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Abstract

ERGODIC RESULTS FOR CERTAIN
CONTRACTIONS

ON ORLICZ SPACES WITH FIXED POINTS

DIEGO GALLARDO

Let (X, M,¡¿) be a o-finite measure space, Lo - Lo (X, M, ti) an Orlicz
space associated to an N-function 0 and let T : Lp ~ Lp be a linear
operator with a fixed point h qÉ 0 a.e ., such that

o(ITfI)dp <_ f 0(Ifl)dp

	

(f E LO)
Jx x

and it is either a II 11 1 -contraction in L<p n L l or a II 11 .-contraction in
L<p n L. . The main result of this paper is that for a wide class of N-
functions 0, the ergodic maximal operator associated to T is bounded in
L<p . Moreover, for every f E Lo we have the almost everywhere con-
vergence and the norm convergente of certain weighted averages which
include the Césáro averages .

1 . Introduction and preliminaries

Let (X,M, lc) be a u-finite measure space and Lo - Lo(X,M, ju) and Orlicz
space associated to an N-function 0 (Lo may be a complex Banach space) . In
this paper we will consider linear operators T such that

1 ) fx0(ITfI)dp<_ fx0(1fj)dM, f E La
ii) T has a fixed point h, h 7É 0 a.e .
iii) T is either a 11

	

11 1 -contraction in Lo n Ll or a 11

	

11,,-contraction in
Lo n L..
The main aim of this paper is to prove that, for a wide class of N-functions

~, ¡he ergodic maximal operator MT defined by

1
n_1

(1.1)

	

MTf =supl-~Tkf~
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is bounded in Lp (dominated ergodic theorem) . Moreover, we shall prove that
if {bk} is a bounded Besicovitch sequence, then for every f E Lp there exists
f* E Lo such that

lim 1

	

bkTkf(x) = f*(x)

	

a.e.,
n-oo n k=0

A sequence of complex numbers

	

{bk} is called a Besicovitch sequence if for
every e > 0 there exisis a trigonometric polynomial cYE such that

1 n-1

limsup- 1: 1bk - aE(k)¡ < e.
n_oo n k=0

1 n-1

lim 11

	

1: bkT
n-. n k=0

As a special case we obtain the almost everywhere convergence (individual er-
godic theorem) and the norm convergence (mean ergodic theorem) of the Césiaro-
averages n-1 (f +Tf + - - - + Tn-1f).

In the real Lp-case, with 1 < p < oo, and (X, .M, p) a finite measure space
the corresponding dominated ergodic theorem is proved by A. de la Torre in
[10] . R . Sato proved in [9] that the de la Torres result may be extended to
the case (X, ,M, p) v-finite and a complex Lp-space . The ergodic result for an
operator which only satisfies conditions i) and iii) is an open problem even in
the Lp-case, 1 < p < oo.
The bounded Besicovitch sequences as weights in the averages were used by

J.H . Olsen in [8] .
In order to obtain the dominated ergodic theorem we first need some ex-

trapoldion theorems which extend the ones given by M .A . Akcoglu and R.V.
Chacon in [1] and R. Sato in [9], for Lp , 1 < p < oo .
Now, we shall present the basic definitions and results concerning to N-

functions and Orlicz spaces which will be used in this paper . The proofs of
most of there results can be found in [5] or in II-13 of [7] .
An N-function is a coniinuous and convex function 0 : [0, oe)-~ R such that

O(s) > 0, s > 0, s-1 0(s) ) 0 as s --> 0 and s-1 O(s) -> oo as s -) oo.
The function .0 is an N-function if and only if it has the representation

O(s) = fo co where ;o : [0, oo) -> R is continuous from the right, non decreasing
such that cp(s) > 0, s > 0, W(O) = 0 and cp(s))oe as s)oo . More precisely
cp is the right derivate of 0 and will be called the density function of 0 .

Associated to ep we have the function p : [0, oo) -+ R defined by p(t) _
sup{s : ~o(s) < t} which has the same aforementioned properties of cp . We will
call p ¡he generalized inverse of cp .

The N-function 0 defined by O(t) = fo p is called ¡he complemeniary N-
function of 0 . Thus, if O(s) = p-1 sp , p > 1, then O(t) = q-1 t9 where
pq=p+q.
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Young's inequality asserts that st <_ O(s) -{- O(t) for s, t >_ 0, equality holding
if and only if cp(s-) < t < W(s) or else p(t-) < s < p(t) (See [3]) .

If 01 and 02 are N-functions with complementary N-functions given by 01
and 02 respectively, then, ¡he inequality for complementary functions asserts
that if 01(8) <_ 02(8) for s >_ s o , then 02(1) _< 01(t) for t >_ 422(80), where W2 is
the density function of Y'2 .
An N-function 0 is said to satisfy the ¿nS2 - condition in [s o , 00), s o _> 0, if

there exists a constant a such that ¢(2s) < ceo(s) for every s > so .
If cp is the density function of 0, then 0 satisfies 02 in [so, oo) if and only if

there exists a constant a > 1 such that scp(s) < ao(s) , s > so .
The Z~2 -condition for ¢ does not transfer necessarily to the complementary

N-function.
If (X, M, h) is a Q-finite measure space we denote by M = M(X, M, lí)

the space of M-measurable and p-a.e . finite functions from X ro R or to
C . If 0 is an N-function we consider the Orlicz spaces Lp - LO (X,M, ¡i)
and Lp* - L,5* (X,M, y) defined by Lo = {f E M : fx O(Ifj)dlc < oo} and
L,p* = {f E M : fg E L1 for all g E Lo } where 0 is the complementary
N-function of 0 . We have Lo C Lo * and if 0 satisfies 2~12 then Lo = L,5* .

We have that Lp* is a linear space with the usual operations on which we
may define the norms Ilf ¡lo = sup{fx JfgI dh : g E Sp}, where S,p = {g E
L,p : fx 0(1g1)dp 5 1}, and lif11(0) = inf{A > 0 : fx 0(A-1 jfj)dh < 1} which
are called Orlicz norm and Luxemburg norm respectively. Both norms are
equivalent .

Holder's inequality asserts that for every f E Lp* and every g E Lp* we have
jjfgjjl < jif 11(0)lIgil~p where ¢ and 0 are complementary N-functions .

If O(s) = sp with p > 1 then Lp* = Lo = Lp, jif11(0) = Ijllp and ligllp = ligli9
where pq = p -f- q .
The convergente fn --> f in [Lo*j

	

110) implies the mean convergente
lima-. fjfn - f j)dp = 0 but, in general, mean convergente only implies
norm convergente when ¢ satisfies ZN2 . Then the set S of simple functions
(with support of finite measure) is dense in [Ls, 11

	

jj<p] if 0 satisfies 02 .

If 0 verifies 1n12, then for every continuous linear functional F over [Lk, 11
there exists an unique function g E L,p* such that F(f) = fx fgdp, f E LO,
and moreover JIF11(,p) = ligijo, where 0 is the complementary N-function of 0,
but if 0 does not satisfy ¿n12 then there exist linear functionals on LS* which
are not represented by functions of L,p* .

If 0 and 0 satisfy Ini2 then [LO, 11 11(0)] is reflexive .
In the following, we shall always assume that (X, M, y) is a a-finite measure

space and 0, together with its complementary N-function 0, satisfy the ¿n12 -
condition in [0, oo) . The '~12 -condition for 0 is a very important condition that
plays fundamental roles in many questions and the best known Orlicz spaces
are associated to functions which satisfy ¿n12 . The \ 2-condition for 0 may seem
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to be a restrictiva assumption . Some know Orlicz spaces as, for example, the
Zygmund Orlicz space LLog L and the LLogk L spaces, k > 0, are associated
to N-functions which satisfy Inl2 but their complementary N-functions do not ;
but the above spaces do not satisfy our dominated ergodic result . In fact ¡he
A2-condition for the complementary N-function is necessary for such result .

Precisely, let ([0,11, B, A) be the Lebesgue-space and let r an invertible A-
measure preserving transformation from [0,1] into itself . In [2] B . Bru and
H. Heinich characterize the Orlicz spaces, associated to Young's functions, for
which the ergodic maximal operator associated to the operator T, defined by
Tf = f o r-1 , is bounded in Lo (classical dominated ergodic theorem) (the
Young's functions in [2] are our N-functions) . The characterizing condition
given in [2] is the condition of comoderation on 0 .
The function 0 is said to be comoderated if there exist so , a and b > 1

such that cp(as) >_ bep(s) for s >_ s o , where cp is the density function of 0 or,
equivalently, if there exist so , a and b > 1 such that ¢(as) >_ abO(s) for s >_ so
(in [2] a function continuous from the left is taken as density function of
whereas our density function is right continuous) .
The papar [21 does not establisch the equivalence between the comoderation

of ¢ and the moderation (Ini2 - condition in some [t o, oo)) of the complementary
N-function 0 unless cp be continuous . However, we observe that the comode-
ration of 0 is equivalent to the moderation of 0. At the same time, we shall
prove another characterization of the moderation of 0, which is usad in this
paper, and which appear in [2], [5] and in the test of the literature with more
restrictiva hypothesis . Exactly :

Proposition 1.2 . Let 0 be an N-function and 0 the complementary N-
function of 0. The following conditions are equivalent:

a)

	

is comoderated.
b)

	

is moderated.
c) There exist so and ,l > 1 such that QO(s) < scp(s) for s > so .

Proof. a) ===> b) . If 0 is comoderated then ¢(s) <_ 01(s) for s >_ so where 01
is the N-function given by 01 (s) = (ab)-1O(as) . The complementary function
of Y'1 is given by 01(t) = (ab)-'O(bt). Taking into account the inequality for
complementary N-functions we obtain that O(bt) < abo(t) for t >_ t o = epl(so),
where b > 1, which equivales to condition ¿nl2 of 0 for t >_ to .

b) ==:> c) . Let p be the generalizad-inversa of cp . Since zp is moderated there
exist to and a > 1 such that tp(t) <_ a0(t) for every t >_ t o . On the other
hand, it follows from the equality cases in Young's inequality that tp(t) _
«p(t)) + O(t) and therefore

O(P(t» :5 a-1 (a - 1)tp(t),

	

t >to .

Then, since p(~o(s» > s and the function u --> u-10(u) increases for u > 0 we
obtain

s-10) :5 0MM)/PMS» C a-1 (a - 1)~o(s),

	

s ? P(to)



ERGODIC RESULTS FOR CONTRACTIONS

	

7

and thus we obtain c) with so = p(to) and 0 = a(a - 1) -1 > 1 .
c) ==:> a) . Condition c) implies that there exist s o and fl > 1 such that the

function s % s -Q«s) increases for s >_ s o (or for s > so if s o = 0) . Then, if
a > 1 is such that aQ-1 >_ 2 we have O(as) > aOO(s) > 2ao(s) for s >_ so and
thus we obtain the comoderation of 0 .

Note. Since cp(0) = p(0) = 0, if some of the conditions of Proposition 1.2
is satisfied for every s >_ 0, then the others two conditions are also valids for
every s > 0 .

In this way, the moderation of 0 is necessary for the classical dominated
ergodic result and, therefore, for our dominated ergodic result since that the
operator T, defined by Tf = fo-r-1 satisfies conditions i), ii) and iii), whatever
the N-function 0 may be . On the other hand, the space ([0,1],13, A) is of finite
measure and our spaces can be of infinite measure . For this reason we shall
assume the InS2 -condition in [0, oo), but un the case p(X) < oo the argument
which we shall use can be adapted if only we suppose the A2-condition in some
[so, 00) .
Our results are valid, for example, for the known Lp Logk L spaces; with

p > 1 and k >_ 0, since the N-functions of the form ¢(s) = sp logk (1 + s) satisfy
that 1 < p < O(s)/scp(s) < p + b for every s > 0 and certain constant b.

2. Extrapolation Theorems

We first observe that the convexity theorem for positive operators given by
M.A. Akcoglu and R.V . Chacon in [1] can be easily extended to Orlicz spaces,
following the same type of arguments, as follows

Proposition 2 .1 . Let ¢ be an N-function strictly convex in some interval
and le¡ T be a conservative positive contraction in . L1 such that

(2.2)

	

L,
0(ITf I)dh :5

IX O(1fI)dfí ,

	

(f EL, n LO) .

Then, 11Tf ¡l. < IIf 1I,, for every f E L1 n L~ .

Proof. The operator T is said to be conservative when p(D) = 0, where D
is the dissipative part of X with respect to T .

First assume that M(X) < oo. It is enough to prove that Tc _< c almost
everywhere for some constant c qÉ 0 .
We have that co increases strictly in some interval I, where yo is the density

function of 0. Let c E I with c qÉ 0 . Then, we get that

(2.3)

	

O(c + s) > O(c) + scp(c)

	

(0 :~ s > -c) .

Since T is conservative we have fXTfdp = fX fdp for every f E L1 .
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Let Tc(x)

	

= c + g(x);

	

then fx gdp

	

= 0 and therefore if p{x

	

E

	

X
g(x) >0}>0wehave

f 0(ITc1)dh >
J

O(c)du,
x

	

x

which contradicts (2.2) . This proves that Tc < c .

The general case follows from the preceding by a method similar to the one
given in [1] using the following result :

Lemma 2.4 . Let 0 be an N-function and T a positive contraction in Ll
satisfing (2.2). Then, for every A E 11,i there exists a linear operator

TA : L,(A) -3 Ll(A) such that
a) TA is a positive contraction in Ll (A) and

.)[X
0(ITAf1)dp :5

Ix
0(jfl)d[t , (f EL,(A) n Lo(A)) .

b) For every f E Ll +(A) and every n > 1

1: Tkf(x) < ETAkf(x)

	

a . e. in A.
k=0 k=0

The proof of Lemma 2.4 can be obtained easily following the argumenta of

Remarks .
1 . The conservative condition of T cannot be eliminated from the hypot-

hesis of Proposition 2.1 since in R with Lebesgue-measure if Tf(x) = -,í2-f(2x)
then T is a positive contraction in Ll, an isometry in L2 but 11Tf Ij,>,>
v"2- 1If11

2 . There exist N-function which are strictly convex over no interval . An
example is the following . We consider the dyadic intervals In = [2n-1 , 2n) and
Jn = [2-n , 2-n+1) where n is a positive integer and let c,o : [0, oo) -+ [0, oo) be
defined by cp(0) = 0, W(t) = 2-n if t E Jn and cp(t) = 2n-1 if t E In. Then ¢
defined by ¢(s) = fo ep is an N-function . Since 0(2s) = 4«s) we have that 0,
as well as its complementary N-function, satisfy the ¿n12 -condition . However 0
is not strictly convex over any interval . Furthemore there is no constant c :,~ 0
such that (2.3) holds .

However most of N-functions are strictly convex in some interval .
In the following results the operators are not necessarily positive but they

have a fixed point h with h :~ 0 a.e.



Theorem 2.5 . Let 0 be an N-function, strictly convex in some inierval and
let T: Lo -> Lo be a linear operator such that

Then, IITf Ii . < IlfII<>~ for every f E Ll n L,,. and consequently for every
f E Lo n L,,.

Proof.. In this proof we follows the idea given by Sato in [9] .
Let k be such that O(s) < s for 0 < s < k.

	

Given f E Ll n L,,,, let
B = {x E X:

	

If(x)l >_ k} ; then M(B) < oo and therefore fx 0(If I)dp <_

llfll1 -}- p(B)0(11f II) < oo. Consequently Ll n L,,. C Lo .
Let T : L l -> L1 be the linear extension of T : [L, n Lo , II

	

11,1 --, Ll and
P the linear modulus of T. (See Theorem 4.1.1 in [6]) . We shall prove that
P satisfles the hypothesesof Proposition 2.1 and therefore 11Pfll<,. < Ilf II~
f E Ll n L,,. ; in this way, since ITf I <_ Pif I , f E L1 , and Ll n L. C Ll n Lo
we obtain that 11Tf II

	

< lif l¡., f E Ll n L,,,, and consequently for every
f E Lo n L,,, since Ll n L,,, is dense in Lo n L,,,, with the L,,-norm .
Now, we show that P satisfles the conditions of Proposition 2.1 . The A2-

condition implies that L 1 n Lo is dense in [Lo , II II(o)] . On the other hand, it
follows from i) that 11Tf 11 (0) < llfll(0) , f E Lo, and consequently given e > 0
there is fE E Ll n Lo such that for every n > 1

(2.6)
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i) fx 0(ITf1)dju , <- fx O(Ifl)dIt,

	

(f E LO) .
ii> IITf1I1 < Ilf1I1,

	

(f E Ll n LO) .
iii) There exists h E LO , h :~ 0 a. e., such that Th = h.

1
n-1

Ilh-

	

1: Tkf,ll(m) -5E/2 .
k=0

If T is a power bounded linear operator in a reflexive Banach space V, that is,
the powers Tk , k > 0, are uniformly bounded in V, then the Césáro-averages .

[6
Lef fE* be the limit in [LO , II

	

II(0)] of Rn f£ . It follows from (2.6) that for
0 < e < 1 we have II h - fÉ II (m) < e and consequently

(2.7)

1 n-1
Rnf = n E Tkf

k=0

converge in norm to a T-invariant limit for all f E V (See Theorem 2.1 .2 in

Ix 0(Ih - fé * j)dp < e .

On the other hand, fE *(x) = 0 for a.e. x E D, where D is the dissipa,tive
part of X with respect to P, since (Theorem 3.1 .6 in [6]) Ek>0 Pk f(x) < 00
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on D for all f E L1 + . Since 0(Ihj) > 0 a.e . (2.7) shows that p(D) = 0 and thus
P is conservative .

Now, in order to prove that P satisfies condition (2.2) we consider the Akcoglu
and Brunel's theorem related with the structure of T on the conservative part
C of X with respect to P (see Theorem 4.1.10 in [6]) . Let .'F be the family of
P-absorbing subsets of C; there exists a set F E .'F and a function s E L,,.(F),
with ¡si = 1 on F, such that Tf = jP(sf) for any f E Ll(I'), where s is the
complex conjugate of s, and if ¿ni = C-F then (I'-T)L,(Li) is dense in L, (o).
We have that supp T(Xrh) C F and supp T(Xoh) C ¿ni ; therefore Tg = g

where g = Xoh. Carryng out a similar reasoning to the used for h we have
that for every e > 0 there exist fE E Lj(o) n Lp(A) and f, * E Lo(A) such
that Ii9 - fE*jj(0) < E and limn,,> IIRnf, - fE * 1I(0) = 0.

Given 77 > 0 there is u,, E L1(0) such that ¡¡u,, - Tu. - fE ~Il < 71/2 and
therefore for every n >_ 1 we have lin-1 (un - Tnu,,) - Rn fj l = JIRn(un -
Tu,, - f.)¡¡1 < ij/2, which proves that limn-<, IIRnf,Ill = 0 and so fE*(x) _
0 a.e . This shows that Ijgjj(,p) = 0 and consequently M(A) = 0. Then, we
have Tf = sP(sf) for every f E L1 and therefore it follows from i) that
fx 0(IPfI )dp = fx 0(jjt(sf)I )dj¿ < fx « jfi)dp for every f E Ll n L,5 and
this finishes the proof .
Now, our aim is to prove that the roles of Ll and L,, in Theorem 2.5 can be

interchanged . For this we shall considerer the adjoint operator of T.
Let T : L<p -> Lp be a bounded linear operator ; more precisely, we suppose

that there is a constant C such that 1I Tf 11(0) <_ Cl i f 11(0), f E L,4 . Then, if
g E L b *, where 0 is the complementary N-function of 0, the linear functional
F over [LO , 11 jj( .p)] defined by F(f) = fx gTfdM is continuous since by Holder's
inequality we have IF(f)j < ClIgilplifjj(m) and therefore, since 0 satisfies ~1z,

there exists an unique function g* E L,p* such that fx gTfdp = fx fg*dp, f E
Lo . Then, we can define the bounded linear operator T* : Lp* -~ L,p*, g -~
T*g, where T*g is the function in L,p* such that

f 9Tfdh = f fT *9dlí,

	

f E Lo .
x

	

X

We shall call T* the adjoint operator of T. T* satisfies IIT*gllp <_ CIigil+p . In
our case we have

Lemma 2 .8 . Let T : Lo -+ Lo be a linear operator such that

Then, its adjoint operator T* satisfies

f 0(ITfi)dh <- f 0(If¡)dh

	

(f E Lm) .
x

	

x

(2.9)

	

f 0(IT*gl)dh <- f 0(Ig1)dli

	

(g E L~p)x

	

x
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and moreover, if T admits an invariant function h with h :~ 0 a. e., then there
exists g E L,y with g :~ 0 a. e., such that T*g = g .

Proof. We write sig z for z11x1 and by ú we denote the complex conjugate of
u . For g E Lo+ we have

(2.10)

	

I fIT*gldp = I I f(sigT*g)T*gdMI ~
J

	

IT(f sigT*g)IIgIdp <
x

	

x

	

x

<_
J

	

O(f)d~ +
J

	

p(1g1)dp .
x x

Let cp be the density function of ~ and p the generalized inverse of cp . Since
satisfies O2 there exists a > 1 such that sp(s) < aO(s) and therefore O(p(s)) _
sp(s) - O(s) < (a - 1)0(s) . Therefore, for every g E Lp the function p(IT*g1)
belongs to Lp+ and so (2.9) follows from (2 .10) for f = p(IT*g1) .
Now, let us assume that Th = h with h :~ 0 a.e . If cp is not continuous

then there exists an at most countable set of positive reals s l , s2, . . . , s,, where
cp is not continuous ; in this situation, Since h E L<p, it is easy to see that
{c > 0 : a{x E X : ¡s i i h(x)I = c} > 0} is at most countable and therefore
there exists A > 0 such that for every si we have

(2.11)

	

p{x EX: JA-lh(x)I = si} = 0.

In the case cp continuous (2.11) holds trivially with A = 1.

Let u = A-'h and g = cp(Iul)sigic . We have that g qÉ 0 a.e . and g E Lp Since
0 satisfies O2 . It follows from (2.9) that

(2.12)

	

J

	

Iulw(lul)dp =1 J uT*gdpi < J

	

IuIIT*gldp <- J

	

O(Iul)dp+
x

	

x x

	

x

0(IT*gl)dp :5
Ix

O(lul)dp +
Ix

0(,p(lul))dM = Ix
IulW(1ul)dít

and therefore

Jx
IuIIT*gldlz

= Jx
(0(Iu1) +,G(1T*gi))dp .

Then, Young's inequality shows that

(2.13)

	

IuT*gl =«Iu1)+0(IT*gl)

	

a.e .

It follows from (2.11) and (2.13) that IT*gl = cp(lul) a.e . On the other hand we
obtain from (2.12) that (sig u) sig T*u = 1 and therefore T*g = g which finishes
the proof of the Lemma.

Theorem 2.5 and Lemma 2.8 imply easy
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Theorem

2

.14 .

Let 0 be an N-function whose complementary N-function

is

strictly convex in some interval and let T

:

L<p -> Lo be a linear operator

such

that

i)

fx 0(ITfj)dp <- fx 0(Ifl)dp	

,

	

(f

E Lm)

.
ii)

IITf1I

.

< IIf11

.

	

,

	

(f

E L

.

n Lp)

.
iii)

There exists h E L<p, h

:~-

0 a

.e .,

such that Th = h

.
Then,

II Tf 111 <- IIf 111 for every f E L, n LO

.

Proof.

Let zk be the complementary N-function of 0 , T* -the adjoint operator

of

T and let {An } be an increasing sequence of measurable sets with h(An) < 00

and

X = UAn

.

Then, for every g E L, n L,p we have

J

	

IT*gIdít

= lim I	

gT(XA �

sigT*g)dpl <- IIgili

.
x

	

n-oo

IX,

Consequently,

IIT*gII

.

< IIgil

.

for every g E L,p n L

..

and therefore for any

f

E L1 n Lo and n > 1 we get I fx fT*(XA

�

si9Tf)dMI < IIf1I1 and thus

IITfil,

<- IIf¡Il

.

3 .

Ergodic results

Theorem

3

.1 .

(Dominated, individual and mean weighted ergodic theorem)

.
Let

0 and T satisfy the hypotheses of the extrapolation theorem 2

.5

or 2

.1/, .
Then

a)

The ergodic maximal operator MT-defined by (1

.1)

is bounded in

[LO,

II II(0)]

.
b) .If

{bk} is a bounded Besicovitch sequence, then for every f E LO there

exists

f* E Lo such that

1

n_,

lim

- L

.

b,Tkf(x)

.

= f*(x)	

a.

e

.

,

n-~oo

n

k=0 ~Il-YIbkTkf-f*11(0)=0 .
k=0

Proof.

Since L, n L,,,, C Lo it follows from Theorem 2

.5

or 2

.14

that T

:

L, n

Lo

-) L1 admits an unique extension T

:

L, -> L1 which is a Dunford-

Schwartz

operator, that is, IITf II 1 < IIf II 1 , f E L1, and IITf Iloo < II f II

.,
f

E L, n L,,

.

Therefore thé linear modulus P of T is also a Dunfort-Schwartz

operator .
Consequently,

for every f E L, and A > 0 we have (see Theorem 2

.3.2

in [4])

jí{x

E X

:

MPf(x) > A} < A-1 I Ifldli,

x

1

n-1

where

Mp is the maximal operator associated to P

.

Moreover, trivially,

IIMpfl¡ .<-IIfl¡.

forfEL,nL,,

.
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For f E Ll n Lo set fA = fXA(A) and fa = f - fa where A(A) = {x E X

If(x)I > A/2} . We have fa E L1 , fA E L1 n L. and therefore

(3.2)

	

fx
¢(Mpf)dp =

fo

w

W(A)p{x E X : MPf(x) > X }dA <

< 2
f

~

	

-1sP(A)(
f

I faidp)dA = 2
f

If(x)I
(f

Zlf(Z)I
\
-1 w(A)dA)dh(x) ,

o

	

x

	

x o

where cp is the density function of ¢ .
Integrating by parts, we obtain

(3.3)

	

J

s

A- 1W(A)dA = s-10(-,)+
J

s

a -20(A)dA

	

,

	

(s > 0) .
0

	

0

Since the N-function complementary of0 satisfles '~12 there exists a constant
/j > 1 such that Ño(s) <_ scp(s) , s >_ 0 ; then, if 0 < A < 1 we have that

0(1) 0-2 and therefore f(o s1
~X-20(A)dA < oo . Then, (3.3) shows

f

9

-1 ~(a)da < Q(Ñ - 1)-1s-1~(s) ,(s>0).

Hence, it follows from (3 .2) that

(3.4)

	

fx
O(MPf)dp :5 aa(Q - 1)-1 fx

O(If I )dh

	

(.f E L1 nLO),

where a is a constant in the ¿n12 - condition for 0.

Since ITf1 <_ PIf1 for f E L1, (3.4) shows that there exists a constant
Cl > 0 such that fx O(MTf)dp < Cl fx O(If 1)dit , f E L1 nLO, which proves
that IIMTf II(0) < CII .f 1I(0) , f E L1 n LO, where C = max(1, Cl). Since L1 n Lp
is a dense linear subspace of [LO , II II(m)l it follows that IIMTf II(0) < CIIf II(0)
for every f E Lp, which proves a) .

Now, let {bk} be a bounded Besicovitch sequence ; then a) and the Banach
principle show that for almost everywhere convergence it is enough to prove
that the weighted averages

1 n-1

Tnf = - 1: bkT kfn
k=o

converges a.e . for all f in a dense subset of [LO, II II(o)] .
Let m E N and S : Lo --+ Lo defined by Sf = e"°Tf . Since L,5 is reflexive

and the powers Sk , k >_ 0, are uniformly bounded, exactly 11 S'f11(0) <- 11f11(0)
for every f E L<p and k >_ 0, then , the Césáro averages Rnf = n-1(f + Sf +
. . . Sn -1 ) converge in norm for every f E Ls . Therefore L,5 is the closure of



14

	

D. GALLARDO

the direct sum of the set of fixed points of S and the space (I - S)Lo (see 2.1
in [6]) .
On the other hand, given f3 > 1 such that &(s) < scp(s), s >_ 0, the function

s--)s-QO(s) increases for s > 0 and consequently O(st) < sO¢(t) for 0 <_ s <_ 1
and t > 0 . Therefore, if g E Lo we have

J

	

~0(In -1 Sngl)dp ~
X n=1

00

n
-Q
1 0(ISngl)dju <

n=1 X

< f 0(Igj)dp ~n-0 < oo .
X n=1

00

Hence n-1Sng(x) -> 0 a.e . as n -> oo and thus Rnf -3 0 a.e . if f = g - Sg .
Since the maximal operator MS is bounded in [Lo, II II(o)] we obtain that,

for any f E LO, n-1
rk=01

e'm kTk
f converges a.e .

	

and therefore for every
trigonometric polynomial a and f E Lo we have that

1 n-1
kf(x)lim - 1: a(k)Tn-oo n

k=0

exists and is finite a.e .
Then, for every f E Lo fl L., Tnf converges a.e . since for every e > 0 there

exists a trigonometric pólynomial af such that

and consequently

1 n-1
limsup- J:Ibk -a f (k)I < e
n-oo n k=0

n-1
limsup lTnf(x) - 1Ea,(k)Tk .f(x)) < ejif ij<,.

	

a.e .
n-oo

	

n k=0

In this way, since Lo fl L.. is dense in Lo, we conclude that Tn f converges
almost everywhere for every f E Lo.

Finally, let f*(x) = lim, Tnf(x).

	

It follows from a) that f* E Lo and
0(ITnf - f* I) is dominated by O(MTf) E L1 ; thus, taking into account the
Lebesgue's dominated theorem, we get that lima, fx 0(ITnf - f* I)dp = 0
which proves that lim n-w IITnf - f*II(0) = 0.
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