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IS THE PRODUCT OF CCC SPACES
A CCC SPACE?

NINA M. Roy

This paper is dedicated to John C. Oxtoby, who sparked the author’s
interest in the subject. -

Abstract

In this expository paper it is shown that Martin’s Axiom and the negation
of the Continuum Hypothesis imply that the product of cec spaces is a ccc
space. The Continuum Hypothesis is then used te construct the Laver—
Galvin example of two cce spaces whose product is not a cce space

1. Introduction

A cce space is a topological space which satisfies the countable chain condi-
tion: Fach family of {pairwise) disjoint nonempty open sets is countable. A
separable space, for instance, is a cce space. This is so because given a family
F of disjoint nonempty open sets in a separable space X, one can define an
mjection of F into a countable dense subset $ of X by choosing one point of
S in each member of F. A ccc space, however, need not be separable. For
example, if [ is a set with cardinality greater than | R | (the cardinality of the
set of real numbers) and for each 1 € I, X; = {0, 1} with the discrete topology,
then the product space IlicrX; is cce but not separable [10, p. 51]. A simple
example of a topological space which is not cec is any uncountable set with the
discrete topology. In a 1947 paper {12], E. Marczewski gave a proof (which
may also be found in [15]} of Pondiczery’s theorem that the product of at most
| R | separable spaces is separable; and he raised the question as to whether the
product of (just} two cee spaces is a ccc space. It turns cut that special axioms
are needed to answer this question: it has a negative answer in the presence
of the Continuum Hypothesis {CH) and an affirmative answer when Martin’s
Axiom and the negation of CH are assumed. The main goal of this paper is to
give fairly self-contained proofs of these two assertions, which we do in Sections
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2 and 3. Related topics (Souslin’s Hypothesis, Property (K)} are touched upon
in Sections 4 and 5. None of the results and proofs are new.

First, some preliminaries. Let us recall that an ordinal number may be
identified with the set of all smaller ordinal numbers; thus for ordinals o and
B, the statements « < 3, aef, and a C B are all equivalent. The smallest
infinite ordinal and the smallest uncountable ordinal will be denoted by w and
w; respectively. We will need the fact that w and w; are also cardinal numbers.
(A good reference for cardinal and ordinal numbers is [6].) The cardinality
of the set of all functions from w to 2 is 2¥, and 2¥ =| R |. The Coniinuvum
Hypothesis (CH) is the statement wy; = 2°. The negation of C'H, denoted here
by ~C H, is therefore the statement wy < 2¥. Gédel and Cohen proved that CH
is independent of the usual axioms of set theory, namely, the Zermelo-Fraenkel
axioms together with the Axiom of Choice (usually denoted by ZFC).

We review the definition of the Gleason space of a topological space X, for
use several times in the sequel. An open subset U of X is called 2 regular open
set if U is equal to the interior of its closure, e, U = (T, The set R(X} of
all regular open subsets of X forms a complete Boolean algebra with respect
to the operations U AV = UNV,UVV = (TUV), and U’ = (X\U)°. The
Gleason space of X, denoted here by G(X), is the Stone space of R(X}. The
space G(X) is constructed as follows. A subset F of R{X) is called a filter of
R(XYiE (1) ¢ ¢ F, (i) UNVeF for all U, VeF, and (iit) VeF if U C V and
UeF. An wultrafilter of R(X) is a filter which is not properly contained in any
filter of R(X ). Then G(X) is the set of all ultrafilters of R{X). For each open
set U in X, let o

U* = {FeG(X): (U)FeF).

With the topology determined by the base {U* : U is open in X}, the Gleason
space G(X) is compact, Hausdorff and extremally disconnected; and if X is a
cee space, then so 1s G{X).

The cardinality of a set X will be denoted by | X |.

We will need the following delte system lemma several times. [t is so called
because the family B is a delta system.

Lemma. Let G be an uncountable fomily of finite sets. Theﬁ there 13 an
uncountable subfamily B of G and a fized set R such that ANB = R whenever
A and B are distinet members of B.

Proof: [8, p. 225]. Since G is uncountable and the sets are finite, there
must be uncountably many members of § with the same number of elements;
therefore we may assume that for some n,| X |= n for 2ll X in G. We proceed
by induction on n. For n = 1, we may take R = ¢. Assume that the lemma
holds for n = k and let § be an uncountable family of sets each of which has
k + 1 elements.
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If there is some point ¢ which belongs to each set in an uncountable subfamily
C of G, then the induction hypothesis may be applied to the family {X\{a} :
XeC) to yield an uncountable subfamily B of C and a finite set R such that

(X\{ehn{¥\{eh) =R
for any distinet X and ¥ in B. Then X NY = RV {a} for any distinct X and
Y in B.

Otherwise, each element a belongs to only countably many members of G,
and we construct a disjoint subfamily B = {X, ! & < w1} of G by transfinite
induction on «, as follows. Assume that we have constructed X, for all a < 3.
Then each element of the countable set Uy <X, belongs to at most countably
many members of G, so there is some X in G which is disjoint from U,cgXa.
Let Xg = X and the proof is complete. B

2. Martin’s Axiom and products of ccc spaces

Martin's Axiom [13] states that no compact Hausdorff ccc space is the union
of fewer than 2% nowhere dense sets. Observe that Martin’s Axiom (hence-
forth denoted by M A) is implied by the Continuum Hypothesis because under
CH, M A is an immediate consequence of the Baire category theorem. However,
MA = CH because, as is shown in [19], there 1s a model of ZFC in which
MA holds and wy < 2%,

In this section we prove that (M A+ ~C H) implies that every product of ccc

spaces 1s & ccc space, and we do it with the kelp of an interesting theorem about
products of cecc spaces {Theorem 2.2} whose proof requires no special axioms.

Lemma. [17,p. 16]. (M A+~CH) implies that if X is a compact Hausdorff
cee space, then any uncountable family g = {Uy : @ < w1} of nonempty open
sets has a cerdinality @y subfamily with nonempty intersection.

Proof: Consider the set S of all families of disjoint nonempty open subsets of
X with the property that if F¢S5| then each member of F meets only countable
many members of G. If § is empty, we are through. So suppose that § is not
empty. Then by Zorn’s lemma, 5 has a maximal member, say F. Since X is
a cce space, F is countable. Hence there is a member V of G which does not
meet any member of F. Then, because F is maximal, any open subset of ¥V
must intersect w, members of G. For each 8 < wy, define

Hg = ?\(Uc,)gUa)‘

Then Hg is nowhere dense in the compact Hausdorff ccc space V. (V is cee
because V is.) Hence (M A + ~CH) implies that V # Ugc,, Hs. Thus there is
v in V such that v ¢ Upc., Hg, and therefore v belongs to wy Uy ’s.

The following theoremn (more generally, Corollary 2.4) was proved indepen-
dently by K. Kunen, F. Rowbottom, and R.M. Solovay. (See [5, p. 34].) The

basic ideas in our proof are from [17, p. 17].



176 N.M. RoY

Theorem 2.1. (MA + ~CH) implies that if X and Y are ccc spaces, then
X xY is a cce space.

Proof: Suppose that {Us : @ < w;} is an uncountable family of nonempty
open subsets of X x Y. We will show that there are two members of this family
which intersect. By shrinking if neccessary, we may assume that each U, is
basic. Then there are open sets ¥V, C X and W, C Y such that U, = V, x W,.
The Gleason spaces, G{X) and G(Y), of X and Y are compact, Hausdorff and
cee. Hence by the lemma above, there is an uncountable subset D of wy such
that

ncrsDVg: 7é ¢’ and Nach W; ?é ¢

(Recall from Section 1 that U* is the set of all ultrafilters which contain (I)°.)
Let 8, yeD with 8 # . Then

(V3 (V' # 6 and (W)° N (W, # 6.

Hence V3NV, # ¢ and WgNW, # ¢, and it follows easily that UgNT,, # ¢. B

The ccc has the interesting property that if the product of any two cce spaces
is a ccc space, then the product of any number of ccc spaces is a cce space. To
see this, assume that cec is preserved by products of two spaces. Then by
induction, it is preserved by products with a finite numbers of factors. Then by
the following theorem (which seems to have originated in [14]), it is preserved
by arbitrary products.

Theorem 2.2. Suppose that {X; : iel} is a family of topological spaces such
that 1. s X; is a ccc space for every finite J C I. Then Il s X; is a ccc space,

Proof: [10, p. 51]. Let X = II;,;X, and suppose that there exists an un-
countable family {U, : @ < w;} of disjoint nonempty open subsets of X. As
before, we may assume that each U, is basic. Then by definition of the pro-
duct topology, for each o < w; there is a finite subset F, of I such that
Uy = N{P7}(V;) : ieF,}, where P; is the projection of X onto X;, and V;
is open in X;. By the delta system lemma of Section 1, there is an uncoun-
table subset D of w; and a set R such that F, N F3 = R whenever «, feD
and F, # Fs. Note that R cannot be empty because Fy N Fg = ¢ implies
U, NUsz = ¢. For each e in D, let P(U,) = liepPi(Us). 1t is not hard to
verify that {P(I/,) : @eD} is an uncountable family of disjoint nonempty open
subsets of II; g X;, which is a contradiction. B '

Since a finite product of separable spaces is separable, the following corollary
is an immediate consequence of Theorem 2.2.

Corollary 2.3. If {X; :iel} is a family of separable spaces, then Ik s X; ts
4 cce space.
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Corollary 2.4. (MA + -~CH) implies that if {X; : iel} is a family of ccc
spaces, then I, X, i3 e ccc space.

Other consequences of {M A4 + ~CH), not all topological, may be found in
(4] and [18].

3. The Laver—Galvin example

In this section we describe the example due to R. Laver and F. Galvin [5],
which assumes C'H, of cce spaces Xp and X, such that X, x X is not a cce
space. This will lead (via Gleason spaces) to & compact Hausdorff extremally
disconnected cce space X whose square is not a cce space. The material in this
section is adapted from [2] and [5].

The following lemma can be proved by induction, A proof of a somewhat
more general result may be found in [2, p. 190].

Lemma 3.1. Let A be a set end for each n < w, let {F, , 1 iel,} be a family
of disyoint finite subseis of A with | I, |= w. Then there are two subseis Ap
and A; of A such that

| {iel, - F,, C A} |=w

foralln <w and ¥t =0, 1.

Lemma 3.2. Assume that w; = 2. Then there gre two famalies {Kq(a) :
a <uw ), {Ki{o): o <w ) of subsets of wy such that
(i) Ko{a)U Ki{a) = & for all @ < wy, and
(i) B F = {F; : i < w} i3 a countably infinite fomily of disjoint finite subsets
of wy, then there is an ordinal A (depending on F) with A < wy, such that if
A<a<u, UF Cea, X 13 e fimite subsef of a,te{0,1} and

[ {t <w: F C AAKUB)VPeX} |= w,

then

[ {z <w: F, C B\K:(f) VBeX U {a} |= w.

Proof: We begin by computing, under CH, the cardinality of the set § of
all countably infinite farnilies of disjoint finite subsets of wy. Clearly | § | wy
since for each ordinal & such that w < & < w;, the family of « singletons is
countably infinite and disjoint. To see that | § |< w;, first note that the set of
all finite subsets of w, has cardinality

wit )+ @)l + o =m o e+ S ww = s

Hence .
| S [€wy ={2¥) =2¥ =2¥ = w,..
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Thus | § |= w;. Let {Fx: A <w;} be a well-ordering of § in such a way that
for each ) < w, the members of F are subsets of w.

In what follows, F;  denotes the ith member of the family Fj.

We now define the sets Koo}, Ky{a) by recursion. We set Ky{a) =.a for
t=0,1 and a € w. Let w < @ < wy and suppose that K,;(a'} has been defined
for + = 0,1 and o' < «. Consider the set of all triples (¢, A, X} such that
te{0,1}, A < @, UF) C o, X is a finite subset of o, and

| {i <w: Fix C B\Ke(B) VBeX) |= w.

This set of triples is countably infinite because X can be the empty set, and if
) < w then certainly UF, C o. Let {{tn, A, Xn): n < w} be an enumeration
of this set, and for each n < w let

L ={i <w: F 5, CH\K.,(B)VBeX}

Then | I, |= w, hence we may apply Lemma 3.1 with A and F; , replaced by
« and F; , respectively; then there are disjoint subsets Lo{a) and L,{a) of &
such that

| {2l : F;a, C Ly(a}} |=w

forn <wandi =201 Weset
Koy = a\Li(a) fort =0,1.

Let us verify that properties {i} and (it} are satisfied.
(i) Clearly Ko(a)UK;(a) = a because Lo{e) and L;(e) are disjoint subsets
of a.
(i) Let F = {F; : i < w} be 2 countably infinite family of disjoint finite
subsets of wy. Then F = F, for some A < w;. Suppose that A < & < w,,
UFy C @, X is a finite subset of a,te{0,1}, and

[{i <w: Fix C A\K(B) VBeX} |= w.
Then (£, A, X} = (s, An, Xn) for some n < w. Hence if we let
J = {ieln 1 Fi,5x C L{a)},
then | J |[=w. Let
H={i <w: Fy CHKF) VBeX U {a}}.

QOur goal is to show that | H |= w, and we will do this by proving that
J C H. Let ieJ. Then Fi s C Lo}, hence Fi y C a\K.(a). Because
iel, we have

Fiax CA\K(B)VBeX
Thus
Fix C AK{B) ¥BeX U {a},

and so teH. Therefore J C H and the proof is complete. B
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Theorem 3.3. Assume that wy = 2¥. Then there are ccc spaces Xg and X,
such that Xo x X is nei e ccc space.

Proof: For te{0,1},1et {K (o} : o < w;} be the family of Lemma 3.2 and let
X, be the set of all functions on wy to {0,1}. Set

Vi{a) = {zeX, 1z | Ky(a) =0, z{a) = 1} for a < wy,

and give X, the topology determined by the subbase {Vi(a) : @ < wy}. The
space Xo X X is not cce because the uncountable family

{Vole) x Vi(e) 1 a < w}

consists of disjoint nonempty open sets. To see that they are disjoint, suppose
that there are a, ¢’ with o < &' < wy and

(zg, 21 )e(Vola} x Wi(a)) N(Vo(a) x Vi{a')).

Then since
aea’ = Kp({a') U Ky(a').

ael(a') for some ¢ in {0,1}; for this ¢, we have z,(a) = O and 2,{a) = 1, 2
contradiction.

We now verify that X, and X, are ccc spaces. Let #e{0,1} and let {U; i <
w1} be an uncountable family of nenempty basic open subsets of X,. For each
1 < w there is a finite subset G; of wy such that

Ui = ﬂcuG.-V;!(a)-

Then
(Uge, Ke(a)) NG, = ¢ for all ¢ < wy.

This is so because if we choose z in U;, then zeVi{a) for all & in G;, hence
|G, =1 and 2 | Uyes, Kila) = 0. Thus the intersection is empty. Applying
now the delta system lemma of Section 1 to the family {G;}, we may assume
without loss of generality that there is a set R such that G;NG = R whenever
1 <1 <wy Let Fi = G\R for each i < w;. Thenif i < ¢’ <w; and v ¢ K((f)
for all yeF; and BeF,, it follows that U; N Uy # ¢. We outline the verification.
First show that
Gin (Ucr(G,-p K;(Or)} =¢

and
G M Ugei, Ki(a)) = ¢.

it then follows that

(Gi U G!') M (Uc.veG.-UG,-; K:(&')) = ¢.
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Now choose z in Xy such that z | G, UGy =1 and
z l UOréG.‘UG,-i I{t(a) =4

Then zel7; N U, Thus to prove that {U; : 7 < w;} is not a disjoint family, it is
enough to show that there are ¢, i’ such that { < ¢ < w; and v € K,{3) for all
veF; and BeFy. Set F = {F; :i < w} and let A < w; be an ordinal satisfying
condition (i) of Lemma 3.2 for 7. We may assume that UF C A. Because
X+ 1is countable and {F;: w < i < wy} is uncountable, there is an ordinal &
such that w < ' <w, and A < e forall ¢ in Fyr. Then UF C e for all @ in Fy.
If Fy = ¢, then for any ¢ < ¢’ we have that v ¢ K{f) for all yeF} and fefi.
Therefore we assume that Fir # ¢ and we let {o,a2,...,aa} be the elements
of Fi in the order inherited from w;. We note that

| { < w: Fy € B\K (B} VBed} |=w
and we apply condition (it} of Lemma 3.2 successively n times with
& =, %2, .., %n

and
X = é:{“l}:{ahaz}:- ..,{0’11,0{2)...,&“_]}

correspondingly. Hence
| {# <w: F; C B\KA(B)VBeFu} |=w

In particular, there is i < w such that v ¢ K,(8) for all yeF, and BeFy. Thus
U,NU, # ¢ and so X, is a cce space.

Corollary. Assuming CH, there is @ compact Hausdorff extremally discon-
nected cec space X such that X x X s not o ccc space.

Proof: Let Xy and X; be the cec spaces of the above theorem and let X
be the disjoint union of the Gleason spaces G{X,) and G{X;). Then X is
compact, Hausdorff, extremally disconnected and cec because both G{X;) and
G{X:) are. To prove that X x X is not a ccc space, it is enough to show that
G(X¢) x G(X:) is not a cce space because G(Xo) x G{X;) is homeomorphic to
an open {and closed) subset of X x X. Let {U;xV}:i « wi } be an uncountable
family of disjoint nonempty basic open subsets of Xy x X;. Then, as is not
too difficult to verify, {U? x V* : ¢ < w,} is an uncountable family of disjoint
nonempty open subsets of G(Xg) x G{X1). Thus G(X,) x G(X,) is not a ccc
space. W

Before leaving this section we remark that S. Argyros, S. Mercourakis and
S. Negrepontis have proved the existence, under CH, of a Corson—compact cce
space whose square is not cee [1].
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4. The Souslin problem

Suppose that X is a totally ordered setf satisfying
(2} X has no first or last element,
(b} X is connected in the order topology, and
{¢) X is separable in the order tepology.
Then X is linearly isomorphic to B. {A proof is in [3, p.8).) In 1920, the
Russian mathematician M. Souslin [20] asked whether (c) can be replaced by
{¢') X is eccc in the order topology.

A positive answer to Souslin’s question has come te be known as Souslin’s
Hyypothesis (§H). The axiom SH is undecidable in ZFC and is implied by
(MA+-CH)([7T],]21], [19]). Indeed, to quote D. Fremin [4, p. 184], Souskin’s
problem was the originel stimulus for the invention of Martin’s aziom.

A Soushin line is a totally ordered set satisfying properties (a), (b) and (¢},
but not {c). Thus the existence of a Souslin line 1s eguivalent to the negation
of SH. G. Kurepa proved [11] that if X is a Souslin line, then X x X is not a
cee space. (A proof may be found in [10, p. 66].) There is also the notion of a
Souslin tree; it is shown in [18] that the existence of a Souslin tree is equivalent
to the existence of a Soushn line.

5. Property (&)

A topological space is said to have property (K} (after Knaster [9]) if each
uncountable family of open sets contains an uncountable subfamily in which
every two scts have nonempty intersection. Clearly every space with property
{K) is a cce space. The converse is true under (M A + -CH) [4, Theorem 41
A] and is false under CH. To verify the latter, we make use of Marczewski’s
theorem [12] that a product of spaces has property {K) if (and only if) each
space has property (/). Recall from Section 3 that there exists, under CH,
a ccc space X such that X x X 1s not a cce space. Then X does not have
property (K} because otherwise X x X would have property () and thus be
a cec space.

The reader has probably noticed thai ancther approach (in Section 2) to
proving that (M A + -~CH) implies that a product of cec spaces is a ccc space
would be to combine Fremlin’s theorem that under (MA + ~CH) every ccc
space has property (A}, with Marczewski’s theorem quoted above.

For open problems and additional references involving ccc spaces, the reader
may consult [2, Chapter 7] and (4, § 44).
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