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ORLICZ SPACES FOR WHICH THE
HARDY-LITTLEWOOD
MAXIMAL OPERATOR IS BOUNDED

DIEGO GALLARDO

Abstract

Let M be the Hardy-Littlewood maximal operator defined by

Mf(2) = sup — / Ifldz . (f € Lioc(R™)),
2l /,

z€Q

where the supremum is taken over all cubes @ containing r and |Q)] is the
Lebesgne measure of . In this paper we characterize the Orlicz spaces
L;, associzted to N--functions ¢, such that A is bounded in L;, We prove
that this boundedness is equivalent to the complementary N~function 3 of
¢ satisfying the Az-condition in [0, 00), that is, sup, .o ¥{23)/(s) < co.

1. Introduction

It is known that for the Hardy-Littlewood mazimal operator, on R, defined

by

r

(1.1} 8t f)= sup ;—I:E | f(s)lds,

[t—=7|>0 t

to act boundedly in a symmetric space E it is necessary and sufficient that the
following condition be satisfied

(1.2 llo-lle = ofT} asT — co,

where ¢, are the dilation operators defined by o, f(¢) = f(r~1¢). (See Ch. 1],
Theorem 6.18 in [2]).

In this paper we consider the more general Hardy-Littlewoed maximal ope-
rator M, on R™, defined by

' )l = su L T i »
(1.3) M) = sup 0 fQ fldz , (f € Lh(R™),
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where the supremum is taken over all cubes § containing z and |@| is the Le-
besgue measure of . {Cube will mean a compact cubic interval with nonempty
interior).

Our aim is to characterize the Orlicz spaces L%, associated to N-functions
¢, for which the operator defined by (1.3) is bounded. Such Orlicz spaces are
symmetric spaces, but, for the case n = 1, the proof given in here represents a
direct and different proof from that given in {2]. Moreover, our cha.racterlzmg
condition is more manageable than {1.2).

Except in basic questions, this paper is intended to be selfcontained.

Now, we shall present the basic definitions and results concerning to N-
functions and Orlicz spaces which will be used in this paper. The proofs of
most of these results can be found in (1] or in I1-13 of [3].

An N-function is a continuous and convex function ¢ : [0, 00} — R such that
#(s) > 0,5> 0,5 1¢(s) — 0,85 s = 0, and s71¢(s) — o0, as 5 — co.

As example of N—functions we have: ¢;{s) = s*,p > 1; ¢a(s) = 57 logk(l +s),
p=1land k>0 ¢(s) = e —s—1; ¢5(s) = {1 4 s)log(l + 5) — s; ¢s(s) =
=exps® —1 and ¢o(s) = [ p where p : 0,00} — [0,00) is defined by p(0) = 0,
p{t) =277 if ¢t € [277, 277 ) and p(t) = 2*71 if £ € (2"71,2"), n a positive
integer.

An N-function ¢ has the representation ¢(s) = [’ ¢ where ¢ : [0,00) — R s
continuous from the right, non decreasing such that (s} > 0,5 >0, ¢{0) =0
and ¢{s) — oo for s — oc. More precisely p is the right derivat.e of ¢ and will
be called the demnsity function of 4.

Associated fo ¢ we have the function p ! [0, 00} — R defined by p(t} = sup{s:
w(s) < 1} which has the same aforementioned properties of . We will call p
the generalized tnverse of ¢.

The N-function  defined by #{(t} = f;p is called the complementary N-
function of ¢. Thus, if ¢(s) = p~'sP, p > 1, then ¥(4) = ¢~ '¢? where pg = p+q.

Young’s inequality asserts that st < ¢(s) + (t) for s,¢ > 0, equality holding
if and only if p{s—) <t < p(s) or else p{t—) < 5 < p{¢).

An N-function ¢ is said to satisfy the A,—condsiien in [0, 00) {or merely
the Aj—condition) if sup,., ¢{(2s)/¢(s) < oo. If ¢ is the density function of
¢, then, ¢ satisfies A, if and only if there exists a comstant a > 1 such that
sp(s) < a¢{s), s > 0.

The As—condition for ¢ does not transfer necessarily to the complementary
N-function, for example, ¢ defined by ¢(s) = (1 + s}log(1 + s) — s satisfies the
Ag—condition but its complementary N-function ¥, defined by ¥{#) = ¢! -t —1,
does not. In this paper the Aj;—condition for the complementary N-function
t of ¢ plays a fundamental role; precisely, this is the characterizing condition
for the boundeddrness of the Hardy-Littlewood maximal operator defined in
(1.3). For this reason it is very interesting to give some characterizations of
this condition, which permit to know wheter 1 satisfies A, even if we do not
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know explicitly the function .

First, it 1s known that + satisfies the A;-condition in [, co} if and only if
there exists a constant ¢ > 1 such that ¢é(s) < (2a)™'¢(as), s > 0.

The following characterization, which is used in this paper, appear in the
literature with more restrictive hypothesis than the one we shall use and so we
shall include its proof.

Proposition 1.4. The complementary N -funclion of ¢ satisfies the Ay-
condition wn [0, 00) if and only if infysosp(s)/é(s) > 1, where ¢ is the density
function of 9.

Proof of (1.4): Let p be the generalized-inverse of ¢ and let 3 be the com-
plementary N-function of ¢. Assume that 3 satisfies Ag; then, there exists
o > 1 such that 1p(t) < a(t) for every ¢ > 0. On the other hand, it follows
from the equality cases in Youngs's inequality that ¢p(t) = ¢(p(t)) + ¥(¢) and
therefore ¢{p(p(s))}/p{w(s)) < a™(a — 1)p(s), 5 > 0. Since p(p(s)) > s
and the function v — u~!¢{u) increases strictly for u > 0 we obtain that
infyspse(s)/d(s) > ala — 1)L

Assume now that infesosp(s)/é(s) > 1; then, therc exists § > 1 such that
the function s — s #¢(s) increases strictly for s > 0 and, therefore, there
exists @ > 1 such that ¢(s) < {2a)"'@(as}, s > 0. Thus, ¢ satisfies A, and this
finishes the proof. B

If (X, M, p) is a o—finite measure space we denote by M the space of M-
measurable and p-a.e. finite functions from X to # (or to C). If ¢ is an
N—function the Orlicz spaces Ly = Lg(X, M, p) and Ly = L3(X, M, ) are
defined by Ly = { € T : [ ¢(/f)du < oo} and L3 = {f € M : fg € La(s)
for all ¢ € Ly}, where 3 is the complementary N-function of ¢.

We have Ly C L and L} coincides with the set of 9 such that Af € L, for
some positive real A,

The space L7 is a linear space with the usual operations and we may define
the following norms in L:

171l = sup{ ] Faldi: g € Su),
X
where Sy = {g € Ly - [ $(jgldu < 1}, and

fllgy = inf (A >0 /Xé()\_llfl)dusl},

which are called the Orlicz norm and the Luzemburg norm respectively. Both
norms are equivalent, actually f|flls) < |Iflle < 2{[f|l(¢), and they make L}
into a Banach space.
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For a measurable set A, with 0 < p{A4) < oo, |Ixalle = w(A)p 1 (1/p(4)),
where y 4 denotes the characteristic function of A.

If §(s) = 7, p > 1, then, L} = Lg = Ly, ||flleey = [I£1l> and [lgily = lIgll,
where pg = p + ¢.

2. The main result

Theorem 2.1. Let ¢ an N -function, i the complemeniary N —function of ¢,
Ly the Orlicz space associated to ¢ and lel M be the Hardy-Littlewood mazimal
operator defined wn (1.8). The following conditions are equivalent:

(e} There czist posttive constants A and b such that

[ ewmnassa simas . ey
(b) There exists a positive constant C' such that

M fllgy < Cllfllsy » (F € Lg)

(¢} There ezisis a positive constant K such thet

M xally < Klixallgy > (14l < o0).
(d} ¢ satisfies the Ay-condition in [0,00).
Proof: 1t suffices to prove {a) = (b), {c) = (d} and (d) = (a).

The proof of (¢} = (b) is easy. In fact, i f € L} there exists A > 0 such that
Af € Ly; hence AbM f € Ly and therefore M f € L}, Moreover, we have

L #1107 a1, |l <
< Alwmax(t, )7 [ sAIIf )iz <1,

for f # 0 and thus we get [|M fll¢gy < 57" max(1, A)||fll¢s) for every f € L}, W

The proof of {d) = (¢} follows from the following interpolation result, taking
into account that M is of weak type {1,1) and bounded in L.

Theorem 2.2. Let (X, M, p) and {Y,F,v) be two o-finite measure spaces,
¢ an N-funclion whose complemeniory N —function salisfies the Np—condition
and let T: Ly{p) + Loo{u} — SR(Y) be o quasi-additive operator which s
stmultaneously of weak type (1,1) and of type (00,00). Then, T is defined on
Ly(1) and there exist positive constanis A and m such that

(23) [ oribdv< a [ omifdn (7€ Liw).
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Proof of Theorem 2.2: By hypothesis there exists a constant C such that

vyeY: [Taln)l >3} <037 [ Jgld
1Tkl < Cllalice » [1T{g + 2} < C(ITg) + |TRI)
for every g € Li{p), h € Loo{p) and A > 0.

For f € Ly and A > 0let fy = fxaasecy) and F* = f — F» where A(a) =
={z € X :|f(z)| > «}. We have f5 € Li{pt) and f* € Loo{sz) and therefore

]Y HT sy~ | T oy e Y : ITHE) > Adr <
<20t [T [ Inidna -

2C%| f(x)|
—20 [ @I A e (),

where ¢ is the density function of ¢.
Integrating by parts, we obtain

(2.4) fg AT o( M)A = sV g(s) + fo AT2H(N)AA (s > 0).

Since ¥ satisfies A,, it follows from Proposction 1.4 that there exists § > 1
such that G¢(s) < s@(s), s > 0; then, if 0 < XA < 1 we have that A7%¢(A) <
#(1)A%~2 and therefore f; A™2¢{A)dA is finite. then {2.4) shows that

/: A lo()dN < BB~ 1) " s ¢ls) , (s > 0)

and thus, we obtain (2.3) with A= 5{8 - 1)~ and m = 20w
Note. If T is also positively homogenous then it follows from {2.3) that

f ST H)dv < A / S(1f0dk . (f € Ly(m)
Y X

and T applies L3{X, M, ) in Ly(Y, F,v).

Proof of (¢} = {d): It follows from (c) that there exists a constant K > 0
such that |[|Mexalls < Kl|xalls for every A with 4] < oc,with Mg being the
maximal operator on balls, defined by Mg f(2) = sup g |B|™" f|fldz, wherc
the supremumn is taken over all cuclideans balls B containing = and || || is the
Orlicz norm.

We denote by B(z;r} the ball with center z and radius r and let a4, be the
measure of B(0;1}. For every pair of reals (v,s), with v > O and s > 1, we
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denote by A(v,s) and D(v,s) the balls B(0;{(arvs)™1/") and B(0;(a,v) /")
respectively.

i z ¢ A(v,s) then A(v,s) C B{z;2||z||»} and therefore
Mex aw,0(2) 2 (2" anvsliz(l7) ™

On the other hand, if ¢ = ¥~ (v)x p(s,s) We have fR,, ¥{|g|)dz = 1 and conse-
quently

1MEX Ago,5)le = %7 (v) f MEeX Ate,s)dz 2
DH{u, 8}

> (2a0s)" 971 (v) / lell; "de =
{apve}=tng||z|[o<(anv)—tin
= (2%s) 1 (v) log s.

)
Since ||x aqv,0)lle = (vs) "1 {vs) we conclude that there exists K > 0 such
that
27 (w)logs < Ky~ (sv) {fo>0)(s>1)
Therefore 27 (v) < ¢ (v exp (K2"*}), v > 0, which proves that %{21) <
< exp (K27 )y(t) for every ¢ > 0 and so 3 satisfies Az in [0,00). B

Final Remark. [t follows from Theorem 2.1 that the A,-condition on the
complementary N —function of ¢ cannot be eliminated from the hypethesis of
the interpolation theorem 2.2 since if the complementary N-function of ¢ does
not satisfy Ay {for example, in the case of ¢ defined by ¢(s) = (1 + s)log(1 + .
+s) — s} the result of the interpolation theorem does not hold for ¢ and the
Hardy-Littlewood maximal operator in spite of the fact that this operator is
of weak type (1, 1) and of type {oc,o0). (Moreover, observe that in the above—
mentioned case the N—function ¢ satisfies the Aj—condition).
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