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A WHITEHEAD PRODUCT FOR TRACK
GROUPS II

K .A . HARDIE AND A .V . JANSEN

Two direct relations are exhibited between the Whitehead product for
track groups studied in [4] and the generalized Whitehead product in the
sense ofArkowitz . The problem ofdetermining the order of the Whitehead
square is posed and some computations given .

0. Introductio.n

Recall that the generalized Whitehead product in the sense of Arkowitz [2]
is an operation

(0 .1)

whereas the product studied in [4] (the first paper in this series) is an operation

7r(EA, X) x 7r(EB, X) -+ 7r(E(A#B), X)

7r(EIWX) x 7r(E"W X) -> 7r(Em+n-1W,X)

that corresponds, under the adjunction isomorphism

0 : 7r(E' W, X) -> 7r�, (X W),

to the classical Whitehead product of elements of 7r.(X W) .
Following established usage we denote the Arkowitz product and the classical

product by square brackets [-, -] and denote the product 0 .2 thus : [-, -]W.
The key to the new identities is an expression for the universal example class

of the product 0.2 . Let ¿�, : S°` --> S' V S', ¿ � : S' -> S' V Sn denote
the class of the identity map finto the first, respectively second, wedge factor .
Identifying E'W with Sn#W and denoting the identity class W -> W by lw,
we can recognize

[¿m#IW>¿n#1W]W E 7r(E-+n-1W E-W V EnW)

as the universal example class [3] of the product 0.2 .
Then we have the following equality .
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0.4 Proposition . [¿�,,#lw, cn#lw] w = [¿�,, cn]#lw

Now let a E 7r(Em W, X), Q E ir(E'W, X) be given classes, let X
W#W denote the diagonal class and let

p : Sn,+n-I#W#W -> Sl#S--1#W#Sn-I#W

be the natural homeomorphism permuting the smash factors .
The following result shows that the track group product and the Arkowitz

product are related via the diagonal class .

0 .5 Proposition . [a�Q] w = [a, Q] o p o E n+n-l X .

An obvious consequence of Proposition 0.5 is that nontriviality of [a, Q] w
implies nontriviality of [a, P] . We renmark that in this way, through the methods
of [4], many generalized Whitehead products can be shown to be nontrivial .

It may be recalled from [4] (ór deduced from Proposition 0 .5) that [a, 0] w = 0
whenever W itself is a suspension . In consequence it may be useful to study
the behaviour of the product in the case of W a product of suspensions . The
following identity applies when W = U x V with U and V arbitrary.

0.6 Proposition . Let a E 7r(Em U, X), 0 E 7r(E"V, X), le¡ pru and prv
denote the projections from U x V on to the factor spaces and let q : U x V ->
U#V denote ¡he smash identification. Then

[a o E'pru , p 0
Enprv]UxV = [a, ~]

	

p 0 Em+n-1 ,

in 7r(E,+n-i(U x V),X) .

Proposition 0.6 can be regarded as a generalization to the case m >_ 1,
n >_ 1 of Arkowitz's Theorem 2.4 [2] which establishes the equivalence of two
alternative definitions of his generalized Whitehead product .

Proposition 0.4 is the universal example case of the following result .

0.7 Corollary . Let a E 7r"n (X), 0 E 7rn (X) . Then

[a#lw, O#lw]w = [a,fi]#lw in ir(E,+n-1W X#W).

In section 3 we consider some instances of the Whitehead square

y = [Enjw, Enlw]w E 7r(E2n-i W, EnW).

In the case W = S° , y is the classical Whitehead square so that we have y = 0
if and only if n = 1, 3, 7 [1] . It would be interesting to have corresponding
information for W an arbitrary non-suspension . However for the moment this
seems to be out of reach . Instead we enquire when the order of y is infinite and
obtain a necessary condition which we show can occur .

It is a pleasure to acknowledge that an earlier version of this paper was read
by Howard Marcum whose comments and suggestions gave rise to a number of
improvements .
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1 . Universal examples

The universal example class [3] for the operation 0.2 is obtained by applying
the operation to the classes

(1.1)

	

E,W --> E,W V E, W,

	

E'W -> E,W V E"W

of identity maps into the first and second wedge factors . Since E'W V E'W =
(Sm V Sn)#W, with the conventions stated in the introduction the classes 1 .1
become c,n#lw and cn#lw respectively. Hence the desired universal class is

9-1[B(L.n#lw), e(¿n#1w)] E
7r(Em+n

-1W (S-VSn)#W).

Now we recall that the isomorphism 9 expresses the situation that the fun-
ctor -#W is left adjoint to (-) w . The unit of the adjunction is a natural
transformation that assigns to each space X a class

?IX : X -> (X #W)W

with a certain universal property. Consider the diagram

Sm V Sn -~ ((S- V Sn)# ,W) W	(S- V Sn)#W,,(S-VS")

,~,gm+n _ i

Since [¿m, c n ] is the universal
duct we have

vW

	

Tv

(Sm+n-1 #W)W Sm+n-1#W

example class for the (classical) Whitehead pro-

17(S, V Sn) o [¿m, ¿n] = [B(¿m#1W), 0(¿n#1W)]-

By the universal property of 77 the dotted arrow v = 0-1 (17(Sm V Sn) o [¿�,, cn])
is the unique class making the rectangle commutative . However by naturality
of 17 if we set v = [c, in]#lw the rectangle is commutative . This completes
the proof of Proposition 0.4 .

1.2 Remark. The reader will note that the argument above does not depend
on the intrinsic nature of the universal example class [¿�, ; ¿n] .

2 . Joins

The universal example class for the generalized Whitehead product 0.1 is a
certain element of

7r(E(A#B), EA V EB).
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An annoying technical feature of the definition and resulting theory is the
following consideration . In order to establish properties of the product it is
desirable to realize the class as a natural tránsformation at the level of maps .
Unfortunately no such natural transformation exists . It seems that one has to
be content with a pair of natural transformations, in opposite directions

emanating from A * B, the join of A and B, with the property that the reverse
arrow p' is a homotopy equivalence for each A and B . Recall that A * B is the
space obtained from A x B x I by factoring out the relations (a, b, 0)

	

(a, b', 0)
and (a, b, l) - (a', b, l) for all a, a'eA and b, b'eB .

	

The base point of A * B is
usually chosen to be (*, *,1/2) . This feature of the join is undoubtedly very
inconvenient . For example it has the consequence that the factors A and B are
not automatically embedded in A * B since the obvious maps

do not preserve base points . More, serious for our immediate purpose is the
consideration that the base point hinders smooth interaction with the smash
product . To remedy the situation we work rather with A*B, obtained from
A * B by further identifying all points (*, *, t) (t e I) . The equivalence class of
(a, b, t) as a point of A*B will be denoted [a, b, t] . Note that the Whitehead
product map

2.3 Proposition .

Proof. Cónsider

E(A#B) <" A * B , EA V EB

a -> (a, *, 0)

	

b �+ (*, b, l)

v : A*B ~ EA V EB

(corresponding to the composite hv in [2]) is given by the formula

v[a, b, t] =

	

(*' (b' 1 - 2t))

	

(0 < t < 1/2)
{ ((a, 2t - 1), *)

	

(1/2 < t < 1) .

If we also let P' : A*B -> E(A#B) be given by í¿'[a, b, t] = (a, b, t) then M' is a
homotopy equivalence with homotopy inverse p (say) . The universal example
class for the generalized Whitehead product 0.1 as defined in [2] is then

(2.2)

	

{VP}[¿EA,trp] E w(E(A#B), EA V EB) .

Identifying EA with S' #A, we have (EAVEB)#W = Sl #A#WVSI#B#W =
E(A#W) V E(B#W). We claim

[¿EA, ¿EB]#lw = [¿E(A#w), ¿E(B#w)] ° P ° (lr(A#B)#X),
where p : S l #A#B#W#W -> Sl #A#W#B#W interchanges the central
smash factors B and W.

u : (A*B)#W -> (A#W)*(B#W)



given by the formula

(2.4)

	

u([a, b, t], w) = [(a, w), (b, w), t] .
Note that u respects the * identifications and so defines a (pointed, continuous)
map. We remark that this would not be the case if * were replaced by the
classical join *. Then there is a commutative diagram (of solid arrows)

(A*B)#W

	

(#W)*(B#W)

W#1w ~W'#1w

Sl#A#B#W 1#X Sl#A#B#W#W P- ; Sl#A#W#B#W,

Using 2.1 and 2.4 it can be checked that

(2.4)

	

va =V#1W.

The required equality is then a consequence of 2.2 . Combining Proposition 0.6
with the relevant special case of Proposition 2 .3 now yields Proposition 0.5 .

Proposition 0.6 can be obtained from the case W = U x V of 2.4 after some
further analysis . In view of the commutativity of the diagram

(A*B)#(U x V)-° > A#(U x V)*B#(U x V)-% EA#(U x V) v EB#(U x V)
W'#laxe 1

	

(1A#Pru)*(1B#Prv) 1

	

(1EA#Pru)v(1EB#Prv) 1
EA#B#(U x V)

	

(A#U)*(B#V)

	

~

	

EA#U V EB#V
1EA#B #9

	

W'
EA#B#U#V -°~

	

EA#U#B#V,

(2 .5)

we have the following equality

which is simply the assertion of Proposition 0.6 in the case of the universal
example.
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(( 1 EA#PrU) V (1EB#PrV)) o [E¿EA, ¿EB]#1UxV
= [¿EA#U, ¿EB#V] o P 0 1EA#B#q.

The case A = S'n-1, B = Sn-1 of 2 .5 can be expressed using Proposition 0.4
as

(E'Pru V Enprv) o [6m#1UxV, ¿n#1U .V] U'V

_ [cEmU, tE"V] o P o Em+n-1 4,
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considering in particular the following .

3 . Whitehead squares

In this section we give attention to certain instantes of the Whitehead square

(3 .1)

	

y = [W1w,Enlw] w E 7r(E2n-1W E-W)

Whitehead square problem . Given a non-suspension space W, deter-
mine 0(y), the order of y .

In view of Corollary 0 .7 we have

(3.2)

	

y = [6 n, 6n] # 1W,

where [en, in] E 7r2n-1(Sn) is the classical Whitehead square . Hence full infor-
mation is available in the simplest case: W = S° . According to Adams [1],
y = 0 if and only if n = 1, 3, 7 ; otherwise 0(y) = 2 (n odd), 0(y) = oo (n even) .

Suppose next that W is a complex with two cells : W = S'n Ua er+1 , where
a E 7r r(S'n) is not a suspension class, so that r >_ 2m-1 . We have the following
crude result .

3.3 Theorem . If 0(y) = oo then r = 2m - 1, m + n is even and n 7É 1, 3,7 .

Proof.. n = 1, 3, 7 imply y = 0, so these may be excluded .

	

Consider the
Puppe sequence at E'W of the class E2n-1a :

. . . -> 7r(S2n+r, EnW)

	

7r(E2n 1W,EnW) ---> 7r(S7n+2n-1 ,En W)
-+ 7r(S2n+r-1 , Enw).

Slnce 7r(Sm+2n-1, EnW) lies in the stable range and y is annihilated by sus~
pension, 0(y) = oo implies the existente of an element of infinite order in
7r2n+r(En W). Since EnW = Sn+n` U en+r+1 , we may consider the relative
homotopy sequence

. . . -, 7r2n+r(S,+n ) �+ 7r2n+r(EnW) ---> 7r2n+r(EnW, Sm+n ) .

Now we have 7r2 n+r(E'W,Sm+n)

	

7r2n+r(Sn+r+1 ), by [5, VII, Theorem 7.12] .
Hence 7r2n+r(EnW, Sn+1) is a finite group, being isomorphic to the stable
(n-1)-stem, with n > 1 . It follows that 7r2n+r(S-+n) has an element of infinite
order . But this is possible only if m + n is even and 2n + r = 2(m + n) - 1, Le .
r=2m-1 .

There are spaces W for which a converse of 3.3 holds :

3.4. Proposition . If W = Sz (m even), the 2m-skeleton of the James
reduced product S.7n., and if n is even then 0(y) = oo .

We require the following lemma .
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3 .5 Lemma. The diagonal X : S2 --> S2 #S2 (m even) induces a non-
trivial homomorphism of the 2m-dimensional integral cohomology groups .

Proof. X can be factored S2 -~> S2 x S2 -> S2#S2 through the shrinking
map 9 . In dimension 2m, 9* is an isomorphism on to a direct summand con-
taining the product of the generators in dimension m of the factor spaces . 0*
sends this product to the cup square of the generator of Hm(S2), which is
non-trivial .

Proof of 3.4 : Suppose, for some integer r, that ry = [rEnlw, En1W]w = 0.
Then by [4, Theorem 2.41 there exists c(rEnlw, En1W) C_ ~(E2n+1W, En+1W) ,
a coset of the suspension subgroup, with the property that
Hc(rEn1w,En1W) = rE2n+ 1 X in 7r(E2n+1.W'r2n+1W#W), where H refers
to a version of the Hopf James invariant homomorphism . It follows from
Lemma 3.5 the rE2n+1 X is an element of infinite order and hence that the
coset c(rEnlw, E'1w) is of infinite order . We produce a contradiction by ar-
guing that 7r (E2n+1W En+1 W) can in this case have no element of infinite order
in the cokernel of suspension . Since ES'

	

S-+1 V S2-+1 ,

7r(E2n+1WEn+1W)

	

7rzm+zn+1 (S
m+n+1 ) ® Irzm+zn+1 (S2m+n+1,

	

)
®Irm+2n+1(Sm+n+1 ) ® llm+2n+1(S2m+n+1 ) .

Since m+n-i-1 is odd, none of the summands has an element of infinite order,
excepting only 7r,n+2n+1(S2m+n+ 1 ) in the case m = n . However it is easily seen
that this summand with m = n belongs to the suspension subgroup .
3.6 . Remark. With W = S2, Proposition 3 .4 does not determine 0(y)

when n is odd, n :,~ 1, 3, 7 . Since in this case 0([cn , ¿ n [) = 2, we know at least
that 2 divides 0(y) .
3.7 . Remark . For the space K'(Z/t, 1) = S1 Ut e2 , we can conclude from

Theorem 3.3 that 0(y) is finite for all even n .
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