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BIVARIANT LONG EXACT SEQUENCES II

Given two exact sequences

T . H . FAY AND K . A . HARDIE

Given a pair of short exact sequences
1)

	

O-X -, y, Z-0, 0-A~B A C-0
in an abelian category A, with sufficiently many projectives and injec-
tives, and given an additive bifunctor T we show that T applied to the
pair (1) gives rise to a diagram of a type described by C . T . C . Wall
that contains 15 interlocking long exact sequences involving the derived
functors of T at (A, X), (A, Y), etc . and also involving the derived fun-
ctors of Tp and TQ which are two functors with domain A 2 that arise
through the failure of T to preserve pullbacks and pushouts . In the case
of Hom (respectively ®) in the category of G-modules for a group G the
derived functors of Tp (respectively TQ) are expressed in terms of group
cohomology (respectively homology) .

0. Introduction

(0.1)

	

0->X -Y> Y ó->Z->0,0->A0'+ BZC->0

in an abelian category A, Pressman [7] showed that there is a long exact "bi-

0 -> Hom(Z, A) -> Hom(Y, B) -> hom(y,

	

Extl (Z, A)

-> Ext 1 (Y, B) --> ext 1 (y, fl) �+ . . .
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that generalizes the usual univariant Hom-Ext sequences associated with the
pair (0.1) and interlocks with them :
(0.3)
Hom(Z, A)

	

: Hom(Y A)

	

-> Hom(X, A)

	

> Extl(Z, A) . . .

In the above diagram, Pressman's arrows are shown dotted . The triangles are
commutative and, as is well known, the rectangles of the horizontal and vertical
array are all commutative except that those involving four coboundary arrows
are anticommutative . In the sequence (0.2) the functors hora(-,-) and extl
(-,-) etc ., refer to the hora and extension functors defined in the category AZ

(of arrows of A), known also to be abelian .

In attempting to obtain an analogue of Pressman's sequence for an arbitrary
additive bifunctor T, Hardie [6] observes that the definition of hora in AZ sets
up a pullback diagram

d
hom(y, /3)

	

Hom(X, B)

PB 1Hom(X,f)

Hom(Y, C)

	

-> Hom(X, C)
Hora(-y,C)

where d and c denote domain and codomain restriction operators respectively .
Accordingly, given a bifunctor T, covariant in the first variable and contrava-
riant in the second, he applies T to the (evidently) bicartesian square

(X, C)

	

(Y, C)

(X,Q)1

	

1(Y,R)
X B

	

(7,B)

	

Y B)

Hom(Z, B) % Hom(Y, B) ) Hom(X, B) ) Extl (Z, B) . . .
hora(-y,/3)

Hom(Z, C) Hom(Y, C) Hom(X, C) ) Ext l (Z, C) . . .

Extl(Z,A) Extl (Y,A) ; Extl(X,A) > Ext'(Z,A) . . .



in A x A°P to obtain the (outer) rectangle

(0.4)

(0.5)

(0.6)

(0.7)
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T(y,C)
T(X, C)

	

T(Y, C)

T(X,0) I

	

,'

	

s /

	

I T(Y,B)
~-d
-- TQ(.Y,0

	

y)

T(X,B) T(Y,B)
T(y,B)

and then defines Tp(-y, P) (respectively TQ(y, a)) by requiring that it complete
a pullback (respectively pushout) rectangle with the relevant horizontal aíid
vertical arrows . In this way Tp and TQ become bifunctors with the same
variance as T that measure the failure of T to preserve pullbacks and pushouts .
It is clear how to modify the definition for functors of other variance and, in
particular, we recover hom(y, P) = Homp(y, /P) .
From henceforth assume that A has sufficient injectives and projectives .

Then using the terminology of Cartan and Eilenberg [3, p . 82], recall that
R'T, the n'th right derived functor of T evaluated at (A, B), is the n'th com-
ponent of the graded object

RT(A, B) = H(T(EA, PB)),

the (co)-homology of the right complex over T(A, B) that T associates with
the injective resolution EA of A and the projective resolution PB of B. If one
applies this machinery to the pair of short exact sequences (0.1) as is done
[3 ; V, Proposition 4] one obtains a doubly infinite diagram (called in [6] a
cylinder-web diagram) combining the long exact sequences of RT at (A, X),
(A, Y), (A, Z), (B, X), (B, Y), (B, Z), (C, X), (C, Y) and (C, Z) . It was shown
in [6, Theorem 1] that three "diagonal" sequences

0 --" R° T(A, Z) ---> R° T(B,Y) -4 R° Tp(f, y) -> R'T(A, Z) , . .

0 , RO T(A, X) --> RO Tp(0, y) -> R°T(C, Y) -> R'T(A, X) -, . .

0 , RO T(C, Z) , RO Tp(p, y) -> R° T(B, X) --> R'T(C, Z) -> . . .

each passing through the groups R"Tp(f , y) (n >_ 0), interlock with the sequen-
ces of the diagram . The sequence 0.4 can be regarded as the desired analogue
of Pressman's sequence .

There are indications, however, that the above is not the full story. Firstly,
using the original technique of Pressman, we have derived six further diagonal
sequences that interlock with 0.3 [4] . Secondly, we obtained in [4] canonical
isomorphisms

ext"(-y, a) izd ext'(6, /P) .
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Thirdly, Ross Street [11] has shown that if one applies the homology functor to
a 3 x 3 diagram of chain complexes, then one obtains a diagram of a type con-
sidered by Wall [12] and described by Street [111 as a there-diamond diagram .
We prove the following theorem .

0.8 Theorem . Given an additive bifunctorT covariant in the first variable,
contravariant in the second, and given a pair of short exací sequences 0.1, there
exist:

(i) in addition to ¡he sequences 0.l,, 0.5, 0.6 ¡he exact sequences

(0.9)

(0.10)

(0 .12)

(0.13)

0 -> RO T(B, Z) -> ROTp(0, 6) -> ROT(A, X) �+ Rl T(B, Z) --> . . .

0 , RO Tp(0, 5) , RO T(B, Y) , RO T(C, X) -> Rl Tp(0, 6) -> . . .

0 --> ROT(A, Y) -> ROTp(0, 5) -, RO T(C, Z) -> R'T(A, Y) --> . . .

0 -> R°Tp(ca, 5) --> RO T(A, Y) -> R° T(B, X) --> Rl Tp(ce, 6) �+ . . .

0 -> ROTp(a, 6) --> RO T(B, Z) -> ROT(C, Y) --> R1Tp(ca, 6)

	

. . .

(0.14)
0 --> R°T(A, Z) -> R°Tp(ce, b) -> 0 -> R'T(A, Z) -+ R'Tp(ca, 6)

-> R°T(C,X) -> . . . ;

(ii) ¡he following natural isomorphisms

(0.15)

	

R'Tp(a,y) .: R"Tp(Q, 6) ti R'TQ(a, 6)

(0.16)

	

RnTp(p,_Y) ~ R'TQ(a,7) ti RnTQ(0,6) .

0.17 . Remark. The sequences described form together with the cylinder-
web diagram a diagram of the type described by Wall [12] .

0 .18 . Remark . Information relating RnTQ(fl, y) appears to be missing from
the above . In fact there is also a natural isomorphism

RnTp(n, 5) ^Rn-1 TQ(0, y)(n > 1) .

A proof will be given in a subsequent paper .
A version of the theory can also be given for left derived functors . In section

4 we display the Wall diagrams generated by Hom and ®. What is the role of
the additional exact sequences? In the first place as pointed out by Street [111,
there is reason to believe that the full Wall diagram contains information inac-
cessible to the standard horizontal and vertical sequences of the cylinder-web
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diagram . In homotopy pair theory [8], [9] corresponding diagonal sequences
arise that pass through the so-called homotopy pair groups. These additional
objects appear to be the natural home for secondary homotopy compositions
(Toda brackets) in the sense that the brackets live there with zero indetermi-
nacy . Similar considerations apply (for example) to secondary Yoneda products
in the hom-ext Wall diagram. In a subsequent paper the authors hope to show
how the additional objects R"Tp(f, S) et al can be computed and the sequence
structure exploited . Preliminary results in this direction are given in section 5
for the cases of hom and ® in the category of G-modules for a group G.

Preliminary Lemmas

We first recall the 3 x 3 diagonal lemma [6, p. 169] . Suppose that in the
following diagram in an abelian category the sequences

make up a commutative array of short exact sequences and suppose that b' and
y' complete the pullback of b3 and y3 .

y2 .
~
y

	

b y3
i' pB

1

Then there exist unique morphisms u, A and p such that (a) Y'O' = y2 and
b'o, = b2 , (b) y'A = a 3 and VA = 0, (c) y'fu = 0 and b'p = x3 . Let p = x2a1 =
a2x 1 .

1 .1 . (3 x 3 Diagonal) Lemma. The sequences

	

-°r ,

	

and
~ . ~ . are short exact.

The scope of the 3 x 3 diagonal lemma is considerably expanded by the fo-
llowing two square lemma. Suppose that in the following commutative diagram
in an abelian category, the horizontal rows are short exact sequences ; let z' and
d' complete the pullback of z and d, let a' and x' complete the pushout of a
and x .

a

	

b
-->

	

.

	

--- w .

x' .~

a~~Q y
.~ iza

	

zy
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1 .2 . (Two Square) Lemma. There exists a unique morphism A : Q -> P
satisfying z'Aa' = c, z'Ax' = y, d'Ax' = b and d',\a' = 0 . Furthermore A is an
isomorphism.

A proof of the Two Square Lemma can be found in [5] . We shall require also
the following Lmma which may perhaps be a known result .

1 .5 Lemma.

	

Let A -<-p+ B -?P> C and K -
0
> A' 'p_+B' be short exact sequences

of cochain complexes and let

A' )B'

be a commuting square of cochain maps . Then there is a homomorphism 0
H'(C) -> H"-1-1(K) completing Me ladder diagram

. . . Hn-1(C) a> Hn(A) W> Hn(B)

	

Ip* )

	

Hn(C) . . .

. . . H-(K)

	

--> Hn(A')

	

~`

	

H n (B') --> Hn+l (K) . . .

in which the horizontal rows are the associated long cohomology sequences and
the rectangle (R) is anticommutative .

Proof. Let c E Cn be such that de = 0 E Cn+1 , Then there exists a E An+l,
b E Bn such that Ob = c, Oa = db and da, = 0 . Morecver there exists an a'
such that W'a' = ab . Then cp'(aa - da') = 0 . Hence there exists a k E Kn+1
such that Bk = cía - da' . Then dk = 0 and Ocls(c) = cls(k) is independent
of choices . We may check readily that (R) is anticommutative and also the
commutativity of the remaining rectangles .

1 .6 . Remark. If, in Lemma 1 .5, it is known that a* and Q* are isomor-
phisms, then of course we can infer that A is an isomorphism in each dimension .

2 . Resolutions in AZ

Since A has sufficient injectives and projectives, by a standard technique we
may associate with the short exact sequences 0.1 a short exact sequence of
injective resolutions

Ep Ep

0->EA-->EB=->Ec~0



and a short exact sequence of projective resolutions

(2.2)

Now the projective (respectively injective) objects in A2 are precisely the co-
retractions Pl ---> P2 between projectives in A (respectively the retractions
El -+ E2 between injectives in A_ )[7, Proof of Lemma 5.3] . Hence we can

11

re-
gard the cochain map EQ as an injective resolution of a and the chain map Py
as a projective resolution of ^1 . By definition of the derived functors we have
the equations

Since the component arrows of E_,, are not retractions, Ea is noí an injective
resolution of a . However it is easy to see that E_,, (respectively P_ 6 ) is an acyclic
complex over a (respectively 6) . These acyclic resolutions can nevertheless be
used to compute the derived functors of TP and TQ :

2.3 . Proposition

Proof.. (a) In the diagram

BIVARIANT SEQUENCES II
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P, P6
0,PX --'PY -~, P Z ,0.

R'TP(,3 , y) = H n'(TP(E/3,Pl))

R'TQ(0, -y) = H'(TQ(EQ,Py)) .

(a) R'TP(a,-y) ^ H'(Tp(E«,P7))

(b) R'TP(Q, 6) ^Hn(TP(E¡3, P6 ))

(c) , RnT.(a, 6) "̂ ; Hn(TQ(E., P6 ))

(d) R'TQ(a,-y) .^" H'(TQ(E.,P^1))

(e) RnTQ(p,ó) ^ Hn(TQ(EQ,P6)) .

,, T(EA, PX )

T(EB,PZ) --~ T(EB, PY) -, T(EB, PX)

the horizontal row is the short exact sequence of cochain complexes obtained by
applying T(EB , --) to 2 .2 and the right hand vertical arrow is induced by the
chain map E« . As discussed in [6, p . 174], the rectangle is a pullback and hence
the diagonal sequence is also short exact . Since A2 has suficient injectives there
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exists an injective resolution F_« : FA -> F_ B of a and a morphism of resolutions
Ea -> F_a . It follows that there is a diagram like 2.4 in which F« replaces Ea
and hence also a morphism of the diagonal short exact sequences :

(2.5)

T(EB, PZ) -; Tp(F., PI) ; T(EA, P')

T(FB, PZ) ; Tp(F,P7) , T(FA, PX ) .

Taking cohomology the resulting morphism of long exact sequences induces
isomorphisms, via the 5-Lemma, so that we have :

Hn (Tp(E., P7)) ^ Hn(Tp(F., P^1 » , :d Rn TP(0, , ?') .

(b) The argument is similar to part (a) .
(c) In the diagram

T(EA, PZ) ---> T(EA, PY) ---, T(EA, PX )

1

	

TQ(E,P6 )
T(E- B, PZ )

the horizontal sequence is short exact obtained by applying T(EEA, --) to 2.2
and the left hand vertical arrow is induced by Ea . The rectangle is a pushout
and the diagonal sequence is short exact . Since A2 has sufficient projectives,
there exists a projective resolution Q6 : QY �+ QZ and diagrams similar to 2.5

with FA replacing EA (respectively FA replacing EA and Q6 replacing P6) .
The corresponding diagonal sequences are linked by morphsm

_

T(EB, PZ) --> TQ(E«, P6) , T(EA , PX)

T(FB, QZ )

T(FB, PZ )

	

; TQ(F~, P6 )

	

> T(FA, PX)

TQ(F«, Q6 ) > T(FA , QX ) .

Taking cohomology and applying the 5-Lemma argument we obtain natural
isomorphisms

Hn(TQ(E«, P'»^ Hn(TQ(F«, Q'» ;-- RnTQ (a, ó) .
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Similar arguments dispose of parts (d) and (e), completing the proof of Propo-
sition 2 .3 .
We may also complete the proof of part (ii) of Theorem 0.8 by constructing

appropriate pullbacks and pushouts in the following 3 x 3 diagram (obtained
by applying T(--, --) to 2.1 and 2.2) and making various applications of the
Two-Square Lemma.

T(EA, pz) - T(EA, PY) , T(EA, PX)

(2 .6)

	

T(EB, PZ) --, T(EB, PY) -

	

, T(EB, PX)

T(Ec, Pz) - . T(Ec,PY) -	T(Ec,PX)

3 . The Long Diagonal Sequences

The sequence 0.9 of theorem 0.8 is obtained by applying cohomology to the
diagonal short exact sequence in 2.4 and recalling the isomorphism 0.15. The
sequence 0.10 is obtained by constructing the pushout complex TQ(E,, P6 ) :
the dual of the 3 x 3 Diagonal Lemma yields the short exact sequences :

TQ(E, ,P6) --, T(EB, PY) -, T(Ec,PX)

T(EA, PY) - TQ(Ea, P6 ) - T(Ec, PZ ) .

The first of these gives rise to 0.10 and the second to 0.11 . To complete the proof
of Theorem 0 .8 requires an analysis of the resolutions F,, and Q6 . Suppose that

F~
FA -1, FB

is an injective resolution of a, where FA is the injective resolution

0,A~FA,FA,FÁ-~ . . .

regarded as a right complex over A [3, p . 78] . Then EA = coker iA and EB
coker iB are suspensions of A and B and the induced arrow Ea : EA �+ EB is
epic since the F,, : FÁ , FB are retractions . Then Ea = ker Fú is an injective



194

	

T .H . FAY, K.A . HARDIE

(i > 0) and we have the following diagram in which K = ker Ea .

(3.2)

By an application of the Ker-Cok-Lemma [1,10.3 .1] we find that

(3.3)

	

0->E° �+K � + C-0

is exact . Moreover, since E° is injective the sequerice splits . Since E° --+ El
also splits, there exists an injective object E such that El P:~ E° ® E and a
commutative diagram

Consider now the right complexes

0

	

0

Eo

	

. EO®E~zdE1

E° -----> E°®Cz:~K

0 0 .

E- (E0	E l	E 2

E'-(E°-~E°--,0--, . . .)

and note that the monomorphism C ES E enables us to regard E_ " as an injective
resolution of C. Recalling that the suspension EX of a complex X is such that

(EX)n = X n-1, we have the following lemma .



3.4 . Lemma. E ~ E' E) EE"

3.5 . Remark. In the short exact sequence K --> EA > EB, the module K
has the same Eckmann-Hilton injective homotopy type as C. Dually, let

Q6

(3.6)

	

QY -, Qz

be a projective resolution of 6, where Qz is the projective resolution

(3.7)
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. . . ~Qá ~Qi -, Qó -"+Z,0
regarded as a left complex over Z. There is a diagram dual to 3.2 in which
QY = ker ey and QZ = ker ez are loop spaces of Y and Z; the induced arrow
Q6 : QY -> QZ is monic, since Q; .

: QY -> Qz are coretractions ; P; = coker Ql
is a projective (i > 0) ; J = coker Q~

Qi - Q6 Qiz

	

' Pi
1

	

96
í2 Y-1

	

, s2Z1-	J

L
Qó

Qo
'' Qó

	

% Po

x

	

) Y

	

) Z
By another application of the Ker-Cok Lemma we have

(3.8)

	

0 --> X -> J -> Po -+ 0

is exact . Moreover, since Po is projective, the sequence splits . Since P1 --> P2
also splits, there exists a projective object P such that Pi ~~ Po ®P. By a dual
of Lemma 3.4 we have

(3.9)

	

P p:~ P' ® 2P",

where the left complexes P, P', P" are as indicated and (QX),, = X,,_1 :

P = ( . . .

	

P2

	

P1 -, PO)

P"=( . . .~P3 �+ p2---+ P) .
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The epimorphism P -> X provides P" with the structure of a projective reso-
lution of X.
3.10 . Remark . In the short exact sequence SZY + S~Z -> J, the module J

has the Eckrnann-Hilton projective homotopy type of X.
Now, by applying T to the pair of short exact sequences

F~
(3.11)

	

E ---> FA --2, FB
Q6

(3.12)

	

QY -:-> QZ -> P

we obtain another diagram of type 2.6 . Considering the pullback of the axrows

T(FB,Q' ) : T(FB,QZ) --> T(FB,QY)

T(F., QY ) : T(FA, QY) - T(FB, QY )

gives rise to short exact sequences

whose exact cohomology sequences are interpretable, in view of 3.4 and 3.9, as
the desired sequences 0.12, 0.13 and 0 .14 completing the proof of Theorem 0.8 .
3.16 . Remark. The compatibility of the diagonal sequences 0.9,0 .10, 0.11

with the horizontal and vertical sequences of the cylinder-web diagram is a
consequence of the universality properties of the pushout and pullback in the
lemmas 1 .1 and 1.2 . In the case of the sequences 0.12, 0.13, 0.14 it is necessary
to consider also the question of the compatibility of the cylinder-web diaggams
obtained by applying T to 2.1 and 2.2 and, respectively, to 3.11 and 3.12. For
example an application of Lemma 1 .5 to the diagram

T(EB, PZ) -----> T(EB , PY)

T(FB,P) --> T(FB,QZ) ----+ T(FB,QY)

~ T(EB , PX )

in which the vertical arrows are induced by E_ B -> F_ B and QZ -> PZ , establis-
hes the degree of compatibility of the two versions of the long exact sequence

0 -> RO T(B, Z) -> .R°T(B,Y) -> RO T(B,X) -> Rl T(B, Z) -> . . . .

(3 .13) T(FB, P) - Tp(F«, Qó) - T(FA, QY)

(3.14) T(E, QY ) --> Tp(F« , Q') - T(FB, QZ)

(3.15) T(E, P) -> T(FA, QZ) --> Tp(F,, Q6)
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3 .17 . Remark. If one displays the cylinder web diagram as a doubly infi-
nite array (see for example 0.3) then many objects and arrows are duplicated .
To avoid unnecessary duplication only three horizontal long sequences need to
be written in . The diagram 3.18 displays the full Wall diagram obtained by
applying T to the data 0.1 . The long exact sequences are all included but (ex-
cept for the three horizontal sequences) every third arrow is suppressed . Each
pair of arrows --> - -> in the same direction is understood to be exact and the
sequence continues after three parallel shifts to the right, so that the missing
(linking) arrow can be recovered. Although, as discussed above, each diagonal
sequence is compatible with the cylinder-web diagram (the horizontal and ver-
tical sequences) it is not the case that each cell of the diagram is commutative
or anticommutative . Street [111 has given a description of the identities to be
expected in a typical Wall diagram:

Diagram 3.18

0~R° T(A, Z)-R°T(A,Y).R°T(A,X),RT(A, Z),R1T(A,Y) ., . . .

/1\/ \ /1\ /1\/1
RO T(B, Z) ,RO T(B, Y) ~RoT(B, X)~Rl T(B, Z)-,RlT(B, Y) , . . .

R°Tp(a, 5)

	

R~Tp(Q, b)

	

4°Tp(a,y)

	

R1 Tp(a, b)

	

R1 Tp(a, 5)

0 -,ROT(C, Z) ~R O T(C, Y)-R° T(C, X) -,R'T(C, Z)

	

R1 T(C, Y) -~b . . .

4. The cases of Hom and

RlTp(0,y)

As mentioned above the theory can be adapted to the case of functors of
other variance . The Wall Diagram obtained by applying the bifunctor Hom to
the data 0.1 is shown .
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0 -.Hom(Z, C) .- Hom(Y, C) ~ Hom(X, C) -Ext l (Z, C) ~Ext' (Y, C) ~ . . .

4.2 . Remark. As a corollary to Theorem 0.8 (modified form) we recover
the natural isomorphisms ext "(y, a) ~. ext n(5, Q) found in [4, Theorem 2.1] .
4 .3 . Remark. A version of the theory can also be given for left derived

functors . For example, let A denote the category of modules over a commu-
tative ring R with unit and let ®= tens denote the tensor product in A_ . We
shall denote the n'th left derived functor of tensQ by torn . The Wall diagram
obtained by applying tens to the pair 0.1 is as indicated :

0 ~Hom(Z, A) ,Hom(Y, A) ~Hom(X, A) yExtl (Z, A) -Ext' (Y, A) , . . .

Hom(Z, B)-Hom(Y, B) -Hom(X, B)-Extl(Z, B) ~Ext.1 (Y, B) J,...

hom(5, a)

	

hom(5, 0) �hom(y, ~)

	

xt' (5, a)

	

rextl (5, ,l)

tor'-(A,Y)-tor'(A,Z)-A®X -A®Y-A®Z--40

tors' (a, /3)

	

tor' (,Q, b) / tensQ(a, y)

	

tensQ(a, 5)

	

teñsQ(0, 5)

->tor'(B,Y)--+ tor'(B,Z)-;B®X---"B®Y-B®Z

->tor'(C,Y)-torl(C,Z)-" C®X-C®Y-C®Z--i0

As a corollary of Theorem 0 .8 (modified form) we obtain the natural isomor-
phisnis:

(4 .5)

	

tensQ(a, 5) p~itensQ(P, y) ; tor.(a, 5)

	

tor,,(/i, y)

	

(n : 1) .
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5. Computation of extra arad torra .

The goal of this section will be to compute, in terms of group cohomology
and homology, invariants such as ext'(y, /0) and tor,,(a, ó) in certain special
cases . Accordingly we consider A to be the category of left R-modules where
R = ZG is the group ring of a group G .

Following standard practice we regard any left G-module M as a right G-
module by setting mg = g-1 m(m E M, g E G) and in this way interpret the
tensor product M ®G N of two left G-modules . Then M ®G N is precisely the
quotient of M ® N = M ®a N (the tensor product of the underlying abelian
groups) by the diagonal action of G ora M ® N : g . (m ® n) = gm ® gn . Via
the pushout diagram

Homz(h, k)

A®k
A®X ) A®Y

B®X --) tensQ(h, k)

a diagonal action of G ora tensz(h, k) is determined and we remark that tenso
(h, k) = tensG(h, k) (defined by a pushout corresponding to 5.1 with ®G re-
placing (9) is the quotient of tensz(h, k) by the diagonal action . Similarly for
left G-modules M and N, Homz(M, N) (the hom set of underlying abelian
groups), admits a diagonal action given by

(g-)(-) = g .u(g -i m) (g E G, u E Homz(M, N), m E M).

Since gu = u if and only if u commutes with the action of G, we have HOMG(M,
N) = Hom (M, N)G , the subgroup of homomorphisms invaxiant under the
diagonal action . For G-module homomorphisms h : A -+ B and k : X -> Y we
define homz(h, k) via the pullback

Homz(B, Y)

Homz(A, X)

	

> Homz(A, Y)
Homy (A,k)

inducing a diagonal action ora homz(h, k) .

	

Note that homG(h, k)

	

_
hom (h, k) = homz(h, k) G . We shall require the following lemma.

5 .2 Lemma. For a G-module M and G-module homomorphisms h : A -> B
and k : X -+ Y we have natural isomorphisms

(i) tensQ(M ® h, k) P~- M ®G tensQ(h, k),
(ii) hoMG(M (9 h, k)

	

HoMG(M, homz(h, k)), where tensQ(h, k),
homz(h, k) and the domain and codomain ofM0 h carry the diagonal action .
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Proof (i) : We have a diagram

M ®(A ®X)

	

M®(A®k) ,M ®(A ®Y)

(M®A)®X (MIDA)®k, (M®A)®Y
I
I

(M®h)®X

	

M ®(B ®X) .

	

I -M ® tensQ(h, k)I

y
i

(M®B)®X---- -~ tensz(M®h,k)

in which the solid slanting arrows are associativity isomorphisms . Since the
functor - ® M is left adjoint to Homz(M, -), M ® - preserves pushouts
and hence the dotted slanting arrow is a natural isomorphism . The desired
isomorphism is now obtained by factoring out by the diagonal action . The
argument for the proof of (ii) is a similar one involving the diagram

Homz(M, homz(h, k)), Homz(M, Homz(B, Y))

homz(M ® h, k) - _ - Homz(M ® B, Y)

I Homz(M, Homz(A, X))
I

--,Homz(M, Homz(A, Y))

Homz(M ® A, X)-> Homz(M ® A, Y) .

We define torta (respectively extG) to be the n-th left derived functor of
tenso (respectively the n-th right derived functor of hOMG) . The following
result generalizes formulae well-known in the absolute case . [2, Prop . 111 . 2 .2] :

5.3 Theorem . Let a : A --> B, y : X --> Y, S : Y --> Z be G-module
homomorphisms.

(i) If A and B are Z-torsion free and y is monic then tor*(a, y)

	

H*(G,
tensz(a, y)), where G acts diagonally on tensQ(a, y) .

(ii) If A and B are Zfree ajad 6 is epic then extG(a, 5) Pz~ H*(G, homz
(a, 8)) where G acts diagonally on homz(a, S) .



Proof (i) : Let Py -> y, Pa --> a be projective resolutions .

	

Note that .
we can regard Py : PX -> PY and_	_

	

_

	

P_' : PA --_

	

PB as chain maps where
pX pY pA ps are projective resolutions of X, Y, A, B respectively . Suppose
also that F -> Z is a projective resolution of the trivial G-module Z . As dis-
cussed in [2, pp . 56, 61], F ® A ---> A is a fiat resolution of A . Moreover there is
a morphism of resolutions Pa --> F ® a which induces a morphism of pushouts

(5.4)
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PA ®G PX

	

-i PA ®G PY
h
I
I(F ® A)

®G PX-~-1 (F (9 A) ©G
PY

ti I ti I

and of short exact sequences of complexes

I
PB ®G p.X

	

tenSG(P°, Py)
I
I

1 f

	

1
(F ® B)

®G PX --~ tenSQ(F ® a, P7)

PB ®G px

	

tensG(P% Py)

	

pA ®G pz
Q~ '

(F ® B) ®G PX -	tenSQ(F® a, P7) ----+ (F ® A) ®G Pz

where Z denotes coker y and PX �+ PY --> PZ is the associated short exact
sequence of resolutions . The outer vertical arrows of 5 .4 induce isomorphisms
in homology by [2, Theorem 1.8 .6] and hence, after an application of the five
lemma, we have tor*(a, y) = H,(tens'(Pa, Py) ,: H*(tensG(F ® a, P7 ) . A
similar argument involving the morphism of resolutions Py --> y establishes the
further isomorphism

H*(tense(F ® a, Py)) zz~ H*(tenSQ(F ® n, y)) .

Applying 5 .2 (ü) we now have

H.(tensG(F ® a, -y» .^, H* (F ®G tens'(a, y)) Pz~ H*(G, tens'(a, y)),

as required .
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(ii) In this case F ® A --> A, F ® B -> B are projective resolutions .

	

Let

X = kernel 6 and consider the diagram

HOMG(F ® B, X) ----+ hOMG(F ® a, 5)

	

HOMG(F ® A, Z)

HOMG(F ® B, X) % HOMG(F ® B, Y)

	

HOMG(F ® B, Z)

in which the right hand rectangle is a pullback and the rows are short exact
sequences of cochain complexes . If P° is a projective resolution of a then there
is a morphism of resolutions Pa -> F ® a inducing a morphism of short exact
sequences

HOMG(PB , X) hOMG(PO', 6) HOMG(PA, Z)

HOMG(F ® B, X)

	

homp(F ® a, ó)

	

) HOMG(F (9 A, Z).

Since the outer vertical arrows induce cohomology isomorphisms we have

extG(ce, ó) = H*(homG(P', b)) ;~:i H*(hOMG(F ® a, 6))

H*(hOMG(F, homz(a, S))) = H*(G, homz(a, S)), as required

5.5 . Remark. If the group G is abelian then M®ZGN, as normally defined,
need not coincide with M ®G N as defined above . (M ®ZG N is obtained from
M ®z N by factoring out by the antidiagonal action .) Similar remarks apply
to the derived functors torñG and extZG .
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