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CHORDAL CUBIC SYSTEMS

MARC CARBONELL AND JAUME LLIBRE

Abstract

We classify the phase portraits of the cubic systems in the plane such
that they do not have finite critical points, and the critical points on the
equator of the Poincaré sphere are isolated and have linear part non-
identically zero.

1. Introduction

We consider cubic systems (CS, for abbreviation), i.e. fwo—dimensional au-
tonomous systems of differential equations of the form

(1.1) z=Plz,y) , ¥=Q(zy)

where P and @ are real polynomials such that max {degree P, degree }} = 3. If
a CS has no finite critical points, then it will be called chordal cubic system. We
shall denote by C'CS the chordal cubic systems such that they only have isolated
critical points on the equator of the Poincaré sphere (see [8], [16] or Appendix
A of [6]) and the linear part of these critical points are not identically zero.
The chordal systems were studied by Kaplan [10], [11]. The name of chordal
system is due to the fact that a such system has all its solutions starting and
endding at the equator of the Poincaré sphere.

In this paper we give a classification of the phase portraits (on the Poincaré
disk) of CCS. A complete study for the chordal quadratic systems has been
done by Gasull, Sheng Li-Ren and Liibre in [7).

Qur main result is the following one.

Theorem. The phese porirait of o CCS s homeomorphic {ezcept, perhaps
the orieniation) to one of the separairiz configurations shown in Figure 1. Fur-
thermore, all the separairiz configurations of Figure ! are vealizable for chordal
cubic syaterns.

The second author has been partially supported by a grant of the CICYT no. PB86-0351
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Figure 1. The phase portraits of a CCS {except, perhaps the orientation).
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In what follows, when we refer to the phase portrait ¢ of Fi 1gure 1,1 <138,
we shall only say the phase porirait i.

We note that the realizations of phase portraits 12, 13, 14, 31, 32 and 33
uses infinite critical points with linear part identically zero.

A non singular differential equation in two real variables defines a foliation
of the plane. It is well known that the topological classification of such folia-
tions depends only of the number of inseparable leaves and the way they are
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distributed in the plane (see [10] or [9]). Two leaves (or trajectories) Ly and
L3 are said to be inseparable if for any arcs Ty and T, respectively transversal
to L, and L, there are leaves which intersect both T7 and T (see Figure 2).

For polynomial foliations of degree n, 1.e. defined by a polynomial vector
field (P, @), where max {degree P, degree )} = n, it is known that the number
of inseparable leaves is at most 2n {see [13] or [15]). Actually, a construction
leading to examples with 2n — 4 inseparable leaves for all n 2> 4 can be already
found in [14]. In {3] it is claimed that the case n = 2 has at most 2 inseparable
leaves. This claim is not true because in |7] the quadratic system © = 1 + =y,
§ = m™ y?, with m < ~—1 has 3 inseparable leaves: y = ( and the two branches
of the hyperbola zy = —m/(m + 1}. Also from [7] it follows that 3 is the
maximum number of inseparable leaves when n = 2. In {5] it is proved that 3
is again the maximum number of inseparable leaves when n = 3.

Note that our chordal cubic systems provide examples of pelynomial folia-
tions of degree 3 in the plane with 3 inseparable leaves, see for instance phase
portrait 5.

Figure 2.

2. Classification of cubic systems

In this section we will state the main results on the classification of CS due
to Cima and Llibre [3].

Definition. A binary gquartic ferm f(z,y) is a real homogeneous polynomial
of degree 4 in the variables z and y.

Theorem 2.1. Any binary guartic form by means of ¢ linear change of
varigbles, can be written as one of the fen binary quartic forms contained in

Table 1.
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Let g(x,y) be the binary quartic form z2Q3{x,y) — yPs{z,y) associated to
cubic system (1.1), where P; and @; are the homogeneous polynomials of degree
3 of P and @, respectively. From Appendix A of [6] the zeros of ¢{z,y) give
us the mnfimte critical points of this CS. Then from Theorem 2.1 we obtain the
next result,

Corollary 2.2. By using o lineer change of variables, any binary gquartic
form g associated io & C§ is one of the binary quartic forms of Table 1.

From the correspondance between cubic systems and binary quartic forms,
and from Theorem 2.1 we have the following result.

Theorem 2.3. Any CS, by means of a linear change of variables, can be
written as ane of the ten CS§ contained in Table 2.

In what follows we will denote by CCS{J)to any CCS of type {J) of Theorem
2.3, where J € {I,II,... X}

I f=64a" —6(1+#‘)'£292+6u29", w1
iI f=oay(y? - 2?), a = +1;
L f = (st -y, b0
IV f =6a 'r,y, a==+l;
V. f = 42°
VI f=ay(6z + 42}, a=*x1;
Vil f=qaz* a =11,
VIII. {=olz! +6px y? 3+ yt), a=+1,u>~1/3, p#£1/3;
IX. f=a(z? +y%)?, a =11,
X. f=0.
Table 1. Classification of the binary guartic forms.
T=q = 3(1+p%)2y + 6%y +ap,
(1) g =a —6u"2® + 31+ u*)ay’ +yp,

u> 1

¢ =q +al(-1/2)2%y +°] + 2p,
(11} ¥ = g2 +o(1/2)zy® + yp,
a==+1;
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(111)

(IV)

(V11)

(VIII)

{IX)

(X)

where
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& =g — py’ +zp,
y =gz — pz’ +yp,
v F 05

& =q + 3az’y + 2p,
= g2 — 3azy® +yp,
@ =*1;

=g +22° + zp,
j =g — 227y +yp,

& =g+ a3’y +v°) +2p,
¥ =q — 3ozy® + yp,
a=4=1;

T=aq +ap,
¥ =g —az’ +yp,
o =31,

i =q +a(3ux’y + v*) + 2p,
g = qr - ofz® + 3pzy®) + yp,
a=Flp>-1/3,p #1/3;

& =g +o(z’y+3°) +p,
g =q2 —alz® +2%y) +yp,
a==*1;

z=q +zp,
¥ = q +yp;

p=p1z° + pary + psy’, and
gk = di + ez + by + Lz + mpzy + ngy, for k =12
Table 2. Classification of the cubic systems.
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3. Critical points

To obtain the possible phase portraits of chordal cubic systems we need to
know the local behaviour of their infinite critical points. To study this infinite
critical points, we use the following classification: If p is an isolated critical
point of a vector field X, we say that p is of type

E if det DX {p) # 0, (non—degenerate and elementary);
DE if det DX (p) = 0 and tr DX{p) # 0, {degenerate and elementary);
NE if det DX(p} = tr DX{p) = 0 and DX(p) £ 0, (non—elementary);
2 DX{(p =0,

where DX {p) denotes the linear part of X at p.

Thus to study the infinite critical points of 2 CCS we shall use the Theorems
E, DE, NE and the Poincaré-Hopf theorem {see Appendix}.

3.1. Degenerate and elementary critical points.

This subsection deals with the local behaviour of the origin of systems U,
and U, (see Appendix A of [6]) when it is a degenerate and elementary critical
point {DE).

From now on we shall denote by (y, z) the coordinates (23, 22) = Fi(y1, y2,¥3)
where (y1,¥2,93) € Uy and by {2, z) the coordinates (z1,2;) = Fa(y1,¥2,¥3)
where (y1,¥2,¥3) € Ua.

Proposition 3.1.1. Assume that py # 0. Then the origin of system U
associated te systems (11}, (IV) and {VI) i3 a seddie-node of type DE. Furi-
hermore, its local behaviour is shown tn Figure § for system (I} and in Figure

4 for systems (IV) and (VI).

Proof: The expression of system U; associated to systems (11}, (IV) and (V1)
is the following one,

y" = 122 + Y(y!z))
(3.1.1) z=—-pz+ Z(y,2),

where Y and Z are polynomials in y and z of degree at least two. It is clear
that if p; # 0 then the origin of system (3.1.1) is a critical point of type DE.
To analyse its local behaviour we shall use the Theorem DE (see Appendix).
First, we need to consider the change of variables, yn = y + (l2/p1)z, 21 = 2
and ) = —pt {of course, when p; > 0 there is a change in the orientation of
the orbits). Then system {3.1.1} writes {we omit the subindex 1},

y=Y(y,2),
zZ=z+2Z{y,z),
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where again ¥ and Z are polynomials in y and z of degree at most two. Let
z = f(y) be the solution of the equation z + Z(y, 2z} = 0 in a neighbourhood of
{0,0). Then if we consider g{y) = Y(y, f(y)} we have

g{y) = (—1/p)y* +... for system (II};
g(y) = (6/p)y* +...  for system (IV);
g(y)=(/p1)y*+...  for system (VI).

Therefore by Theorem DE the proposition follows. B

Proposition 3.1.2. Assume thal py # 0. Then the origin of system U, for
systems (IV) and (VII} is o DE saddle-node, and for system (V) is ¢ DE saddle
when pa > 0 and ¢ DE node when p; < 0. Furthermore the local behaviour for
sysiems (IV) and (VII) is shown in Figure 5.

Proof: The expresion of system Uj associated to systems {IV), {V) and {VII}
is the following one
T =maz+ X{z,z2},
(3.1.2) = —pyz + Z{z,2},

where X and Z are polynomials in z and z of degree at least two. It is clear
that if p3 # 0 then the origin of system (3.1.2} is a critical point of type DE.

By using similar arguments that in the proof of Proposition 3.1.1 we have
g{z) = {—6/ps)a? +... for the system (IV);
g{z)=(—4/ps)a® +... for system (V});

g{z) = {~1/ps)z? +... for system (VII);

Therefore by Theorem DE the proposition follows M

O Q . ////

Lyl o

/]

>0 n<0
Figure 3.
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DY

pi >0 m<0
Figure 4.

ps >0 ps <0
Figure 5.
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3.2. Non—elementary critical points in system Uj.

In this subsection we study the local behaviour of the origin of system U
when it is a non-elementary critical point {NE).

Proposition 3.2.1. Assume that py = 0 and Iy # 0. Then the origin of
systern Uy associated to systems (11}, (IV) and (VI) is o critical point of type
NE such that

(a) for system (1) the origin 13 a saddle if pz > 1/2, the union of o
hyperbolic and elliptic secior if py < 1/2, and a saddie-node if pp = 1/2 and
ps — (/L) #0;

(b) for systems (IV) and (VI} the origin is a saddle if p; < -3, the union
of a hyperbolic and elliptic secior if p» > —3 and o saddle-node if p» = -3 and
ps + (811 /1) £ .

Proof: From systme {3.1.1) (see the proof of Proposition 3.1.1) it is ciear
that if p; = 0 and &z # O then the origin is a critical point of type NE. to
analyse its local behaviour we use Theorem NE (see Appendix}. First, we need
to consider the change of time #; = lt. Now system (3.1.1} becomes

y=2+Y(y,2),
- Z(y> Z) L]
where Y and Z are polynomials in y and z of degree at least two. Let 2 = f{y)

be a solution of equation z +Y(y, z) = 0 in the neighbourhood of (0,0}. Then if
we consider F(y) = Z({y, f(y)} and ¥{y) = (8Y/y + 82/8z)(y, f(y)) we have

F(y)=p2_1/2y3+ (mz—*'l)(I/?—Pz)+P_3*I_l P
1 I e Iy
5/2 — pa

2(y) = ,

y+...,

for system {I1);

F<)_6_<m_+i> 2 [(mz—*’;)(?z+3)___z2§__?ﬁ] o
2? 23 22 94
15 + -
B(y) = (_h_if’zlw___,

for systems (IV} and (VI).
So from Theorem NE the proposition follows. H
In the next results we look at the localization of the separatrices of the

critical point of Proposition 3.2.1 with respect to the infinity (the equator of
the Poincaré sphere).
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Lemma 3.2.2. Assume thot the origin of system Uy associaied to systems
(II), {IV)} and (VI} 13 a saddle of type NE. Then its local behaviour is shown
in Figure 6.

Proof: We know that the equator of the Poincaré sphere corresponds to y-
axis in system U;. So, on z = 0 the system goes over to

y=y* -y, z=0 for system (II);
y=—6y°, z =0 for system (IV);
g=—-y*6+y?), 2=0 {orsystem (VI).

Then by considering the distinct possibilities of a saddle of type NE we are
done. &

Proposition 3.2.3. Assume that the origin of system Uy associated to sys-
lems (11}, {1V} and {VI)} is the union of a hyperbolic end elliptic sector of type
NE.

{a) For system (II) its local behaviour is shown in

Pigure 7.(1) if -3/2<p;<1/2 and 1, >0;
Pigure 7.(2) f —-3/2<p;£1/2 and I, <0,
Figure 7.(3} o p; < -3/2 and I > 0;
Figure 7.(4) f p, < =3/2 and Iy < 0.

(b) For systems (IV) and {VI)} its local behaviour is shown {reversing the
orientation of the orbils) in

Figure 702} #f -3<;m <9 and I >0;
Figure 7.{1) o —-3<p; <9 and <0,
Figure 7.(4) if p2>9 and I >0,
Frgure 7(3) if p2>9 and I, < Q.

Proof: To study the different localizations of the separatrices of the critical
point (0,0} os system U, we apply to this system two successive changes of
variables of the form y = y, 2 = wyy and y = y, w; = wy; L.e. two successive
blow up’s. Therefore, system U is equivalent (omitting a common factor y) to

Y= v+ l?yw + yey{y’ w) H
(3.2.1) W = [(—3/2) — p2)w — 2hLw® + yw Wy, w),

for system (I}, and to

§ = =6y + Lyw + ¥’V '(y, ),
(3.2.2) W = {9 — po)w — 2hw’ + ywWly,w),

for systems (IV) and (VI), where Y, W, Y’ and W' are polynomials in y and
w of degree at least one.
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Proposition 3.2.4. Assume thal the origin of system U nssocieied to sys-
tems (II), (IV) and (V1) is @ seddle~-node of type NE. Then its local behaviour
5 such that two separalrices of the same hyperbolic sector are at infinity {see
Figure 11.(1), for ezample). Moreover, sufficient condiitons for all the possibi-
lities for system (II}) are shown in

Frgure 12.(1)
Figure 12.(2)
Figure 12.{8)
Frgure 12.(4)

orbits) in

Figure 12.(2)
Frgure 12.(1)
Figure 12.(4)
Figure 18.{3)

of
if
if
of

and for systems (IV) end (VI) are shouwn (reversing

if
if
if
if

p2 = 1/2,(li/) —ps <0
p2=1/2,{/l) —ps <0
P2 = 1/2,(31/12)—133 >0
pr=1/2,{Li/bb}—ps >0

1

—3,p3 + (61/5) < 0
~3, 3+ (64L/L)1 <0
-3,ps +{6L,/) >0
=3, pa+{(6L/l) >0

£‘2>0;
L <0;
12>0;
b <0;

and
and
and
and

the orieniation of the

32>0;
L <,
fg)ﬁ;
<0,

and
and
and
and
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Proof: From the proof of Lemma 3.2.2 we know that only the Figures 11.{1}
and 11.(2) can occur. Furthermore, from Proposition 3.2.1 if the origin is a
saddle-node of type NE it is necessary that p; = 1/2 (resp. p; = -3) for
system (II) (resp. systems (IV} and (VI}). Then systems {3.2.1) and (3.2.2) of
the proof of Proposition 3.2.3 write now in the form

y=y+byw +y°Y(y,w),
(3.2.11 W= ~2w — 2w’ + yw Wiy, w),

and

?} = _ﬁy + I??:"w + yZY-'(y’ 'LU') )
(3.2.2) w = 12w — 2hw? + yo W(y,w),

respectively.

System {3.2.1°} has exactly two critical peints on the w-axis. From Theorems
E and DE (0,0) is a saddle and M = (0, —1/1,) is a critical point of type E or
DE. By similar arguments that in Case 2 of the proof of Proposition 3.2.3 we
have for system (II} that only Figure 11.(1) can occur. Again, by using similar
arguments to the proof of Proposition 3.2.3, we can obtain all the possibilities
for system {II).

The proof for system {3.2.2"} follows similary. B

3.3. Non—elementary critical points in system Uj.
This subsection deals with the local behaviour of the origin of system U,
when it is a non—elementary critical point (NE).

(1) (2)



268 M. CARBONELL, J. LLIBRE

(3) {4)
Figure 11. The possible saddle-nodes of type NE on the equator of S2.

In fact, only configuration {1} is possible
(we can reverse the orientation of the orbits).
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Figure 12.
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Proposition 3.3.1. Assume that p; = 0 and n, # 0. Then the origin of
system Uy associated to systems (IV), (V) and {VII) is a critical point of type
NE such that

(a) for system (IV) (resp. system (VII)) the origin is a saddle if pp > 3
{resp. pa > 0), the union of o hyperbolic and elliptic sector if pr < 3 (resp.
pz <0 orpy=p; =0), and o saddle-node if pp = 3 and py — (bnz/ny) # 0
(resp. pa =0 and p; #£0);

(b} for system (V) the origin is a saddle-node if p; #0, e saddle if py =
G and p; > 2, and @ node if py = 0 and p; < 2 (which is effractor when
(14 — ;1 }/ny < U ond repellor when (14 — py)/ny > 0).

Proof: From system (3.1.2) (see the proof of Proposition 3.1.2} it is clear
that i ps = 0 and n) # O then the origin is a critical point of type NE. To
analyse iis local behaviour we use Theorem NE.

Now as in the proof of Proposition 3.2.1 we consider the functions:

F(r):ﬁ(p2_33x3+6 (ml—nz)(3"P2)+P_1_5“2 P
gz HAE] ¥ipz gz
15—"})2
—2z
L£3}

®(z) = +..,

for system {1V);

4 —
F(x)zﬂz4+4{w+pl_g] S
T2 L£3]
14 —
@(I):—E?"Iﬁ*‘n—m.r?-i-“‘,
i I

for system (V);

A B C -1
F(z) = _ Pz =+ periy + 1 25 4 pary + Opimy 57
iz 32 nyz

...,
where A, B and C are constants,

@(z):—%x—&xz-&iﬁ-}-...,
H L] mn

for system (VII).

Then by Theorem NE the proposition follows. W

In the next results we study the localization of the separatrices of the critical
point of Proposition 3.3.1 with respect to the infinity.
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Lemma 3.3.2. Assume that the origin of system U, associaied o sysiems
(TV), (V} and {VII} is o seddle of type NE. Then ils locel behaviour is shown
in Figure 6 for systems (IV)} and (VII}, and in Figure 13 for sysiem (V).

Proof: As in the proof of Lemma 3.2.2 system Iy on z = 0 becomes

t==6z%, =0 forsystem {IV};
t=4z%, #=0 for system {V);
=z, 2=0 forsystem (VII};

In short, by considering the distinct possibilities of a saddle of type NE we are
done. K '

o0 - _%— w?”%
S 7

Figure 13 (we can reverse the orientation of the orbits).

Proposition 3.3.3.
(a) Assume that the origin of system U, associated to system [IV) is the
unton of ¢ hyperbolic and elliptic sector of type NE. Then its local behaviour is

shown in ] ]
Figure 7.(1) if -9<p; <3 and n; >0

Figure 7.(2) if -9<p, <3 and n; <0
Figure 7.(3) o p2 < -9 and n; > 0;
Figure 7.({) # p2< -9 and np < 0.
(5) If p2 < O then the origin of system Uy associaied to system (VII} is

the union of ¢ hyperbolic and elliptic sector of type NE. In this case, its local
behaviour s shown in

Figure 7.(3) o pa<0 and n; >0;
Figure 7.{4] if p2<0 and n; <0.

Proof: By using similar arguments to the proof of Proposition 3.2.3, we apply
to system U; two successive changes of variables 2 = 2, z = wnz and z = z,
wy = wz. Therefore, system U is equivalent {omitting a common factor z} to

& =86z +nyzw + 2 X{z,w),
{(3.3.1) = —(9 + p2Jw — 2n1w® + zw W{z,w),
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for system ({IV}, and to

i =maw+ 22 X'(z,w),
(3.3.2) W = —pow — 2mw® + 2w W'z, w),

for system (VII), where X, W, X’ and W’ are polynomials in ¢ and z of degree
at least one.

The study of system (3.3.1} follows in a similar way to the study of system
(3.2.1) in the proof of Proposition 3.2.3. In short, (2) follows.

i pa < 0 system (3.3.2) has exactly two critical points on the w—axis. From
Theorems E and DE, (0,0) is an vnstable node and M = (0,—p/{2n;}) 15 2
saddle. So, from Figure 8, (b) follows. ®

We know from the proof of Proposition 3.3.1 that the origin of system U,
for system {IV) can be the union of a hyperbolic and elliptic sector if p; = 3
plus other conditions. It follows from the above proof that this situation is also
contained in Proposition 3.3.3. Moreover, from Proposition 3.3.1,ip, = p, =0
then the origin of system Uy for system (VII} is the union of a hyperbolic and
elliptic sector. This case will be studied in Section 10.

Proposition 3.3.4.

(2} Assume that the origin of system U associated to system (IV) is
seddle-node of type NE. Then ifs local behaviour 13 suck that {wo separafrices
of the same hyperbolic sector are of infinily (see Figure 11.{1), for ezample).
Moreover, sufficient conditions for all the posstbilities are shown in

Frigure 12.(1) +f p2=3, (nafr1)—p1 <0 and ny >0;
Figure 12.{2) if p2=3, (bng/r1)—p1 <0 ard m <0;
Figure 12.{3) +f p2=3, {(ng/m1})—p1 >0 and n >0;
Figure 12.(4) f p2=3, {ny/ny)—p1 >0 and n; <0.

(b} If pp # 0 then the origin of system U, associated io system {V) 15 ¢
saddle—node. In this case its local behoviour ts shown in

Figure 14.(1) f p2 <0 and n; > 0;
FPigure 14.(2) f pa <0 and n; <0
Figure 1{.(3) if p >0 and n; > 0;
Figure 14.(4) f p2>0 end n; <0.

Proof: Statement (2} follows analogously to the proof of Proposition 3.2.4.

From the proof of Lemma 3.3.2 we know that only the Figures 11.(3} and
11.(4) can occur. Now we apply to systern U the same change of variables that
in the proof of Proposition 3.3.3 and we obtain

=4z’ + nzw + 22 X(2,w),

{3.3.3) W= —pow — 2nyw? — Grw + xw Wz, w),
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for system {V}, where X, W are polynomials in ¢ and w of degree at least one.

System {3.3.3) has exactly two critical points on the w~axis if py # 0. From
Theorems E and DE, (0,0) is 2 saddie-node and M = {0, —p2/(2n;)) is 2
saddle. Furthermore, the saddle-node has the two hyperbolic sectors either to
the right or tc the left of the invariant w—axis. So, from Figure 15 {where we
suppose p; < 0 and ny > 0) statement (b) follows. |

We know from the proof of Proposition 3.3.1 that the origin of system [y for
system (V) could be a saddle—node if p; = 0 plus others conditions. This case
will be studied in Section 8.

Note that we do not consider the case that the origin of system U, associated
to system (VII} is a NE saddle-node. We shall prove in Section 10 that this
case cannot occur for chordal cubic systems.

Figure 14.
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Figure 15.

4. System (I)

In this section we determine all the possible phase portraits of CCS(I). Also
we realize these phase portraits.

4.1. Critical points.
First we study the critical points at infinity of system (I},

Remark. 4.1.1. From Appenix A of [8], to study the critical points at
infinity it is enough to study systems U; and Uz. Moreover, since the infinite
critical points of a CS appear in diametrically opposite pairs (each critical point
of the same pair has the same local behaviour}, we only lock at the critical
points of system U, with 2 = {, and at the origin of system U,.

An easy computation allows to prove the next result {see Appendix A of [6]).

Lemma 4.1.1. System U, associated to system (I} has four critical points
on z=0: (,U.,O}, (_#30): (1/”‘v0) end (_1/#?0)

We denote by y1, y2, y3 and y4 the values p, 1/p, —p and —1/p, respectively.
The next two lemmas follow from Appendix A of [6] and Appendix 1.

Lemma 4.1.2. The critical point {yx,0) of system Uy associated to system
(I} is of type E of P3(1,y1) # 0 and of type DE if Pys(1,yx) = 0. In this second
case, if the critical point is o saddle-node, then it is of type DEI (see Appendiz

1)

Lemma 4.1.3. The veclor field on the equator of the Poincaré sphere of
system (I} is shown in Figure 16.
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Figure 16.

We shall say that system (I} has indez configuraiion (1, 7, k, ) if the four pairs
of infinite critical points have indices ¢, 7,k and 1.

From Theorems E, DE and Poincaré-Hopf Theorem (see Appendix I} we
have that a CCS(I) has only two possible index configurations, (1,1, ~1,0) and
(1,0,0,0).

4.2. Topological phase portraits.

In this subsection we study all the possible topolegical phase portraits of a
CCS(I). To do that we analyse all the distinct index configurations.

Configuration {1,1,-1,0)

From Lemma 4.1.2 and Theorems E and DE, it follows that the infinite
critical points are two nodes, one saddle and one saddle—node of type DEL.

Proposition 4.2.1. The phase portrait of a CCS{I} with indez configuration
(1,1,-1,0} is homeomorphic (ezcept, perhaps the orientation) to one of phase
portrails 1,2, 8 or 4.

Proof: By using symmetries, rotations and changes of sign in the variable ¢
(if it is necessary), we obtain that any CCS(I) with index configuration (1,1,
—1,0) has a behaviour at infinity equivalent {0 one of the behavicurs that are
shown in Figure 17.

By looking at Figure 17.(1} we have that there are three possible phase
portraits with this behaviour in a neighbourhood of the infinity, phase portraits
1, 2 and 3. Moreover from Figure 17.{2) we have that there is only one possible
phase portrait with this behaviour in a neighbourhood of the infinity, the phase
portrait 4. W .
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(1)
Figure 17.
Configuration (1,0,0,0).
From Theorems E and DE and Lemma 4.1.2 it follows that the infinite critical
points are one node and three saddle-nodes of type DEL.

Proposition 4.2.2. The phase portrait of & CCS(1) with indez configuration
(1,0,0,0) is homeomorphic (excepi, perhaps the orientation) to one of phase
poriraits 5, 6, 7, 8, and 9.

Proof: By using similar arguments to those of the proof of Proposition 4.2.1
we obtain that any CCS(I) with index configuration (1,0,0,0) has a behavicur
at infinity as in Figure 18.

Figures 18.{1) and 18.(2) determine phase portraits 5 and 8; respectively.
Figure 18.(3) determines phase portraits 7, 8 and 9. B

(1) 2) (3)

Figure 18.
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4.3. Realizations.

In this subsection we shall give CCS(I) that realize each phase portrait found
in Subsection 4.2.

Phase portraits 1, 2 and 3.

From the proof of Proposition 4.2.1 we know that phase portraits 1, 2 and 3
have the same behaviour at infinity. Now we consider the following family of

Cs:

3 =6y + (1/2)z)(4y” — 22y + 2°),
(4.3.1.d)
y=d— 2z — 4y + (53/4)z* — L6xy + by* + 6z(y + (1/2)z)(17y — 8z),

with d > 0. All the systems of this family are of type (I} of Theorem 2.3 with
g=2.

The next result is easy to prove.
Lemma 4.3.1. If d > 0 then system ({.8.1.d) is ¢ CCS(I).
Now we study the infinite critical points of this family of systems.

Lemma 4.3.2.

(e} System U, associated o system (4.5.1.4) has four eritical poinis on
z = 0, (2,0) s an aftractor node, {1/2,0) is a saddle, {—1/2,0} is ¢ saddle-
node of type DEI and (2,0} is a repellor node.

(b} The behauvtour at infinity of systems (4.3.1.4) is shown in Figure 19

Proof: By Lemma 4.1.1 we know that (2,0), {1/2,0), {-1/2,0) and (-2,0)
are the critical points of system U/} on z = 0. From Appendix A of [6] and
Appendix I we obtain that (2, 0) is an attractor node, (1/2,0) is a saddle, (—2,0)
is a repelior node and (—1/2,0) is of type DE. Since system (4.3.1.d) is chordal
(see Lemma 4.3.1), from Poincaré-Hopf Theorem we have that (—1/2,0) has
index zero. so, from Theorem DE {—1/2,0} is a saddle-node and from Lemma
4.1.2 it is of type DE1.- Hence we obtain {(a}.

Statement (b) follows by applying Theorem DE to determine the localiza-
tion of the separatrix of the saddle—node not contained at infinity, and using
statement (a). M
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2

Figure 19.

Proposition 4.3.3.
(e} Sysiem (4{.3.1.d} with d = 1/2 realizes phase portrait 3.
(b) System (4.3.1.d) with d = 21 realizes phase portrait 1.
{c) System (4.3.1.d) for seme d € (1/2,21) realizes phase portrait 2,

Proof: From Figure 19, to realize phase porirait 3 it is enough to find a
value d, such that system (4.3.1.d) verifies that the separatrix not contained at
infinity of the saddle-node p (see Figure 18) goes to the critical point
{~1/2,0). To do that we consider the straight line f(z,y) =y +2/2-1/4 =0
and we try to impose that it is a solution. This is eguivalent to show that grad
flz,y)-E,9)=y+2/2=00n f(z,y) = 0. Since y+ /2 =d — 1/2, system
(4.3.1.d) with d = 1/2 has f{z,y) = 0 as a solution. Then, from Lemmas 4.3.1
and 4.3.2 statement (a) follows.

To realize phase portrait 1 we look ai the vector field of system (4.3.1.d) on
the straight line g{z,y) = y — 2z = 0. Since grad g(z,y)  (%,9) = (5/4)z® —
10z + d on g{z,y) = 0, if d = 21 the straight line is without contact points
and the orbits crosses it from the half-plane y — 2z < 0 to the other one in
forward time. Therefore, from Figure 19 the separatrix of the saddle {(1/2,0)
must come from the node (—2,0). So from Lemmas 4.3.1 and 4.3.2 statement
(b) is proved.

Now we shall realize the phase portrait 2. Any system of the family {4.3.1.d)
is a CCS(I) with the behaviour at infinity shown in Figure 19 (see Lemma
4.3.2). Moreover if d = 1/2 and d = 21 the corresponding systems realize
phase portraits 3 and 1, respectively. So, from the continuity of the sclutions
with respect to parameters there exists an intermediate value of d that realizes
phase portrait 2,

More exactly, we consider the interval [, 8] with 0 < a < 1/2 and b > 21.
Since (2.0) is an attractor node of system (4.3.1.d) for all d € [a, b] (see Lemma
4.3.2) we claim that there exists a neighbourhood U of (2,0) such that any
orbit in I/ goes to the critical point (2, 0). Now we consider the set A of values
d € [a,b] such that for the corresponding system (4.3.1.d) the separairix of the
saddle-node p goes to (2,0). We shall prove that A is an open set.
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From the theorems of continuous dependency of the solutions with respect
to parameters and initial conditions, if dg € M, then there is an interval V =
(ds—¢, dg+¢) such that, for each system (4.3.1.d) with d € V, the corresponding
separatrix of the saddle-node p (out of a neighbourhood - independent on d -
of this critical point p) goes into the neighbourhood U/ in 2 finite time. Hence
M is open. .

Similarly, we have that the set N, of values d € |[g,b] such that for the
corresponding system (4.3.1.d) the separatrix of the saddle-node p goes to
(—1/2,0}, is an open set.

Since 1/2 € N,21 € M, MN N = ¢ and [a, }] is connected, there exists a
d* € (1/2,21] such that d* ¢ M UN. That is, for system {4.3.1.d) with d = d*
the separatrix of the saddle-node p cannot go neither (2,0) nor {—1/2,0). So, it
must go to the critical point (1/2,0) and therefore system (4.3.1.d) with d = d*
realizes phase portrait 2. W

Phase portraits 4, 3 and 6.

From the proofs of Propositions 4.2.1 and 4.2.2 it follows that the phase por-
traits 4, 5 and 6 are such that the behaviour at infinity determines completely
the phase portrait.

Proposition 4.3.4. System

i =6u2 +6u’y®,
(4.32) y=1+2" —6p%c" + 6p°2%y + 6(1 + ) 2%,

with u > 1 is ¢ COS(1) and realizes phase porirait 4.

Proof: By easy computations it follows that system {4.3.2) is a CCS(I).

From Appendices A of [6} and I we obtain that the four critical points at
infinity {see Lemma4.1.1) are two attractor nodes (g, 0) and {—1 /g, 0), a saddle
(1/4,0} and a critical point {—pu,0) of type DE. By using similar arguments to
the proof of Lemma 4.3.2 it follows that {—z,0) is a saddle-node of type DE1.
Therefore, we have that the behaviour at infinity of system (4.3.2} is given by
Figure 17.(2) reversing the orientation of the orbits. Hence the proposition
follows. B

Proposition 4.3.5. Sysiem

i = —(7/4)z — 2y + 24{y — =/2)(y + =/2){y + 2z},
(4.3.3)
g=—1/4—(7/2)z — 4y + 2% + 4oy + 4y° + 48(y — z/2)(y + =/2)(y + 2z},

15 a CCS(I} and renlizes phase portrait &,



CHORDAL CUBIC SYSTEMS 279

Proof: It is clear that system (4.3.3) is a C5 of type (I} with p = 2, To show
that this system has no finite critical points, we write it in the form

&= Alz,y} + Bi(z,9) =0,
y = Blz,y}+ Qs{z,¥) =0,

where P5{z,y) = 24(y — =/2)y + z/2)(y + 2z). Then its finite critical points
are solutions of the system

A(z:y) + P3(I,y) == 0)
B(xz,y) - 24(z,y) =0,

From direct computations B(z,y)—2A{z,y) = H{y+z/2+1/4)}{y+z/2-1/4).
So, if we denote 3y = —z/2 — 1/4, y» = —z/2 + 1/4 and substitute these
expressions in the first equation we obtain that A{z, y1 )+ Py{z, 1) = 922 +1/8
and that A(z,y2) + Ps(z,y2} = ~92% — 1/8. Hence system (4.3.3) is a CCS{I).

From Appendices A of [6] and I we have that the four critical points at
infinity (see Lemma 4.1.1) are an attractor node (2, 0} and three critical points
(1/2,0), (—1/2,0} and (—2,0) of type DE. To study the local behaviour of these
three critical points we apply Theorem DE. By using similar arguments to the
proof of Proposition 3.1.1 we obtain

¢{z) = (4/135)z? + ... for {1/2,0),
g{z) = 24/500 + . .. for (—1/2,0), and
g{z) = 2%2/160 + ... for {—2,0}.

So, by Theorem DE they are saddle-nodes of type DEI and the behaviour at
infinity is given by Figure 18.{1), and we are done. K

Proposition 4.3.6. System

& = —{21/4)x + 24(y — =/2){y + =/2)(y + 22),
(4.3.4)
y=—1/4—{21/2)z + 2% - 4wy + 4y° + 48(y — z/2}y + =/2){y + 22),

i3 ¢ CCS(I} and realizes phase porirait 6.

Proof: As in the proof of Proposition 4.3.5, we obtain that system (4.3.4) is
a CCS(I). The critical points at infinity are an attracior node (2,0), and three
critical points {1/2,0), {—1/2,0} and (—2,0) of type DE. From Theorem DE
we have that

g(z) = —2*/540 + ... for (1/2,03,

g{z) = —(4/225)22 +... for (—1/2,0), and
g{z)=(5/288)2 + ...  for (=2,0).
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Lemma 5.1.1. System Uy assoctated o system (11} has three critical poinis
on z =0, (1,0), (0,0) end {—1,0).

The next two lemmas follow from the Poincaré compactification (see Appen-
dix A of [8] and Proposition 3.1.1)

Lemma 5.1.2,

(a) The critical point (k,0) of system U, associated to system (II} 13 of
type B if P3{1,k) # 0, end of type DE if Py(1,k) = 0, where k € {-1,1}.
Furthermore if the criticel point 1s a DE saddle-node, then it will be of type
DEI {see Appendiz I).

(b) The critical point (0,0} of system Uy associaied io sysiem (II) is, of
type DE ifpr #0; of type NEof py =0, b £ 0, and of type Z if py =13 = 0.
If it is of type DE then it 15 a saddle-node of type DEZ (see Appendiz I).

Lemma 5.1.3. The vecior field on the equator of the Poincaré sphere of
system (11} is shown in Figure 28.

Figure 22,

We shall say that system (II) has index configuration {1, 5, k} if its three pairs
of infinite critical points have indices i, 7 and k.
From Theorems E, DE, NE and Poincaré-Hopf Theorem (see Appendix I)

we have that a CCS(II) has only two possible index configurations, (1,1,-1)
and (1,0,0}.

5.2. Topological phase portraits.

In this subsection we study all the possible topological phase portraits of a
CCS(II). First, we analyse the distinct index configurations.

Configuration (1,1,-1).

From Lemma 5.1.2 and Theorems E, DE and NE, the critical peints at infinity
have two options, either they are two nodes and one saddle {Option 1), or

they are one node, one saddle and the union of a hyperbolic and elliptic sector
(Option 2).
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Proposition 5.2.1.
(&) The phase porirast of a CCS(II) setisfying Option I 13 homeomorphic
(ezcept, perhaps the orientaiion) to phese porirait 10,
(k) The phase porirait of « CCS{II) satisfying Option 2 is homeomorphic
(ezcept, perhaps the orieniation) to one of phase porfraits 11, 12, 1§ end 14.

Proof:

{(2) From Figure 22 and Theorems E and DE, (0,0} must be a saddle of
type NE. Then, from Lemma 3.2.2 our CCS(II) has a behaviour at infinity
given by Figure 23. This behaviour at infinity determines phase portrait 10.

{b} From Lemma 5.1.2 and Theorems E, DE and NE, {0,0) must be the
union of a hyperbolic and elliptic sector. Then, from Proposition 3.2.3 and
by using symmetries and rotations, our CCS(II) has a behavicur at infinity
given by (1) or {2} of Figure 24. Figure 24.(1) determines phase portrait il.
However, Figure 24.(2) determines phase portraits 12, 13 and 14, B

Figure 23.

(1) (2)
Figure 24.
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Configuration (1,0,0).
From Lemma 5.1.2 and Theorems E, DE and NE, the critical points at infinity
have two options, either they are one node and two saddle-nodes {Option 1},

or two saddle-nodes and the union of a hyperbolic and elliptic sector {Option
2).

Proposition 5.2.2.

(o) The phase porirait of a CCS(II} salisfying Option I is homeomorphic
{ezcept, perhaps the orientation) fo one of phase portraits 15, 16, 17, 18, 19,
20, 21, 22, 23 and 24.

{b) The phase portrait of ¢ CCS(II) satisfying Option 2 is homeomorphic
{ezcept, perhaps the orientation) to one of phase portraits 25, 26, 27 and 28.

Proof:

{a) From Figure 22, (0,0) must be a saddle-node, either of type DE or
NE. In the first case, from Lemma 5.1.2 an by using symmetries and rotations,
our CCS(II} has a behaviour at infinity given by Figure 25. In the second case,
from Proposition 3.2.4 and by using symmetries an rotations, our CCS(II) has
a behaviour at infinity like in Figure 28. Then Figures 25.(1), 26.(1), 26.(2) and
26.(4) determine phase portraits 15, 19, 20 and 24, respectively. Figures 25.(2)
and 26.(3) determine phase portraits 16, 17, 18, and 21, 22, 23; respectively.

(b} Since Py(z,y) = ;z® + (pz — 1/2)2%y + pszy® + y° for system (I}, by
Lemma 5.1.2 we have that p; = 0, ps = —1/2, p = 0 and I, £ 0. So, from
Proposition 3.2.3 and by using symmetries and rotations, our CCS{II) has the
behaviour at infinity shown in Figure 27. Figures 27.{1) and 27.(2) yield phase
portraits 25 and 26, respectively; and Figure 27.(3) yields phase portraits 27
and 28. & '

(1) (2)
Figure 25.
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Figure 26.

(2)
Figure 27.

3

(2)
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5.3. Realizations.

In this subsection we shall give chordal cubic systems of type {II) that realize
all the possible topological phase portraits of Subsection 5.2.

Phase portraits 10, 15, 19, 20 and 24.

From the proof of Propositions 5.2.1 and 5.2.2, these phase portraits are such
that the behaviour at infinity determines compietely the phase portrait.

Proposition 5.3.1. Sysiem
i =2y 4y,
{5.3.1) g=1+z%+2z9°%,
s a C'CS{II} which realizes phase porirait 10.

Proof: By easy computations it follows that system {5.3.1}) is a CCS(II}.
From Appendices A of 6] and I, and Lemma 5.1.2 it follows that: (1,0} is an
attractor node, (—1,0) is a repellor node and {0,0} is a critical point of type
NE. By Propesition 3.2.1, (0,0) is a saddle. So the behaviour at infinity of
system (5.3.1) is shown in Figure 23 and we are done.

Proposition 5.3.2. System
i=(z+y),
(5.3.2) y=1+y(z+y)z+3y),
1 & CCS(II} which realizes phase porirait 15.

FProof: Clearly, system {5.3.2) is a CCS5(II). From Lemma 5.1.2 and Appen-
dices A of 6] and I (see also Lemma 5.1.1}, we have that (1,0) is an attractor
node, {0,0) is a saddle-node of type DEZ2, and {—1,0) is a critical point of type
DE. As in the proof of Lemma 4.3.2, (—1,0) is a saddle-node of type DEL.
Then, by Proposition 3.1.1 the behaviour at infinity of system {5.3.2) is like in
Figure 25.(1). 5o the proposition follows. W

Proposition 5.3.3. System

i=(1+z+y)l+y"),
(5.3.3) y={(x+y)2+z+y"),
is ¢ CCS{II) which realizes phase porirait 19.

Proof: By easy computations it foliows that system (5.3.3) is a CCS{II).
From Appendices A of [6] and I and Lemma 5.1.2, (1,0) is an attractor node,
(0,0} and (—1,0) are critical points of type NE and DE, respectively. Then,
since = 0,k =1, ;¢ =90, po = 1/2 and p; = 1, by Theorem DE and
Proposition 3.2.4, the behaviour at infinity of system {5.3.3) is shown in Figure
26.(1) and so the proposition follows. B
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Proposition 5.3.4. System

i=zyt+y°,
(5.3.4) y=-1-z"+zy° +4°,

is @ CCS(II) which realizes phase porirait 20.

Proof: 1t is clear that system {5.3.4) 1s & CCS(II). As in the proof of Pro-
position 5.3.3, (1,0) is an attractor node, (0,0) and (—1,0) are critical points
of type NE and DE, respectively. Since Iy = 0, 1, = -1, py =0, p» = 1/2
and p; = 1, by Theorem DE and Proposition 3.2.4, the behaviour at infinity of
system (5.3.4) is given in Figure 26.(2). Hence, the proposition follows. W

Proposition 5.3.5. System

i={1+z+y)1-2z-2y+¢°),
(5.3.5) y=(+y(l-z-y+v7),

w5 & CUS(H) which reelizes phase portrait £4.

Proof: By direct computations it follows that system (5.3.5) is a CCS(II). As
in the proof of Proposition $.3.3, (1,0) is an attractor node, {0,0) and (—1,0)
are critical points of type NE and DE, respectively. Since §; = =2, I, = -1,
71 =0, p2 = 1/2 and p3 = 1, by Theorem DE and Proposition 3.2.4, the
proposition follows as in the proof of Proposition 5.3.3. R

Phase portraits 16, 17 and 18,

From the proof of Proposition 5.2.2, these phase portraits have the same
behaviour at infinity. We consider the family of €8

& ={-1+e+y)-5/2+(3/2)x + (3/2)y — 22° + zy + ¥°),
(5.3.6.2)
y={z+ )% +ax+ (2 a)y — 22y + 2%},

with @ € [—4,8]. All the systmes of this family are of type {II).
Lemma 5.3.6. If a € [—4,8] then system (5.3.6.a) 12 o« CCS(II).
Proof: We need to analyse the three systems:

—14+z+y=0,9+ax+(2-a)y—2ey+2° =0,
z+y=0, =5/2+(3/2)z + (3/2y — 2z* + ay +3y* =0,
94 ax +(2~aly - 22y + 247 =0,
-5/2+(3/2)2 + (3/2)y — 2+ zy + 2 = O
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In the first one, substituting the first equation into the second one, we have
that it has no real solutions if ¢ € (—4.3,8.3). Similarly, the second system has
no real solutions.

In the last system, after some calculations we cbtain that it has no real
solutions if o € {—6.5,8.5). Hence the lemma follows. W

Now we study the infinite critical points of this family of systems.

Lemma 5.3.7. y
(a) System U, associated to sysiem (5.8.6.a) is such thai, (1,0} is an ai-
tracior node, (0,0) is & saddle—node of type DE2 and (—1,0) 13 o seddle-node
of type DEL.
(b) The behaviour at infinity of systems (5.9.6.a) is shown in Figure 25.(2).

Proof: By Lemma 5.1.1 and Appendices A of {8] and I, {1,0}, (0,0) and
{—1,0) are the critical points of system U, associated to system (5.3.6.a), on
z = 0, all them of type DE. By Theorem DE and Proposttion 3.1.1, {0,0} and
{—1,0) are saddle-nodes and their separatrices are situated as it is indicated
in Figure 25.(2). As in the proof of Lemma 4.3.2, we have that {I1,0} is an
attractor node. So we have proved the lemma. B

Proposition 5.3.8.
(a} System (5.3.6.a) with a = —3 realizes phase portrail 16.
(8) System (5.8.6.0) with a = 7 realizes phase porirait 18
(c) System (5.9.6.a) for some a € (—3,7) realizes phase portreit 17,

Proof: From Figure 25.(2), to realize phase portrait 16 it is enough to prove
that the straight line f{z,y) =y + z + 1 = 0 is a solution of system {5.3.6.2}
for some a. More precisely, we impose that grad f(z,y)-(£,5) =4+ y =0on
flz,¥) =0, Since £ +§ = —(a +3)(1 + 22) on flz,y) = 0, system (5.3.6.a}
with a = —3 has f(z,y) = 0 as a solution. Then, from Lemmas 5.3.6 and 5.3.7
it follows (a).

To realize phase portrait 18 we look at the vector field of system {5.3.6.a) on
the straight line g{z,y) = y — 3/2 == 0. We have that grad g(z,y}-(¢,3) =y =
{3/2 +2)[(3/2)(11 ~a)+{a—3)z] on g(z,y} = 0. Since gy = (3 +2z)* ifa = T,
from Figure 25.(2} and Lemmas 5.3.6 and 5.3.7, {b} is proved.

Statement {c) follows considering similar arguments to those used in the
proof of Proposition 4.3.3.(c}. B -

Phase portraits 21, 22 and 23.

From the proof of Proposition 5.2.2, these phase portraits have the same
behaviour at infinity. We consider the family of CS

&=14+222 +xy® + 4%,
(5.3.7.d) - g=d+z° -3y +zy? + 4,
with d < 1. All the systems of this family are of type (II).
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Lemma 5.3.9. If d < 1 then system (5.9.7.d) is o CCS(II).
Proof: The critical points of system (5.3.7.d) are solution of the system

Az, y) + Py(z,y) = 0,
B(..":,y] +P3(l',y) = 01

or equivalently

Alz,y) + Pa{z,y) =0,
B(z,y) ~ Alz,y) =0,

where P3(z,y) = ay? 4+ ¢*. Since B{z,y) — Alz,y) = (d — 1) — 22 — 342, the
lemma follows. W

Now we study the infinite critical points of this family of systems.

Lemma 5.3.10.

(a) System Uy associated to system (5.5.7.4) is such thet (1,0} is an at-
tractor node, (0,0) is a saddle-node of type NE and (—1,0) is a saddle-node
of type DEI.

(b) The behaviour at infinity of systems (5.3.7.4) is shown in Figure 26.(8).

Proof: By Lemma 5.1.1, (1,0), (0,0) and (—1,0) are the critical points of
system U on 2 = 0. From Appendices A of [6] and I {1,0} is an attractor
node, (0,0) is of type NE and (—1,0) is of type DE. Since p, = 0, p; = 1/2,
ps = 1,1y = 2 and I; = 1, by Theorem DE and Proposition 3.2.4, (0,0) and
{—1,0) are saddle-nodes and their separatrices are situated as it is shown in
Figure 26.(3). &

Propesition 5.3,11.
(a) System (5.5.7.d) with d = —1 realizes phase portrait 21.
(&) System (5.3.7.d) with d = 1/2 realizes phase porirait 23.
(¢) System (5.8.7.d) for some d € (—1,1/2) realizes phase portrast 22.

Proof: From Figure 26.(3) to realize phase portrait 21 it is enough to prove
that the straight line f(z,y) = 2 + y = 0 is a solution of system (5.3.7.d) for
some d. More precisely, we impose that grad f{z,y}-{#,9) =+ 9 =0 on
flz,y) = 0. Sincex+y =1+don f{z,y} = 0; system (5.3.7.d) with d = —1
has f{z,y) = 0 as a solution. Then, fromm Lemmas 5.3.9 and 5.3.10 it follows
(a).

To realize phase portrait 23 we look at the vector field of system {6.3.7.d)
on the straight line g{x,y) = ¥ = 0. Since grad g(z,y) (£,%) = d + 2% on
g{z,y)=0,if d = 1/2 g{z,y) = 0 is a curve without contact points for system
(5.3.7.d). Then, from Figure 26.(3) and Lemmas 5.3.9 and 5.3.10 (b) is proved.
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Statement (c) follows as in the proof of Proposition 4.3.3.(c}). B

Phase portraits 11, 25 and 26.

From the proof of Propositions 5.2.1 and 5.2.2, these phase portraits are such
that the behaviour at infinity determines the phase portrait.

Proposition 5.3.12. Sysiem

&= (=1+9)(-20 - 2* + ay +¢°),
(5.3.8) y=z24+y,
is @ CCS(II) which realizes phase portrait 11.

Proof: Locking at the flow on the straight line y — 1 = 0, on the hyperbola
y? + ry — z? = 20 and on the cubic z? + y® =0, it follows that system {5.3.8)
is chordal.

From Lemma 5.1.2 and Appendices A of [6] and I (see also Lemma 5.1.1) we
have that (1,0) is an attractor node, (0,0) is a critical point of type NE and
(~1,0) is a saddle. Then, since py =0, pp = —1/2, pa = 1 and { =1, from
Proposition 3.2.1, (0,0) is the union of a hyperbolic and elliptic sector. From
Proposition 3.2.3 the behaviour at infinity of system (5.3.8) is shown in Figure
24.(1). So the proposition follows. H

Proposition 5.3.13. System
=2 -2y +¢y°,
(5.3.9) g =142 — 4,
is & CCS(II) which realizes phase portrast 25.

Proof: By easy computations it follows that system (5.3.9} is a CCS(II). As
in the proof of Proposition 5.3.12, (1,0) and (—1,0) are critical points of type
DE and (0,0) is a critical point of type NE. Since p; =0, p2 = —1/2, p3 =0
and I3 = 1, from Theorem DE, Lemma 5.1.2 and Propositions 3.2.1 and 3.2.3,
(1,0) and (~1,0) are saddle-nodes of type DE1 and (0,0) is the union of a
hyperbolic and elliptic sector. Therefore the behaviour at infinity of system
{5.3.9) is shown in Figure 27.{1). Hence the proposition follows. B

Proposition 5.3.14. System
i=z+y-cy+y’,
(5.3.10) g=—-1+4+2" +(3/2)xy ~¥*,
is a CCS(II) which realizes phase portrait 26.

Proof: Studying the flow on the straight line z+y = 0 and on the hyperbolas
y?—zy = —1 and 22 +(3/2)xy—y? = 1, it follows that system {5.3.10) is chordal.
Now, the proposition follows as in the proof of Proposition 5.3.13. B
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Phase portraits 12, 13 and 14.

From the proof of Proposition 5.2.1, these phase portraits have the same
behaviour at infinity. We consider the family of C§

¢ =2b—x+{b—-dly+2?/2 -2y +ay’ +°,
(5.3.11.b)
g=(1+y)1+by+y7),

with b € [-2,2]. All the systems of this family are of type (II}.

Lemma 5.2.15. If b € [-2,2] then system (5.5.11.b) is 4 chordal cubic
system. .

Proof: First we consider b € [-2,2]. Then y = 0 if and only if y = —1.
Moreover, £ = b+ 3 + (3/2)2% on y = —1.

Now, we assume that 6 = —2. Clearlyy =0 ifandonlyify =lory = ~1.
Since t = —9—2%/20ny =1and & = 1 +{3/2)2? on y = —1, the lemma
follows. B

Now we study the infinite critical points of this family of systems.

Lemma 5.3.16.

(e) System Uy associated to system (5.8.11.h) 1s such that (1,0) is an
atiractor nede, {0,0) is the union of a hyperbolic and elliptic sector of type Z
and (—1,0} i3 a saddle.

() The behaviour al infinity of systems (5.8.11.b) is shown n Figure

24.(2).

Proof: By Lemma 5.1.1, (1,0}, {0,0} and (—1,0) are the critical points of
system U; on 2 = 0. From Appendices A of [6] and [ {1,0) is an attractor
node, {0,0) is a critical point of type Z and (1,0} is 2 saddle. To analyse the
behaviour at (0,0} we consider the blow up y = y, z = wy. Therefore, system
U, is equivalent (after omitting a common factor y?) to

g =1- w/2 + 'yY(y,lU),
W= —w(l + w1+ bw + w?),
where Y is a polynomial in y and w. Looking at the vector field of this system

on the w-axis and unmaking the change of variables we obtain the Figure 28.
Hence, the lemma follows. B



262 M. CARBONELL, J. LLIBRE

Remark 5.3.17. Note that system (5.3.11.b) is not a CCS(II} since the
origin of system U/, has linear part identically zero.

Proposition 5.3.18, _
(a) System (5.9.11.5) with b = —2 realizes phase portrail 14.
(b} System (5.8.11.h) with b € (1,2| realizes phase porirait 12.
{c) System (5.8.11.5) for some b € (—2,1) reahizes phase portrast 13.

Proof: 1t is easy to prove that the straight line y + 1 == C is a solution of
the system {5.3.11.b) for any & € [—2,2]. Also the straight liney—1=101is a
solution of system {(5.3.11.b} when & = —2. Looking at the vector field of this
system on the y—axis we have

& ={2+y)(b—2y+¥°),
g=(1+y)1+by+y°).

on z = 0. From Figure 28 and Lemmas 5.3.15 and 5.3.16, {a) and (b) follows.

Statement {c) follows as in the proof of Proposition 4.3.3.{c). ®
w
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Phase portraits 27 and 28.

From the proof of Proposition 5.2.2, these phase portraits have the same
behaviour at infinity. We consider the family of CS

t=14ar +y—z2+2zy +y% — 2%y +¢°,
(5.3.12.a)
y=1+a" +4.

It 1s clear that system (5.3.12.a) is a CCS(Il) for all @ € R. In the next
lemma we study their infinite crifical points.

Lemma 5.3.18.

(a) System U; associaied to systems (5.8.18.a) is such that {1,0) and
{—1,0) are saddle-nodes of type DEI and (0,0) is the union of a hyperbolic
and elliplic sector.

(b} The behaviour at infinity of systems (5.3.1%.¢) is shown in Figure
27.(8).

The proof follows as in the proof of Propositions 5.3.13 and 5.3.14.

Proposition 5.3.20.

(n) System (5.8.12.0) with a = O realizes phase portrait 27.
(b):System (5.3 12.0) with a # 0 realizes phase portrast 28.

Proof: We look at the vector field of system (5.3.12.a) on the hyperbola
f(z,y) = v — 2> + 1 = 0. Since grad f(z,y) - (5,3) = —ae? on f(z,) = 0,
from Figure 27.(3} and Lemma 5.3.19, the proposition follows. M
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6. System {III)

In this section we determine all the possible phase portraits of a CCS(ILI).
Also we realize these phase portraits.

6.1. Critical points.

Now we study the critical points at infinity of system (111} (see Remark 4.1.1).
An easy computation (see Appendix A of [6]) allows to prove the next result.

Lemma 6.1.1. System U, associated to system (I} has twe critical points
on z = 0: {1,0) and (—1,0).

The next lemma follows from Apendices A of [6] and L.

Lemma 6.1.2.
(e} The critical point (1,0} of system U; associated io system (III} is of
type Eif pr + p2 + p3 # 4, and of type DE of py + p2 + ps = o,
(b) The critical point (—1,0) of system U; associated to sysiem (III) is of
type E if —pi + pr — pa # g, and of type DE of —py +p2 — ps = 2.
In both cases, if the DE critical poini i3 a saddle-node, then if is of type DEL.

6.2. Topological phase portraits and realizations.

In this subsection we study all the possible topological phase portraits of a
CCS(1II) and we realize them.

Proposition 6.2.1.

(e} The phase portrait of ¢ CCS(III} is homeomorphic (except, perhaps the
erientalion) to phase porirait 29,

(b) System

T = #33 - !—‘ys 1
(6.2.1) y=1—pz® +pz’y,

with g > 0, @3 & CCS(II)} which realizes phase portrait 29.

Proof: From Lemma 6.1.2 and Theorems E, DE and Poincaré-Hopf Theo-
rem, the critical points at Infinity are (see Lemma 6.1.1) one node and one
saddle-node of type DE1.

By using symmetries, rotations or changes of sign in the variable ¢ (if it is
necessary) we obtain that any CCS(1II} has a behaviour at infinity as in Figure
30. This figure determines phase portrait 29. Hence (a) follows.

By easy computations we have that system (6.2.1) is a CCS(III). From
Appendices A of [8] and I {1,0) is a critical point of type DE and {-1,0}
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is an attractor node. As in the proof of Proposition 4.3.2 it follows that (1,0)
is a saddle-node of type DE1. Then from (a) it follows (b). B

Figure 30.

7. System (IV)

In this section we determine all the possible phase portraits of a CCS(IV).
Also we realize these phase portraits.

7.1. Critical points.

Now we study the critical points at infinity of system (IV) (see Remark 4.1.1).
An easy computation (see Appendix A of [6]) allows to prove the next result.

Lemma 7.1.1.
{a) System Uy associated to system (IV) has only the critical point (0,0)
on z=10.

(b) System Uy associated to system (IV) has only the critical point {0,0)
on z =10,

The next two lemmas follow from Appendices A of [6] and I, see also Propo-
sitions 3.1.1 and 3.1.2.

Lemma 7.1.2,
{a) The critical point (0,0) of system U, associated to system (IV) is of
type DE of py # 0, of type NEif py =0, b #0, and of type Z if pr = I, = 0.
(k) The critical point (0,0) of system U, associated to system (IV) is of
type DE if p3 # 0, of type NEif p3 =0, ny # 0, and of type Z if py = n; = 0.
In both cases, if the critical point is a DE saddle-node, it is of type DE2,

Lemma 7.1.3. The vettor field on the equator of the Poincaré sphere of
system (IV) is shown in Figure 31.
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Figure 31.

7.2, .Topoiogical phase portraits.

. In this subsection we study all the possible topological phase portraits of a
CCS(1V).

Proposition 7.2.1.

{a) The critical points at infinity of a CCS(IV) are o saddle-node and the
union of o hyperbelic and elliptic sector.

- (b) The phase portrait of e CCS(IV) is homeomorphic {ezcept, perhaps the
orientation) 1o one of phase poriratts 36, 81, 32, 83, 84 and 35.

Proof: From Lemma. 7.1.2 and Theorems DE, NE and Poincaré-Hopf Theo-
rem the two criticel points at infinity (see Lemma 7.1.1) have indices 1 and 0.
Again from Theorems DE and NE and Lemma 7.1.3, {a} follows.

Without loss of generality we can suppose that (0,0) of system U is the
union of a hyperbolic and elliptic sector. Therefore from Lemma 7.1.2 and
{a) we consider two cases. Case 1 (resp. Case 2): {0,0) of system U; is a
saddle-node of type DE2 (resp. of type NE).

In the first case, from Propositions 3.1.2 and 3.2.3 and by using symmetries,
rotations and changes of sign if it is necessary, it follows that any CCS{IV} has
a behaviour at infinity as in Figure 32. In the second case, from Propositions
3.2.3, 3.3.1 and 3.3.4 any CCS(IV) has a behaviour at infinity like in Figure 33.

Figures 32.(1), 33.(1) and 33.(2) determine phase portraits 30, 34 and 35,
respectively. Figure 32.(2} determines phase portraits 31, 32 and 33. Hence
{b} follows. W
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(1) (2)
Figure 32.
(1) (2)

7.3. Realizations.

Figure 33.

In this subsection we shall give chordal cubic systems of type (IV} that realize
all the possible topological phase portraits of Subsection 7.2.

Phase portraits 30, 34 and 35.

From the proof of Proposition 7.2.1, these phase portraits are such that the
behaviour at infinity determines the phase portrait.

Proposition 7.3.1. Sysiem
&= =8+ 622y 4+ 247,
(73.) PRI
13 & COS{IV) which realizes phase porirait §0.

Proof: From the flow on the cubics z? + y* = 0 and zy(6x + y) = 9 we can
prove that system (7.3.1) is chordal.
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— L / <\/ *
Figure 34. .
4 Y \
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b=-2 be(-2,2) =2
Figure 35.

8, System (V)

In this section we determine all the possible phase portraits of a CCS{V) and
we realize them.

8.1. Critical points.

Now we study the critical points at infinity of system (V) (see Remark 4.1.1).
An easy computation {see' Appendix A of [6]) allows to prove the next resuit.

Lemma 8.1.1.
{a) System U, associated to system (V) has only one critical point on
z = 0, the origin.
(b) System Uy associaied to system (V) has only one critical poini on 2 =0,
the origin.

The next two lemmas follow from Appendices A of [6] and I.
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Lemma 8.1.2.

(e} The critical point (0,0} of system U, associated to system (V) is of
type E of py # —2, and of type DE if py = —2. Moreover, if the critical point
14 @ DE saddle-node, it is of type DEI

(b) The critical point (0,0} of system U, associated to system (V) is of
type DE +f p3 # 0, of type NE tf p3y =0, n1 £ 0, and of type Z if p3 = nq =90,

Lemma 8.1.3. The vector field on the equator of the Poincaré sphere of
sysiem (V) is shown in Figure 96,

Figure 36.

8.2 Topological phase portraits.
In this subsection we study all the possible topological phase portraits of a

CCS(V).

Proposition 8.2.1.
(a) The critical poinis ot infinity of @ CCS(V) are a seddle-node and o
node.
(b} The phase porirait of e COS(V) is homeomorphic {ezcept, perhaps the
orientation} fo one of phase portraits 29 and 36,

Proof: From Lemma 8.1.2 and Theorems E, DE, NE and Poincaré-Hopf
Theorem, the two critical points at infinity (see Lemma 8.1.1) have indices 1
and 0. Again, from Theorems E, DE, and NE and Propositions 3.1.2 and 3.3.1,
(a) follows; and furthermore we have two cases. Case 1: the origin of system
Uy is a node and the crigin of system U, is a saddle-node of type NE. Case 2:
the origin of system U is a saddle-node of type DE1 and the origin of system
Uy is a nede.

In the first case, to study the saddle-node of type NE, we must analyse two
options (see Proposition 3.3.1).

Option 1: p; # 0. This option is studied in Proposition 3.3.4, and the
behaviour at infinity is shown in Figure 37.
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Option 2: p; = 0 plus other conditions. From Lemma 8.1.3, only Figures
11.(3) and 11.(4} can occur. Figure 11.(3) is such that the behaviour of the
saddle-node is topologically equivalent to a saddlemnode of type DE1. Then
by a rotation we are in Case 2. Figure 11.(4} gives the same situation that in
Option 1. '

In the second case we have that the behaviour at infinity is shown in Figure
38.

Figures 37 and 38 determine phase portraits 36 and 29, respectively. Hence,
{b} follows. W

Figure 37. Figure 38.

8.3. Realizations.

In this subsection we shall give a CCS(V) which realizes phase portrait 36,
because phase portrait 29 is realized in Proposition §.2.1.

Phase portrait 36.

From the proof of Proposition 8.2.1, the behaviour at infinity determines the
phase portrait.

Proposition 8.3.1. System
I = 1+y2+4x3+22y,
(8.3.1) y=2z+zy°,
s ¢ CCS(V) which realizes phase portrait 36.
Proof: Clearly system (8.3.1) is a CCS(V). For this system we have p; = 2,
p2 = 1, pa = 0, np = 1. So, from Lemma 8.1.2, Theorem E and Proposition

3.3.4 the behaviour at infinity of system (8.3.1) is shown in Figure 37 and we
are done. B

g, System {VI)

In this section we determine all the possible phase portraits of a CCS(VI).
Also we reahize these phase portraits.
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8.1. Critical points and topological phase portraits.

Now we study the critical points at infinity of system (VI) (see Remark 4.1.1}.
From Appendices A of [6] and | it follows the next result.

Lemma 8.1.1.
() System U, associaied to system (VI) has only one critical point on
z =B, the origin.
(&) This critical point 1s of type DE if py # 0, of type NEifpy =0, I, £ 0,
and of type Z if py =1 = 0.

Now we deduce all the possible topological phase portraits of a CCS(VI).

Proposition 9.1.2.
{a) The critical point at infinity of a CCS{VI) is the union of o hyperbolic
and elliptic sector.
{b) The phase portrait of a CCS{VI) i3 homeomorphic (ezcept, perhaps the
orientation) to one of phase porirvaits 37 and 8.

Proof: From Lemma 9.1.1 and Theorems DE, NE and Poincaré-Hopf Theo-
rern the critical point at infinity has index 1 and it is of type DE or NE. Hence,
from Propositions 3.1.1 and 3.2.1, {a) follows.

From Proposition 3.2.3 and by using rotations, any CCS(VI) has a behaviour
at infinity as in Figure 39. Figures 39.(1) and 39.(2) determine phase portraits
37, and 38, respectively. &

(1) (2)
Figure 39.

$.2. Realizations.

In this subsection we shall give CCS(V1) which realize phase portraits 37 and
38.

Phase portiraits 37 and 38.

From the proof of Proposition 9.1.2, these phase portraits are such that the
behaviour at infinity determines the phase portrait,
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Proposition 9.2.1. Systems

i =6zly +¢°,
(9.2.1) y=1+42%,
and
i =132y +¢°,
(9.2.2) g=1+z%+ Tay?,

are COS{VI) whick reclize phase portraits $7 and 38, respectively.

The proof follows easily from Proposition 3.2.3 and Figure 39.

10. System (VII)

In this section we determine all the possible phase portraits of a CCS(VII).

10.1. Critical points and topological phase portraits.
From Appendices A of [6] and I it follows the next result.

Lemma 10.1.1.
(e} System U, associated io system (VII}) has only one critical poini on
z =(, the origin.
- (b) This critical point is of type DE if ps # 0, of type NE 1if p1 = 0, n;y #90,
and of lype Z tf ps = ny = 0.

The following proposition gives us the possible topological phase portraits of
a CCS{VII).

Proposition 10.1.2.
() The critical point ot infinity of a CCS{VII) 13 the union of a hyperbolic
and elliplic sector.
(6) The phase porirait of o CCS(VII} is homeomorphic (ezcept, perhaps
the orienialion) to one of phase portraits §7 and $8.

Proof: From Propositions 3.1.2 and 3.3.1, and by using similar arguments to
the proof of Proposition 9.1.2, () follows.

From the proof of Proposition 3.3.1 we have two options for the critical point
(0, 0) of system U, associated to system (VII).

Option 1: py < 0. This option is studied in Proposition 3.3.3 and the
behaviour at infinity is shown in Figure 35.(2).

Option 2: p» = p; = 0. To analyse the local behaviour at (G,0) we consider

the changes of variables z =z, z = zw;; 2 = 2, w; = zw; ¢ = 2, w = zu and
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z = z, u = zv. Therefore, system Uz is equivalent {after omitting a common
factor z°) to

=z +nyzv+ 2 X(z,v),

¥ = —3v — dnv? + 2o V(z,v),

.
H

where X and V are polynomials in = and v of degree at least one. This system
has exactly two critical points on the v—axis, they are a saddle at {0,0) and a
repellor node at (0, —3/(4n,)). So, from Figure 40 (where we suppose n; > 0},
the behaviour at infinity is shown in Figure 39.(1). Then from the proof of
Propositien 8.1.2, the proposition follows, B

Remember that phase portraits 37 and 38 are realized in Proposition 9.2.1.

f L A " 00 . f—-ﬁ-— . X
™\

Figure 40.

11, Systems (VIII), (IX) and (X}

By using Appendix A of [6] and Remark 4.1.1, systems {VIII) and {IX) has
no infinite critical points. Then, from Poincaré-Hopf Theorem, these systems
cannot be a CCS. Furthermore, system (X) cannot be a CCS because all the
points on the equator of the Poincaré sphere are critical points. Hence, the
Theorem of Section 1 it is proved.

Appendix I

This appendix contains the theorems which we use in the study concerning
the local behavicur near a critical point of type E, DE or NE. Also it contains
other results.

Theorem E. (see f2]). Let (0,0) be an isolated critical point of the vector
field X{x,y) = (ax + by + F(z,y), cx + dy + G(z,y)), where F and G are
analytic in o neighbourhood of the origin and have ezpansions that begin with
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second degree terms in x and y. We say that (0,0) is a nondegenerate crifical
point if ad — bc # 0. Let uy and pg be the ergenvalues of DX(0,0). Then the
following hold.

(&) If uy, po are real and pypy < 0, then (0,0) is ¢ saddle (Figure B.1.(1})
whose separatrices tend to {0,0) in the directions given by the eigenveciors
assoctated with pu; and uo.

(5) If pa, po ave real and pypy > 0, then (0,0) is o node (Figure B.1.(%)).
If 1 > U (resp. < ) then it is @ source (resp. sink).

(e) Ifuy = a4+ Bi and gy = a — Bi with o, 8 £ 0, then {0,0) s a focus
(Figure B.1.(8)). If o > 0 (resp. < 0) then it 13 repellor (resp. etiractor).

(d) If s = fi and pp = — i, then (0,0) is a linear center, topologically a
Jocus or a center {Figure B.1.{{}}.

The correponding indices are —1,+1,+1, +1,

(1 (2)

@

Figure B.1. The local behaviour near a critical point of type E
(we can reverse the orientation of the orbits).



CHORDAL CUBIC SYSTEMS 307

v \?//
/

(1) (2)

Figure B.2. The saddle-nodes of type DE
(we can reverse the orientation of the orbits).

Theorem DE. (see Theorem 65 of [2]). Let (0,0) be an isolated critical
point of the system

& =X(z,y},
y'r=y+1"($,y),

where X and Y are analytic in the neighbourhood of the origin and have ez-
pansions thal begin with second degree terms in z and y. Let y = f(z)} be the
sofution of the equation y + Y (z,y) = 0 in o newghbourhood of {0,0), and as-
sumne that the series expansion of the function g{z) = X{z, f(z)} has the form
glz) = amz™ + ..., where m 2> 2, gy £ 0.

(o) If m i3 odd and @y > 0, then {0,0) is ¢ topological node.

(b) If m is odd and am < O, then (0,0) is & topological saddle, two of
whose separatrices tend fo (0,0} in the directions 0 and =, the other two in the
directions 7 /2 and 37 /2.

{c) If m is even then (0,0) is o saddle-node, i.e. a critical point whose
neighbourhood is the union of one parabolic end two hyperbolic sectors, two of
whose separeirices tend o (0,0) in the directions /2 and 37/2 and the other
in the direction 0 or w according to a,, < 0 (Figure B.£.(1)}) or amm > 0 (Figure
B.2.(2))

The corresponding indices are +1, —1,0; 30 they may serve to distinguish the
three types.

From Theorems E and DE, the stable and unstable separatrices of a saddle
p of type E or DE form an angle into the point p. So, the infinity separates
the hyperbolic sectors like in Figure B.3. From the Theorem DE the infinity
separates a saddle-node p like in Figure B.4. We note that the linear part,
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DX(p), will be either

[%00 ;] , or [g ;0] according te p is of type DE1

)
7

or DE2, respectively.

4

Figure B.3. A saddle of type E or DE on the equator of §2
(we can reverse the orientation of the orbits}.

|

N N

DEA : DE %

<

Figure B.4. The saddle-nodes of type DE1 or DE2 of p(X) on the equator of §°
{we can reverse the orientation of the orbits). :

Theorem NE. (sece f1]). Let (0,0} be an 1solated critical point of the system

i=y+X(:c,y),
i’:Y(:‘E!y))

where X and Y are analytic in o neighbourhood of the origin and heve esx-
pansions that begin with second degree terms in z and y. Let y = F(z) =
agx’+azzd+ ... be o solution of the equation y+ X(z,y) = 0 in the neighbour-
hood of (0,0), and assume that we have the series expansions for the funciions

f(z) = Y{z, F(z)) = az*(1 + ...) end ®(z) = (86X [0z + Y /8y)(x, F(z)) =
bzP{1+...) where a £0, &« > 2 and § 2 1.
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(o} If o 13 even, and

{e.1) o > 28 + 1, then the origin is a saddle-nede {index 0), see Figure
B.5.(1);

(8.2} etther & < 28 + 1 or ®(z) = 0, then the origin is & criticel poind
whose neighbourhood is the union of two hyperbolic seciors (indez 0), see Figure
B.5.(2)

(b) If o 13 0dd and a > 0, then the origin is a seddle (indez —1), see Figure
B.5.03). .

fe) If o iz odd, ¢ < 0, and

(c.1) either & > 28+ 1 and B even; or o = 28 +1, B even and b* +4a(f +
1) > 0, then the origin is ¢ node {indez +1), see Figure B.5.(4). The node is
stable if b < 0, or unstable if b > 0;

(c.2) either o > 28+1 and B odd; or o = 26+1, B odd and b* +4a{f+1) >
0, then the origin is the union of o hyperbolic and elliptic sector (indez +1),
see Figure B.5.(5);

(c.8) ervther o = 28+1 and B2 +4a(f+1) < 0, or o < 26+1 {or ¥(z) = 0),
then the origin iz etther a focus, or & center, respectively (index+1).

Theorem. (Potncaré-Hopf Theorem, see f12]). Let X be a wector field de-
fined on o compact connecied surface. If X has finttely many eriical poinis

then the sum of the indices of all the critical points 15 independent of the vector
field and equal to the Euler-Poincard characteristic of the surface.

N L N
—%\
Y TR A

(1) (2) (3}
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ya N
7 N
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Figure B.5. The local behaviour near a singularity of type NE
{we can reverse the orientation of the orbits).
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