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INDUCTIVE LIMITS OF VECTOR-VALUED
SEQUENCE SPACES

JOsE BONET, SUSANNE DIEROLF AND CARMEN FERNANDEZ

Abstract

Let L be a normal Banach sequence space such that every element in L
is the limit of its sections and let E = ind E, be a separated inductive
lirmit of locally convex spaces. Then ind L{F,) is & topological subspace
of L{E).

The aim of this note is to prove the following result on the interchangeability
of inductive lirnits and spaces of vector valued sequences: if L is a normal
Banach sequence space with the property that every element of L is the limit
of its sections and E = ind E, is a separated locally convex inductive limit,
then the inductive limit ind L{E,) is a topological subspace of L(FE). The
situation is completely different for the sequence space L = 1°°. In fact the first
two authors showed in [2] that there are even strict inductive limits of Fréchet
spaces E = ind E, such that the canonical injection ind 1°(E,} C 1=(E) is
not open.

In what follows (L, |||} denotes a normal Banach sequence space, ie., a
Banach space that satisfies '

(o) ¢ C L C w algebraically and the inclusion {Z, || ||} C w is continous.
(,@) Ya= (ak}keN € LYbh= (bk)keN € w such that ib;_-l < lak!Vk € N, we
have that 5 € L and ||§| £ Jali-
We will also assume the following property (cf [1})
() lim [((0)cns (@x)izn)ll = 0, Ya = (ax)sens € L.

This property is sometimes called AK-property. Clearly (L, |||} = 1 does
not satisfy {€}, whereas {L,]|]]} = 17,1 < p co or ¢y has property {¢}).

We observe that there ig (#k)keN € L with ux > 0(k € N) and
lI{eseenll =1

Given a locally convex space E, we denote by cs{E) the family of all con-

tinuous seminorms on £. Given E the vector valued sequence space L(E) is
defined by

I{E)={z = {zs)ren € EN;("(;&)&QN) € L for all r € cs{ E}}
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endowed with the locally convex topology defined by the seminorms

z — |[{r{z ren)l

as r varies in ¢s(E). Clearly if (L, || ||) satisfies property (¢}, then the countable
direct sum ®{E :n € N} = E®™ is dense in L{E).

Given a separated locally convex inductive limit E = ind E,, we are interested
in the following question: is ind L{E,)} e topological subspace of L{E)?. If
(L, | I} = 1}, a positive answer follows from a classical result of Grothendieck
on projective temsor products (see e.g. [4]). If (L] ||) = ¢o the positive answer
is a particular case of a result of Mujica [5,1,7]. We prove now that the answer
is positive for arbitrary (L, || ||} satisfying {¢).

1. Proposition. Let E be a locally conves space, F a closed subspace of
E and q : E — E[F the canonical surjection. The mapping Q : L(E) —
L{E[F) defined by Q({ze)een) i= (g(zeren 15 open onto its image. If E is
a Fréchel space then @} 13 also surjective.

Proof: Since E™ is a dense subspace of L(E) and Q(EM™) = (E/F)N),
according to [4, 32, 5(3)] it is enough to show that Q : E™ — (E/F)(N) 35
open. To do this we fix r € ¢s{E) and we show

Q({z € L{E)z € E™|(r(zs))xenll € 1}) D
{z € L(E/F); 7 € (B/FY™ ||(F(Fe Nrenll <271}

where 7{z + F) := inf {r(z + y);y € F}{z € E) is the quotient seminorm.
We fix (uedeen € Lo i > 0k € N), (s ken)lf = 1. Given & € (B/F)N
with [[{{(F(ZTx}een)l € 27! we find 1 € N such that T = 0 for 1 < k. For
each k < 1 we select y € F such that r{zg + 1) < ?‘l(xk + FY + 272y,
Then = = ((zx + yr)e<1,(0)1<x)) belongs to BN ¢ L(E),Q(z) = 7 and

€{r{zk + ya <t Q<) € 1. '

If E is also a Fréchet space, then Q(L(E)) is a Fréchet space dense in L(E/F).
Consequently ¢} is surjective. B

2. Proposition. Let (£, ),cn be a sequence of locally convex spoces. Then
the map ¢ : L{(B{E. :n € N}) — @{L(E,) : n € N} defined by

H(((znnen)ien) := ({25 ke )nen
ts a topological tsomorphism,

Proof: Given z = {{&X)nen)ren in L(B{E, : n € N}), to show that ¥(z) €
D{L{E,) : n € N} it is enough to see that there is ;3 € N such that 2¥ = 0 for
all n > m, k € N. If we assume the contrary we can find two strictly increasing
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sequences {(k{j)};en and (n{j));en such that :ci((‘;; # 0 for all § € N {recall
that each {z%),en belongs to ©{E, : n € N}). We select (M dren € w\L with
Ary > 0forall jeNand A, =0if k¢ {k{(s};7 € N}. For all j € N we find
7; € es(Ep;)) with r,(zi((‘;))) greater than Ag(;y. It is clear that #{{zn)neN) =

= 3" r;{2a(y) defines a continous seminorm on ®{E, : n € N}. Therefore for
=

& i= (25 )nen (k € N), we have (r(z*))) € L. But r(a*D) > rj(z;0) > Ayjy,
forall j € Nand 0= Ap < r(2*)if & ¢ {k(j);7 € N}. Consequently (Ay)zen €
L, a contradiction. Therefore ¢ is well defined. Clearly 3 is linear and injective.
To show that ¥ is surjective, we take z = ({zX Jrendnen in ®{L(E,) : n € N}.
Clearly (z%)nen € @{En;n € N} for all £ € N, since z& = O for all n > m
and k € N. Given 7 € ¢s(B{En;n € N}} we can find r, € es{En) n € N, with
r(z) £ max {ra{zn};n € N} for all z = (2,,) € B{E,;n € N}. Therefore for all
keN

i

((zn)nen) S max (ra(z)i1 Sn<m) € ) ra(ah)

n=1

Since (ro(zf)ien) € L for 1 € n € m, we conclude y = ({25 )nemdien €
L(@{Bnin € N}) and 9{y) = .

Now the continuity of $~! : F{L(E,);n e N} — L{®{E.;n € N}) follows
from the fact that its restriction to each L(E, ) is clearly continuous. Finally
we show that ¢ is continuous. To do this we consider r, € cs(E,) (n € N) and
we observe that

sup [|(ra(22)een)l| < l(sup (ralz}))een)
e nEM

holds for evefy (2 nendien € LIBGIE ;R EN})Y. B
3. Theorem. Let {L,||.||} be & normal Banach sequence space with property
(e). Let E = ind E, be a separated locally convez inductive limit. Then

find L(Ey)] is a topological subspace of I{ ind E,).

Proof: We consider the following diagram

L@{EuneN}) ——  L(E)
“’T Tw
B{L(E);n € N} —-—-QLr ind L{E,)

where, for ¢; : ®{E.;n € N} — E the canonical quotient map g;1({zn Jnen) =
O

= z2q we define Qi{{ze den) = (qr{zi Neen for all {4 )ien in
1

n=
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L{(@®{E.;n € N}). (, is the canonical quotient map and ¢ is the canonical
injection which is continous. According to proposition 1, ¢Jy 15 open onto its
image. Certainly @, is open and ¢~ is a topological isomorphism, according
to proposition 2. Since the diagram is commutative, it follows that ¢ is also
open onto its image. Thus ind L(E,,) Is a topological subspace of L{E). B

4. Corollary. Let (L,| |} b¢ a normal Banach sequence space with property
(). Let E = ind E, be a strict inductive limit of locally conver spaces with
E, closed in E 4y for alln € N. Then L(E} = imd L{E,) holds algebraically
and topologically.

Proof: Only the algebraic identity nceds a procf. It-is a clearly encugh to
show that for any x = (zg)ien € L{E) there is n € N with z; € E,. If this
15 not salisfied we can find an increasing sequence (k{n)}nen in N such that
Tin) € En, for all n in N. We select (1 )rem € w\L with v,y > 0(n € N)
and v =0k ¢ {k(n);n € N}. Now since F,, is closed , there is u, € E' with
Un{Zg(n)) = Yi(n) 20d ua}Eyn = 0. The equicontinouns sequence (un)nen defines
a continous seminorm as follows:

p{z) = sup {lun(z)|;n € N}

Thus (p{zi)ren € L, a contradiction, since 7 < p(zp}forallk c N A

5. Remark: For an inductive limit £ = ind E,, and a normal Banach
sequence space (L, || ||), the algebraic coincidence I{ E) = ‘md L{F,)1s a clearly
equivalent to Vz € L{E)3In € N with z € L(E;). For instance if (L, || |} = cq,
then L(E) = ind L{E,) if and only if F is a sequentially retractive (cf [3}).
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