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A WHITEHEAD PRODUCT FOR TRACK
GROUPS II

K.A. HARDIE AND A.V. JANSEN

Abstract

Two direct relations are exhibited between the Whitehead product for
track groups studied in [4] and the generalized Whitehead product in the
sense of Arkowitz. The problem of determining the order of the Whitehead
square is posed and some computations given.

0. Introduction

Recall that the generalized Whitehead product in the sense of Arkowitz (2]
is an operation

{G.1) mEA, X} x n(LB,X) — n(Z(A#B), X)

whereas the product studied in [4] (the first paper in this series) is an operation
(0.2) (LW X)) x a(Z"W, X)) - #(Z™" T, X))

that corresponds, under the adjunction isomorphism

(0.3) g 7(Z"W,X) - 7, (X)),

to the classical Whitehead product of elements of #.{X%W).

Following established usage we denote the Arkowitz product and the classical
product by square brackets [—, —] and denote the product 0.2 thus: [—, ~]V.

The key to the new identities is an expression for the universal example class
of the product 8.2, Let ¢, : $™ — SV §* in 1 5" — 5™ v S* denote
the class of the identity map into the first, respectively second, wedge factor.
Identifying "W with S"#W and denoting the identity class W — W by 1w,
Wwe call recognize

[tm#lw, (#lw]™ € 7(Z™ "W, "W v 2°W)

as the universal example class [3] of the product 0.2.
Then we have the following equality.
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0.4 Proposition. [im#lw, ta#lw]?¥ = [tm, to)#1lw

Now let o € w{E"W, X)), # € «{EZ"W, X) be given classes, let x : W —
WH#W denote the diagonal class and let

P Sm-i—i_’?—l#w#w —_ Sl#sm—l#w#sn—l#w

be the natural homeomorphism permuting the smash factors.

The following result shows that the track group product and the Arkowitz
product are related via the diagonal class. '

0.5 Proposition. [a,8]% =[o,flopoTm "1y,

An obvious consequence of Proposition 0.5'is that nontriviality of [a, 8]
implies nontriviality of (e, 8]. We remark that in this way, through the methods
of [4], many generalized Whitehead products can be shown to be nontrivial.

It may be recailed from [4] {or deduced from Proposition 0.5) that [, 5] = 0
whenever W itself is a suspension. In conseguence it may be useful to study
the behsviour of the product in the case of W a product of suspensions. The
following identity applies when W =U x V with U and V' arbitrary.

0.6 Proposition. Let « € n(Z™U, X}, § € w{E"V, X), let pry and pry
denote the projections from U x V on to the factor spaces and let g: U x V —
U4V denote the smash identification. Then

@0 Zpry, Bo T pry]¥*Y =la,Blopo LmF g
im a{S™EHT < V), X).
Proposition 0.6 can be regarded as a generalization to the case m > 1,

n > 1 of Arkowitz's Theorem 2.4 [2] which establishes the equivalence of two
alternative definitions of his generalized Whitehead product.

Proposition 0.4 is the universal example case of the following result.

0.7 Corollary. Leia € 7,(X), § € mo{X). Then

C (a#lw, BELW]Y = [ Blflw in n(STHTIW, XHW),
In section 3 we consider some instances of the Whitehead square
. ¥ = [E"w, =" 1w]” € n(S2 1 W, S°W).

In the case W = $?, v is the classical Whitehead square so that we have y = 0
if and only if n = 1,3,7 [1]. It would be interesiing to have corresponding
information for W an arbitrary non-suspension. However for the moment this
seems to be out of reach. Instead we enquire when the order of v is infinite and
obtain a necessary condition which we show can occur.

It is a pleasure to acknowledge that an earlier version of this paper was read
by Howard Marcum whose comments and suggestions gave rise to a number of
improvements.
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1. Universal examples

The universal example class [3] for the operation 0.2 is obtained by applying
the operation to the classes

{1.1) IPW - TTWVETW, I'W - "WV EITW

of identity maps into the first and second wedge factors. Since "W VI =
{57 v 5")}#W, with the conventions stated in the introduction the classes 1.1
become ¢ # 1w and (o # 1w respectively. Hence the desired universal class is

07 [Blem#lw), Bn#lw)] € (™ TIW, (ST V ST)H#W).
Now we recall that the isomorphism # expresses the situation that the fun-
ctor —#W is left adjoint to {=)". The umit of the adjunction is a natural
transformation that assigns to each space X a ¢lass
71X 1 X = (X#W)W
with a certain universal property. Consider the diagram

SV ST (ST VSTHEWIW (S™ Y STVEW

H(S™wEn)
(omotnl | [om g
Sm+n—] (Sm+n—1#W)W Sm-i—n“l#w
!]3'“+"'1

Since [¢m, ta] s the universal example class for the (classical) Whitehead pro-
duct we have

(ST V S™) 0 [tm, ta]l = [Fem#lw), 8len#tlw)].

By the universal property of 1 the dotted arrow v = 8~ {n(S™ V 5™} 0 [tm, ta]}
is the unique class making the rectangle commutative. However by naturality
of 7 if we set ¥ = [ty, 1n]#1w the rectangle is commutative. This completes
the proof of Proposition 0.4.

1.2 Remark. The reader will note that the argument above does not depend
on the intrinsic nature of the universal example class [tms tn]-

2. Joins

The universal exarmnple class for the generalized Whitehead product 0.1 is a
certain element of

*(Z{A#B), TAV IB).
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An annoying technical feature of the definition and resulting theory is the
following consideration. In order to establish properties of the product it is
desirable to realize the class as a natural transformation at the level of maps.
Unfortunately no such natural transformation exists. It seems that one has to
be content with a pair of natural transformations, in opposite directions

S(A#B) £ A+ B - SAVEB

emanating from A = 3, the join of A and B, with the property that the reverse
arrow y' is a homotopy equivalence for each A and B. Recall that A « B is the
space obtained from A x B x I by factoring out the relations (g, b, 0} ~ (g, ¥, 0}
and (a,b 1) ~ {a’,b,1} for all a,a’cA and b, #cB. The base point of A* B is
usually chosen to be {s,%,1/2). This feature of the join is undoubtedly very
inconvenient. For example it has the consequence that the factors A and B are
not automatically embedded in A * B since the obvious maps

a—{a, %0} b—{xb1)}

do not preserve base points. More serious for our immediate purpose is the
consideration that the base point hinders smooth interaction with the smash
product. To remedy the situation we work rather with A% B, obtained from
A % B by further identifying all poinis {+,+,1) ({& ). The equivalence class of
(a,5,t) as a point of A% B will be denoted [a, b,]. Note that the Whitehead
preduct map

v:A%B - ZAVEB

corresponding to the composite kv in [2]) is given by the formula
g

(x,(b,1-2)) (0<t<1/2)

({e,2t —1),%) {if2<t<1).

If we also let ' : A% B — Z(A#B) be given by '[a,b,1] = (a,b,t) then p' isa
homotopy equivalence with homotopy inverse g (say). The universal example
class for the generalized Whitehead product 0.1 as defined in [2] is then

(2.2) {vu}liza, izg) € T(N(A#B), TAV B).

Identifying A with S?# A, we have (SAVEB#W = S'#AH#WVS'H#BH#W =
L(A# W)V I(BH#W). We claim

(2.1) via, b ] = {

2.3 Proposition.

(tsa,te8]#lw = [xagw) tnaawy) © 2o (Incanmy#X )

where p @ SYHA#BHWHW — SYHAHWHBHEW interchanges the central
smash factors B and W,

Proof: Consider
g (ARBY#W — (A#W)*(B#W)
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given by the formula
(2.4) o{{a, b t],w) = (e, w}, (b, w),1].

Note that o respects the ¥ identifications and so defines a (pointed, continuous)
map. We remark that this would not be the case if % were replaced by the
classical join %. Then there is a commutative diagram (of solid arrows)

(AXB)#W ° (#W)yk(B#W)
p#lw 1u'#1w ln' k

S*HAH#BHFW jL STHAH#BHWH#W ., SYHAH#WHBHW,

Using 2.1 and 2.4 it can be checked that
(2.4) ve = v#lw.

The required equality is then a consequence of 2.2. Combining Proposition 0.6
with the relevant special case of Proposition 2.3 now yields Proposition 0.5. B

Proposition 0.6 can be obtained from the case W = U x V of 2.4 after some
further analysis. In view of the commutativity of the diagram

(ARBYHU x V)2 AU x VYRBHU x V)5 TAHU x V)V IBH(U x V)

##luvxe | (Laftproth(lp#pry) | {1paftpro)v(lzefipryv} |
DAH#BH#U x V) {A#U YK (B#V) = CAHU v EB#V
tzags#tq ] el

TA#BHU#V 5 TAH#UHBHV,

we have the following equality

(2.5 ((lsa#pru)V (Qsa#tpry)) o [Siga, txal#luxy
= [esagu,ioBgv] o po loapp#a.

The case A = §™~ B = $™~! of 2.5 can be expressed using Proposition 0.4
as

(EZMpry V Empry ) o m#luxy, tnf#luxv]¥ ™Y
= [igmy,tpny] o po EMTR T,

which is simply the assertion of Proposition 0.6 in the case of the universal
example.
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3. Whitehead squares

In this section we give attention to certain instances of the Whitehead square
(3.1 v =[E"1, S 1w]" € x(S W, TW)
considering in particular the following.

Whitehead square problem. Given a non—suspension space W, deter-
mine (), the order of 7.

In view of Corollary 0.7 we have

(3.2) Y= ['LanR] # 1W!

where [in, tn] € F2p-1(S™) is the classical Whitehead square. Hence full infor-
mation is available in the simplest case: W = §%. According to Adams (1],
v =0if and only if n = 1,3,7; otherwise 8{v} = 2 {n odd), 0(y) = oo (n even).

Suppose next that W is a complex with two cells: W = 5™ U, e™1, where
o € #.{5™) is not a suspension class, so that r > 2m —1. We have the following
crude result.

3.3 Theorem. [fO{y)=cc thenr =2m 1, m+nis even and n # 1,3,7.

Proof: n = 1,3,7 imply 4+ = 0, so these may be excluded. Consider the
Puppe sequence at T®W of the class £2" " lq;

= a(ST DAW) = (ST, TRW) - r( SR R
— ﬂ{52n+r—l , EnW).

Since 7{S™+2»—1 T ) Les in the stable range and v is annihilated by sus-
pension, O{y) = co implies the existence of an element of infinite order in
T2ner{EPW). Since T®W = S™*tm Y e+ we may consider the relative
homotopy sequence

o g (S™HY o Mo (ETW) = Mo (EW, ST,

Now we have Mo, o (Z"W, S™™) 2 mop 0 (ST, by [5, VII, Theorem 7.12).
Hence mppny {Z"W, 577!} is a finite group, being isomorphic to the stable
(n—1)-stem, with n > 1. It follows that 73,4,(§™7 ") has an element of infinite
order. But this is possible only if m+ nisevenand 2n+r =2(m +n) — 1, L.e.-
r=2m-—-1 N

There are spaces W for which a converse of 3.3 holds:

3.4 Proposition. If W = ST {m even), the 2m-skeleton of the James
reduced product ST, and if n i3 even then 0(y) = co.

oat

We require the following lemma.
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3.5 Lemma. The diagonal x : S — SP#5P (m even) induces a non-
trivial homomorphism of the 2m—dimensional integral cohomology groups.

Proof: x can be factored S 4 S x S 4 S5 #S55 through the shrinking
map 8. In dimension 2m, 6* is an isomorphism on to a direct summand con-
taining the product of the generators in dimension m of the factor spaces. A®
sends this product to the cup square of the generator of H™{Sy'), which is
non-trivial. B

Proof of 3.4: Suppose, for some integer r, that ry = [rZ"1w, T"1w]¥ = 0.
Then by [4, Theorem 2.4) there exists ¢(rZ™ 1w, B" 1y ) C n{ S2H1W, N HWy),
a coset of the suspension subgroup, with the property that
He(rZ™lw, D lyw) = rZ%FH y in x(SHW, 02"V IW W), where H refers
to a version of the Hopf James invariant homomorphism. It follows from
Lemma 3.5 the rZ%" 71y is an element of infinite order and hence that the
coset c{rZ™1w, L"1w) is of infinite order. We produce a contradiction by ar-
guing that 7(Z2" W, ©2* 1) can in this case have no element of infinite order
in the cokernel of suspension. Since TSP = §™+1 v §2m+1 we have

?T(E?n-'—lW}Zn_I—IW) P ﬂ2m+2n+1(5m+n+l) o ﬂ2m+2n+1(52m+n+1)

B Tmiant 1 (ST @ ?Fm+2n+1(52m+n+l)A

Since m +n 4+ 1 is odd, none of the summands has an element of infinite order,
excepting only Tmy2a41(S*™ 1) in the case m = n. However it is easily seen
that this summand with m = n belongs to the suspension subgroup. B

3.6. Remark. With W = S7*, Proposition 3.4 does not determine 0{vy)
when n 15 odd, n # 1,3,7. Since in this case 0((tn, 0]} = 2, we know at least
that 2 divides 0{).

3.7. Remark. For the space K'{Z/t,1) = 5§ U, €2, we can conclude from
Theorem 3.3 that 0(v) is finite for all even n.
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