Publicacions Matematiques, Vol 34 {1990), 25-35.

SOLVING A CLASS OF GENERALIZED LYAPUNOV
OPERATOR DIFFERENTIAL EQUATIONS WITHOUT
THE EXPONENTIAL OPERATOR FUNCTION

LUcaAs JODAR

Abstract

In this paper & method for solving operator differential equations of the
type X' = A+ BX + XD; X(0) = Cy, avoiding the operator exponen-
tial function is given. Results are applied to solve initial value problems
related to Riccati type operator differential equations whose associated
algebraic equation is solvable.

1. Introduction
It is well-known that the solution of the matrix differential equation
(1.1) X = A+ BX(H)+ X(H)D; X(0) =Co

where A, B,Cy, D and X{) are non complex matrices, and D" denotes the
adjoint matrix of D, is given by the expression

(1.2)  X(t) = exp(t B)Coexp{tD*) + /0 exp(B(t — s) A exp{D*{t — s))ds

see |1, p. 28] for details. It is easy to show that the expression {1.2} defines the
solution of problem (1.1} when 4, B,Cy and D are bounded linear operators
defined on a Hilbert space H. Although the exponential matrix function has
been widely studied ([13], [17], [18]), its computation presents some inconve-
nients {[13]) so, thinking of applications, an expression of the solution of (1.1}
avoiding the use of the exponential matrix function is interesting,.

The aim of this paper is to present an alternative method for solving (1.1)
avoiding the exponential matrix function and the computation of integrals in-
volving exponentials of matrices. Let us denote by L(H) the algebra of all
bounded linear operators defined on the Hilbert space H, and for T in L{H}
let us denote its spectrum by o(T"). We recall that an operator T in L{H}) is
said to be algebraic if there exists a polynomial p{z) such that p(T) =0. It is
clear that a finite-dimensional operator is algebraic and from [4, p. 569], an
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algebraic operator in L{H) has a finite spectrum, but there are operators with
a finite spectrum that are not algebraic operators in L{H), [14]. In [5], P.R.
Halmos observed that an operator in L{H) that is annihilated by an entire ana-
lytic function, is algebraic. An account of the properties of algebraic operators
may be found in [7], [14].

Let T be an operator in L{H) and let zpeo{T) an isolated point of o(T),
then z; is said to be a pole of T if the resolvent function R(z,T) = (2 —=T)™*
has a pole at z,. By the order wi(zo) of a pole z; is meant the order of z; as a
pole of RB(z,T}.

In this paper we consider the problem (1.1) where A and Cy are arbitrary
operators in L{H), ¢(B)No{—D) =§ and

(i) D is an algebraic operator in L{H) and its minimal monic polynomial
p(z) only has hinear factors, p(z) = {z — z )(z —22)...(2 = z4), 2 # zj, for
1<, 7<n,1#£7.

(11) B € L(H) has a finite spectrum and each z.,(B) is a pole of B.

For the finite-dimensional case the condition {ii) 1s always satisfied, and the
condition (i) means that D is similar to a normal operator, [7, p. 14]. Section
2 concerns with the resolution problem (1.1} and section 3 provides an explicit
solution for a class of generalized Riccati operator differential equations in
terms of a solution of certain generalized Lyapunov equation associated to the
problem.

2. Solving generalized Lypunov differential operator differential
equations without the exponential operator function

We begin this section with an algebraic result that provides a finite algebraic
expression of the solution of generalized algebraic Lyapunov operator equa-
tion, under certain uniqueness hypothesis. For the finite-dimensional case, an
analogous result is given in [9].

Lemma 1. Let 4;, B, and D, be operators in L(H) such that D; is algebraic
and satisfies the condifion :

(2.1) a(B)No(D))=H

and let p(z) = 3 pq axz®, such that p(D;) = 0. Then the only solution of the
equation

(2.2) A+ X-XD=0

is given by the expression

(2.3) =—(Zak3k) (ZEG,B* LA, DI78y

j=1k=1



(GENERALIZED LYAPUNOV DIFFERENTIAL EQUATIONS 27

Proof: Under the hypothesis (2.1), the equation (2.2) has only one solution,
(16], {3], and from [3}, corollary 2, if X is the only sclution of such equation
one gets

__ Bl Al _ B]_ 0 -1,
(2.4) V_[O Dl}_w[o Dl]w,

o fs 3] v )

From (2.4}, it follows that

ey a-wu|f g o =w PP 0w

_ ['p(gl) —P(gl)X}

Also, considering the powers V7, for j = 0, L,...,n, it follows that the (i,2)
block entry of the operator V7, dencted by V2, forj=1,2,...,nandi =12,
satisfy

(2.6) Vi, =BVt + AV, Vi, =Di

a.nd Vln'z = U, Vzog =T
Considering the polynomial calculus and computing it follows that for certain
aperator M one has

ena=n(§ R =" ] =[5 )

From (2.5) and (2.7), one gets M = —p(B,)X, and from the spectral mapping
theorem, [4, p. 569], and (2.1}, the operator p{ B1) is invertible in L{ ). Thus,
we have

(28) X = ~(p(B1) "' M

By multiplying the operator Vl"12 by the coefficient a;, for j = 0,1,...,n, and
by addition it follows that the block entry (1,2} of the operator matrix p(V),
is given by the expression

L 1

(2.9) M=3"%"a;Bf ' 4;DI7.

=1 k=1

From (2.8) and (2.9) one gets (2.3} ®
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For the sake of clarity in the presentation of the next results we recall some
concepts and properties concerned with the Riesz-Dunford functional calculus,
[4], and the Laplace transform of operator valued functions, [8].

Let zg be an isolated point in the spectrum o(T) of an operator Tel{H},
then the Laurent expansion of R{z,T) = (I — T)™! in a neighborhood 0 <
|z — 29| < 8, of 2q, is given by

(2.10) R(z,T) = i An{zo — 2)"

n=—og

A-——(m+1) = (Zg.{ — T)mE(Za,T)

where E{zy;T) denotes the spectral projection corresponding to the spectral
set {zo} see [4, p. 573}, for details. If 25 an isolated point in o(7), it follows
that zq is a pole of order p, if and only if,

(2.11) (26 = TP E(20;T) = 0 and (2] — TP E(z; T) #0

We recall that a L(H) velued operator function ¢ — V(t), is said to be an
original function if, V(¢) = 0, for ¢ < 0, V¥ is locally integrable and there exist
a real number s and a positive number M, such that [[V(¢)|] £ M exp(set},
for t > 0. Under these hypotheses the Laplace transform of V, represented
by V, is defined in the usual way, see [8] for details and related properties. In
particular, if V(") is an original function, it follows that V() (s) = sV {(s) - V{0).
Finally, if z — f(2), is a L{H) valued meromorphic function and z is a pole
of f, we represent by Res(f; 29} the residue of f in the pole z.

Let us consider the problem (1.1} where 4 and () arc arbitrary operators
in L{H) and B, D are operators in L{H) satisfying the properties (i} and (ii}
given in page 1. Let X be the function defined by the expression (1.2} for
t >0, and X(#) = 0, for ¢ < 0. From {1.2} it follows that X(t) and X
are original functions, where X(1{0) means the right lateral derivative of X at
¢ = 0. Let X(s) be Laplace transform of X. Taking into account the propertics
of the Laplace transform, as X satisfies the problem {1.1), by application of the
Laplace transform to the differential equation arising in {1.1}, it follows that
there exists a positive number a such that if Re{s) > a one gets

(2.12) | sX(s)—Cy = Afs + BX(s)+ X(s)D
(sI — BYX(s) — X(s)D = Cy + Als.

Let p{z) = Z:ﬂ}akzk =(z—znle—2).. (z—zhziF e, #5,1<1,5 <
n, the minimal monic polynomial of I}, where o{D} = {z1,...,2.}. It is clear
that for values of s enough advanced in module, one has o(s] — B)Na{D) = §.
So, from lemma 1, it follows that for values of s enough advanced in module,



(GENERALIZED LYAPUNOV DIFFERENTIAL EQUATIONS 29

X (s} is given by the expression

(2.13)
n k
X(s5) = —(p(sI - B) O as(sI - BYTNCo + A/s)DH)
k=1 j—l
= —(p(sI — B)~ (Zzaj(sr BY ~1CyDFY)
=1 j=1
~ {sp(s] — B))-l(zza,(sf By 'AD* )
=1 f=

From the spectral mapping theorem, [4], it follows that p(sf — B) is invertible
in L{H) for values of s enough advanced in module, and

(2.14) (p(sI — B))™ ! = 07 (s - B - z;) ' = T (sd - B!

where R; = B + z;,for j = 1,2,...,n, z;e0(D).
Let ¢;{s) and g¢2{s) be the holomorphic L{H} valued operator functions de-
fined by the expressions

n k
(2.15) Q(s) =33 ajsI - BY'CoD*
k=1 j—l
gz(s) = Z Za}(sf BYT'AD*.
k=1 j=1

From (2.13), (2.14) and (2.15), it follows that

(2.16) X(s) = Xa(s) + Xa(s)
where
(2.17) Xi(s) = (UL, (51 — Ri) Hals);

Xa(s) = =(Ty (sI = Ri)")az(s)/s.

Let us suppose that ¢(B) = {b;,...,bn,}, then taking into account (2.17), the
set of poles of (sI — R;)™! is the set of points s5;; = b; + z;, where 1 < 7 <m,
and as ¢;(s) and ¢2(s) are holomorphic functions, by aplication of the Laplace
inversion formula, for ¢ > 0 we have

(2.18)
X()= ZZ(Req(Xl(s)cxp(s:) si;) + Res(X3(s) exp(st); si5)

i=1 j=1

+ Res(Xa(s)exp(st);0) ifsi; #£0,1<i<n, 1<j<m



30 L. JODAR

and if there exist some si; = 0, then

(219)  X(&)= > Y (Res(Xi(s)exp(st); sij) + Res(Xa(s)exp(st); si;)

i=1 j=1

In order to compute the residues of X,-(s)exp(.st), for 1 = 1,2, we need the
order of each singularity s;; and 0 for such functions. Note that the spectral
projection F(s;;; B;) = E(bi + zj; B + 2z;) = E(b;; B), and the order of s;; as a
singular point of (2] — R_,)‘1 coincides with the order of b; as a singular point
of (zI — B)™!. Also, considering the decomposition

(2.20)

Xi(s)exp(st) = (sIMRJ-)_1(H?;l(sf~R,—)_l)ql(s)exp(st) = (sI—Rj)_le(s).

i#j

The Taylor expansion of ¢;(s) at the point s;; takes the form

(2.21) Qi(3) = 3" QW (si)(s — s:5)" /!

>0

and the Laurent expansion of (s — R;)™! at the point s;; is given by the
expression

oo

(2.22) R(s, By =(sT~ By = 3 Aulsis = s)";

A—me1) = —{si5] — Ry)" E(s45; Rj)
or A_(ms1) = —(bi — B)™E(d;; B), where w; is the order of b; as a pole of B.
From {2.20)-(2.22) it follows that
(2.23)
Res(X1(s) exp(st); si;) = (si;1 = Rj)¥ E(bi; BYQ™ D (s5)/(wi — 1)1+ ...
+ (551 ~ Rj)E(bi; By)Qj(si5) = E(bis BY(b:I = BY* Q5 ™ (s33) f(wi — 1)! + ..
+ (6 — B)@;(s45))-

Let us denote by @;;(t) the expression

(2.24) (bif—_B)‘""fow"_l)(sw)/(wu' ~ Dl e+ (Bd = B)Qy(si5} = Qij(t),
then from (2.20} and (2.24), if ¢ > 0 one gets

n

(2.25) 33 " Res(Xi(s)exp(st)si) =) Y E(bi; BYQi;(t).

i=1 j=1 i=1 j=1
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Let Ty{s) = (II% (s - R 1s igy(s)exp(st), for j = 1,2,...,n. Thenit
i#) :

follows that Xp(s)exp(st) = {sI — R;)'Tj(s). Under the hypothesis s;; =
bitz; £0,1<i<nm1<j<mor equivalently o(BY N o(—D) = @, the
set of singularities of the meromorphic opetator function (s — Ry 1 Ty(s) is
{0} U {si531 £ i £ n,1 £ 7 < m}. Considering the Laurent expansion of
(s — R;)"'Ty{s) at the point s,;, and taking into account (2.22), it follows
that
ResXa(s)exp(st); si;) = E(bi; BY(b:I — BY* T ™D (si) flwi — i+ ...

{2.26) + o+ {51 - B)Tj(s,-}-))‘ .

Let us denote by 5;;{¢) the expression
(2.27) (bl - B)‘”‘T_}w‘_l)(sij}/(w; — I 4 b (b — BYTy(s4;3 = Sis(t)

then from {2.26} and (2.27) it follows that

n m

(2.28) 35" Res(Xy(s)exp(st); si5) = D > Elbi; B)Si ().

i=1 3=1 =1 j=1

In order to compute the residue of X(s)exp(st) at s = 0, note that
Res{ X1{s)exp{st); 0} is the operator 0 because X,{s) exp{st) is holomorphic at
s =0 and

(2.29) X,(s)exp{st) = —s~}(p(sI — B)) " qz(s) exp(st).

Under the hypothesis a{B)} N o{—D) = @, the operator p(—B) is invertible,
thus the factor (p(s] — B))"!g2(s) is holomorphic at 5 = 0, and from (2.29) it
follows that

(2.30) Res(X (s) exp(st); 0) = —(p(—B)) " a2(0)
n k

= —(p(-B)) Y Y _a;i(~BY TADY
k=1j=1

and from lemma 1, it follows that ResX(s}exp(st); 0) = X., X, being the only
solution of the algebraic equation 4+ BX + XD = (.

Summarizing we have that under the hypothesis o(B) Na(—D) = §, the
solution X{#) of problem (1.1), for t > 0 is given by the expression

m

(231) X)) =X+ 303 Bl BYQu(®) + 5,(8)

=1 j=1
where X, is the only solution of the algebraic equation 4 + BX + X1} = 0,
given by {2.30), and @,;{t) and S;;({) are given by (2.24) and (2.27) respectively.
Thus the following result has been proved:



32 ' L. JODAR

Theorem 1. Let us consider the problem (1.1) where A end Cp are operators
in L(H) and the operators B and D satisfy the following properiies
(i)o{B)={b;; 1<i<n},o{D)={z;; 1 £ j <m}, and o{B}No(-D) =

(i) Back bieo(B) 1s & pole of B.
(ti1) D i3 algebraic and its minimal monic polynomial p(z) = S io arzk,
only has linear factors, p{z) =2 (2 — ) z1 £ 24, f 1 #£5.
Then the only solution of problem (1.1} is given by the expression (£.81),
where X, s given by (2.30), E(b;; B} are the speciral projections of B, and
Qi;(t) end Si;(t) ere given by (£.84) and (2.27) respectively.

Proof: The result is a consequence of the above comments. In fact for ¢ > {,
the expression of the solution coincides with (2.31). On the other hand, the
solution of problem (1.1}, given by (1.2) is an analytic function of the variable
'#, and coincides with the expression appearing in the right hand side of {2.31},
that is also analytic, in consequence they coincide on =il the real line.

Under the hypothesis of theorem 1, note that with the exception of 5i;(¢)
and @i;{t), all coeflicients E(b;; B} and X, given by (2.30} do not involve the
variable ¢, thus, in order to study the behaviour of the solution when ¢ — oo,
we have to consider the functions Q;;(t) and 5;;(¢). Note that 5;(t) and Qy;(1)
are defined by {2.27) and (2.24) in terms of the derivatives (with respect to s)
of the functions

Qs(s) = (WEy(l ~ B) ™ has(s) exp(st)

Ti(s) = {IIie4{sI — Rg)_l)s_lqg(s}exp(st),
it

where ¢,(s) and .q2(3) are given by {2.15). W
Corollary 1. Let us consider the problem (1.1) under the hypotheses of
theoremn 1. If si; = bi 4 2;, 1 <1< n, 1 £j < m, and all 5;; are contained in

the half plane Re(z) < O, then all solution of the differential equation arising
in (1.1) converges to X, when t — +oo.

Proof: The result is a consequence of the expression {2.31), (2.27) and {2.24)
and theorem 1. &

3. An Application to Riccati Operator Differential Equations

The resclution of a Cauchy problem for Riccati operator differenctial equa-
tions of the type

(31)  d/dtX(t) = A+ FX() + X()G + X(HEX(t); X(0) = Cq
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where A, F,G, E and C; are operators in L{H), is important in control theory,
[12], transport theory, [15], and filtering problems, [2]. In a recent paper j10{,
an explicit expression of the solution of problem {3.1) is given in terms of the
biock entries of the operator function

(32) $(2)exp( [ ok ] o)

but an explicit expression of such entries in terms of data is not known. The
aim of this section is to obtain an explicit expression of a class of problems
of the type (3.1) in terms of a solution of the corresponding algebraic Riccati
operator equation

(3.3) A+ FPX+XG+XEX =0

and the solution of certain associated generalized Lyapunov operator differential
equation. '

A resolution method for solving non-symmetric algebraic Riccati operator
equation is given in [6].

Let us consider the problem {3.1) and let us suppose that there exists a
solution X, of the algebraic equation (3.3) such that Cp — X, is inveriible
in L{H). From [11], the problem (3.1} is locally solvable, so, there exists 2
solution X{{) defined in a neighborhood J of the origin t = 0. As X{0) = Co
satisfies Cp — X, invertible in L{H), from continuity, it follows that X{#) — X,
is invertible in L(H) when ¢ belongs to some neighborhood of t = 0, let us
denote this neighborhood by J.

Let F, and . be the operators in L{H) defined by the expressions
(3.4) F.=F+X.E, G.=G+EX.
and let Y{t) = (X(t) — X,)7*, teJ. Then (Y(t}}"' = X(t) — X., and by
differentiation it follows that d/dt({Y(¢)) 1) = d/dH{X(£)—-X.) = X({) EX({)+
FX()+ X($)G + A— (X.EX. + FX.+ X.G + A) and from (3.4) one gets
{3.5)
djdt((Y {t))77) = (X(t) = X)B(X () - X.) + (F + X, EYX(t) - X.)

+H(X(E) - X)(G + EX,) = (YE)TEY()) ! + B Y () + (Y (1)) G..

Thus, U(t) = (Y(#})~? satisfies
(3.6) d/dt U{t) = UHYEU(t) + F.U(L) + U(t)Gs.
Premultiplying and postmultiplying by Y (¢} both members of equation (3.6},
and taking inio account that

—dfdt Y(t) = Y(5)( /(Y (£)) )Y ()

it follows that
(3.7) dldtY(t) = —E - Y{1}F, - G, Y(i}; Y(0) = Co — xX)
So, the solution X (¢} of problem (3.1) is given by X(t} = X, +(Y(t))™", where
Y(t) is the solution of {3.7). From the above comments and theorem 1, the
following theorem has been established.
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Theorem 2. Let us suppose that there ezists o solution X, of equation (3.3)
such that the operators Fy and G, given by (5.4) satisfy the properties
() o(=F) N (Ga) = b a(-G1) = (bl <1 <n} jo(—F.) = {21 €j <
m
}
(11) Each biea(—G.} is a pole of —G.
(#i) —F\ ts elgebraic and dts minimal monic polynomial p(z) only hus
linear factors with p(z) = Y pmp axz® =1 (2 — 2), with z; # z;, if i # 5.
Let s;; = bi+2;, for1<i<m, 1<j<m, and let w; be the order of b; as a
pole of —G., and let E(b;; — G.) be the spectral projection associated 10 b; a3 e
pole of —G,, then if Cp — X, is invertible in L(H), in ¢ neighborhood of t =0
the soluiton of problem (5.1} is given by the exzpression

X(t) = X, + (Yo + ZZE(bn ~G)(Qi(t) + S (1))~

=1 j=1

- k 1 - :
where ¥y = —(p(G)) (L hey 2ojmr @GP T B(=F)* ), and Qi(t), Si(t)
are given by the ezpressions anelogous fo (2.24) and (8.27) respectively, by
replacing the operaiors B, D and A, by —G,, —F. end —E, respectively.
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