THE TOPOLOGICAL CENTRALIZERS OF TOEPLITZ FLOWS AND THEIR Z₂-EXTENSIONS

WOJCIECH BULATEK AND JAN KWIATKOWSKI

Abstract .

The topological centralizers of Toeplitz flows satisfying a condition (Sh) and their Z_2 -extensions are described. Such Toeplitz flows are topologically coalescent. If $\{q_0, q_1, \ldots\}$ is a set of all except at least one prime numbers and I_0, I_1, \ldots are positive integers then the direct sum $\bigoplus_{i=0}^{\infty} Z_{qi}|_i \oplus Z$ can be the topological centralizer of a Toeplitz flow.

Introduction

In this paper we study the topological centralizers of Toeplitz flows and their Z_2 -extensions. Toeplitz flows are obtained as the orbit closure of special points in $\{0,1\}^2$ called Toeplitz sequences. They were introduced by Jacobs and Keane [2]. Many metric and topological properties of Toeplitz flows were investigated by those authors and by Williams [10]. Markley [6], [7] has examined Toeplitz sequences as characteristic sequences over zero-dimensional groups. Lemańczyk [5] used special Toeplitz sequences to produce examples of Z_2 -extensions over dynamical system with discrete spectrum that have Lebesgue component of finite multiplicity. A regular Toeplitz sequence ω with a period structure $\{p_t\}$, $t \geq 0$, defines a cocycle $\overline{\psi}_{\omega}$ on the group G of p_t -adic integers. A cocycle $\overline{\psi}_{\omega}$ determines a skew product transformation T_{ψ} on $G \times Z_2$. Each transformation S commuting with T_{ψ} can be identified with a pair (T_q, f) , where T_q is a rotation of G by g and f is a measurable function, $f: G \to Z_2$ [8]. In this case it is natural to say that T_a can be lifted to $S \in C(T_{\psi})$ (the metric centralizer of T_{ik}). The problem how big is the set of such q's was investigated in [4]. In [3] this set is described for Morse cocycles. But the same problem can be considered from the topological point of view. A dynamical system $(G, m, \hat{1})$, (m the Haar measure, $\hat{1}$ the unit element of G) is metrically isomorphic to $\Theta(\omega) = (O(\omega), \mu, \sigma)$, where σ is the shift and μ the unique σ -invariant measure [2]. The cocycle $\overline{\psi}_{\omega}$ becomes a continuous cocycle $\psi_{\omega}, \psi_{\omega} : \overline{O(\omega)} \to Z_2$ [5]. The latter enables one to define a Z_2 -extension $\Theta(\omega) = (0(\omega) \times Z_2, \tilde{\sigma})$ over $\Theta(\omega)$ as a topological dynamical system. Each homeomorphism \widetilde{S} commuting with $\widetilde{\sigma}$ induces a homeomorphism S commuting with σ and S induces a rotation T_g

of G. The problem arises to describe the set of those $g \in G$ which can be lifted to an element of $C(\sigma)$ and those $S \in C(\sigma)$ which can be lifted to an element of $C(\tilde{\sigma})$. In this paper we answer these questions assuming that ω satisfies a condition (Sh) (separated holes). Next we construct a class of special Toeplitz flows with the topological centralizers as in the abstract.

1. Preliminaries

We summarize some basic definitions and results. We shall use Z, N to denote the integers, the positive integers, respectively. By flow we will mean a pair (X,T), where X is a compact metric space and T is a homeomorphism of X to itself. A flow (X,T) is minimal if X has no proper closed T-invariant subset. A flow (Y,S) is a factor of (X,T) if there is a continuous map Π of Xonto Y, with $\Pi \circ T = S \circ \Pi$. If Π is a homeomorphism then (X,T) and (Y,S) are isomorphic as flows. Every minimal flow (X,T) has a maximal equicontinuous factor (G,g), $\Pi : (X,T) \longrightarrow (G,g)$, where G is a compact metric monothetic group with generator g. If $\Pi' : (X,T) \longrightarrow (G',g')$ is any other such factor then there is a factor map $\psi : (G,g) \longrightarrow (G',g')$ such that $\psi \circ \Pi = \Pi'$.

By the topological centralizer of (X, T) we will mean the set of all continuous maps $U : X \longrightarrow X$ which commute with T. We use C(T) to denote the centralizer of T. C(T) is automatically a semigroup and it becomes a group if every $U \in C(T)$ is homeomorphism.

Given a finite abelian group P, let Ω be the space of all bisequences over P with its natural compact metric topology and let σ be the left shift homeomorphism on Ω . If $\omega \in \Omega$ then $\omega[n]$ will denote the value of ω at $n \in \mathbb{Z}$, and $O(\omega)$ will denote the orbit of ω . A finite sequence $B = (B[0], \ldots, B[n-1])$, $B[i] \in P$, $n \geq 1$, is called a block. The number n is called the length of B and denoted by |B|. If $\omega \in \Omega$ and B is a block then $\omega[i, k]$, B[i, k], $0 \leq i \leq k \leq n-1$, denote the blocks $(\omega[i], \ldots, \omega[k])$ and $(B[i], \ldots, B[k])$ respectively. Let $C = (C[0], \ldots, C[m-1])$ be another block. We say that B appears at the i-th place in ω or C if $\omega[i, i+|B|-1] = B$ or C[i, i+|B|-1] = B. If |C| = |B| then the sum of B and C is the block B + C such that

$$B + C = (B[0] + C[0], \dots, B[n-1] + C[n-1]),$$

where de symbol " + " is the operation of P. Likewise we define a sequence $(\omega + \omega'), \omega' \in \Omega$ as

$$\omega + \omega' = (\dots \omega[-1] + \omega'[-1], \omega[0] + \omega'[0], \omega[1] + \omega'[1], \dots)$$

A $\omega \in \Omega$ is called a Toeplitz sequence if there exists a collection of pairwise disjoint arithmetic progressions $\{T_i\}$ whose union is Z and such that $n, m \in T_i$ implies $\omega[n] = \omega[m]$. A Toeplitz sequence ω is regular if the T_i can be choosen so that $\sum_i \frac{1}{q_i} = 1$, where $T_i = \{r_i + k \cdot q_i; k \in Z\}$. Let $\overline{O(\omega)}$ be the orbit closure of ω . The set $\overline{O(\omega)}$ is a closed, σ -invariant subset of Ω . By a Toeplitz flow we will mean a pair $(\overline{O(\omega)}, \sigma) = \Theta(\omega)$, where ω is a Toeplitz sequence.

Assume that ω is a non-periodic, regular Toeplitz sequence. It is know [2] that a Toeplitz flow $\Theta(\omega)$ is minimal and uniquely ergodic. The maximal equicontinuous factor of $\Theta(\omega)$ was constructed in [10]. We include a part of this construction to introduce ideas we will use later. For $p \in N$ we set

$$Per_n(\omega) = \{n \in N; \omega[n] = \omega[n'], \text{ whenever } n \equiv n' \pmod{p} \}.$$

By the *p*-skeleton of ω we will mean a sequence ω_p obtained from ω by replacing $\omega[n]$ by a new symbol "__" for all $n \notin Per_p(\omega)$. Thus *p* is a period of ω_p . We call *p* an essential period of ω if *p* is the smallest period of ω_p . A period structure for ω is an increasing sequence $\{p_i\}$ of natural numbers satisfying

(a) p_t is an essential period of ω for all t,

- (b) $p_t | p_{t+1}$
- (c) $\bigcup_{i=0}^{\infty} Per_{p_i}(\omega) = Z.$

Every non-periodic Toeplitz sequence has a period structure.

Let G be the group of all p_i -adic integers i.e.

$$G = \{g = \sum_{t \ge 0} g_t \cdot p_{t-1}; \quad 0 \le g_t \le \lambda_t - 1\},\$$

where $\lambda_t = p_{t-1}/p_t$, $t \ge 0$ and $p_{-1} = 1$. A p_t -adic integer g may be represented also as a class of sequences (n_t) , $n_t \in N$, such that $n_{t+1} \equiv n_t \pmod{p_t}$, $t \ge 0$. If (n'_t) is another sequence satisfying the above condition then (n_t) and (n'_t) determine the same p_t -adic number g iff $n_t \equiv n'_t \pmod{p_t}$, $t \ge 0$. Let T be the translation of G by the unit element $\tilde{1}$. In [10] it is proved that (G,T) is the maximal equicontinuous factor of $\Theta(\omega)$. To define a corresponding homomorphism Π from $(\overline{O(\omega)}, \sigma)$ to (G, T) a special partition $\{\Pi_g\}, g \in G$, of $\overline{O(\omega)}$ was constructed. For fixed $t, t \ge 0$, and $n, 0 \le n \le p_t - 1$, set

$$\Omega_n^t = \{x \in \overline{O(\omega)}; x \text{ has the same } p_t - \text{skeleton as } \sigma^n(\omega)\}$$

Then Ω_n^t , $n = 0, 1, \ldots, p_t - 1$, are pairwise disjoint closed and open subsets of $\overline{O(\omega)}$. For $g \in G$, $g = (n_t)$, $0 \le n_t \le p_t - 1$, $n_{t+1} \equiv n_t \pmod{p_t}$ we set

$$\Omega_g = \bigcap_{t=0}^{\infty} \Omega_{n_t}^t$$

The family of sets $\{\Omega_g\}, g \in G$ is partition of $\overline{O(\omega)}$. Each of them is a closed and non-empty set and

$$\sigma(\Omega_g) = \Omega_{g+\widetilde{1}}.$$

(Here the symbol " + " means the operation in G. We will use this symbol in different meanings and we will not remark if no confusion becomes). The factor map $\Pi: \overline{O(\omega)} \to G$ is defined as

(1)
$$\Pi(\Omega_q) = g.$$

The following remark follows easily from the above construction.

Remark 1. If a sequence $\{\sigma^{n_t}(\omega)\}$ is convergent in $\overline{O(\omega)}$ then (n_t) determines a p_t -adic integer, i.e., for any t there exists i_0 such that $n_i \equiv n_j \pmod{p_t}$ whenever $i, j \geq i_0$.

Let $A_t = \omega_{p_t}[0, p_t - 1]$. A_t is a block of the length p_t with symbols from P and "_" (we will call it a "hole"). By a filled place in A_t we will mean each place i such that $A_t[i] \in P$. A sequence of blocks (A_t) satisfies the following conditions:

(A) The block A_{t+1} is obtained as a concatenation of $A_t A_t A_t \dots A_t$, where some "holes" are filled by symbols of P,

(B) $\lim_{t\to\infty} r_t/p_t = 1$, where r_t is the number of the filled places in A_t (regularity),

(C) For every $i \in \mathbb{N}$ there exists an index t such that $A_t[i] \in P$ and $A_t[p_t - i] \in P$.

Conversely, each sequence of blocks $(A_t)_0^\infty$ satisfying (A), (B) and (C) determines a Toeplitz sequence ω (may be periodic).

In the sequel we change a bit a definition of a Toeplitz sequence. Suppose that a sequence $(A_t)_0^\infty$ satisfies the conditions (A) and (B). Then we can define a two-sided sequence ω in such a way that

(2)
$$\omega[i \cdot p_t, (i+1)p_t - 1] = A_t,$$

for all $i \in Z$ and $t \ge 0$. We will call it a T^o-sequence. The sequence ω can have the symbol "_" at some places. Let $g = (n_t), 0 \le n_t \le p_t - 1, n_{t+1} \equiv n_t \pmod{p_t}$, be a p_t -adic integer. We denote by $A_t(g)$ the following block

$$A_t(g) = A_t A_t[n_t, p_t + n_t - 1].$$

The sequence $(A_t(g))_0^{\infty}$ satisfies the conditions (A) and (B) and hence determines a two-sided sequence $\omega(g)$ given by (2). It is easy to describe the set G_0 of those $g \in G$ for which $\omega(g)$ is a Toeplitz sequence. Let G_2 be the set of all $g = (n_t)_0^{\infty}$ from G such that $A_t[n_t] =$ "for each $t \ge 0$. It follows from (B) that G_2 is of Haar measure zero. Then the set $G_1 = G_2 + Z$ (Z is a subset of G consisting of all elements of the form $k\tilde{1}$, where k is an integer) is of Haar measure zero again. It is not hard to observe that $G_0 = G - G_1$. Now we can define $\overline{O(\omega)}$ as the orbit closure of ω in the sense that $x = \lim_{t \to \infty} \sigma^{z_t}(\omega), z_t \to \infty$, and $x[i] \in P$ for all $i = 0, \pm 1, \ldots$ For all $g \in G$ we have $\overline{O(\omega)} = \overline{O(\omega(g))}$. If $g \in G_0$ then $\omega(g)$ is a Toeplitz sequence what implies that $\Theta(\omega) = (\overline{O(\omega)}, \sigma)$ is

a Toeplitz flow. We define the sets $\Omega_g(\omega)$, $g \in G$, in the same way as above. The construction of the sequences $\omega(h)$ implies

$$\Omega_g(\omega(h)) = \Omega_{g+h}(\omega).$$

Remark 2. If ω is a T° -sequence, then ω satisfies the property from Remark 1. Therefore $x \in \Omega_0(\omega)$ implies that x coincides with ω at each *i*-th place which $\Omega[i] \in P$. Thus if $g \in G_0$ then Ω_g is an one-point set and $\Omega_g = \{\omega(g)\}$.

Remark 3. For fixed $t \ge 0$ and $0 \le n \le p_t - 1$ set

$$C_t(n) = \{g \in G, g = (n_u)_0^{\infty}; n_t = n\}.$$

The sets $C_t(0), C_t(1), \ldots, C_t(p_t - 1)$ are closed and open subsets of G and

$$\bigcup_{i=0}^{p_t-1} C_t(i) = G.$$

Further we have

$$C_t(0) \xrightarrow{T} C_t(1) \xrightarrow{T} \dots \xrightarrow{T} C_t(p-1) \xrightarrow{T} C_t(0).$$

Denote by ξ_t a partition of G determined by the family $\{C_t(i)\}, 0 \le i \le p_t - 1$. If ω is a T°-sequence then ω defines a function $\widetilde{\psi}_{\omega} : G \to P$ such that

$$\overline{\psi}_{\omega}(g) = A_t[i],$$

if $g \in C_t(i)$ and $A_t[i] \in P$. The function $\tilde{\psi}_{\omega}$ is defined on G except of the set G_2 . If ω is non-periodic then G_2 is just the set of all g for which $\tilde{\psi}_{\omega}$ is not continuous. The function $\tilde{\psi}_{\omega}$ is $\bigvee_{t=0}^{\infty} \xi_t$ -measurable. Further observe that if $\Pi : (\overline{O(\omega)}, \sigma) \longrightarrow (G, T)$ is the homomorphism defined by (1) then

$$\psi_{\omega} = \widetilde{\psi}_{\omega} \circ \Pi$$
 on $\Pi^{-1}(G - G_2),$

where $\psi_{\omega}(y) = y[0], y \in \overline{O(\omega)}$.

2. Minimality of $\widetilde{\Theta(\omega)}$.

Let ω be the regular non-periodic T° -sequence over $Z_2 = \{0, 1\}$ with a period structure $\{p_t\}, t \geq 0$. On the one hand ω determines a Toeplitz flow $\Theta(\omega) = (\overline{O(\omega)}, \sigma)$. On the other hand ω determines a Z_2 -extension $\Theta(\omega)$ of $\Theta(\omega)$ defined by

$$\Theta(\omega) = (\overline{O(\omega)} \times Z_2, \widetilde{\sigma}),$$

where

$$\widetilde{\sigma}(y,i) = (\sigma(y),i+\psi_{\omega}(y)),$$

 $i \in Z_2, y \in \overline{O(\omega)}$. Put $X = \overline{O(\omega)} \times Z_2$ and denote by Π^* the natural projection of X on $\overline{O(\omega)}$ i.e.

 $\Pi^*(y,i) = y.$

We have the following commutative diagram

Let $C(\tilde{\sigma})$ and $C(\sigma)$ be the topological centralizers of $\tilde{\sigma}$ and σ respectively. If $S \in C(\sigma)$ then S induces a continuous map S' on G commuting with T because (G,T) is the maximal equicontinuous factor of $(\overline{O(\omega)}, \sigma)$. But S' is a translation by an element $g_0 \in G$. In this case it is natural to say that g_0 can be lifted to S. The question arises which elements $g_0 \in G$ can be lifted to an element of $C(\sigma)$. Notice that if $g_0 \in G$ can be lifted to S, then S is unique because the homomorphism Π is one-to-one on G_0 which is of Haar measure one and the flows (G,T) and $(\overline{O(\omega)}, \sigma)$ are minimal. We will show (proposition 1 below) that if $(X,\tilde{\sigma})$ is a minimal flow and $\tilde{S} \in C(\tilde{\sigma})$ then \tilde{S} induces an $S \in C(\sigma)$.

The next problem is how to describe those $S \in C(\sigma)$ which can be lifted to elements of $C(\tilde{\sigma})$. In §3 we answer these questions provided ω satisfies additional conditions.

Suppose that a T° -sequence ω is determined by a sequence of blocks $\{A_t\}$, $|A_t| = p_t$ and each A_t is partially filled by 0's and 1's. Denote by k_t the smallest distance between neighbouring holes in A_t i.e. if A_t has holes at I_1 -th, I_2 -th,..., I_s -th places and

$$I_1 < I_2 < \cdots < I_s$$

then

$$k_t = \min\{\{I_{j+1} - I_j, j = 1, 2, \dots, s-1\}, p_t - I_s + I_1\}.$$

We say that ω has the property (Sh) (separated holes) if

$$k_t \xrightarrow[t \to \infty]{} \infty$$

Remark 4. If ω has the property (Sh) then each Ω_g , $g \in G$, contains at most two points.

In fact, let $g = (I'_t) \in G_2$ with $0 \leq I'_t \leq p_t - 1$, $I'_{t+1} \equiv I'_t (\text{mod } p_t)$ and suppose $y, y' \in \Omega_g$. Then $y[-I'_t, p_t - I'_t - 1] = y'[-I'_t, p_t - I'_t - 1] = A_t$ what implies that the blocks $y[-k_t, k_t]$ and $y'[-k_t, k_t]$ coincide except at the 0-th place. The condition $k_t \to \infty$ implies that y and y' can differ only at the 0-th place. Simultaneously Ω_g contains precisely two points because $g \in G_2$. If $g \in (G_2 + Z)$ then the same argument shows that Ω_g contains precisely two points. Of course, if $g \in G_0$ then Ω_g consist of the only one point $\omega(g)$.

Proposition 1. If $\Theta(\omega)$ is a minimal flow and $\tilde{S} \in C(\tilde{\sigma})$ then there exist $S \in C(\sigma)$ and a continuous function $\psi : \overline{O(\omega)} \to Z_2$ such that

$$\widetilde{S}(y,i) = (S(y), i + \psi(y)).$$

Moreover the function ψ satisfies a condition

(4)
$$\psi(y) + (Sy)[0] = y[0] + \psi(\sigma(y)).$$

Proof: For $a \in G$, a set $\Delta_a \subset G \times G$ is defined by

$$\Delta_a = \{(g, g+a); g \in G\}.$$

The sets $\Delta_a, a \in G$, are closed, $T \times T$ -invariant and minimal. Consider a family of subsets $\widetilde{\Delta}_a$ of $X \times X$, $a \in G$, where

$$\widetilde{\Delta}_a = (\Pi^*)^{-1} \Pi^{-1}(\Delta_a) \qquad (\text{ see } (3)).$$

The sets $\widetilde{\Delta}_a$ are closed in $X \times X$, $\widetilde{\sigma} \times \widetilde{\sigma}$ -invariant, pairwise disjoint and

$$\bigcup_{a\in G}\widetilde{\Delta}_a=X\times X.$$

Take $\widetilde{S} \in C(\widetilde{\sigma})$. The graph Γ of \widetilde{S} is a minimal subset of $(X \times X, \widetilde{\sigma} \times \widetilde{\sigma})$ and hence is contained in one of the $\widetilde{\Delta}'_a s$ i.e.

(5)
$$\widetilde{S}\{(\Omega_g, i)\} = \{(\Omega_{g+a}, i)\},\$$

for all $g \in G$ and i = 0, 1. Take $g \in G_0 \cap (G_0 - a)$. Then $(g + a) \in G_0$ what means that $\Omega_g = \{\omega(g)\}$ and $\Omega_{g+a} = \{\omega(g+a)\}$. Denote $v = \omega(g)$ and $u = \omega(g + a)$. The condition (5) implies

(6)
$$\begin{cases} \widetilde{S}(v,0) = (u,\psi(v)) \\ \widetilde{S}(v,1) = (u,1+\psi(v)) \end{cases}$$

where $\psi(v) = 0$ or 1.

Now we show that (6) holds for any $y \in \overline{O(\omega)}$. The minimality of the flow $(X, \tilde{\sigma})$ implies that there exists $r_n \to \infty$ such that

$$(y,0) = \lim_{n} \widetilde{\sigma}^{r_n}(v,0)$$

We have

$$\widetilde{S}(y,0) = \lim_{n} \widetilde{S} \widetilde{\sigma}^{r_n}(v,0) = \lim_{n} \widetilde{\sigma}^{r_n}(u,\psi(v)) = (u_0,j)$$

and

$$\widetilde{S}(y,1) = \lim_{n} \widetilde{S}\widetilde{\sigma}^{r_n}(v,1) = \lim_{n} \widetilde{\sigma}^{r_n}(u,1+\psi(v)) = (u_0,1+j),$$

because $\tilde{\sigma}^{r_n}(u_n, j'_n) = (u_n, j'_n)$ implies $\tilde{\sigma}^{r_n}(u, 1+j') = (u_n, 1+j'_n), j, j', j'_n \in \mathbb{Z}_2,$ $u_n, u_0 \in \overline{O(\omega)}.$

The last equalities imply (6) for y. We can rewrite (6) as

$$\widetilde{S}(y,i) = (S(y),i+\psi(y)),$$

 $i \in \mathbb{Z}_2$ and $y \in \overline{O(\omega)}$. It is a standard argument that $S \in C(\sigma)$ and ψ is a continuous function. The equality (4) follows from the condition $\widetilde{S}\widetilde{\sigma} = \widetilde{\sigma}\widetilde{S}$. In this way the proposition is proved.

Proposition 2. If a T° -sequence ω satisfies (Sh) then $\Theta(\omega)$ is a minimal flow.

Proof: Suppose $(X, \tilde{\sigma})$ is not minimal. It follows from [9] that there exists a continuous function $f: \overline{O(\omega)} \to K$ $(K = \{z; |z| = 1\}$ is the circle group) such that

(7)
$$\frac{f(\sigma(y))}{f(y)} = (-1)^{y[0]}$$

for all $y \in \overline{O(\omega)}$. Thus the function f^2 satisfies the condition

$$f^2(\sigma(y)) = f^2(y)$$

This means that f^2 is σ -invariant and hence constant $(f^2 = c)$ because $(\overline{O(\omega)}, \sigma)$ is an ergodic system (it is uniquely ergodic). Then the function $\tilde{f} = \frac{1}{c} \cdot f$ satisfies (7) again and \tilde{f} admits only 1 and -1 as its value. So we can assume that f has the above property. Define a function $F: \overline{O(\omega)} \to Z_2$ in the following way

$$F(y) = \begin{cases} 0 & \text{if } f(y) = 1 \\ 1 & \text{if } f(y) = -1 \end{cases}$$

Then (7) gives

(8)
$$F(\sigma(y)) + F(y) = y[0]$$

for all $y \in \overline{O(\omega)}$.

We will show that (8) implies ω is a periodic sequence. Without loss of generality we can assume that ω is a Toeplitz sequence.

As previously let

$$I_1 < I_2 < \cdots < I_s, \quad s = s(t)$$

be places in A_t such that $A_t[I_j] = " \ ", j = 1, 2, ..., s$. First we show that (8) implies F is constant on Ω_1^t (see §1) if $I \neq I_1, I_2, ..., I_s$ and t is large enough. There exist a positive integer L such that

$$F(y) = F(y')$$

whenever y[-L, L] = y'[-L, L]. Take I such that $I_1 + L < I < I_2 - L$ (it is possible because $I_2(t) - I_1(t) \ge k_t \to \infty$). Then $y, y' \in \Omega_1^t$ implies

$$y[-L, L] = A_t[I - L, I + L] = y'[-L, L]$$

and hence F(y) = F(y').

Applying (8) we have

$$F(y) = F(y')$$

whenever $y, y' \in \Omega_I^t$, $I_1 < I < I_2$ because $y[0] = A_t[I] = y'[0]$. Now we can repeat the above consideration for all I, $0 \leq I \leq p_t - 1$ such that $I \neq I_1, I_2, \ldots, I_s$. As a consequence we obtain that F is constant on Ω_I^t for t large enough and $I \neq I_1, I_2, \ldots, I_s$.

Denote, by $\widehat{\omega}$ the one-sided sequence obtained from ω by taking the partial sums of its members in \mathbb{Z}_2 i.e.

$$\widehat{\omega}=(0,\omega[0],\omega[0]+\omega[1],\omega[0]+\omega[1]+\omega[2],\dots).$$

Set $F(\Omega_0^t) = 0$ and

$$i_j = F(\Omega_{I_j+1}^t), \ j = 1, 2, \dots, s, \quad i_j \in Z_2.$$

It follows from (8) that

(9)
$$F(\Omega_{I_j+1}^t) = i_j + \omega[I_j+1] + \dots + \omega[I_j+I-1]$$

whenever $2 \leq I < I_{j+1} - I_j$, because

$$y[0] = \omega[I_j + I] \quad \text{if} \quad y \in \Omega^t_{I_j + I}.$$

Moreover we have

(10)
$$F(\Omega_I^t) = \widehat{\omega}[I-1]$$

if $I = 1, 2, \ldots, I_1 - 1$.

Now suppose that $A_{t+1}[I_j] = 0$ or 1 if j = 1, 2, ..., s (it is possible because ω is a Toeplitz sequence and $i_1(t) \to \infty$). We obtain from (9) and (10)

$$i_j = F(\Omega_{I_j+1}^t) = F(\Omega_{I_j+1}^{t+1}) = \widehat{\omega}[I_j].$$

Thus we can write (9) as

(11)
$$F(\Omega_I^t) = \widehat{\omega}[I-1]$$

whenever $0 \leq I \leq p_t$ and $I \neq I_1, \ldots, I_s$. Using (11) and the condition $i_1(t) \rightarrow \infty$ it is not hard to check that $\widehat{\omega}$ is periodic with period p_t if t is large enough. Then ω is a periodic sequence with the same period p_t and moreover

(12) $\omega[0] + \omega[1] + \cdots + \omega[p_t - 1] = 0.$

Thus we proved the proposition.

Remark 5. If $S \in C(\sigma)$ can be lifted to an $\tilde{S} \in C(\tilde{\sigma})$ then it can be lifted to two $\tilde{S}, \tilde{S}' \in C(\tilde{\sigma})$. In fact, if

$$\widehat{S}(y,i) = (S(y),i+\psi(y)),$$

then the function

 $\psi'(y) = 1 + \psi(y)$

satisfies (4) what implies that \tilde{S}' given by

$$\widetilde{S}'(y,i) = (S(y), i + \psi'(y))$$

is an element of $C(\tilde{\sigma})$. Suppose that \tilde{S}_1 is such that

$$\widetilde{S}_1(y,i) = (S(y), i + \psi_1(y)).$$

Then ψ_1 satisfies

$$\psi_1(y) + (Sy)[0] = y[0] + \psi_1(\sigma(y)).$$

Adding the above equality and (4) in Z_2 we obtain

$$\psi_1(y) + \psi(y) = \psi_1(\sigma(y)) + \psi(\sigma(y)).$$

Thus the function $\psi_1 + \psi$ is σ -invariant and hence constant (=0 or 1) by minimality of $(\overline{O(\omega)}, \sigma)$. So we have

$$\psi_1(y) = \psi(y) \text{ or } \psi_1(y) = 1 + \psi(y).$$

It follows from (4) that \tilde{S} is an automorphism iff S is an automorphism.

54

3. The Topological Centralizers of $\Theta(\omega)$ and $\Theta(\overline{\omega})$

Let ω be a T^o-sequence satisfying the condition (Sh) and as preceding let G_2 be the set of all $g = (I_t) \in G$, $0 \leq I_t \leq p_t - 1$, $I_{t+1} \equiv I_t \pmod{p_t}$ for every $t \geq 0$, and $G_1 = G_2 + Z$.

Proposition 3. The flow $(\overline{O(\omega)}, \sigma)$ is topologically coalescent i.e. each $S \in C(\sigma)$ is a homeomorphism.

Proof: Take $S \in C(\sigma)$. By preceding considerations there exists $h = (h_t) \in G$, $0 \leq h_t \leq p_t - 1$, such that

$$S(\Omega_g) = \Omega_{g+h}$$

for all $g \in G$. If $g \in G_0$ then card $(\Omega_g) = 1$ and then card $(\Omega_{g+h}) = 1$ so that $(G_0 + h) \subset G_0$. We will show that $(G_0 + h) = G_0$.

The map S can be obtained by a code, i.e., there exist integers k, I with k > 0 and a function $f : \{0, 1\}^k \to \{0, 1\}$ such that

$$(Sy)[i] = f(y[i+1,...,i+I+k-1]),$$

for all $i = 0, \pm 1, \ldots$ and $y \in \overline{O(\omega)}$. Without loss of generality we can assume that I = 0. Choose t large enough so that $k_t > (2k+1)$ and consider $\omega' \in \Omega_0$. Then $S\omega' \in \Omega_h$.

Suppose that $I_0, I_1, \ldots, I_{s-1}$ be places in A_t such that $A_t[I_j] = " - ", j = 0, 1, \ldots, s-1$. Then A_t is of the following form

$$A_t = B_t(0) \underline{I_1} B_t(1) \underline{I_2} \dots \underline{I_{s-1}} B_t(s).$$

The sequences ω'_{p_i} and $(S\omega')_{p_i}$ (see §1) are concatenations of blocks A_i and $(S\omega')_{p_i}$ is the translation of ω'_{p_i} on h_i . We can compare ω'_{p_i} and $(S\omega')_{p_i}$ using the following figure

Using a coding argument it is easy to see that each hole in $(S\omega')_{p_i}$ appears at the place which is distant not more than k places from some hole in ω'_{p_i} . Thus

there exists an one-to-one correspondence between the holes in ω'_{p_t} and $(S\omega')_{p_t}$. This means the following: whenever the block $B_t(0) _ B_t(1)$ appears in ω'_{p_t} then the block $B_t(r) _ B_t(r+1)$ (see Figure 1) appears in $(S\omega')_{p_t}$ and they are placed as follows

Figure 2.

where $k' \leq k$. Both the blocks $B_t(0)0B_t(1)$ and $B_t(0)1B_t(1)$ appear in ω' and the blocks $B_t(r)0B_t(r+1)$ and $B_t(r)1B_t(r+1)$ appear in $S\omega'$. Using a coding argument again it is clear that whenever the block $B_t(0)0B_t(1)$ appears in ω' then $B_t(r)b_0B_t(r+1)$ appears under it which some $b_0 = 0$ or 1. If $B_t(0)1B_t(1)$ appears in ω' then $B_t(r)\tilde{b_0}B_t(r+1)$ appears in $S\omega'(\tilde{b_0} = 1 + b_0)$. We can repeat the same argument for each block $B_t(I)0B_t(I+1)$ and $B_t(I)1B_t(I+1)$, $I = 0, 1, \ldots, s - 1$.

Now, take $g \in G_2$. According to Remark 4 there exist precisely two $\omega_1, \omega_2 \in \Omega_g$ such that $\omega_1[i] = \omega_2[i]$ for $i \in Z$, $i \neq 0$, and $\omega_1[0] = \omega_2[0] + 1$. The above reasoning shows that $S\omega_1$ and $S\omega_2$ differ at one place (see Figure 2) and they coincide at the remaining places. This means that card $(\Omega_{g+h}) = 2$ so that $g + h \in G_1$. The last condition implies $(G_1 + h) \subset G_1$ and then $G_1 + h = G_1$ because $(G_0 + h) \subset G_0$. It follows from Remark 4 that S is one-to-one.

Corollary 1. We conclude from the proof of the above proposition that if $h \in G$ can be lifted to an element of $C(\sigma)$, then

$$(13) \qquad \qquad (G_1+h)=G_1$$

(equivalently $G_0 + h = G_0$), moreover there exists k > 0 such that

$$(G_2+h)\subset \bigcup_{I=0}^k (G_2+I).$$

To answer the question which $h \in G$ satisfying (13) can be lifted to a $S \in C(\sigma)$ we need two notions. By a *t*-symbol of ω we mean every block A of length p_t such that

$$A = \omega[Ip_t, Ip_t + p_t - 1], \quad I = 0, \pm 1, \dots$$

and all the members of $\omega[Ip_t, Ip_t+p_t-1]$ are 0 or 1. Each t-symbol of ω coincides with A_t except at the I_0 -th, ..., I_{s-1} -th places. The sequence $\omega'(\omega' \in \Omega_0)$ is a concatenation of t-symbols of

(14)
$$\omega' = \dots A_t(j_{-1})A_t(j_0)A_t(j_1)\dots$$

where $A_t(\cdot)$ denote t-symbols and $A_t(j_0) = \omega'[0, p_t - 1]$. Likewise, if $y \in \Omega_h$, $h = (h_t)$, then y is a concatenation of t-symbols $A_t(h)(\cdot)$ of $\omega(h)$

(15)
$$y = \dots A_t(h)(j_{-1})A_t(h)(j_0)A_t(h)(j_1)\dots$$

0-th place

Each of the t-symbols of $\omega(h)$ coincides with $A_t A_t[h_t, h_t + p_t - 1]$ except at the places $I_0 - h_t, \ldots, I_{s-1} - h_t$ (taken mod p_t).

Define a two-sided sequence ω^{t+1} as follows

$$\omega^{t+1} = \dots \omega[I_0 - p_t] \dots \omega[I_{s-1} - p_t] \omega[I_0] \dots \omega[I_{s-1}] \omega[I_0 + p_t] \dots \omega[I_{s-1} + p_t] \dots,$$

0-th place

i.e., ω^{t+1} is the sequence which we should put in the holes of ω_{p_i} to obtain ω . Analogously we define $\omega^{t+1}(h)$.

Theorem 1. An element $h \in G$ satisfying (13) can be lifted to a $S \in C(\sigma)$ if and only if there exists t such that

$$\omega^{t+1} + \omega^{t+1}(h)$$

is a periodic sequence with period equal to the number of all holes of A_t .

Proof: It is easy to prove the necesity repeating the same arguments as in the proof of Proposition 3.

Sufficiency. Suppose that the condition

(16)
$$\omega^{t+1} + \omega^{t+1}(h) = \dots B BB \dots$$
0-th place

holds for $t = t_0$ with |B| = s, s-the number of all the holes in A_t , and assume

(17)
$$k_{t_0} > 4k + 1.$$

If (17) is not satisfied then we can take large enough $t > t_0$ because (16) is satisfied for each $t \ge t_0$.

Using this condition we will construct an one-to-one correspondence $f_t(\geq t_0)$ between the sets Z_t and Z'_t of all the *t*-symbols of ω and $\omega(h)$ respectively. Let $t = t_0$ again, write ω and $\omega(h)$ as in (14) and (15) (except at may be one place). Each *t*-symbol of ω has the form

(18)
$$A_t(j) = B_t(0) \underline{a_0} B_t(1) \underline{a_1} \dots \underline{a_{s-1}} B_t(s),$$

where a_0, \ldots, a_{s-1} are at the I_0 -th, \ldots, I_{s-1} -th places and they depend on j. Thus each t-symbol is completely determined by its values at the places

 $I_0, I_1, \ldots, I_{s-1}$. Likewise if $g = (g_t), 0 \leq g_t \leq p_t - 1$, then each t-symbol of $\omega(g)$ is determined by its values at the places $I_0 - g_t, I_1 - g_t, \ldots, I_{s-1} - g_t$ (taken mod p_t). The condition (13) implies that each place $I_0 - h_t, \ldots, I_{g-1} - h_t$ in $A_t(h)$ is distant not more than k places from a place from among I_0, \ldots, I_{s-1} in A_t . That property and (17) define an one-to-one correspondence between the holes in ω_{p_t} and $(\omega(h))_{p_t}$. Moreover (16) implies that if a t-symbol $A_t(j)$ appears in ω then replacing each $a_i, i = 0, \ldots, s - 1$, (see (18)) by $a_i + B[i]$, respectively, we obtain a t-symbol $A_t(h)(j)$ of $\omega(h)$. It is easy to see that the above operation determines an one-to-one correspondence f_{t_0} between the sets Z_{t_0} and Z'_{t_0} . Now we can extend that correspondence between Z_t and Z'_t for $t \geq t_0$. Take a t-symbol $A_t(g)$ of ω . Then $A_t(.)$ is a concatenation of t_0 -symbols. Then a concatenation of their images by f_{t_0} forms a t-symbol of $\omega(h)$ (see (16)). In this manner f_t is defined. To define $S \in C(\sigma)$ take $y \in \overline{O(\omega)}$ with $y \in \Omega_g, g = (g_t)$. Then y is a concatenation of t_0 -symbols.

$$y = \ldots A_{t_0}(j'_{-1})A_{t_0}(j'_0)A_{t_0}(j'_1)\ldots$$

with $y[-g_{t_0}, p_{t_0} - g_{t_0} - 1] = A_{t_0}(j'_0)$. Put

$$S(y) = \dots A_{t_0}(h)(j'_{-1})A_{t_0}(h)(j'_0)A_{t_0}(h)(j'_1)\dots,$$

where

$$A_{t_0}(h)(j) = f_t(A_{t_0}(j)), \ j = j'_0, j'_{-1}, j'_1, \dots$$

It is evident that S is a continuous map commuting with σ and $S(y) \in \Omega_{g+h}$. This means that S is a lifting of h. Thus the theorem is proved.

Theorem 2. If ω satisfies the condition (Sh) then every $S \in C(\sigma)$ can be lifted to $a \widetilde{S} \in C(\widetilde{\sigma})$.

Proof: Assume that $h = (h_t)$, $0 \le h_t \le p_t - 1$ satisfies the condition of Theorem 1 with $t = t_0$ and let B be the corresponding block. We will show (Lemma 1) that we can admit

(19)
$$B[0] + B[1] + \dots + B[s-1] = 0$$
 (in Z₂).

Now suppose that (19) holds. Take a t_0 -symbol of the form (18) and construct a t_0 -symbol $A_{t_0}(h)(j)$ of $\omega(h)$ as in the proof of Theorem 1. Put $C = A_{t_0}(j) + A_{t_0}(h)(j)$ and denote by \widehat{C} a block obtained from C by taking partial sums of the members of C i.e.

$$\widehat{C}[i] = C[0] + \cdots + C[i]$$
 in $Z_2, i = 0, 1, \dots, p_{t_0} - 1$.

Now we can define a function $\psi : \overline{O(\omega)} \to Z_2$. For $y \in \overline{O(\omega)}$ with $y \in \Omega_g$, $g = (g_t), \ 0 \le g_t \le p_t - 1, \ g_{t+1} \equiv g_t \pmod{p_t}$ define

(20)
$$\Psi(y) = \begin{cases} C[g_{t_0} - 1] & \text{if } g_{t_0} > 0, \\ 0 & \text{if } g_{t_0} = 0. \end{cases}$$

We check that ψ satisfies (4). It follows from considerations of the proof of Theorem 1 that

(21)
$$(Sy)[0] = y[0] + C[g_{t_0}].$$

Now using (19), (20) and (21) we can verify (4) in an easy way. To complete the proof it suffices to show (19). \blacksquare

Lemma 1. Let $h = (h_t)$ satisfy the conditions (13) and (16). Then we can find t_1 satisfying (16) and the corresponding block B satisfying (19).

Proof: It suffices to restrict to the case h is not rational integer. Write again the block $A_t(t = t_0)$ in the form

$$A_t = A_t(0) \underline{I_0} A_t(1) \underline{I_1} \ldots \underline{I_{s-1}} A_t(s)$$

and let $I_0, I_1, \ldots, I_{s-1}$ be all places at which A_t has holes. If we draw the block $A_t(h) = A_t A_t[h_t, h_t + p_t - 1]$ under A_t then the condition(16) says that each hole in it is distant not more than k places from a hole of A_t . Suppose that the hole of $A_t(h)$ with the number I_r , $0 \le r \le s-1$ is lying not far from I_0 in A_t . Then the I_{r+1} -th hole is not far from I_1 and so on. Let A_{t+1}^* be the concatenation of λ_{t+1} blocks A_t

$$A_{t+1}^* = \underbrace{A_t(0) _ A_t(1) _ A_t(s)}_{A_t} \cdots \underbrace{A_t(0) _ A_t(1) _ \cdots _ A_t(s)}_{A_t}$$

The block A_{t+1}^* has $s\lambda_{t+1}$ holes and to obtain a block A_{t+1} we use a block α^{t+1} ,

$$\alpha^{t+1} = \alpha^{t+1}(0) \underline{x_0} \alpha^{t+1}(1) \underline{x_1} \dots \underline{x_{s-1}}^t \alpha^{t+1}(s')$$

by putting the successive members of α^{t+1} in holes of A_{t+1}^{*} . We have $|\alpha^{t+1}| = s\lambda_{t+1}$ and $x_0, x_1, \ldots, x'_{s-1}$ denote the positions in α^{t+1} with holes. If we draw the block $A_{t+1}^{*}A_{t+1}^{*}[h_{t+1}, h_{t+1} + p_{t+1} - 1]$ under A_{t+1}^{*} then there exists exactly one hole in it that appears not far from the first hole in A_{t+1}^{*} . That hole determines a place r' in $\alpha^{t+1}, 0 \leq r' \leq s\lambda_{t+1} - 1$. Consider the translation to the left of α^{t+1} by r' places. The the block $\alpha^{t+1}\alpha^{t+1}[r', r' + s\lambda_{t+1} - 1]$ is the begining of $\omega^{t+1}(h)$ as well as α^{t+1} is the begining of ω^{t+1} . It is not hard to deduce from (16) that the holes of $\alpha^{t+1}\alpha^{t+1}[r', r' + s\lambda_{t+1} - 1]$ appear precisely under the holes of α^{t+1} . If we denote by H'_0 the subgroup of $Z_{\lambda s}, \lambda = \lambda_{t+1}$, generated by r' then the last property means that the set $\{x_0, x_1, \ldots, x'_{s-1}\}$ is a sum of cosets of $Z_{\lambda s}$ modulo H'_0 . Without loss of generality we can assume that r' is the smallest element of H'_0 . Then $r'|s\lambda_{t+1}$. Replacing t+1 by t+v eventually we can assume that there exist successive members of α^{t+1} equal 0 or 1 (because $h_t \to \infty$). Suppose that $\alpha^{t+1}[0], \alpha^{t+1}[1], \ldots, \alpha^{t+1}[s-1]$ are 0 or 1.

If we write r' = qs+u, $0 \le u \le s-1$, then $v: r' \to u$ defines a homomorphism of H'_0 to Z_s . Let $H_0 = v(H'_0)$ and let c the order of r' in $Z_{\lambda s}$. Then we have

$$\begin{split} &\alpha^{t+1}[r'] = \alpha^{t+1}[0] + B[0], \\ &\alpha^{t+1}[2r'] = \alpha^{t+1}[r'] + B[u], \end{split}$$

(22)

$$\begin{aligned} \alpha^{t+1}[(c-1)r'] &= \alpha^{t+1}[(c-2)r'] + B[(c-2)u], \\ \alpha^{t+1}[0] &= \alpha^{t+1}[cr'] = \alpha^{t+1}[(c-1)r'] + B[(c-1)u]. \end{aligned}$$

The above equalities give

$$B[0] + B[u] + \cdots + B[\underbrace{(c-1)u}_{\text{in } Z_s}] = 0.$$

If $\mu = \text{ card } \{ \ker(v) \}$ then, of course,

$$B[0] + B[u] + \dots + B[(c-1)u] = \mu \cdot \sum_{i \in H'_0} B[i].$$

Taking in (22) the members $\alpha^{t+1}[r'+j], \alpha^{t+1}[2r'+j], \dots, \alpha^{t+1}[(c-1)r'+j], j = 1, 2, \dots, s-1$, we obtain

 $B[j] + B[u + j] + \cdots + B[(c - 1)u + j] = 0.$

Further we have

$$B[j] + B[u+j] + \cdots + B[(c-1)u+j] = \mu \cdot \sum_{i \in A} B[i],$$

where A is a coset of Z_s modulo H'_0 . In this way we obtain

$$\mu \cdot \sum_{i=0}^{s-1} B[i] = 0$$

If μ is odd then we have $\sum_{i=0}^{s-1} B[i] = 0$. If μ is even then we replace t + 1 by t + 2. If B' is a block satisfying

$$\omega^{t+2} + \omega^{t+2}(h) = \dots B' \quad B'B'\dots$$
0-th place

and |B'| = s' (the number of all holes in A_{t+1}) then it is not hard to deduce that

$$\sum_{i=0}^{s'-1} B'[i] = \mu \cdot \sum_{A \in C} (\sum_{i \in A} B[i]),$$

where A is a coset of Z_s modulo H'_0 and C a set of cosets (some cosets in C can be repeated). So we have

$$B'[0] + B'[1] + \cdots + B'[s'-1] = 0.$$

In this way the lemma is proved \blacksquare

4. k_t -Toeplitz flows

In this section we examine a class of Toeplitz flows determined by special T° -sequences. Given two sequences of positive integers $\mu_0, \mu_1, \ldots; s_0, s_1, \ldots$ such that $\mu_i, s_i \geq 2, (\mu_i, \mu_j) = 1$ for $i \neq j$ and $(\mu_i, s_j) = 1, i, j = 0, 1, \ldots$, let us denote

 $\lambda_t = \mu_t s_t, \quad k_t = \mu_0 \cdot \ldots \cdot \mu_t, \quad m_t = s_0 \cdot \ldots \cdot s_t, \quad p_t = k_t m_t.$

We will define a T° -sequence ω determined by a sequence of blocks A_t with $|A_t| = p_t$ in such a way that each A_t has k_t holes with equal distances between them. To make this precise we define

 $A_t = \underline{\qquad} A_t(0) \underline{\qquad} \dots \underline{\qquad} A_t(k_t - 1),$

where $A_t(0), \ldots, A_t(k_t - 1)$ are blocks of 0's and 1's with

$$|\underline{\qquad}A_t(j)|=m_t, \quad j=0,1,\ldots,k_t-1.$$

In order to obtain a block A_{t+1} we use a block α^{t+1} of a form

(23)
$$\alpha^{t+1} = \underline{\alpha}^{t+1}(0) \underline{\alpha}^{t+1}(1) \underline{\alpha}^{t+1}(k_{t+1}-1),$$

where $|_{\alpha^{t+1}(j)} = s_{t+1}, j = 0, 1, \dots, k_{t+1} - 1$. The block

$$\underbrace{A_t A_t \dots A_t}_{\lambda_{t+1} \text{ times}}$$

has $k_t \lambda_{t+1}$ holes and we fill them by using the successive members of α^{t+1} . As a consequence we obtain a block A_{t+1} having k_{t+1} holes. If we put

$$\alpha^0 = A_0$$

then we can say that the T° -sequence ω is determined by a sequence $\{\alpha^{t}\}_{0}^{\infty}$ of blocks of the form (23). We will call such a k_{t} -sequence and corresponding $\Theta(\omega) = (\overline{O(\omega)}, \sigma)$ a k_{t} -Toeplitz flow. A sequence ω is regular because

$$\frac{k_t}{p_t} = \frac{1}{m_t} \underset{t \to \infty}{\longrightarrow} 0.$$

To assume ω is not periodic we will assume that for all $t \ge 0$ and j; $0 \le j \le k_t - 1$, there exist at least two places I, I' in α^{t+1} such that $\alpha^{t+1}[I] = 0$, $\alpha^{t+1}[I'] = 1$ and $I \equiv I' \equiv j \pmod{k_t}$.

Now we describe the topological centralizer of $\Theta(\omega)$. To do this we need to know the set G_2 of all points in which the corresponding function $\tilde{\psi}_{\omega}$ is not continuous (see Remark 3). Let Z_n as usual denote the cyclic group of order n. Define a sequence of group homomorphisms

$$Z_{k_0} \xleftarrow{f_0} Z_{k_1} \xleftarrow{f_1} Z_{k_2} \xleftarrow{f_2} \cdots$$

such that

$$f_t(i) = is_{t+1} \pmod{k_t}, \quad i \in Z_{k_{t+1}}.$$

The condition $(s_{t+1}, k_t) = 1$ implies that f_t is on Z_{k_t} . Let

$$C = \{(j_t m_t)_{t=0}^{\infty} \in G; \quad 0 \le j_t \le k_t - 1; \quad j_t = f_t(j_{t+1}), \ t \ge 0\}.$$

It is easy to see that C is isomorphic to the group Δ of k_t -adic integers numbers and that $G_2 = C$. So $G_1 = G_2 + Z$ is a subgroup of H (not closed) and G_1 is the direct sum of C and Z because $C \cap Z = \{0\}$. Now we want to describe those $h \in C$ that determine $S \in C(\sigma)$. We have $h + G_2 = G_2$ so h can be lifted to a $S \in C(\sigma)$ iff $\omega^{t+1} + \omega^{t+1}(h)$ is k_t -periodic sequence for some $t \geq 0$.

Proposition 4. If $h \in C$ and h satisfies (16), then the order of h in G is finite.

Proof: Let $h = (j_t m_t)$; $0 \le j_t \le k_t - 1$; $f_t(j_{t+1}) = j_t$. Then the block $A_t(h)$ has the form

$$A_t(h) = \underline{A_t(j_t)} \underline{A_t(j_t+1)} \underline{A_t(j_t+k_t-1)}$$

Therefore the holes in A_t and $A_t(h)$ appear mod k_t precisely at the same places. Assume that the condition (16) holds for $t = t_0$. The sequences ω and $\omega(h)$ are concatenations of the blocks A_t and $A_t(h)$ and the holes in them are filled by the sequences ω^{t+1} and $\omega^{t+1}(h)$ respectively. Thus (16) implies that

(24)
$$\omega + \omega(h) = \dots B' \quad B'B'\dots$$

0-th place

where $|B'| = p_t$. Denote by η_0 the sequence from the right side of (24). Then we have

$$S(y) = y + \sigma^{g_t} \eta_0,$$

where $y \in \overline{O(\omega)}$, $y \in \Omega_g$, $g = (g_t)_{t=0}^{\infty}$, $0 \le g_t \le p_t - 1$. Using (25) several times we obtain

$$S^q(y) = y + \sigma^{g_t} \eta_0 + \sigma^{g_t+h_t} \eta_0 + \dots + \sigma^{g_t+(q-1)h_t} \eta_0$$

Let r be the order of h_t in Z_{p_t} . Then we have

$$S^{2r}(y) = y + \sigma^{g_t} \eta_0 + \dots + \sigma^{g_t + (r-1)h_t} \eta_0 + \sigma^{g_t + rh_t} \eta_0 + \dots + \\ + \sigma^{g_t + (2r-1)h_t} \eta_0 = y + 2(\sigma^{g_t} \eta_0 + \dots + \sigma^{g_t + (r-1)h_t} \eta_0) = y,$$

because $rh_t = 0$ (in Z_{p_t}) and $\sigma^q \eta_0 = \eta_0$ whenever $q \equiv 0$ (mod p_t): So we get $S^{2r} = id$ and the order of h in G is finite. This finishes the proof.

It is very easy to describe the set of all $h \in C$ with a finite order. Fix $u \ge 0$ and put

$$\mu_u^t = \mu_{u+1} \cdot \ldots \cdot \mu_{u+t} \quad \text{for } t \ge 1$$

Let

$$H_{u}^{t} = \{0, \mu_{u}^{t}, \dots, (k_{u}-1)\mu_{u}^{t}\}.$$

Then H_u^t is a subgroup of $Z_{k_{u+t}}$ and the order of H_u^t is k_t . Moreover, the homomorphisms f_u, f_{u+1}, \ldots in the following sequence

$$H_u^0 = Z_{k_u} \xleftarrow{f_u} H_u^1 \xleftarrow{f_{u+1}} H_u^2 \xleftarrow{f_{u+2}} \dots$$

are isomorphism. Define

$$C_u = \{ (j_t m_t)_0^{\infty}; \ 0 \le j_T \le k_t - 1, \ j_t = f_t(j_{t+1}), \ j_{u+v} \in H_u^v \}.$$

We have $C_u \,\subset\, C_{u+1}, u \geq 0$, and each C_u is a subgroup of C with $ord(C_u) = k_u$. It is evident that $C^* = \bigcup_{u \geq 0} C_u$ is a countable subgroup of C and it is the set of all $h \in C$ of a finite order. Thus the topological centralizer of $\Theta(\omega)$ is a subgroup of $C^* \oplus Z$. Now we describe a class of k_t -sequences with topological centralizer equal to $C^* \oplus Z$.

Take $0 \leq j \leq k_t - 1$ and denote by α_j^t the following block

$$\alpha_j^t = \underline{\qquad} \alpha^t(j) \underline{\qquad} \alpha^t(j+1) \underline{\qquad} \cdots \underline{\qquad} \alpha^t(k_t-1+j).$$

If $h = (j_t m_t) \in C$, then the condition (16) can be formulated as follows:

There exists $t_0 \ge 0$ and a block B with $|B| = k_{t_0}$ such that for all $t \ge t_0$

(26)
$$\alpha^{t+1} + \alpha^{t+1}_{j_{t+1}} = \underbrace{B_t B_t \dots B_t}_{\lambda_{t+1} - \text{times}},$$

where $B_{t_0} = B$ and the next blocks $B_{t_0+1}, B_{t_0+2}, \ldots$ satisfy the recurrent formulas

$$B_{t+1}[j] = B_t[f_t(j)], \quad j = 0, 1, \dots, k_{t+1} - 1, \quad t > t_0.$$

Now assume additionally that $s_{t+1} > 2k_t + 1$ for every $t \ge 0$. Take any block α^0 of a form (23) such that $p_0 = k_0 m_0$ is the smallest period of the infinite sequence $\alpha^0 \alpha^0 \dots$ Choose blocks

(27)
$$\underline{\alpha^{t+1}(0)} \ldots \underline{\alpha^{t+1}(\mu_{t+1}-1)}, \quad t \ge 0,$$

in such a way that for each $0 \le j \le k_{t-1}$ there exist $I \ne I'$, $I \equiv I' \equiv j \pmod{k_t}$ with $\alpha^{t+1}(0)[I] = 0$, $\alpha^{t+1}(0)[I'] = 1$, and

(28)
$$\mu_{t+1}s_{t+1}$$

is the essential period of (27). Define α^{t+1} of the form (23) by taking the concatenation of k_t copies of the blocks (27). As a consequence we obtain a regular k_t -sequence ω . Moreover the blocks $\{\alpha^t\}$ satisfy (26) if j_{t+1} is the multiplicity of μ_{t+1} and $B_t = 00...0$. By easy considerations we can prove that every $h \in C^*$ can be lifted to a $S \in C(\sigma)$. Therefore $C(\sigma) = C^* \oplus Z$.

It remains to prove that the numbers $\{p_t\}, t \ge 0$, form the period structure of ω , i.e., p_t is the essential period of ω_{p_t} for every $t \ge 0$. It is true if t = 0by our choice of α^0 . Suppose that p_t is the smallest period of ω_{p_t} . We will show that p_{t+1} is the essential period of $\omega_{p_{t+1}}$. Then the smallest period p' of $\omega_{p_{t+1}}$ is the multiplicity of m_{t+1} because $\omega_{p_{t+1}}$ has the holes every m_{t+1} places starting from 0-th place. On the other hand p' is the multiplicity of p_t . In fact, if

$$p' = I \cdot p_t + r, \quad 0 \le r \le p_t - 1,$$

then p' is a period of ω_{p_t} so r is. The condition $r < p_t$ implies r = 0. We have shown that p' is the multiplicity of the smallest common multiplicity of p_t and m_{t+1} . We have

$$[p_t, m_{t+1}] = m_t[k_t, s_{t+1}] = m_t k_t s_{t+1}$$
, because $(k_t, s_{t+1}) = 1$.

At the same time it is easy to deduce that the assumption (28) implies p' is the multiplicity of $\mu_{t+1}s_{t+1}m_t$. Now the condition $(k_t, \mu_{t+1}) = 1$ implies $p' = s_{t+1}m_tk_t\mu_{t+1} = m_{t+1}k_{t+1} = p_{t+1}$. In this manner the sequence $\{p_t\}_0^\infty$ is a period structure of ω .

Let q be a fixed prime number and q_0, q_1, \ldots all the remaining prime numbers. We can admit $s_t = q^{t+1}$ and $\mu_t = q_t^{I_t}$ for $t \ge 0$, where I_t are positive integers. Here the group C^* is isomorphic to $\bigoplus_0^\infty Z_{\mu_t}$ the direct sum of the cyclic groups Z_{μ_t} . Thus the group $\bigoplus_0 z_{\mu_t} \oplus Z$ can be the topological centralizer of a Toeplitz flow.

References

- G. CHRISTOL, T. KAMAE, M. MENDES-FRANCE, G. RAUZY, Suites algebraiques automates et substitutions, Bull. Soc. Mat. France 108 (1980), 401-409.
- K. JACOBS, M. KEANE, Sequences of Toeplitz type, Z. Wahr. verw Geb. 13 (1969), 123-131.
- 3. J. KWIATKOWSKI, T. ROJEK, The centralizer of Morse shifts induced by arbitrary blocks, *Studia Math.* 88 (to appear).

- 4. J. KWIATKOWSKI, M. LEMAŃCZYK, The centralizer of ergodic group extensions, *Proceedings of Warsaw semestre on Ergodic Theory* (1986) (to appear).
- 5. M. LEMAŃCZYK, Toeplitz Z₂-extensions, Ann. I. H. Poincare (to appear).
- 6. N.G. MARKLEY, Characteristic sequences, Z. Wahr. verw Geb. 30 (1974), 321-342.
- 7. N.G. MARKLEY, Substitution-like minimal sets, Israel Jour. Math. 22 (1975), 332-353.
- 8. D. NEWTON, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 2, 19 (1979), 129-138.
- 9. W. PARRY, Compact abelian group extensions of discrete dynamical systems I, Z. Wahr. verw Geb. 13 (1969), 95-133.
- S. WILLIAMS, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahr. verw Geb. 67 (1984), 95-107.

Uniwersytet Mikolaja Kopernika Instytut Matematyki Ul. Chopina 12-18 87-100 Torun POLAND

Rebut el 10 d'Octubre de 1988