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ON COMPACT ITO’S FORMULAS FOR
MARTINGALES OF m}

MAaRIA JOLIS

Abstract

We prove that the class mi of continuous martingales with parameter
set [0,1]2, bounded in L%, is included in the class of semi-martingales
829 Lo(P)) defined by Allain in [A]. As a consequence we obtain a com-
pact Ité’s formula. Finally we reiate this resuit with the compact Ité
formula obtained by Sanz m (8] for martingales of m}.

1. Introduction

The purpose of this work is to find a relationship between the compact Ité's
formulas in the plane given by M. F. Allain and M. Sanz (see [A] and [S]).
Before presenting the main result we introduce the problem of It6’s formulae
in the plane.

Recall that when we consider a 1-dimensional parameter, if X; = Xo+M,+ B,
is a continuous semimartingale (that is E|X;| < oo, M, is a continuous square
integrable martingale and B, is a continuous process of total variation integrable
on any finite interval) and ¥ € C?(R) then

t 1 t
F(X,) :F(X0)+£ F'(Xa)dM,+/0 F’(X,)dB,Jr%A F'(X)d<M>,.

This expressicn is known as the Itd formula for F(X).

The idea of the proof consists in taking a sequence of partitions of the interval
0,8} : PP ={0=¢7 <--- <ty <t} with [P*|= sup |t} —1f,|tending
t=1,...,patl1
to 0 when n — oo (t; ;; =t), and write

Fn Pn
F(Xt) - F(XD} = Z F(Xf?.',l) - F(thn) = ZF,(Xt;‘)(X‘?-H B Xt:')+
i=( i=0
1 Pn Fn
E Zﬂ: F;F(Xt:_-a )(Xg:l+l — Xt;‘ )2 + Zg T(X‘?.H ,Xt‘!i)
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where we have applied Taylor’s formula and r( Xy, X, ¢= ) represents the error
term. Then, it can be proved that the first two terms tend to the integrals

4 t t
/ F(X.)dM, + f F(X,)dB, and [ FlUX)d < M >,
[ ] . o 0

respectively and the error term tends to 0, when [P?| | 0.
In the two-parameter case the idea would be to take & sequence of partitions

of the rectangle Ry, P* = P} x Py where

Pr={0=sT< - <s; <8} , sp ;=35

PP{0= << <), S =t

By convenience we remove the index n, putting u for a generic point (s;,%;)
of the partition P and A, for the rectangle {s;,sit1] X {;,¢;41) and @ for
(8i+1,4;41). Assuming that the process vanishes on the axes and that F(Q) =
we write

1 F(Xp)= 3 (FoX){Ay)

wEP

where the increment of a function in a rectangle is defined by

FIAL) = flsi, 65) 4 Flsign, ie1) — f(si,t530) = f(si+1,85),

and then we take in the right hand side the limit when |P| — 0.

Here two problems appear. The first one is to determine the class of processes
for which a Ité’s formula will be valid. In the one-parameter case, from [td's
formula, we have that the class of continuous semimartingales is closed for the
composition with functions F € C%. In the two-parameter case, it is not clear
what definition of semimartingale should be taken ( see for instance [A], and
also [I2]). We will follow the approach of M. F. Allain ([A]}. Most of the resuits
obtained up to date, are Itd's formulae for martingales, but of course we can
not expect F{M} to be a martingale.

The second problem that appears is how to apply Taylor’s formula to (1) and
how to compute and identify the limits that we should obtain. This question
has led different authors to consider the problem of obtaining an Itd’s formula
in a different way, that is, first fixing a parameter and aplying the ordinary
Ité’s formula for the martingale that is obtained varying the other parameter.
Then they consider the integrals that appear like limits when the norm of
the partition tends to 0 of some Riemman's sums. These Riemann sums are
developed by using again the one parameter [t6 formula. These formulae are
called "developed” Itd’s formulae and have been proved, among others, by
Chevalier (see [Ch]) and Nualart (see [N2]}. The last one is the most general
and the result obtained is as follows.
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Ité’s formula. (Nualart)(see [N2]). Let f: R — R be 2 function of class
C* that vanishes at 0 and let M be o martingale in the space m? (continuous
martingales bounded in L* null on the azes). Then for any (s,1) € Ri_ we have

f(M) = /R F(M,)dM, + fR (M) dVT,+
1 5 1t
5/0 F(Ma)d < M, >,+§£ F(M)d < My >, —

1 / FlM)d < M >, —/ FUMYd < MM >, —
2 Rat . Ru

1 L VM) < M >, .

4

The process M, is defined by M, = lim,, D e, M(ALYM(AL), where P, is

the minimal partition that contains P and z = (s,¢) (in (N1] the existence of

M, is proved as a uniform limit in L2, M, being a continuous martingale) and
AL and A are the rectangles given by

Ay = (si,si1] X (0,85], AL = (0,5 x (t,¢541]

On the other hand < M >,=1lm} .5 M(A,)? (in [N1] it is also showed
that if A € m? this limit is in LI(Q) and that the process < M >, has
continuous paths).

The formulas that are obtained directly by applying (in a suitable way)
Taylor’s formula in (1) are called “compact” [t&’s formulae. The idea is to
apply Taylor’s formula in the following way (see [A] where this problem is
considered with m-dimensional parameter and also [I1}).

If u = (u1,uz) and v = (1, v2)} we denote by u ® v the point (u;,v3). Then

F(M)(Au) = [f(M:) - f(Mu)] = [f(Muge) — F(M)] — [f(Maga) — f(M)]
and so we can write

(2)
FMy =" (M)A =

wEP,

> {lA(Ma) = F(M)) - [f(Muge) = F(ML)) = [f(Maga) — F(M,)]} =

ug€?,

1
> 5 2 FOMM(Ma— Ma) = (Muga — Ma) — (Maga — M) 1+
1<r<d4  uwEP,

> R(f,v)

wEP,
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where R(f, )} are the error terms of Taylor's formula and we have to consider
[P {0.

Set AT(M) = (Ms — M) — (Muga — Mu)” — (Magu ~ Mu)" =
[M(A.) + M(AY) + M(AD)) = M(AL)T — M(AL)

The processes obtained as M = P - lim, Yuep, DL(M) are called r-
variations of the process M.

M. Sanz shows in (8] the existence and continuity, for martingales of mg, of
the r-variations, and also shows that for r > 5 they are equal to 0. Furthermore
for X continuous and adapted she shows the existence and continuity of the
processes defined by

X, dM) =P 1 XuAT{
L : s 2

Finally she proves the following formula.

1té’s formula 1. (Sanz) If M € m?, f € C*(R), 7(0) =0 then
“ .
) =35 [ s a
r=1"" z

In order to see that the remainder terms in (2) tend to 0, Sanz shows that
the terms of the right hand side of this last expression coincide with the terms
of the Nualart’s formula. This can be proved by using an algebraic identity and
the L,-integrator property of the 2-variation proved in [I2].

On the other hand M. F. Allain considers {2) when [P| | 0 as the integral of
the processes f (’)(M } with respect to some stochastic measures (we will define
precisely in the following section the term stochastic measure and the notions
that are used in the It formula of Allain). She proves the following formula.

6’s formula 2. {Allain} If M € SZ(Lo(P)} is such that there exisis m €
N\ {0} such that Yk > m+1 p® =0. Then

POL( ) =Y [ A0 4

Here p{*) are some stochastic measures obtained from the processes M" with
1 < r < k that we will define later.

Allain gives also several examples of semimartingales that belong to the class
5%°(Lg(P)) : The representable semimartingales defined by Wong and Zakai
{see [WZ]), the processes with paths of class C? and the product of {wo inde-
pendent one-parameter martingales.
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Later, Imkeller in {I1] proved the Allain formula for M € m} (space of
continuous strong martingales bounded in L3(2)).

Notice that formally formulae 1 and 2 are the same. Qur contribution consists
in analyzing the relation between these two formulae. We carry out our study
in two steps:

I. Prove that m? C $2°(L¢(P)).This is the main part of this work.

II. Show the total equivalence between the two Ito's formulas when M €

4
e-

m

We have structured this paper as follows. In Section 2 we give the basic
notations, the definitions and properties involved in Allain’s formulz. The
proof of | appears ir Section 3, and in Section 4 we give the proof of II. We give
also an Appendix in which we quote some results on inequalities for martingales

that we will use.

2. Basic Notations and Allain’s Formula

Let {2, F, P) be a complete probability space. The set of parameters that we
consider is either T = (0, 1) or T = [0, 1)%, with the partial order (s,t) < (s, ')
if and only if s € s’ and ¢ £ ¢'. By (5,4) < (s',f') we mean s < ¢’ and { < .
Given z1,22 € T, 21 < 23, (21, 22) denctes the rectangle {z € T,z < z £ 2}
(in a similar way we define (21, 22),[21, 22], {21, 22)). Denote (0,2] by R,. If fis
a map from T to R, the increment of f on a rectangle (21, 2], 21 = (51,51}, 22 =
{s2,ta} is f{{21,20]) = f{21) ~ fs1,t2) = fs2, 81} + fl22)-

Let (F.),e7 be an increasing family of sub o-fields of F. For any (s, t) € T
define F}, = \:’Fw and F7, = \‘{Fm‘ Assume that the usual conditions {F})} to

{Fy) of [CW1 are satisfied.

A process M = {M,,z € T} is a martingale if M, is a real valued, integrable
and F,-adapted random variable, and for any 2z < 2’ E(M,/F,)=M.. M is
a strong martingale f M vanishes on the axes and E{M{{z, 1)/ FIVvF2} =0,
for each z < &',

For p 2 1, m? will denote the class of all confinuous martingales, vanishing
on the axes, such that E{(}M, [P} < oo for ali z € T, and mZ , the subspace of
strong martingales which are in m2.

A subset of T x {2 is called a predictable rectangle if it can be written as
{z,2'] x F, with ' € F,. The set of all predictable rectangles will be denoted
by R, and the field generated by R will be R', The o-field P, generated by R
is called the prediclable o-field.

A process h = (h,).e7 is a predictable process if the map

Tx-—-R
(z,w) = k{z,w)
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is P-measurable (we consider in & the Borel o-fleld B}, H,{P) will be the space
of all bounded predictable processes, and £ the subspa.ce of Hu(P} of the simple
prediciable processes, i.e.

h:Za,—lAixﬂ. where r € N*, a; € R, and

=1

A; x Fy € R. J. will be the set of all adapted continuous processes on T. If
X € J, we can define the process X* as: X! = sup,.«, |X»| which also belongs
to J, {and, in particular, (X )},er is predictable}. - :
Consider the spaces of functzons L(P) = L,(},F,P), 0 £ p < o0, with
their usual topologies. :
All constants will be written C, although they may vary from one expression
to another one.
Definition 2.1. A L,(P)-stochastic measure y is an additive map defined
on R', taking values in L,( P} and satisfying:
(2.1a) W{AX Fy=1p p(AX F},VAXF€R.
(2.1.b) p(R') is 2 bounded subset of L,{P).

(2.1.c) limy, ||g{Ra)|l = O for any decreasing sequence of elements belonging to
R such that NR, = ¢.
n

From this definition it follows that & stochastic measure g has a unique o-
additive extension on P, for the usual topology of L,(P). (See [MP]}.

Remark. It is easy to see that {2.1.a) s equivalent to

p(AX Fy=1p g(AXxQ),VAx F€R.

We can associate to every process M = {M,).er a map satisfying {2.1.a}
putting pM{A x F) = 1pM{A), VAX Fe R.

This map can be extended to an additive map on £ {and, consequently, on
RN .

Ifh= E:=1 a;la; xF;, then pM(h) = Z::: a;lF, M(A,').

Furthermore if M, € L (P) for any z € T, then uM(€) C Ly(P), but notice
that 4™ may not verify (2.1.b} and (2.1.c}. _

Definition 2.2. Let M be a process. If g is a L,{P)-stochastic measure
we will say that the process A{ defines a L,(P)-stochastic measure.

We can define the stochastic integral with respect to a Ly{ P)-stochastic mea-
sure p for a class of processes that we will call LM (u, Ly(P)} O Hy{P). See
[MP] and [B]. An important class of processes of L1(u, Lo{P)) is given by the
fellowing proposition.

Proposition 2.3. If ys is a Lo{ P)-stochastic measure, then any predictable
process h such that sup,cr |h(z)| 18 F-measurable and finite P-a.s. belongs to

L1ty Lo(P))-
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This extension of the integral with respect to a L,(P)-siochatic measure
satisfies the Dominated Convergence Theorem in the following sense:

Theorem 2.4. Let (h,)n be a sequence of elements of Ly, L,(P)) such
that converges simply to h, and dominated by an element of L'(u, L,(P)), it
follows that h € L'(p, L(P)) and the sequence {u(h,)}n converges to u(h) in
L {P).

We point ocut that Bichteler defines a stochactic measure as an application
defined in R’ taking values in L,(F) such that it has a unique o-additive
extension on P for the usual topology in L,(P) (see [B]}). He also calls L,(P}-
Integrator a process M for which the integral defined for the simple predictable
processes can be extended linearly and also with continuity to a vectorial space
that contains the bounded predictable processes and such that this extension
satisfies the dominated convegence theorem. We will follow the definition given
in 2.1.

Now we define the spaces of "semimartingales” related with the Itd's formula
of [A].

From now on we shall denote by u* the additive map defined by the process
M¥ (instead pM* ).

Definition 2.5. A process M € J. is a L (P)-semimertingele of order m
{m e N*)if:

(2.5.1) Vk = 1,...,m the process M* defines a L,{P)-stochastic measure de-
noted by ut.
(2.5.2) Vk = 1,...,m the process {M*)™* is u*-integrable.
2.6 Notations.

(2.6.1) ST{L,(P)) is the set of elements of J, that are L,(P)-semimartingales
of order m.

(2.8.2) S(Lp(P)) = NST{Lp(F)}-

If X € L', Lp(P)) we will also write f(;_z'} X dM instead of ‘uM(l(z,,;]X).

For one-parameter processes the Dellacherie-Mokobodzki Theorem gives the
equivalence between semimartingales and processes that define Lq stochastic
measures. Furthermore the measures that appear in the Ité's formula for semi-
martingales X can be expressed in terms of the measures associated o the
processes X", r =1,2,

In the two-parameter case, i we can establish an Ité’s formula for certain
stochastic measures (", these could be also expressed in terms of the stochastic
measures associated to the powers of the semimartingale. More precisely, if A
1s such that we have an Ité’s formula

m

G (hy = Z épm(f(’")(M)h), Yh € Ho(P),

re=1
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putting f{z) = z,z%,2%,...,2™ we can see that the measures £") can be
determined in terms of u*:

k=1, p{h)=pN(R),

k=2, upd(h) =2 (M) + 4 P(h) andso
p(R) = —2pN(MR) + (B,

k=3, uo(h)=3uNM2R) +3uP(ME) + u®N (k) and so
gO(hy = 3p (M k) — 3> (M) + i (h).

By induction we can prove that we should obtain

SOy =3 () eormwran—ny

r
=1

Allain has defined the spaces of semimartingales in such a way that the mea-
sures uf”) are well defined. In fact we have the following Definition-Theorem:

Definition 2.7. f M € S™(L,(P)) , there exist some L,(P}-stochastic
measures, called u(*¥ k = 1,...,m, defined by

* k
w0k = Y1 (D), he P
r=1

Definition 2.8. If M € S™(L,(P)), for k = 1,...,m we define the process
M) in the following way:
ME = (R, x Q) i ze€(0,1]x(0,]]
M¥F =0 on the axes.

The processes M{¥) define the measures pBk=1,... m.
‘We can now state the Allain's formula more precisely.

It6's formula 2. IF M € §P(Lo{P)) 1s such that there is m € N* for which
Yk 2 m4+1, ¥ =0, Then, for any f €C™, fo M is also in S°(Lo(F)) and
the stochastic measure gssociated to f o M salisfies

m

1
Folf _ LN {r)
H (D)= E ‘r‘!# (1pf*™ o M)

r=1

for any predictable set 1),

In particular

§ 1 r r
ApfoM =37 f( AL
r=1 VLET
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The proof is based on the fact that the conclusion of the Theorem is clear
when we take f(z) = x*, and then by linearity is also right when f is a poly-
nomial.

Then, the Theorem can be proved assuming that M is bounded, by using
that, in this case, f c M and iis derivatives up to order m can be uniformly
aproximated by P (M). Finally the general case is studied by using several
previcus lemmas.

In order to prove II we will proceed as follows: for M € m? we consider the
additive map associated to the process M® : i*¥) defined as ﬂ(k)(lpl(,,zr]) =
lpﬂ(k)((z,z']), Vz < 2', VF € F,. We will prove that z¥ is an Lo(P)-
stochastic measure which coincides with p{*}, moreover, for all process X € J,

pfr)(ln,X)zf XdM(’):[ Xdm®™
R; Rz

where the integral on the left hand side is the integral with respect to a stochas-
tic measure in the sense of Métivier-Pellaumail, [MP], and the other one is the
integral defined by Sanz in (2).

As a consequence we will obtain that ¥k > 5 , u(*} = 0 and therefore the
total equivalence of the two It&'s formulas, when M € mi.

3. Proof of 1

In order to prove that m? C S2°(Lo{P)) we have to verify (2.5.1) and (2.5.2)
for &l m € N*,

Once we have proved (2.5.1), (2.5.2) is obvious due to the continuity of M
and by Proposition 2.3.

3.1: Now we prove that any u* satisfies (2.1.c), i.e. lim||p*(Ra)|lo = 0 for
n

any decreasing sequence (Rp)new of elements of R such that NR, = @. This
fact is equivalent to show that the sequence of random variables (u*(Rn))n
converges to ( in probability.

Take R, = (#n, 24} x F, with F,, € 7., and R, | B. Therefore u*(R,) =
g, M*({zn, z,]). Fix € > 0, and consider the set D, = {w : sup,p |M.} < a}.
Since M is continuous there exists ¢ such that P(D¢) < ¢, and so

P{|Lr, M (20, 2u])| > A} < €4 P{[Le, (M) (20, 2))] > A}
where M®(z) = (M(z) A o) V (—a). By Chebyshev’s inequality

P{1p, (M) {((zn, 2])| > A} € AT ElLp, (M°)*((2a,2,))) <
AT (PR HE((M*Y (2, 22]))F)
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and this expression tends to zero when n — oo since (P X ¥}(Ry) L O (v is the
Lebesgue measure in T).
The condition {2.1.b) is given by the followmg proposition:

Proposition 3.2. If M € m! then for any k € N, p*(R') is a bounded
subset of Lo(P).

Before giving the proof of this proposition we need some preliminar notations
and resulis.

Notations. Any A € R’ can be expressed as & = UL {(zn, 24} X Fi}
disjoint
where Fj, € F,,. Without any loss of generality we can assume that 4 =
y L;! {(2i5, 2041 j41] X Fi;} with Fy; € o, and {2;}ier je s is 2 finite partition
L1 Ea
of T{I=1{0,1,...,p}, J={0,1,...,q}) and @ C I x J. Putting F}; == § when

(i,7) ¢ & we can write

A. i X My
(:,J)Eij{(zj}z‘-l-l"ﬁ-l] J}

and so p*(A4) = ¥, 1, M*((2i5,2i41,541]). Let u = zi; = (si,1;) be a point
of the finite partition of T, we define @, Au, Al and A? as in the Introduction.
Then we can prove the following lernma.

. Lemma 3.3. {a) For all A, = {u,8] and for any £ € N we can ezpress
MYAL) as MDY = oy (OMETAL(M) where

AL(M) = (Mg — M) — (Muga — Mu) — (Mage — My).

As a consequence of {a) we obinin

(b) AYM) = Tooy () (-1 MET M7(B).
Proof: Part {a) follows directly from Newton’s binomial.

[

M=% (f) MM, — M,).

j=0
By using this relation with v = » ® &,% ® u, 4 we obtain
¢ /g o
M) = ML+ M~ Mg = Migu = (| )M 4000

s=1
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Part (b) follows from (a) by using the following binemial inversion formula :
Eve<n (or Vé&N)wehave

4
dr = Z (E) Mf_jbj
=1 v

then ¥k <n (or Yk & MN)it holds that

k

b= (f)(—n*-’M*-fa,.

r=1

Proof of Proposition 3.2: We must prove that for any sequence (Ap)a, An €
R' and (ay)n, @n € R with lim, &, = 0 we have that P — lim, crmuk(An) =0,
ie. for all € > 0 lim, P{lanu*(A,)| > ¢} = 0. Obviously this last property is
equivalent to the fellowing one: For every sequence (K, )y of real numbers tend-
ing to +o0, lim,, P{|u*(4,)| > K.} = 0. Let S™ be the partition associated
with A,.

So, we want to prove that lim, P{| Y ,cen 1lr. M*(Ay) > Ko} =0, and
by Lemma 3.3 it is enough to show that for all X € J. and for all £ € N
bmg, P{| 3 ,con 1, XuAY(M)| > K.} = 0. In the sequel we omit u € S™
Since

Z lFuXuAi(M) =
Y 1p X [(M(AL) + M(AY) + M(AL) - M(AL)Y — M(AL)) =

£ f£—m

DI (,i) (E ',m) Lr, XuM(D, )" M(ALY M(AZ)=7=7—

u m=0 r=0

iu i

in order to prove the proposition it will be sufficient to show the following
assertion:

lim P{| Y~ 15, X M(AL)™MAL M(AL ™7 > Ky} =0

where £ e Nym =0,1,...,6r=0,1,... ,£—m,and when m = 0, r{({—m—r} #
0.

Fix € > 0. Set D, = {w : sup,ep[X.{w)| £ g, sup,cr|M:(w)| £ a}.
Since X and M are continuous, there exists a > 0 such that P{D¢) < . Set
X% = (X Ag)V(—a), in the same way we define M*.

We consider all the possible cases: 1)y m,r,d~m—r > 0; 2) r = 0, m(-m} #
E3m=0,7rf—r)#Oand 4)r=£€—-m =0
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)myrd-—m-—7>0
P{ Y 1 X M(B)M(A,) M(AY ™™ 77| > Ka} < P(DG)+

P 1pXEMAAL)™ T MO MY AL T T T MBMAMAL)| >
Ko} € ¢+ K7 ' B(sup [XEM (A, MO (A T MA(AL T

3 IM(AIMAIMAINL ¢ + KB \M(A)M(A)M(AT))-

u

In order to prove that this expression tends o zero it suffices to establish that
E(Y, |M{A)M(ALM(AZ)]) is bounded by a constant which does not de-

pend on the partition that we have considered.

ECTIM(A)M(A)M(AL)) <
E[(S" M(A) Y M(ALP M(AY)) %) <
(B MADHEQ M(ALY M{ATPE.

By Burkholder’s inequality the first factor of the later product is bounded
by CEMZ2,. Now we study the second one:

B(OY M(AL M(ALYY) < ECY (sup M(ALY D M{AL)) <
u i ¢ i

B(sup DOM(AL? ) Ssup M(ALY) <

]

(B3 sup MALFY EQ) | sup MALH
H ; :

Clearly it is enough to prove that the first expectation is bounded.

Consider the increasing, continuous and Fi;-adapted process defined by
A= 3 sup, o M(si1,7) — M(si,7))?. We have that
E(3,;sup; M(ALY)? < E(A}). Find the potential associated to As,

Z,= E(A — AdF) =
B(Y (sup(M(si41,7) = M(si,7))’

- T}(I:(M(-S;'H‘T) - M{si, 7))} Fre} <
E(ZST‘;%(M(S:'HF) — M(s:,7))* [ F1e) €

CZE((MMH,I - Msg,l)zlflz) = "y,
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where in the last inequality we have applied the Doob’s inequality for condi-
tioned expectations. Since my is a Fi ;-martingale, by Garsia - Neveu's inequal-
ity

E(A]) < C E(m}) = CE() (Mayin — Myin )"

By Burkholder's inequality applied to the discrete parameter martingale
{M,, 1, = 1,...pn} the last expression is bounded by CE{M},). Hence we
have concluded case 1.

2yr =0, m(£ - m) #0.
We distinguish two new cases; m > 2and m = 1.
2.a}m > 2.

P> 1e X M{A)TM(AL) ™ > Ko} <
P(Dg) + P{1Y 1 XgMo(8,)" M (AL " M(ALY| > Ko} £

e+ CKUE(Y . M(AY) < e+ CKITE(ME).

2b)m = 1.
The relation £ — m # 0 implies £ > 2, and then

P{Y 1r XuM(A)M(AY ! > Ka} <
P(DZ) + P{| Y 1 XeMO (AL 2 M(A)M(AL)] > Kn} <

e+ KBS 1p, XaMo (ALY M(A,)M(AL)).

By Burkholder’s inequality applied o the F,, ;—martingale

¥ h

Z?:_; 3 Ry X3 M(Ay; )M(Agﬁ )MG(AE.-; )¢=2, the last expression can be boun-
ded by:

e+ CEPE[Y (D 1n XeMA(AL T2 M(A)M(A)))] <
e+ CHIERD (O 1n(XaY MAALM T M(A8.)7) - (O] M(a3))] <

e+ CKJQE(Sgp(Z M(A)- (3 M(A) <

@)
e+ CHTHB(Y sup MALPY B(Y M(A)P)"

L
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At the end of case 1 we have seen that E(}; sup, M({AZ))? < CE(M{)) and,
by Burkholder’s inequality applied to the {F;, o, 2 =1,...,pa;k=1,...,¢:}-
martingale 352y Tig M(Ay),

E(3:; M{AL)?)Y? < C EM},, then (3) is bounded by € + CK2EM},.

I)m=0,r(f-r)#£0
Ja)r>2£f-r2>2
PUS 1n X M(ALT M(ALY ™| > Ko} <
P(DY) + P{I D 1r XaM (ALY MM P M(AL M(83)| > Ka} <
e+ K EQY D Le XgMo(AL) P M (AL TR M(AL M(AL)?) <
e+ CK'EQQ M(ALM(ALY),
and the last expectation has been studied in case 1.

3b)f—-r=1r=1,
P{D 1p X M{A)M(AZ)| > K} <

P(D) + P{ Y 1R XSM(ALM(A2)] > Ky} <
e+ CK2E(Y 15, X2M(ALM(AL)Y

By applying Burkholder’s inequality to the {F,, ¢, h=1,. .. .ok =1,...,¢n}-
martingale Zk_l E::ol 17, XEM{ALM(AL), the last term is bounded by

F=0

e+ CKPE(Y, M(AL)PM(AZ)?) and it is similar as 3.a.
3co)l-r=1,r>2
P S 15 X M(AL M(A)| > Ky} <
P(D) + P{} Y 1e XaMo(ALY PM(AL M(AY)| > K, <
e+ KTEQY ) 1nXaM(A) 2 M(AL M(AY)) <
¢ J

e+ CETUE(Y (3 1 (XD MO (AL MIA) M(AL)1)?) <

1 1

e+ CEE(S (Y. M(ALYM(A2))2),
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Where we have applied Davis inequality to the {Fi,6:, k= 1,...,gn}-martingale

k—1
D IR XIMA(A) TIM(AL)M(AD),
=0

Next, we will study the last expectation.

144 23241/2 upl ME AL 242 1424172
E(Z(;M(Au) MEANDTS(EY_suplMINI_M(AL)* MAL ) <

3

E[(Z st;p M(Ai)z)l;‘z(z M(AZY M(AL?)/?) <

{E[Z SL;P M(AL)?]E[Z M(Ai)zM(Ai)z]}U?_

Observe that M(4,)° = (M,,,,, — M,, 1, )? and applying Doob’s inequality
to the ) 1, -martingale M,,,, +,—M,, ,, we have that

1

E[Y_sup M(8})] S CE(Y (Myy,, 1 — My, 1)?) < CEMY,.
N 1

The term E[Y, M(A2)2M(AL)?] has been considered in case 1.

4yr=L—-m=0.
4a)m=1,

P{>" lp_.XuM(&.,)f > Ko} Se+ KEQY 15, XEM(AL
By Burkholder’s inequality for discrete two-parameter martingales
EQ 1rXiMA))? <C E(Y M(A)Y) < C EME,.
4b)r=f—m=0,m> 2.
P{I) 1r XuM(AL)™] > Ka} <
€+ f;;‘E(Z 1 X IMA (A )™ | M(AL)?) <

e+ CKI'E(Y " M(A)) < e+ C K EME,

This ends the proof of the proposition. W
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4. Proof of I1

Lemma 4.1. Let p be a Lo{P) stochastic measure and

k= i a,-l(,‘.,z:}

where a; 18 a Fy, -measurcble and ¢ a.s. finite random variable, 1 = 1,...,r.
(In particular sup,cr |h(2)| 13 F-measurable and a a.s. finite random variable,
and so h € LMy, Lo(P)). Then the siochastic integral of A with respect to p
can be obtained by

p(B) =Y aip(1(s,xe)

i=r

Proof: By linearity of the integral with respect to stochastic measures we
can assume that h = ol ] where o is F.-measurable.

Then o will be the pointwise limit of simf)le functions of the form o™ =
Z;-r;l ,6;’;1‘,,3; where Fi € F, and {FJ, j=1,...,J,} form a partition of (2.

Hence Yu € T we have that by = limpeo E;;l ﬂilﬁ;l{h,](“) a.s.. Soif

we can prove that

T Jn
p Z,@ilpg; g | = Z Biu (l{z,z']xf‘,{)
j=1 j=1

tends in probability to au(l(; ./ xe), from theorem 2.4 plus the uniqueness of
the limit we will have that p(h) = ap{l: 2 xa)-
Consider € > 0, then

Jll
PUS . Blu(l qwr) — ep{lixa)l > €} =
i=1

J,

P> (B —o)lgall, cpxp Dl > €} <
i=1 _
In

P{sup |2z ey )18 —allp ) > €}

=1
And since supper, |10 g0 p)| = subper, [#(1exa)lFl = [p(1e 1xa)l

the last term is measurable and its probability is less or equal than

Jn
. ; £ -
Pllp(la )l > K} +P{Y 181y —alp| > 7l YK >0
=1
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Fixed é > 0, since u{1(: :qxe) € Lo(P), and in particular is a.s. finite, there
exists K such that the first term of this last expression can be considered less
that §/2. For this value of K, there exists ny such that ¥n > n; the second
term can be also considered less then §/2. This fact proves the lemma. W

Remark. The same result also holds if 4 is a L,(P)-stochastic measure and
if the a; € Lo(P} and are F;;-measurables. The proof is similar since if & is a
F,-measurable random variable and belongs to L, then it is a uniform limit
of simple functions, except perhaps in a null set.

Proposition 4.2. Let M € m{. Consider the additive map associated to
the process M®) defined on £:

A = 1rMP(2,2) = 1pP - Tm - 3 AUM).
wgeS"[z,2')

Then

(a) G*) is a Ly(P)-stochastic measure and coincides with p(F.
(b) For all X € J. the stochastic integrel in the [MP) sense, with respect to
the stochastic measure p'*) can be computed as

XdM® = | xdM® vkeN
R, R:
Proof: (a) Since M € m? C §2(Ly(P)), it suffices to see that
O te) = 6O0ele)  V2<i VFEF,
or equivalently -

(1, k) = 1P — éin:ﬂo > ALM).
I €S N[z,2")

Observe that (a) is a consequence of (b}, because

g X)=P=lim > X.L5M),
* 4ES"M[z,£')

if we take X = 1g. (We use that .U.(k)(l(z_zr]xp) = 1F}.¢(”(1(1,z:]xn) for all
FeF,)

Note that in order to prove (b) we must show that if M € m? (and then
M € SP(Lg(P)),¥m € N)

(4) N (1g, X) = P-lim Y X ALM),
ugsy
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where S™ is a sequence of partitions of T such that |§™| | 0.

Lemma 4.9 in [A] proves the same result for M € S3°(L,{P)) for all p > 0,
and X equal to f(M} and f continuous and bounded. In our case p = 0 and
X is any process belonging to J, but the proof is essentially the same.

Next, we prove (4). Let {S™), be a sequence of partitions of T such that
|57 | 0. By definition

fi’)(lR X} Z( l)k r( ) r(1R X MR- r)
Consider the sequence of predictable processes

XP(v,w)= 3 1r, () XuME™" )Y (,5i(v)
nE S

=() XM a)lz,

uESy

which tends simply to 1z XM*~" by the continuity of X and M. Moreover
") are bounded by sup,eri{[M¥ VD X(] € £} (p7, Lo(P)), then, by Theorem
2.4 we have that u"{1g, XM*~ ") = P — lim, ,u"(Xiﬂ)).
By continuity of X and M the hypotheses of Lemma 4.1 are satisfied and

X = 3 XM p (Lo u,a)-
uEST?

And so

Ny
W91, 2) = P = timf3 (04D XME W ()

r=1 ueS?

= P — lim{ > Z( )( 1)" ‘”X METTMT(AL)).

uesn r=1

By Lemma 3.3 5, (M)(~1)*"ME"M"(A,) = Ak(M), then the last limit
isequal to P —1lim,; 3} on XuAﬁ(M). | |

Corollary 4.3. If M em}, forallk 2 5 ¥ = 0.

Proof: 1t is an immediate consequence of the above proposition and Propo-
sition 1.5 of [S]. B
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Then, for M € m}, by the results of Section 2 and Theorem 4.7 of [A], the
1£6’s formula 2 is verified for m = 4, i.e.

(FoM)(meD =Y [ FOa)am
, St e

and all the summands coincide with the terms of the Ité's formula 1.

Remark. As a consequence of the fact that M%) and M%) define the same
stochastic measure if M € m!, we have that the k-variations of a martingale
that belongs to m{ are Lo(P)-integrators in the sense of Bichteler. In [I2]
Imkeller has studied the properties of L,(P)-integrators that satisfy the k-
variations of the martingales, and has proved a better result: if M is a square
integrable martingale then its 2 and 3-variations are L,(P)-integrators for some
p >0

Appendix. Martingale inequalities

In this appendix we state the versions of the martingale inequalities that
have been used in this work. For example, in the Burkholder’s inequalities,
we do not consider the general case in which appears the norms in the Orlicz
space L® , with  a Young’s function (see [DM) for the definition of a Young’s
function, and for the general version of the inequalities in the one-parameter
case}.

We first state the one-parameter inequalities.

If {X,,t € T} is a process, with T an arbitrary parameter set, we define
X" = supier | Xef.

Maximal inequality. Let {X,,t € R;} be a positive submartingale. Then,
for all p > 1 we have that

+-=1.

=R
E=

IX* 2oy < g sup (| XellLray, where
tek,

If X is a local martingale we denote [X, X] the unique process such that
(1) X% — (X, X] is a local martingale,
(2) ALK, X] = (X,
where (AXY, = X, - X,-.
In the case in which X is a square integrable martingale [X,X] is the
quadratic variation of X.

Inequalities of Burholder-Davis. Jf {X,,¢ € R.} is ¢ local martingale,
then for all 1 < p < oo

1 * i ' *
4_P"X llzseey < NX, X)&llzey < 6pIX || o (o).
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When p € (1,00) these inequalities are called Burkholder inequalities, The
Davis inequality concerns the case p =1,

If {A,,t € Ry} is a predictable increasing process, we define the potential
associated with A as the positive submartingale Z; = E[Ao/F:] — A; (where
we have taken a right continuous with left-limits version of the martingale

EAc/F])-

Inequality of Garsia-Neveu. Let {4t € Ry} be e prediciable increasing
process such that the polential essociated with A, Z, 1s bounded by o right
continuous, with left limits martingale M, = E[My/F(]. Then forp 21

Aol ecary < PliMooll Lo (0y-
We now consider the two-parameter martingale inequalities.

Maximal inequality. (Cairoli) (see [C]) Let {M,,F,,z € B} de o sepa-
roble martingale. Then

| M*|| ey < @° sup [|M:||Lece)
zeﬂi

For the Burkholder’s inequalities, we first consider the case of discrete pa-
rameter set.

It M = {Mpm,Fom (n,m) €N} is a discrete martingale which vanishes
on the axes, we define

dpm = M(n,m)~ M(n—1,m)-M(n,m-1)+Mn-1,m— 1),

172
Sem(M)= 3 > di;]
i=1 y=1
o oo 1742
S(My= |3 3 &,
i=1 j=1

Theorem. VYp > 1 there ezists constanis Cp, C;, {only dependent on p) such
that

(1) CoE|S(M)IP < sup,,  BIMp ul? < CLE[S(M)P, see [M].
For p =1, we kave that
(2) sup,, Elsup, |Ms |l < CE[S(M)], see [L], and
(3) If M is a strong martingale, there exist constans Cy and €] such that
C1E[S(M)] < E[sup, ,, |Mamll < CLE[S(M)], see [Br| for the first
inequality, and [FI| for the second one.
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It is possible, under conditions of continuity and LP-majoration of the mar-
tingale, to pass to the limit the inequalities of the last theorem. If a martingale
M is bounded in LP, p > 2, then it is closed and we can consider the terminal
variable M, o (if we have the martingale on R,,, Mo o coincides with M, ).

Theorem. (see [N3]}. Let {M,,z € Ry} be ¢ martingale belonging to m?,
p > 2. Then there ezist Cp,C,' > O such that

(1) CpE[< M >3%] < Elsup, |M.JP) € CLE(< M >8%),
(2) CE[Mocol] € E[< M >¥50).
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