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QUALITATIVE PROPERTIES OF THE
FREE-BOUNDARY OF THE REYNOLDS
EQUATION IN LUBRICATION

S8.J. ALVAREZ

Abstract

The hidrodynamic lubrication of a cylindrical bearing is governed by the
Reynolds equation that must be satisfied by the preassure of lubricating
oill. When cavilation occurs we are carried to an elliptic free-boundary
problem where the free-boundary separates the lubricated region from the
cavited region.

Some qualitative properties are obtained about the shape of the
free-boundary as well as the localization of the cavited region.

1. Introduction. Existence and uniqueness

Let § be the rectangle (0,27) x (0,1) C R?; let Ty = (0,27) x {0}, 'y =
(0,2I1) x {1} and let us introduce the following sets of functions:

V={¢e H'(2),¢|r,ur,= 0, ¢ is 2nz — periodic}
Ve={¢€ H'(Q),é[r,=0,¢ Ir,= pa, @ is 2wz — periodic}

where H'() is the Sobolev space of functions such that they and their first
derivatives are square summable.
We consider the following:
Problem (P).
Find a pair of functions (p, ) such that
(1.1} (p,v) € Vo x L)
(12)p>0and H{p) <y <1 ae inf
(1.3) foi®vpve= [ hv2  wveevV,
where h = h(z) = 14a cos z, with 0 < @ < 1, and H is the Heaviside function.
This problem is related to the lubrication with cavitation arising in bearings.
The first unknow is the pressure distribution —p— in a thin filin of lubricant
contained in the narrow gap between two circular cylinders of parallel axes (the
shaft and the bearing); another unknow is the percentage —v— of oil contained
in an elementary volume.
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shaft and the bearing); another unknow is the percentage —— of oil contained
in an elementary volume.

Introducing cylindrical coordinates, the gap k depends only on the angular
coordinate, being o the eccentricity ratio of the bearing.

The equation (1.3} derives from the Reynolds equation, div (R*vp) = &',
which must be satisfied for p on the region [p > 0], and from conservation laws
of flow across the free boundary separing the regions [p > 0] and [p = 0] in £2.
In the lubricated region {completely occuped for oil) v is equal to one, while
over the cavited region {[p = 0]) v must satisfy 0 < v < 1.

The main goal of this paper is to give some qualitative propertles of the
free-boundary,

r=p>0np=0n%

The existence of solutions for Problem {P) was proved by Bayada and Cham-
bat in [B-Ch]; they prove also uniqueness of solutions under the assumption
that the free-boundary is a Lipschitz—continuous function of 2. A comparison
result and uniqueness was proved by Carrillo and the author iIn {A-C], without
any of the previous assumption related to the free~boundary.

For a more general treatment on physical aspects and the formulation of
Problem (P), see [A], [B-Ch], [D-T, [F].
About existence and uniqueness, we recall the following results:

Theorem 1.1. {Existence and Regularity)

There ezist at least one solution for Problem (P); moreover, if (p,v) satisfies

(1.1), (1.2} and (1.5}, then
p e COHNCOT(QU{0} x {0, 1)) U ({27} x {0,1})).

Proof: See [B-Ch)] and [A-C], as well as the proof of existence for the Dam
Problem in [B-K-S]. ®

Theorem 1.2. {Comparison) {([A-C]))

Let{p1,m1) and {p2,72) be two pairs in H(1) x L®(Q), with p; and p; being
211 z-periodic funcitons and saiisfying {1.2) and (1.8), as well as the condition,

(1.4} pi Ir;= qbf for i =1,2 and j =0,1
where for ¢/ we assume _ _

(1.5) ¢} € C(F;) and 4] < ¢

Then p; < pp in 2.

Like a corollary of this thecrem, we have:

Theorem 1.3. (Unigueness) ([A-C])
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There exist an unigue solution (p, ) for Problem (P).

Remark. Thecrem 1.2 gives a global comparison result in  for p; and py,
when we can compare their values on I'g and I'y: this remain true to compare
solutions of Problem (P) with solutions of a swiftly modified problem, as we will
precise later in Section 3.

2. Uniforme bounds for sclutions in the z—variable

In this section we shall give an upper bound and-a lower bound, both inde-
pendents of z, for solutions of Problem (P).

Let M = maximum %;-%%, and, for 0 <y < 1, let us define,

z£[0,27)
{2.1) vy} = —%y" + {pa — %)y
+
(2.2) w(y) = %{yz + {pa — %}y

Such functions satisfy:

w0} =5(0)=0

2(1) :E(l) = Pa

7= M

L (0ify<l—2p /M
¢ :{ Mify>1-2p,/M

We have:

Theorem 2.1.
If (p,v) us the solution of Problem (P), then

p{z,y) < By} in S1.

Proof: Taking ¢ = (p —v)*, and as y = 1 on the support of £, we have

[ werve= [ e - [ e
13 1] o
Moreover,

fhsvﬁv'g:f RPT'E, = —/ B¢ = f RIME > f KE,
Q 1] Q 4] 2
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and, substracting from the above equality:

fﬂhs 1 w{p-5)"|*= /Qh“v(p—ﬁ)vg <0,

So, we obiain
{p—9)* = constant in Q

and, hence
(p-0)t =0 ie. p<T.

In order to complet the boundedness of p, we have:

Theorem 2.2,
If (p, v} 1s the solution of Problem (P}, then

Pz, y) > vly) in Q.

Proof: Let £ = (v — p)*; we have:

/h3v2v€=/h3g!§y=_/h.ayi'!f:_fh.?MgS__]hf&,
1] Q 1t 44 Q

since ¥"(y) = M if v+ (, and hence on the support of €.
Now, since £; = [(z — p)*]): = 0, on the region [p = 0], we have:

[ wopve= [ 6= [neor [ ner-ne—- [ we

]"lalv(g—p)“L |?= / hév (v - p)vE < 0.
0 1]

Similartly to Theorem 2.1, we obtain the conclusion. W

and so:

Corollary 2.3.

If (p,7v) is the solution of Preblem (P), with p, > M /2, then p> 0 in Q) and
30 there is not free-boundary.

Proof: f po > M{2 thenv(y) >0 and p>0forally € (0,1). W
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Remark.

The figures one and two illustrate functions v and ¥ in the two differents
cases: p, < M/2 and p, > M/2.

. "’/-r_ : xh-‘h}‘z
T 7
e - /
// - /// £ I
- ‘ : 4 s
~ //’/ :/f
; / ' ; /_,
- ’/
g L
Fig. 1 (p. < M/2) Fig. 2 (pa > M/2)

Figure 1 illustrate the region (0, 27y x (0, 1—2p, /M) where the free-boundary
{when it exist} lies. The function ¥ attain a maximum in y = % +pa/M €{0,1};
we shall prove later that, fixed r,p(z, ) 1s 2 non—decreasing monotone function
up to this point.

Figure 2 corresponds to the case where there is not free-boundary; when
Pa >> M /2 the solution is very close to the function w(y) = p,y, which satis-
fies that div (h*9w) = 0, corresponding to the limit case when the eccentricity
ratic o is equal to zero, and evidencing that this eccentricity is negligible when
the pression on the supply line is very great.

3. Behaviour of the free-boundary in the y—variable

We consider in this section the case p, < M/2, denoting by y,, the value
Ym = 5 +pa/M, where the function 7, defined by (2.1), attain a maximum. Let
yo = 2p. /M, and take y; any value in {y,,,1). Finally, let & = {0, 27 )x{ys,y1),
denoting by I'} and I'} the lower and upper boundarys of {; respectively. (see
Fig. 3).
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The equation z = y; ~ %(y — ) with 8 = %‘_;!ii, transform the interval
[0, 7:] into [y1,1]. Making use of this transformation we can definc a new
function on {1, from the solution p of Problem {P), by means of

for (e,y) € Fla,y) = §7p(z, 2).
‘We have:

Theorem 3.1.

plz,y) £ Bz, y) for any (z,y) € Qy.

Before 1o give the proof of Theorem 3.1 we shall first prove some previous
results about p{z,y). We remark that the technics to prove thes theorem are the
same that the ones used lo prove uniqueness. They are based on the construction
of a class of test functions defined in o mullidimensional domain, Sucht test
Junctions appear in {A-C}, [C-1] and [C-2/.

Proposition 3.2.

If (p,v) ts the soluiton of Problemn (P) and we define ¥(z,y) = 4(xz, 2} for
(z,y) € Qy, then the pair {P,7) satisfies,

1= 2
(3.1) RPvpvE + f f Rp.b. = | R4,
2y }3 £y b3

for any £ € H'(S), 27 z-periodic and { [riyr:=10
(3.2) Hp<y<il a.e. in

Moreover
(3.3) P irgur: £ B lrzor:

- 1 0 . —
Proof: Let &(z,z) = E(z,y), J = 0 ~1/8 the matrix for derivatives of

{z, 2} with rapport to (z,y), and Qa = (0, 2%) x (y1,1) with lower and upper
boundarys ['Z and I'? respectively (T2 =T'1, and ['] =Ty}, We get:

RPvpveE= | RV, B ple,2)V. 4¢(x,y)dz dy =

Ql _91

- W(V.,.B8%p(z, 2)T) - (V1€ (z, 2)])Bdz dz =

=8 [ ek + pibebdz o =
g .

=4 R3, .p . Ede dz + B(B7 — 1)/ R¥p.f.dz dz =
s Qy

=8| hvldrde+ B2 ~1) | R*p.é.dxde
Qg ’ Q‘Z
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since £ € HY(§,), is 2m z—periodic and £ lrzur2= 0.

Now, corning back to the y—vanable in £}y, we conclude

3gs 1-p° 3= -
R*VpvE + Ropel: = hyé,
(e 0y 151

iz
and H(p) = H(Fp(2,2)) < Hz,2) = 3(2,4) <1 2. in ;. W

Moreover p < pon '}, because y = z and 82 > 1, and p < p, < #°p, = pon
r3.

We shall distinguish the z—variable for p and 3, using the variables {z,,y) €
§ for (p,7) and (z2,y) € Y for (p,7); we set @ =(0,27) x (0,27} x (yo,v1},
and let us consider {(r) and p(r), real functions such that:

£r) e C(yo, 1), €20
plr) € CP(R), p 20, supp p=[—1,1]
£ 1s a pair function.

For small £ > 0 we define p.(r) = (1/e)p(r/¢), and finally for (z;,z2,y) € §
let Fxz,,x2,y) be defined by
Ly — &2

Fay,22,y) = E(y)pe( 5 2

This function, is identically zero when | z; — z9 |2 2¢ and, since p. 15
a pair functicn, it can be redefined when (z;,22) € Y U Ty = {{z1,23} €
[0,2n] % [0,27] ;| &1 — ®2 |2 27 — 2¢}, by making

1 — X2 . |:L'1—I?,I—2‘,‘T
F=OE LS
So we obtain a 2[I-pericdic function in the independents variables z; and
z; (see Fig. 4). Moreover F{., 24,), Fz1,-,'} € H'(§)) and F(z;, 22,90} =
F(zlsz2vyl) =0

2% 2¢’ 2r — 2¢'
i T
-
2 -2 + T + 27 — 2¢'
2
2"+ T 1 2
] :i ~
0 2¢! I o — 2 o2
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Now, let us consider a new parameter § > 0, and define

(p(z1,y) — plza, y))t
5

7?(3-'1@2:9) = Min )F

Using this function and denoting by ¥; and ¥, the gradient operator for
(z1,y} and (z2,y) respectively, we have:

Proposition 3.3.

fq{(hs(zl WPz, = k¥ (@2)Pe, M2y + 1122) + (B (21)py — R (22)By)my }+

(3.4)

#1e) = [ (6(or) = he2)3)ne, +7:2)
Proof: For each x4 € (0,27), we have

fn R (21}, pV 1y dzi dy = f B(z1 )., daydy =
1 113

; (h{z1) — A{22)7 )0z, d21 dy

since y; = 1 on supp (-, z2,-), and fQ; h{z2 Y75z, = 0, from the periodicity of
7.
By integrating the above equality in the xo—variable, we get:

] K3 (21 )v1p91y = ] (hz1) — h(22)7)7e,
Q Q

and, analogously for g

2

/h (22)V2pVon + ,325 _/th(zZ)?_’unIa:

= [ (iaa)y - oD,
Q
Substracting the above equalities, we get:

2 _
](hs(zi)vlpvl?? — h¥(22)V25Van) + %/ hs(mg)ﬁ“nu =
_ Q Q
(3.5) |
- /Q (h21) — 52700, + 122)
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Moreover

f ha@?)ﬁx;ﬂn =/ hs(xl)Pn"?xz =0
Q Q

and introducing this terms in (3.5), we conclude {3.4). B
Now, we go to consider the new variables (see [A-C], [C-1]):

T3+ Z2 k1 — 22

t =
2 2

getting for the function

(p(i +z,y) = plt — =, y))+ ,{(Q)Pe(z)

i+ 2, —z,y)= Min 5

and, for derivatives:

beo = 5(604 62,

1
¢:, = §(¢= — ¢z for any ¢ = ¢{z1,22,y)
bz + bz, = b2

what, in the particular case of p = p(z,y) and p = p{z;,y), being p{t+2,y) =
pz(f + z, y) and ﬁt(t — 2 y) = _ﬁz(t -, y)s giVQS:

Pr {21, ¥) = pe(t + 2,9)
ﬁﬂz(xhy) = ?t(t -z, y)'

In the new variables, the equation {3.4) becomes:

; (R3¢ + 2)Veyp(t + 2,4) — B¥(t — 2)Vey{t — 2,5))Viyn+
(3.6)

g ;@; ! / Rt — Z)Pup = / (Rt + z} — h(t — 2)%)nq,

L¥] iz

_+_

where we omite the constant due to the coordinates transformation, and denote
by :, the new domain.

If we consider the sets,

AL =[(ps —p2)* > 8épe] B =[0< py - p2 < 66pe]
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{in @ or @) and denote:
h= [ (R0 Vbt 2,) - R - 290 - 20T Ewpe) =

= [ (34 2+ 2~ B = 2yl - 2 Wn(a)

Ig = ] (hs(t + Z)V,yp(t + Z, y) - ha(t —_ Z)V¢yﬁ(t -z, y))VtyI—)—;-—
B?

Pt (p—P)
I = 7 f}ﬁ(z 2P

L= [ (b - e o 52,

we can write {3.6) in the form:
(37) Lh+L+ L=
For I we have:
Lemma 3.4. ([A]}
hm [ lim L,] =0
£=0 | 50

Let us prove now, the following:

Lemma 3.5.

o m[mds

Proof:
L+ I, = R® P B3+ — P2y
2+ 13 ( (t+z)|vt!, I* +R%( 3)IV=y5|)

—f (h3(t + Z)ngpngé + h3(t — z)v,yﬁvw )+

(t - (8 ] B~ o)y

denoted by J; — J; + J3 — Jy; with the following balance:

J1 = Js 2 0 because 0 < £51 < 1.

| J3 |<| J2 | and Ja can be decomposed in two integrals having both of them
limit equal fo zero, when we pass to the limit first as § — 0 and later as ¢ — 0.

(see {A], [A-C)).
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From Lemma 3.4 and (3.7} we conclude {3.8). B
Proof of Theorem 3.1: By Lebesgue Theorem,

tim 1y = fQ s Z)a%p L. Z)a%ﬁ}x(lp > B (w)pelz) =
= /Q Rt + z)g(p = Bix{lp > )& (y)pe(2)+

(R¥(t + 2) — B3t - Z))a px({p > )¢’ (Woel2)
Ql-{

denoted by I} and I? respectily.
I? satisfies

u?|<c/ | B3t +2)— h3<t~z>u—p|ps(z)<

< Clig gt [ 1945 =R =2) Pl P i< o

245

because h* is Lipschitz continuous and the measure of supp p.(z) is 4re, and

then

(3]

From {3.8) we have:

0> lim [Iimfl] = lim 4+ lim It=

s—0

= lim i ha(t+z)—[(p D)€ (y)pe(z) =

e—0
tz

= - lim i Rt + 2)(p — B) T E" (y)p(2)

f | Rt +2) = B3(t - 2) Pl pel2) P< cte fQ 2 P Spelz/e) S ctee.

but, by a classical argument {see [A]} we can elimine ¢ and the z-variable,

concluding:

(39) fﬂ R ) (p(t ) — 5, 9)) " (y)dt dy > 0

Now, setting
210

T{y) = A R {t)(p — )" dt
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(3.9) is equivalent to:

a7
(50) =0
¥ D (yo,m ) xDiyo.s)

and we have that the distribution T satisfies:

T
2o >0
a 20

TO)=T(1)=0 due to (3.3} .

Hence, by the maximum principle, we conclude

211
[ #ee -t <o

and then
p<p iy

That is,
_ 1
Plz.v) < Bp(=.9) = Bple v — 5y~ )
and the proof ends. W
When 31 < ym (the point of 2 maximum for 3(y)), we can obtain the same

result with § = 1. We introduce twe cases:

If1/2 <y1 < Ym, we make yo = 2y — 1, = (0,27} X (¥, 1),
2 =(0,27) X (3n, 1} and z = 2y —y.

Ify <1/2, wemakeyo =0, Q3 =(0,27)x (0,31),

2, = {0,2m) x (y1,2y1) and z = 2y; — y { see Fig. 5 and 6 ).

I‘\‘Z
{2
L 1/2

Fig. 5
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Qg 1/2 T
Q; I
Fig. 6

For both cases § = 1,p [r1< p |p2 and we can conclude as in Theorem 3.1:

Corollary 3.6.

If (p,7y) 13 the solution of Problem (P), then p(xz,') is @ monotone incresing
Function on [0, ym]-

Proof: Let y',y* € [0,ym) and such that y' < ¥?; taking y; = ""1—';5'—2 we

have y? = 2y, ~ ¢!, and applying Theorem 3.1, we conclude

b

p(z,y") < plz,y%).

Corollary 3.7.
Let {z, 2) be such that p(z,z) = 0; then plz,y) = 0 for any y € [0, 2].

Proof. By the above Corollary we must only to prove that p(z,¥) = 0 in
l3m, 2] when z > ym.

For y € [ym,z), we take y; € {y,2) such that y —yy = —%‘_—_‘-ﬁ’l(z — 1) (see
Fig. 7), which is equivalent to 2 = 3y — J%(y — 1) with 8 = El"_if- > 1.
Applying Theorem 3.1, we conclude:

plz,y) < B%p{z,2) = 0 for any ¥ € [ym,z), and hence p(z,y) = 0 for any
yeld,z]. W

/24 pa/M = ym |
193 1/2
2P/ M = g e

Fig. 7
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Remark. Corollary 3.7 states that the free-boundary does not have hori-
zontal oscillations.

4. Behaviour of v in the z—variable

We go to study some properties of 4 with geometrical consequences on the
free—boundary, when z € {0, n).

Theorem 4.1.

Let {p,v} be the solution of Problem (P), and let x be the characierisiic
function of the set [p > 0]; then,

4.1y (hy)e —h'x >0 in DS

Proof: Let ¢ € D(Q) with ¢ 2 0, and for ¢ > 0 let us consider the test
function £ = min (e¢, p); we have:

/ hSva§ = A3 | 7p |2 —}—5/ hSVquﬁ = / he, = __f B'E
@ fp<ed) (p>ed] Q @

since 4 = 1 on the support of £. Then

|, woposs [waminpr)=-1/c [ #|vpl<o
inzed) e [p<ed)

letting € — 0 and using the Lebesgue Theorem, we obtain:

/havpv¢+fh’x¢${}
Q @

fh3VpV¢=fh7¢r
Q Q

j by + f My <0 VéeDHR),
44 o

but

concluding that

which equivales to

{B'x — (M7}, D)preoyxpiey €0 Vo e DHQ).

and, hence
h'x = (hy): €0 in D'(Q).
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Corollary 4.2.

(4.2} ¥, =0 i D'{(0,7) x (0, 1)},
{4.3) {hv}), 20 in D'((7,27) x (G, 1)}

Proof: As B > 0 in (x,2x) and from {4.1) we deduce that
(P2 A 20 mD'({r,2x) x (0,1))
In (0,7}

Ry —(hv)e =h'x —h'y —hy. = k' (x —7) — h7: <0
B <D
X—7<0

so that,

raggfllzo in D'((0,7) x (0,1))

Corollary 4.3.

249

If plzg,y6) > 0 for some zo < w, then there exists € > 0 such thet p > 0 on

the set C. = (zo — &,7) X (y0 — &, %0 + €).

Proof: From the continuity of p, there exist Q. = (x0 — €,20 + &) X {yo —
€,y + ) such that p> 0in (J, (sce Fig. 8) and vy =1 a.e. in .. Like v, > 0

weget v =1 ae in O,

Qe Ce

Fig. 8

Now, for ¢ € C§°(C,) we have

/hSVde):] b
c. C.

div hivp=h' <0 m DYC,).

and, hence
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Using the strong minimum principle, p can not attain the minimum value
zero m (', and hence
p>0 in C,.
Remark. As a consequence of this Corollary the free—boundary can not have
vertical oscillations in the interval {0, 7}
Taking account the Corollary 3.7, we conclude that the free—boundary is a
monotone decreasing graph —y = I'(z)-in the interval (0, 7) (see Fig. 9).

x
Fig. 9

Theorem 4.4.

If (p,v) is the soluiion of Problem (P), then p satisfies:
2w

2w
f R (e)p(z,y)de = poy | R{z)dz
o ¢

Proof: For ¢(y) € C§5°(0,1) we have

fh3VpV¢=/h3py¢’ =1
2 Q

Integrating by parts and introducing the function

Fw) - [ " W()p(e,y)de

we have 2
(574 =
Y P(6,1)xD{6,1)
and hence 2P
d—y2 =0 in D’(O, 1}
but, F(0) = 0 and F(1) = p, J;" k3, so we conclude

2w
Fly)y=pay | H3(z)dz.
1]

Corollary 4.5.

Given y € (0,1} there exist & region of posilive messure in {0, 2n) where
p>0
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