation results also show that the inconsistency
of the spatial autoregressive and moving average parameters has almost no effect on the estimates of the
parameters of the exogenous variables for cases where the sample size is large.
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Appendix

A: Some Useful Lemmas

Lemma 1. Let An, Bn and Cn be n × n matrices with (i, j)-th elements, respectively denoted by an,ij ,
bn,ij and cn,ij . Assume that An and Bn have zero diagonal elements and Cn has uniformly-bounded
row and column sums in absolute value. Let qn be an n × 1 vector with uniformly-bounded elements
in absolute value. Assume that εn satisfies Assumption 1 with the covariance matrix denoted by
Σn=Diag{σ2

n1, . . . , σ
2
nn}. Then,

(1) E
(
ε
′

nAnεn · ε
′

nBnεn

)
=

n∑
i=1

n∑
j=1

an,ij (bn,ij + bn,ji)σ
2
niσ

2
nj = tr

(
ΣnAn

(
B
′

nΣn + ΣnBn

))

(2) E (εnCnεn)2 =
n∑
i=1

c2
n,ii

[
E
(
ε4
ni

)
− 3σ4

ni

]
+

(
n∑
i=1

cn,iiσ
2
ni

)2

+
n∑
i=1

n∑
j=1

cn,ij (cn,ij + cn,ji)σ
2
niσ

2
nj

=
n∑
i=1

c2
n,ii

[
E
(
ε4
ni

)
− 3σ4

ni

]
+ tr2 (ΣnCn) + tr

(
ΣnCnC

′

nΣn + ΣnCnΣnCn

)
,

(3) Var (εnCnεn) =
n∑
i=1

c2
n,ii

[
E(ε4

ni)− 3σ4
ni

]
+

n∑
i=1

n∑
j=1

cn,ij(cn,ij + cn,ji)σ
2
niσ

2
nj

=
n∑
i=1

c2
n,ii

[
E(ε4

ni)− 3σ4
ni

]
+ tr

(
ΣnCnC

′

nΣn + ΣnCnΣnCn

)
.

(4) E
(
ε
′

nCnεn

)
= O(n), Var

(
ε
′

nCnεn

)
= O(n), ε

′

nCnεn = Op(n).

(5) E (Cnεn) = 0, Var (Cnεn) = O(n), Cnεn = Op(n), Var
(
q
′

nCnεn

)
= O(n), q

′

nCnεn = Op(n).

Proof. For (1), (2), (3), (4) and (5), see Lemmas A.1 through A.4 in Lin and Lee [22] and Lemma 2 in
Dogan and Suleyman [36].

Lemma 2. Consider M̄n = (In − Pn), where Pn = X̄n(X̄
′
nX̄n)−1X̄

′
n under Assumption 3. Assume that

εn satisfies Assumption 1 with the covariance matrix denoted by Σn=Diag{σ2
n1, . . . , σ

2
nn}. Then,

(1) M̄n and Pn are uniformly bounded in absolute value in both row and column sums.

(2) Var (Pnεn) = O

(
1

n

)
, Pnεn = op(1), Var (εnPnεn) = O

(
1

n

)
, εnPnεn = Op(1).

(3) Elements of Pn are O
(

1

n

)
.

Proof. The proof is similar to the proof of Lemma 3 in Dogan and Suleyman [36]. Hence, it is
omitted.
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B: Proof of Proposition 1

For the probability limit of terms in Equation (19), the partial derivatives ∂σ̂2
n(δ)
∂ρ

, ∂σ̂2
n(δ)
∂λ

and ∂M̄n(ρ)
∂ρ

are
required, which are given by:

(1)
∂M̄n(ρ)

∂ρ
= −

[
R−1
n (ρ)MnX̄n(ρ)

(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)

]
−
[
X̄n(ρ)

(
X̄
′

n(ρ)X̄n(ρ)
)−1

× X̄ ′n(ρ)M
′

nR
′−1
n (ρ)

]
+

[
X̄n(ρ)

(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)H
′

n(ρ)X̄n(ρ)
(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)

]
+

[
X̄n(ρ)

(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)Hn(ρ)X̄n(ρ)
(
X̄
′

n(ρ)X̄n(ρ)
)−1

X̄
′

n(ρ)

]

(2)
∂σ̂2

n(δ)

∂ρ
=

[
2

n
Y
′

nS
′

n(λ)H
′

n(ρ)R
′−1
n (ρ)M̄n(ρ)R−1

n (ρ)Sn(λ)Yn

]
−
[

2

n
Y
′

nS
′

n(λ)R
′−1
n (ρ)Pn(ρ)H

′

nM̄n(ρ)R−1
n (ρ)Sn(λ)Yn

]
.

(3)
∂σ̂2

n(δ)

∂λ
= −

[
2

n
Y
′

nS
′

n(λ)R
′−1
n (ρ)M̄n(ρ)R−1

n (ρ)WnYn

]
.

First, the probability limit of the first row in Equation (19) is investigated:

plim
n→∞

1

n

(
− n

2
n
ε′nM̄nεn

∂σ̂2
n(δ0)

∂λ

)
= plim

n→∞

1
n
ε
′
nM̄nḠnεn

1
n
ε′nM̄nεn

+ plim
n→∞

1
n
ε
′
nM̄nḠnX̄nβ0

1
n
ε′nM̄nεn

(30)

where we use X̄ ′nM̄n = 0k×n. For the second term on the r.h.s. of Equation (30), we have:

plim
n→∞

1
n
ε
′
nM̄nR

−1
n GnXnβ0

1
n
ε′nM̄nεn

= 0 (31)

since the numerator converges in probability to zero by Lemma 1(5) and Lemma 2(1), and for the term
in the denominator, we have 1

n
ε
′
nM̄nεn = 1

n

∑n
i=1 σ

2
ni + op(1), as shown in Equation (16). The overall

result is zero, since 1
n

∑n
i=1 σ

2
ni is uniformly bounded for all n by Assumption 1. As for the first term on

the r.h.s of Equation (30), we have:

plim
n→∞

1
n
ε
′
nM̄nḠnεn

1
n
ε′nM̄nεn

= plim
n→∞

1
n
εnḠnεn

1
n
ε′nM̄nεn

− plim
n→∞

1
n
εnX̄n

(
X̄
′
nX̄n

)−1
X̄
′
nḠnεn

1
n
ε′nM̄nεn

(32)

We first evaluate the last term in (32). The numerator of this term tends to zero in probability as n
goes to infinity by Lemma 1(4) and Assumption 3. Hence, the last term in Equation (32) vanishes.

Now, we return to the first term in the r.h.s. of Equation (32). By Lemma 1(4), Var
(

1
n
ε
′
nḠnεn

)
=

O
(

1
n

)
= o(1). Then, the Chebyshev inequality implies that plimn→∞

(
1
n
ε
′
nḠnεn − E

(
1
n
ε
′
nḠnεn

))
=

plimn→∞
(

1
n
ε
′
nḠnεn − 1

n

∑n
i=1 Ḡn.iiσ

2
ni

)
= 0. Hence,

1
n
εnḠnεn

1
n
ε′nM̄nεn

=
1
n

∑n
i=1 Ḡn,iiσ

2
ni

1
n

∑n
i=1 σ

2
ni

+ op(1) (33)
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These results imply the following one:

1

n

(
− n

2
n
ε′nM̄nεn

∂σ̂2
n(δ0)

∂λ

)
=

1
n

∑n
i=1 Ḡn.iiσ

2
ni

1
n

∑n
i=1 σ

2
ni

+ op(1) (34)

Now, we return to the first term in the second row of Equation (19):

plim
n→∞

1

n

(
− n

2
n
ε′nM̄nεn

∂σ̂2
n(δ0)

∂ρ

)
= − plim

n→∞

1
n
Y
′
nS
′
nH

′
nR

′−1
n M̄nR

−1
n SnYn

1
n
ε′nM̄nεn

+ plim
n→∞

1
n
Y
′
nS
′
nR

′−1
n PnH

′
nM̄nR

−1
n SnYn

1
n
ε′nM̄nεn

(35)

Each term is handled separately below by using R−1
n SnYn = X̄nβ0 + εn, SnYn = Xnβ0 + Rnεn,

X̄
′
nM̄n = 0k×n and M̄nX̄n = 0n×k. Note that 1

n
Y
′
nS
′
nR

′−1
n PnH

′
nM̄nR

−1
n SnYn = 1

n
β
′
0X̄

′
nPnH

′
nM̄nεn +

1
n
εnPnH

′
nM̄nεn. By Lemma 1(5) and Lemma 2(1), 1

n
β
′
0X̄

′
nPnH

′
nM̄nεn = op(1). For the remaining term,

by Lemma 2, we have 1
n
εnPnH

′
nM̄nεn = op(1). Hence, the second term on the r.h.s. of Equation (35)

vanishes.
The first term on the r.h.s. of Equation (35) can be written as:

− plim
n→∞

1
n
Y
′
nS
′
nR

′−1
n M̄nHnR

−1
n SnYn

1
n
ε′nM̄nεn

= − plim
n→∞

1
n
ε
′
nM̄nHnX̄nβ0

1
n
ε′nM̄nεn

− plim
n→∞

1
n
ε
′
nM̄nHnεn

1
n
ε′nM̄nεn

(36)

Substituting M̄n = In − X̄n

(
X̄
′
nX̄n

)−1
X̄
′
n into Equation (36) yields:

− plim
n→∞

1
n
Y
′
nS
′
nR

′−1
n M̄nHnR

−1
n SnYn

1
n
ε′nM̄nεn

= − plim
n→∞

1
n
ε
′
nHnεn

1
n
ε′nM̄nεn

− plim
n→∞

1
n
ε
′
nM̄nHnX̄nβ0

1
n
ε′nM̄nεn

+ plim
n→∞

1
n2 ε

′
nX̄n

(
1
n
X̄
′
nX̄n

)−1
X̄
′
nHnεn

1
n
ε′nM̄nεn

(37)

By Lemma 1(5) and Equation (16), the second term on the r.h.s of Equation (37) vanishes. The third
term vanishes by Lemma 1(4) and Equation (16). The probability limit of the remaining term can be
found by the Chebyshev inequality. By Lemma 1(4), we have Var

(
1
n
ε
′
nHnεn

)
= O( 1

n
) = o(1). Hence,

plimn→∞
(

1
n
ε
′
nHnεn−E( 1

n
ε
′
nHnεn)

)
= plimn→∞

(
1
n
ε
′
nHnεn− 1

n

∑n
i=1Hn,iiσ

2
ni

)
= 0. Combining these

results, we get the following result for the first term in the first row of Equation (19):

1

n

(
− n

2
n
ε′nM̄nεn

∂σ̂2
n(δ0)

∂ρ

)
= −

1
n

∑n
i=1Hn,iiσ

2
ni

1
n

∑n
i=1 σ

2
ni

+ op(1) (38)

By combining the results in Equations (34) and (38), we obtain:

1

n

∂ lnLn(δ0)

∂δ
=


1
n

∑n
i=1 Ḡn.iiσ

2
ni

1
n

∑n
i=1 σ

2
ni

− 1
n
tr(Gn) + op(1)

−
(

1
n

∑n
i=1Hn,iiσ

2
ni

1
n

∑n
i=1 σ

2
ni

− 1
n
tr(Hn)

)
+ op(1)

 (39)
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For the notational simplification, denoteH∗n = 1
n
tr(Hn) = 1

n

∑n
i=1Hn,ii, Ḡ∗n = 1

n
tr(Ḡn) = 1

n

∑n
i=1 Ḡn,ii

and σ̄2 = 1
n

∑n
i=1 σ

2
ni. Then, Equation (39) can be written in a more convenient form as 10:

1

n

∂ lnLn(δ0)

∂δ
=


1
n

∑n
i=1

(
Ḡn.ii−Ḡ∗

) (
σ2
ni−σ̄2

)
σ̄2 − 1

n
tr(Ḡn −Gn) + op(1)

−
1
n

∑n
i=1

(
Hn,ii−H∗n

) (
σ2
ni−σ̄2

)
σ̄2 + op(1)



=


cov(Ḡn,ii, σ

2
ni)

σ̄2 + op(1)

− cov(Hn,ii, σ
2
ni)

σ̄2 + op(1)

 (40)

C: Simulation Results for SARMA(0,1)

Table C1. Simulation results for SARMA(0,1).

n = 100 β1 β2 ρ

ρ (Mean)[Bias](SE)[RMSE] (Mean)[Bias](SE)[RMSE] (Mean)[Bias](SE)[RMSE]

−0.6 (0.987)[−0.013](0.209)[0.209] (1.009)[0.009](0.218)[0.218] (−0.405)[0.195](0.618)[0.648]

−0.3 (1.000)[−0.000](0.211)[0.211] (0.998)[−0.002](0.203)[0.203] (−0.205)[0.095](0.630)[0.637]

0.0 (1.001)[0.001](0.214)[0.214] (1.008)[0.008](0.229)[0.229] (0.101)[0.101](0.565)[0.574]

0.3 (1.000)[0.000](0.217)[0.217] (0.993)[−0.007](0.222)[0.222] (0.434)[0.134](0.386)[0.409]

0.6 (0.996)[−0.004](0.212)[0.212] (0.998)[−0.002](0.210)[0.210] (0.710)[0.110](0.204)[0.232]

n = 500

−0.6 (1.006)[0.006](0.083)[0.083] (0.995)[−0.005](0.082)[0.082] (−0.652)[−0.052](0.377)[0.380]

−0.3 (1.001)[0.001](0.083)[0.083] (1.002)[0.002](0.084)[0.084] (−0.354)[−0.054](0.388)[0.392]

0.0 (0.998)[−0.002](0.084)[0.084] (1.002)[0.002](0.082)[0.082] (0.007)[0.007](0.293)[0.293]

0.3 (1.005)[0.005](0.085)[0.085] (0.998)[−0.002](0.080)[0.080] (0.346)[0.046](0.189)[0.194]

0.6 (0.997)[−0.003](0.078)[0.078] (1.002)[0.002](0.081)[0.081] (0.652)[0.052](0.095)[0.108]

n = 1,000

−0.6 (1.000)[−0.000](0.058)[0.058] (1.000)[0.000](0.059)[0.059] (−0.682)[−0.082](0.284)[0.296]

−0.3 (0.999)[−0.001](0.059)[0.059] (0.998)[-0.002](0.058)[0.058] (−0.342)[−0.042](0.274)[0.277]

0.0 (1.000)[−0.000](0.057)[0.057] (1.004)[0.004](0.059)[0.059] (0.010)[0.010](0.191)[0.191]

0.3 (0.998)[−0.002](0.058)[0.058] (1.000)[0.000](0.058)[0.058] (0.330)[0.030](0.125)[0.128]

0.6 (1.002)[0.002](0.057)[0.057] (0.999)[−0.001](0.057)[0.057] (0.630)[0.030](0.072)[0.078]

10 Note that 1
n tr(Ḡn −Gn) = 0.
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D: Simulation Results for SARMA(1,1)

Table D2. Simulation results for SARMA(1,1): n = 100.

λ β1 β2 ρ

λ ρ (Mean)[Bias](SE)[RMSE] (Mean)[Bias](SE)[RMSE] (Mean)[Bias](SE)[RMSE] (Mean)[Bias](SE)[RMSE]

−0.6 −0.6 (−1.583)[−0.983](4.262)[4.374] (0.874)[−0.126](0.342)[0.364] (0.898)[-0.102](0.350)[0.365] (−0.273)[0.327](0.981)[1.034]

−0.6 −0.3 (−1.790)[−1.190](4.346)[4.506] (0.848)[−0.152](0.371)[0.401] (0.847)[−0.153](0.361)[0.392] (−0.178)[0.122](0.997)[1.004]

−0.6 0.0 (−1.794)[v1.194](4.355)[4.516] (0.867)[−0.133](0.357)[0.381] (0.865)[−0.135](0.353)[0.378] (0.021)[0.021](0.934)[0.934]

−0.6 0.3 (−1.404)[−0.804](3.687)[3.773] (0.839)[−0.161](0.379)[0.412] (0.851)[−0.149](0.382)[0.410] (0.264)[−0.036](0.709)[0.710]

−0.6 0.6 (−0.591)[0.009](1.108)[1.108] (0.760)[−0.240](0.455)[0.515] (0.760)[−0.240](0.455)[0.515] (0.470)[−0.130](0.342)[0.366]

−0.3 −0.6 (−0.907)[−0.607](3.275)[3.331] (0.912)[−0.088](0.325)[0.337] (0.907)[−0.093](0.324)[0.337] (−0.259)[0.341](0.822)[0.890]

−0.3 −0.3 (−1.132)[−0.832](3.497)[3.594] (0.882)[−0.118](0.351)[0.370] (0.881)[−0.119](0.362)[0.381] (−0.136)[0.164](0.906)[0.920]

−0.3 0.0 (−1.335)[−1.035](3.840)[3.977] (0.857)[−0.143](0.361)[0.388] (0.861)[−0.139](0.367)[0.393] (−0.005)[−0.005](0.861)[0.861]

−0.3 0.3 (−1.045)[−0.745](3.364)[3.445] (0.840)[−0.160](0.399)[0.430] (0.835)[−0.165](0.400)[0.433] (0.220)[−0.080](0.709)[0.714]

−0.3 0.6 (−0.574)[−0.274](1.873)[1.893] (0.768)[−0.232](0.466)[0.521] (0.758)[−0.242](0.459)[0.519] (0.436)[−0.164](0.390)[0.423]

0.0 −0.6 (−0.452)[−0.452](2.570)[2.609] (0.904)[−0.096](0.354)[0.367] (0.898)[−0.102](0.350)[0.365] (−0.292)[0.308](0.721)[0.784]

0.0 −0.3 (−0.690)[−0.690](3.123)[3.199] (0.903)[−0.097](0.337)[0.350] (0.889)[−0.111](0.340)[0.358] (−0.208)[0.092](0.772)[0.778]

0.0 0.0 (−0.834)[−0.834](3.174)[3.282] (0.841)[−0.159](0.383)[0.415] (0.857)[−0.143](0.391)[0.416] (−0.079)[−0.079](0.804)[0.808]

0.0 0.3 (−0.450)[−0.450](2.131)[2.178] (0.839)[−0.161](0.407)[0.438] (0.838)[−0.162](0.412)[0.442] (0.238)[−0.062](0.590)[0.593]

0.0 0.6 (−0.278)[−0.278](1.068)[1.104] (0.768)[−0.232](0.469)[0.523] (0.763)[−0.237](0.463)[0.521] (0.411)[−0.189](0.349)[0.397]

0.3 −0.6 (0.068)[-0.232](1.429)[1.448] (0.938)[-0.062](0.311)[0.317] (0.951)[-0.049](0.307)[0.311] (−0.384)[0.216](0.543)[0.585]

0.3 −0.3 (-0.157)[-0.457](2.174)[2.221] (0.903)[-0.097](0.344)[0.358] (0.902)[-0.098](0.345)[0.359] (−0.279)[0.021](0.623)[0.623]

0.3 0.0 (−0.211)[-0.511](2.030)[2.094] (0.867)[-0.133](0.376)[0.399] (0.864)[-0.136](0.381)[0.404] (−0.161)[-0.161](0.660)[0.679]

0.3 0.3 (−0.203)[-0.503](2.007)[2.069] (0.819)[-0.181](0.437)[0.473] (0.813)[-0.187](0.432)[0.471] (0.095)[-0.205](0.621)[0.654]

0.3 0.6 (-0.022)[-0.322](0.735)[0.802] (0.659)[-0.341](0.508)[0.612] (0.657)[-0.343](0.503)[0.609] (0.329)[-0.271](0.381)[0.468]

0.6 −0.6 (0.422)[−0.178](0.712)[0.733] (0.981)[−0.019](0.231)[0.232] (0.981)[−0.019](0.230)[0.231] (−0.584)[0.016](0.346)[0.346]

0.6 −0.3 (0.376)[−0.224](0.580)[0.621] (0.976)[−0.024](0.253)[0.254] (0.965)[−0.035](0.255)[0.257] (−0.511)[−0.211](0.329)[0.391]

0.6 0.0 (0.270)[−0.330](0.842)[0.905] (0.961)[−0.039](0.294)[0.296] (0.945)[−0.055](0.292)[0.297] (−0.412)[−0.412](0.386)[0.564]

0.6 0.3 (0.152)[−0.448](1.345)[1.418] (0.921)[−0.079](0.326)[0.335] (0.920)[−0.080](0.335)[0.344] (−0.286)[−0.586](0.415)[0.719]

0.6 0.6 (0.159)[−0.441](0.767)[0.884] (0.802)−0.198](0.436)[0.479] (0.800)[−0.200](0.432)[0.476] (−0.059)[−0.659](0.414)[0.779]
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Table D3. Simulation results for SARMA(1,1): n = 500.

λ β1 β2 ρ

λ ρ (Mean)[Bias](SE)[RMSE] (Mean)[Bias](SE)[RMSE] (Mean)[Bias](SE)[RMSE] (Mean)[Bias](SE)[RMSE]

−0.6 −0.6 (−3.051)[−2.451](7.286)[7.687] (0.914)[−0.086](0.257)[0.271] (0.911)[−0.089](0.256)[0.271] (−1.040)[−0.440](1.921)[1.970]

−0.6 −0.3 (−2.905)[−2.305](7.213)[7.572] (0.916)[−0.084](0.253)[0.267] (0.918)[−0.082](0.254)[0.267] (−0.725)[−0.425](1.913)[1.960]

−0.6 0.0 (−1.771)[−1.171](5.677)[5.797] (0.953)[−0.047](0.203)[0.208] (0.949)[−0.051](0.204)[0.210] (−0.123)[−0.123](1.427)[1.432]

−0.6 0.3 (−0.977)[−0.377](3.577)[3.597] (0.985)[−0.015](0.142)[0.143] (0.982)[−0.018](0.140)[0.141] (0.303)[0.003](0.814)[0.814]

−0.6 0.6 (−0.667)[−0.067](0.139)[0.154] (1.003)[0.003](0.088)[0.088] (1.006)[0.006](0.085)[0.085] (0.609)[0.009](0.087)[0.087]

−0.3 −0.6 (−0.985)[−0.685](4.189)[4.244] (0.979)[−0.021](0.163)[0.165] (0.975)[−0.025](0.162)[0.164] (−0.608)[−0.008](1.201)[1.201]

−0.3 −0.3 (−1.513)[−1.213](5.164)[5.304] (0.953)[−0.047](0.187)[0.193] (0.960)[−0.040](0.189)[0.193] (−0.577)[−0.277](1.472)[1.498]

−0.3 0.0 (−1.196)[−0.896](4.602)[4.689] (0.972)[−0.028](0.174)[0.177] (0.968)[−0.032](0.171)[0.174] (−0.155)[−0.155](1.284)[1.293]

−0.3 0.3 (−0.457)[−0.157](1.797)[1.804] (0.996)[−0.004](0.103)[0.103] (0.994)[−0.006](0.102)[0.102] (0.312)[0.012](0.449)[0.449]

−0.3 0.6 (−0.460)[−0.160](0.212)[0.266] (1.000)[−0.000](0.082)[0.082] (1.006)[0.006](0.082)[0.082] (0.557)[−0.043](0.132)[0.139]

0.0 −0.6 (0.040)[0.040](1.086)[1.087] (0.998)[−0.002](0.090)[0.090] (0.998)[−0.002](0.086)[0.086] (−0.371)[0.229](0.468)[0.521]

0.0 −0.3 (−0.220)[−0.220](2.089)[2.100] (0.994)[−0.006](0.103)[0.103] (0.994)[−0.006](0.109)[0.109] (−0.333)[−0.033](0.703)[0.704]

0.0 0.0 (−0.205)[−0.205](1.807)[1.819] (0.996)[−0.004](0.101)[0.101] (0.995)[−0.005](0.101)[0.101] (−0.075)[−0.075](0.681)[0.685]

0.0 0.3 (−0.077)[−0.077](0.731)[0.735] (0.996)[−0.004](0.085)[0.085] (0.998)[−0.002](0.087)[0.087] (0.298)[−0.002](0.328)[0.328]

0.0 0.6 (−0.153)[−0.153](0.253)[0.296] (0.987)[−0.013](0.136)[0.137] (0.989)[−0.011](0.135)[0.136] (0.521)[−0.079](0.197)[0.213]

0.3 −0.6 (0.317)[0.017](0.140)[0.141] (1.003)[0.003](0.084)[0.084] (1.000)[0.000](0.082)[0.082] (−0.430)[0.170](0.201)[0.263]

0.3 −0.3 (0.228)[−0.072](0.173)[0.188] (1.003)[0.003](0.086)[0.086] (0.998)[−0.002](0.083)[0.083] (−0.323)[−0.023](0.272)[0.273]

0.3 0.0 (0.137)[−0.163](0.715)[0.734] (0.998)[−0.002](0.086)[0.087] (0.997)[−0.003](0.086)[0.086] (−0.174)[−0.174](0.408)[0.444]

0.3 0.3 (0.199)[−0.101](0.211)[0.234] (0.996)[−0.004](0.100)[0.100] (0.996)[−0.004](0.100)[0.100] (0.216)[−0.084](0.362)[0.372]

0.3 0.6 (0.245)[−0.055](0.194)[0.202] (0.961)[−0.039](0.211)[0.214] (0.958)[−0.042](0.209)[0.213] (0.587)[−0.013](0.205)[0.205]

0.6 −0.6 (0.545)[−0.055](0.086)[0.102] (0.998)[−0.002](0.082)[0.082] (1.000)[−0.000](0.084)[0.084] (−0.652)[−0.052](0.102)[0.115]

0.6 −0.3 (0.486)[−0.114](0.082)[0.141] (0.998)[−0.002](0.082)[0.082] (1.001)[0.001](0.081)[0.081] (−0.583)[−0.283](0.103)[0.301]

0.6 0.0 (0.411)[−0.189](0.091)[0.209] (1.000)[0.000](0.083)[0.083] (0.997)[−0.003](0.081)[0.081] (−0.490)[−0.490](0.124)[0.505]

0.6 0.3 (0.324)[−0.276](0.088)[0.290] (1.007)[0.007](0.089)[0.090] (1.003)[0.003](0.092)[0.092] (−0.344)[−0.644](0.200)[0.674]

0.6 0.6 (0.288)[−0.312](0.159)[0.350] (0.943)[−0.057](0.253)[0.259] (0.941)[−0.059](0.253)[0.260] (−0.070)[−0.670](0.387)[0.774]
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Table D4. Simulation results for SARMA(1,1): n = 1,000

λ β1 β2 ρ

λ ρ (Mean)[Bias](SE)[RMSE] (Mean)[Bias](SE)[RMSE] (Mean)[Bias](SE)[RMSE] (Mean)[Bias](SE)[RMSE]

−0.6 −0.6 (−3.449)[−2.849](8.618)[9.077] (0.907)[−0.093](0.283)[0.298] (0.906)[−0.094](0.282)[0.297] (−1.323)[−0.723](2.487)[2.590]

−0.6 −0.3 (−4.151)[−3.551](9.648)[10.280] (0.877)[−0.123](0.311)[0.334] (0.880)[−0.120](0.312)[0.335] (−1.135)[−0.835](2.798)[2.920]

−0.6 0.0 (−1.675)[−1.075](6.110)[6.204] (0.957)[−0.043](0.201)[0.205] (0.958)[−0.042](0.199)[0.204] (−0.148)[−0.148](1.666)[1.672]

−0.6 0.3 (−0.650)[−0.050](2.400)[2.401] (0.991)[−0.009](0.092)[0.093] (0.991)[−0.009](0.093)[0.093] (0.352)[0.052](0.568)[0.570]

−0.6 0.6 (−0.682)[−0.082](0.095)[0.126] (1.007)[0.007](0.059)[0.060] (1.007)[0.007](0.057)[0.058] (0.595)[−0.005](0.054)[0.055]

−0.3 −0.6 (−0.698)[−0.398](3.631)[3.653] (0.983)[−0.017](0.128)[0.129] (0.985)[−0.015](0.129)[0.129] (−0.624)[−0.024](1.152)[1.153]

−0.3 −0.3 (−1.691)[−1.391](6.083)[6.240] (0.952)[−0.048](0.204)[0.210] (0.954)[−0.046](0.204)[0.209] (−0.704)[−0.404](1.839)[1.883]

−0.3 0.0 (−0.829)[−0.529](4.086)[4.120] (0.981)[−0.019](0.141)[0.143] (0.982)[−0.018](0.142)[0.143] (−0.103)[−0.103](1.241)[1.245]

−0.3 0.3 (−0.385)[−0.085](1.415)[1.418] (1.000)[−0.000](0.073)[0.073] (0.999)[−0.001](0.074)[0.074] (0.300)[−0.000](0.335)[0.335]

−0.3 0.6 (−0.476)[−0.176](0.169)[0.244] (1.005)[0.005](0.058)[0.058] (1.007)[0.007](0.058)[0.058] (0.524)[−0.076](0.105)[0.130]

0.0 −0.6 (0.090)[0.090](0.866)[0.870] (0.998)[−0.002](0.064)[0.064] (1.000)[−0.000](0.067)[0.067] (−0.361)[0.239](0.373)[0.443]

0.0 −0.3 (−0.096)[−0.096](1.508)[1.511] (0.996)[−0.004](0.083)[0.083] (0.995)[−0.005](0.078)[0.078] (−0.323)[−0.023](0.575)[0.575]

0.0 0.0 (−0.111)[−0.111](1.287)[1.291] (0.997)[−0.003](0.071)[0.071] (0.994)[−0.006](0.070)[0.070] (−0.063)[−0.063](0.525)[0.529]

0.0 0.3 (−0.074)[−0.074](0.181)[0.195] (0.997)[−0.003](0.060)[0.060] (0.999)[−0.001](0.060)[0.060] (0.260)[−0.040](0.169)[0.174]

0.0 −0.6 (0.068)[−0.232](1.429)[1.448] (0.938)[−0.062](0.311)[0.317] (0.951)[−0.049](0.307)[0.311] (−0.384)[0.216](0.543)[0.585]

0.3 −0.6 (0.342)[0.042](0.090)[0.099] (1.000)[0.000](0.060)[0.060] (1.001)[0.001](0.059)[0.059] (−0.429)[0.171](0.118)[0.208]

0.3 −0.3 (0.251)[−0.049](0.111)[0.121] (1.000)[−0.000](0.063)[0.063] (1.004)[0.004](0.060)[0.061] (−0.338)[−0.038](0.152)[0.157]

0.3 0.0 (0.174)[−0.126](0.125)[0.178] (1.001)[0.001](0.058)[0.058] (0.998)[−0.002](0.059)[0.059] (−0.188)[−0.188](0.229)[0.296]

0.3 0.3 (0.225)[−0.075](0.145)[0.163] (0.999)[−0.001](0.061)[0.061] (0.999)[−0.001](0.058)[0.058] (0.223)[−0.077](0.271)[0.281]

0.3 0.6 (0.274)[−0.026](0.147)[0.149] (0.996)[−0.004](0.097)[0.097] (0.992)[−0.008](0.097)[0.097] (0.609)[0.009](0.148)[0.148]

0.6 −0.6 (0.562)[−0.038](0.055)[0.067] (1.002)[0.002](0.059)[0.059] (1.000)[0.000](0.059)[0.059] (−0.668)[−0.068](0.066)[0.095]

0.6 −0.3 (0.496)[−0.104](0.058)[0.119] (1.002)[0.002](0.059)[0.059] (1.000)[0.000](0.058)[0.058] (−0.590)[−0.290](0.071)[0.299]

0.6 0.0 (0.417)[−0.183](0.058)[0.192] (0.998)[−0.002](0.062)[0.062] (1.000)[0.000](0.061)[0.061] (−0.495)[−0.495](0.072)[0.501]

0.6 0.3 (0.324)[−0.276](0.061)[0.282] (1.004)[0.004](0.060)[0.060] (1.002)[0.002](0.060)[0.060] (−0.372)[−0.672](0.114)[0.682]

0.6 0.6 (0.320)[−0.280](0.176)[0.331] (0.977)[−0.023](0.175)[0.177] (0.975)[−0.025](0.176)[0.177] (0.007)[−0.593](0.416)[0.725]
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E: Surface Plots of RMSEs for SARMA(1,1)
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Figure E1. RMSEs of β1 and β2. (a) β1, n = 100. (b) β2, n = 100. (c) β1, n = 500. (d)
β2, n = 500. (e) β1, n = 1,000. (f) β2, n = 1,000.
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Figure E2. RMSEs of λ and ρ. (a) λ, n = 100. (b) ρ, n = 100. (c) λ, n = 500. (d)
ρ, n = 500. (e) λ, n = 1,000. (f) ρ, n = 1,000.
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